Econometrica: May, 2019, Volume 87, Issue 3
Understanding Preferences: “Demand Types”, and the Existence of Equilibrium with Indivisibilities
https://doi.org/10.3982/ECTA13693
p. 867-932
Elizabeth Baldwin, Paul Klemperer
An Equivalence Theorem between geometric structures and utility functions allows new methods for understanding preferences. Our classification of valuations into “Demand Types” incorporates existing definitions (substitutes, complements, “strong substitutes,” etc.) and permits new ones. Our Unimodularity Theorem generalizes previous results about when competitive equilibrium exists for any set of agents whose valuations are all of a “demand type.” Contrary to popular belief, equilibrium is guaranteed for more classes of purely‐complements than of purely‐substitutes, preferences. Our Intersection Count Theorem checks equilibrium existence for combinations of agents with specific valuations by counting the intersection points of geometric objects. Applications include matching and coalition‐formation, and the “Product‐Mix Auction” introduced by the Bank of England in response to the financial crisis.
Supplemental Material
Supplement to "Understanding Preferences: “Demand Types”, and the Existence of Equilibrium with Indivisibilities"
This appendix contains material not found within the manuscript.
View pdf
Supplement to "Understanding Preferences: “Demand Types”, and the Existence of Equilibrium with Indivisibilities"
This zip file contains the replication files for the manuscript.
View zip