Econometrica

Journal Of The Econometric Society

An International Society for the Advancement of Economic
Theory in its Relation to Statistics and Mathematics

Edited by: Guido W. Imbens • Print ISSN: 0012-9682 • Online ISSN: 1468-0262

Econometrica: Mar, 2011, Volume 79, Issue 2

Applied Nonparametric Instrumental Variables Estimation

https://doi.org/10.3982/ECTA8662
p. 347-394

Joel L. Horowitz

Instrumental variables are widely used in applied econometrics to achieve identification and carry out estimation and inference in models that contain endogenous explanatory variables. In most applications, the function of interest (e.g., an Engel curve or demand function) is assumed to be known up to finitely many parameters (e.g., a linear model), and instrumental variables are used to identify and estimate these parameters. However, linear and other finite‐dimensional parametric models make strong assumptions about the population being modeled that are rarely if ever justified by economic theory or other a priori reasoning and can lead to seriously erroneous conclusions if they are incorrect. This paper explores what can be learned when the function of interest is identified through an instrumental variable but is not assumed to be known up to finitely many parameters. The paper explains the differences between parametric and nonparametric estimators that are important for applied research, describes an easily implemented nonparametric instrumental variables estimator, and presents empirical examples in which nonparametric methods lead to substantive conclusions that are quite different from those obtained using standard, parametric estimators.


Log In To View Full Content

Supplemental Material

Supplement to "Applied Nonparametric Instrumental Variables Estimation"

A zip file containing the manuscript's replication files.