This paper considers random coefficients binary choice models. The main goal is to estimate the density of the random coefficients nonparametrically. This is an ill‐posed inverse problem characterized by an integral transform. A new density estimator for the random coefficients is developed, utilizing Fourier–Laplace series on spheres. This approach offers a clear insight on the identification problem. More importantly, it leads to a closed form estimator formula that yields a simple plug‐in procedure requiring no numerical optimization. The new estimator, therefore, is easy to implement in empirical applications, while being flexible about the treatment of unobserved heterogeneity. Extensions including treatments of nonrandom coefficients and models with endogeneity are discussed.
MLA
Gautier, Eric, and Yuichi Kitamura. “Nonparametric Estimation in Random Coefficients Binary Choice Models.” Econometrica, vol. 81, .no 2, Econometric Society, 2013, pp. 581-607, https://doi.org/10.3982/ECTA8675
Chicago
Gautier, Eric, and Yuichi Kitamura. “Nonparametric Estimation in Random Coefficients Binary Choice Models.” Econometrica, 81, .no 2, (Econometric Society: 2013), 581-607. https://doi.org/10.3982/ECTA8675
APA
Gautier, E., & Kitamura, Y. (2013). Nonparametric Estimation in Random Coefficients Binary Choice Models. Econometrica, 81(2), 581-607. https://doi.org/10.3982/ECTA8675
By clicking the "Accept" button or continuing to browse our site, you agree to first-party and session-only cookies being stored on your device. Cookies are used to optimize your experience and anonymously analyze website performance and traffic.