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STRONG DUALITY FOR A MULTIPLE-GOOD MONOPOLIST

BY CONSTANTINOS DASKALAKIS, ALAN DECKELBAUM, AND CHRISTOS TZAMOS!

We characterize optimal mechanisms for the multiple-good monopoly problem and
provide a framework to find them. We show that a mechanism is optimal if and only if
a measure pu derived from the buyer’s type distribution satisfies certain stochastic dom-
inance conditions. This measure expresses the marginal change in the seller’s revenue
under marginal changes in the rent paid to subsets of buyer types. As a corollary, we
characterize the optimality of grand-bundling mechanisms, strengthening several re-
sults in the literature, where only sufficient optimality conditions have been derived. As
an application, we show that the optimal mechanism for » independent uniform items
each supported on [c, ¢ + 1] is a grand-bundling mechanism, as long as c is sufficiently
large, extending Pavlov’s result for two items Pavlov (2011). At the same time, our char-
acterization also implies that, for all ¢ and for all sufficiently large n, the optimal mech-
anism for n independent uniform items supported on [c, ¢ + 1] is not a grand-bundling
mechanism.

KEYWORDS: Revenue maximization, mechanism design, strong duality, grand
bundling.

1. INTRODUCTION

WE STUDY THE PROBLEM OF REVENUE maximization for a multiple-good monopolist.
Given n heterogeneous goods and a probability distribution f over R, we wish to de-
sign a mechanism that optimizes the monopolist’s expected revenue against an additive
(linear) buyer whose values for the goods are distributed according to f.

The single-good version of this problem—namely, n = 1—is well-understood, going
back to Riley and Samuelson (1981), Myerson (1981), Maskin and Riley (1984), Riley
and Zeckhauser (1983), where it was shown that a take-it-or-leave-it offer of the good at
some price is optimal, and the optimal price can be easily calculated from f.

For general n, it has been known that the optimal mechanism may exhibit much
richer structure. Even when the item values are independent, the mechanism may benefit
from selling bundles of items or even lotteries over bundles of items (Preston McAfee,
McMillan, and Whinston (1989), Bakos and Brynjolfsson (1999), Thanassoulis (2004),
Manelli and Vincent (2006)). Moreover, no general framework to approach this problem
has been proposed in the literature, making it dauntingly difficult both to identify optimal
solutions and to certify the optimality of those solutions. As a consequence, seemingly
simple special cases (even n = 2) remain poorly understood, despite much research for
a few decades. See, for example, Rochet and Stole (2003) for a comprehensive survey of
work spanning our problem, as well as Manelli and Vincent (2007) and Figalli, Kim, and
McCann (2011) for additional references.

We propose a novel framework for revenue maximization based on duality theory. We
identify a minimization problem that is dual to revenue maximization and prove that the
optimal values of these problems are always equal. Our framework allows us to identify
optimal mechanisms in general settings, and certify their optimality by providing a com-
plementary solution to the dual problem, namely, finding a solution to the dual whose
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objective value equals the mechanism’s revenue. Our framework is applicable to arbi-
trary settings of » and f, with mild assumptions such as differentiability. In particular, we
strengthen prior work Manelli and Vincent (2006), Daskalakis, Deckelbaum, and Tzamos
(2013), Giannakopoulos and Koutsoupias (2014), which identified optimal mechanisms
in special cases. We exhibit the practicality of our framework by solving several exam-
ples. Importantly, we can leverage our duality theorem to characterize optimal multi-
item mechanisms. From a technical standpoint, we provide new analytical methodology
for multidimensional mechanism design by providing extensions to Monge—Kantorovich
duality for optimal transportation. We proceed to discuss our contributions in detail, pro-
viding a roadmap to the paper, and conclude this section with a discussion of related
work.

Strong Duality

Our first main result (presented as Theorem 2) formulates a dual problem to the opti-
mal mechanism design problem, and establishes strong duality between the two problems.
That is, we show that the optimal values of the two optimization problems are identical.
Our approach for developing this dual problem is outlined below.

We start by formulating optimal mechanism design as a maximization problem over
convex, nondecreasing, and 1-Lipschitz continuous functions u, representing the utility of
the buyer as a function of her type, as in Rochet (1987). The objective function of this
maximization problem can be written as the expectation of u with respect to a signed
measure u over the type space of the buyer. Measure u is easily derived from the buyer’s
type distribution f (see Equation (3)) and expresses the marginal change in the seller’s
revenue under marginal changes in the rent paid to subsets of buyer types. Our formu-
lation is summarized in Theorem 1, while Section 2.2 illustrates our formulation in the
basic setting of independent uniform items.

