2024 Asia Meeting, Hangzhou, China: June, 2024

Optimal Trade and Industrial Policies in the Global Economy: A Deep Learning Framework

Zi Wang, Xincheng Xu, Yanqing Yang, Xiaodong Zhu

We propose a deep learning framework, DL-opt, designed to efficiently solve for optimal policies in quantifiable general equilibrium trade models. DL-opt integrates (i) a nested fixed point (NFXP) formulation of the optimization problem, (ii) automatic implicit differentiation to enhance gradient descent for solving unilateral optimal policies, and (iii) a best-response dynamics approach for finding Nash equilibria. Utilizing DL-opt, we solve for non-cooperative tariffs and industrial subsidies across 7 economies and 44 sectors, incorporating sectoral external economies of scale. Our quantitative analysis reveals significant sectoral heterogeneity in Nash policies: Nash industrial subsidies increase with scale elasticities, whereas Nash tariffs decrease with trade elasticities. Moreover, we show that global dual competition, involving both tariffs and industrial subsidies, results in lower tariffs and higher welfare outcomes compared to a global tariff war. These findings highlight the importance of considering sectoral heterogeneity and policy combinations in understanding global economic competition.



Preview

Page 1
Page 2
Page 3
Page 4
Page 5
Page 6
Page 7
Page 8
Page 9
Page 10
Page 11
Page 12
Page 13
Page 14
Page 15
Page 16
Page 17
Page 18
Page 19
Page 20
Page 21
Page 22
Page 23
Page 24
Page 25
Page 26
Page 27
Page 28
Page 29
Page 30
Page 31
Page 32
Page 33
Page 34
Page 35
Page 36
Page 37
Page 38