Econometrica: Sep, 2022, Volume 90, Issue 5
Preparing for the Worst But Hoping for the Best: Robust (Bayesian) Persuasion
https://doi.org/10.3982/ECTA19107
p. 2017-2051
Piotr Dworczak, Alessandro Pavan
We propose a robust solution concept for Bayesian persuasion that accounts for the Sender's concern that her Bayesian belief about the environmentâwhich we call the conjectureâmay be false. Specifically, the Sender is uncertain about the exogenous sources of information the Receivers may learn from, and about strategy selection. She first identifies all information policies that yield the largest payoff in the âworstâcase scenario,â that is, when Nature provides information and coordinates the Receivers' play to minimize the Sender's payoff. Then she uses the conjecture to pick the optimal policy among the worstâcase optimal ones. We characterize properties of robust solutions, identify conditions under which robustness requires separation of certain states, and qualify in what sense robustness calls for more information disclosure than standard Bayesian persuasion. Finally, we discuss how some of the results in the Bayesian persuasion literature change once robustness is accounted for, and develop a few new applications.
Supplemental Material
Supplement to "Preparing for the Worst But Hoping for the Best: Robust (Bayesian) Persuasion"
Piotr Dworczak and Alessandro Pavan
This online appendix contains material not found within the manuscript.
View pdf