In Theorem 2, we formulate a dual in the form of an optimal transportation prob-
lem, and establish strong duality between the two problems. Roughly speaking, our dual
formulation is given the signed measure p (from Theorem 1) and solves the following
minimization problem: (i) first, it is allowed to choose any measure u’ that stochastically
dominates u with respect to convex increasing functions; (ii) second, it is supposed to find
a coupling of the positive part w/, of w’ with its negative part u’ , that is, find a transporta-
tion from w/, to w’; (iii) if a unit of mass of w/ at x is transported to a unit of mass of
u' at y, we are charged ||x — y|l;. The goal is to minimize the cost of the coupling with
respect to the decisions in (i) and (ii).

While our dual formulation takes a simple form, establishing strong duality is quite
technical. At a high level, our proof follows the proof of Monge—Kantorovich duality in
Villani (2008), making use of the Fenchel-Rockafellar duality theorem, but the technical
aspects of the proof are different due to the convexity constraint on feasible utility func-
tions. The proof is presented in the Supplemental Material (Daskalakis, Deckelbaum, and
Tzamos (2017)), but it is not necessary to understand the other results in this paper. We
note that our formulation from Theorem 1 defines a convex optimization problem. One
would hope then that infinite-dimensional linear programming techniques (Luenberger
(1968), Anderson and Nash (1987)) can be leveraged to establish the existence of a strong
dual. We are not aware of such an approach, and expect that such formulations will fail
to establish existence of interior points in the primal feasible set, which is necessary for
strong duality.

As already emphasized earlier, our identification of a strong dual implies that the op-
timal mechanism admits a certificate of optimality, in the form of a dual witness, for all
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settings of n and f. Hence, our duality framework can play the role of first-order con-
ditions certifying the optimality of single-dimensional mechanisms. Where optimality of
single-dimensional mechanisms can be certified by checking virtual welfare maximization,
optimality of multidimensional mechanisms is always certifiable by providing dual solu-
tions whose value matches the revenue of the mechanism, and such dual solutions take a
simple form: they are transportation maps between measures.

Using our framework, we can provide shorter proofs of optimality of known mecha-
nisms. As an illustrating example, we show in Section 5.1 how to use our framework to
establish the optimality of the mechanism for two i.i.d. uniform [0, 1] items proposed by
Manelli and Vincent (2006). Then in Section 5.2, we provide a simple illustration of the
power of our framework, obtaining the optimal mechanism for two independent uniform
[4, 16] and uniform [4, 7] items, a setting where the results of Manelli and Vincent (2006),
Pavlov (2011), Daskalakis, Deckelbaum, and Tzamos (2013), Giannakopoulos and Kout-
soupias (2014) fail to apply. The optimal mechanism has the somewhat unusual structure
shown in the diagram in Section 5, where types in Z are allocated nothing (and pay noth-
ing), types in W are allocated the grand bundle (at price 12), while types in Y are allocated
item 2 and get item 1 with probability 50% (at price 8).

Characterization of Optimal Mechanisms

Substantial effort in the literature has been devoted to studying optimality of mecha-
nisms with a simple structure such as pricing mechanisms; see, for example, Manelli and
Vincent (2006) and Daskalakis, Deckelbaum, and Tzamos (2013) for sufficient conditions
under which mechanisms that only price the grand bundle of all items are optimal. Our
second main result (presented as Theorem 3) obtains necessary and sufficient conditions
characterizing the optimality of arbitrary mechanisms with a finite menu size. We proceed
to describe our characterization result in more detail.

Suppose that we are given a feasible mechanism M whose set of possible allocations
is finite. We can then partition the type set into finitely many subsets (called regions)
Ri, ..., Ry of types who enjoy the same price and allocation. The question is this: for
what type distributions is M optimal? Theorem 3 answers this question with a sharp char-
acterization result: M is optimal if and only if the measure p (derived from the type
distribution as described above) satisfies k stochastic dominance conditions, one per re-
gion in the afore-defined partition. The type of stochastic dominance that u restricted to
region R; ought to satisfy depends on the allocation to types from R;, namely, which set
of items are allocated with probability 1, 0, or non-0/1.

Theorem 3 is important in that it reduces checking the optimality of mechanisms to
checking standard stochastic dominance conditions between measures derived from the
type distribution f, which is a concrete and easier task than arguing optimality against all
possible mechanisms.

