Econometrica: Jan, 1978, Volume 46, Issue 1
Temporal Resolution of Uncertainty and Dynamic Choice Theory
https://www.jstor.org/stable/1913656
p. 185-200
David M. Kreps, Evan L. Porteus
We consider dynamic choice behavior under conditions of uncertainty, with emphasis on the timing of the resolution of uncertainty. Choice behavior in which an individual distinguishes between lotteries based on the times at which their uncertainty resolves is axiomatized and represented, thus the result is choice behavior which cannot be represented by a single cardinal utility function on the vector of payoffs. Both descriptive and normative treatments of the problem are given and are shown to be equivalent. Various specializations are provided, including an extension of "separable" utility and representation by a single cardinal utility function.