Theorem 3 is a corollary of our strong duality framework (Theorem 2), but requires a
sequence of technical results. One direction of our characterization result requires turn-
ing the stochastic dominance conditions into dual solutions that can be plugged into The-
orem 2 to establish the optimality of a given mechanism. The other direction requires
showing that a dual solution certifying the optimality of a given mechanism also implies
that the stochastic dominance conditions of Theorem 3 must hold.

A particularly simple special case of our characterization result pertains to the opti-
mality of the grand-bundling mechanism. See Theorem 4. We show that the mechanism
offering the grand bundle at price p is optimal if and only if measure w satisfies a pair of



738 C. DASKALAKIS, A. DECKELBAUM, AND C. TZZAMOS

stochastic dominance conditions. In particular, if Z are the types who cannot afford the
grand bundle and W the types who can, then offering the grand bundle for p is optimal if
and only if the following conditions hold:

e u_|7, the negative part of u restricted to Z, stochastically dominates .|, the pos-
itive part of u restricted to Z, with respect to all convex increasing functions;

e .|y stochastically dominates w_|; with respect to all concave increasing functions.
Already our characterization of grand-bundling optimality settles a long line of research
which only obtained sufficient conditions for the optimality of grand-bundling.

In turn, we illustrate the power of our characterization of grand-bundling optimality
with Theorems 5 and 6, two results that are interesting in their own right. Theorem 5
generalizes the corresponding result of Pavlov (2011) from two to an arbitrary number of
items. We show that, for any number of items #, there exists a large enough ¢ such that
the optimal mechanism for # i.i.d. uniform [c, ¢ + 1] items is a grand-bundling mecha-
nism. While maybe an intuitive claim, we do not see a direct way of proving it. Instead, we
utilize Theorem 4 and construct intricate couplings establishing the stochastic dominance
conditions required by the theorem. In view of Theorem 5, our companion theorem, The-
orem 6, seems even more surprising. We show that in the same setting of » i.i.d. uniform
[c, c + 1] items, for any fixed c it holds that, for all sufficiently large », the optimal mecha-
nism is not (!) a grand-bundling mechanism. See Section 6 for the proofs of these results.

Related Work

There is a rich literature on multi-item mechanism design pertaining to the multiple-
good monopoly problem that we consider here. We refer the reader to the surveys Rochet
and Stole (2003), Manelli and Vincent (2007), Figalli, Kim, and McCann (2011) for a
detailed description, focusing on the work closest to ours.

Much work has focused on obtaining sufficient conditions for optimality of mechanisms.
Hart and Nisan (2014), Menicucci, Hurkens, and Jeon (2015), and Haghpanah and Hart-
line (2015) provided sufficient conditions for the grand-bundling mechanism to be opti-
mal. Manelli and Vincent (2006) provided conditions for the optimality of more complex
deterministic mechanisms and, similarly, Daskalakis, Deckelbaum, and Tzamos (2013),
Giannakopoulos and Koutsoupias (2014) provided sufficient conditions for the optimality
of general (possibly randomized) mechanisms. Finally, Haghpanah and Hartline (2015)
provided an approach for reverse engineering sufficient conditions for a simple mech-
anism to be optimal. These works on sufficient conditions apply to limited settings of
n and f. They typically proceed by relaxing some of the truthfulness constraints and
are therefore only applicable when the relaxed constraints are not binding at the opti-
mum.

In addition to sufficient conditions, a lot of work has focused on characterizing
properties of optimal mechanisms. Armstrong (1996) have shown that optimal mech-
anisms always exclude a fraction of buyer types of low value from the mechanism.
Thanassoulis (2004), Briest, Chawla, Kleinberg, and Weinberg (2010), and Hart and
Nisan (2013) showed that randomization is necessary for optimal revenue extraction.
In turn, Manelli and Vincent (2007) have shown that there exist type distributions for
which optimal mechanisms are arbitrarily complex. Hart and Reny provided an inter-
esting example where a product type distribution over two items stochastically dom-
inates another, yet the optimal revenue from the weaker distribution is higher (Hart
and Reny (2015)). Finally, some literature (Armstrong (1999), Hart and Nisan (2014),
Babaioff, Immorlica, Lucier, and Weinberg (2014), Li and Yao (2013), Cai and Huang
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(2013)) has focused on the revenue guarantees of simple mechanisms, for example,
bundling all items together or selling them separately.

Rochet and Choné (1998) studied a closely related setting, providing a characterization
of the optimal mechanism for the multiple-good monopoly problem where the monop-
olist has a (strictly) convex cost for producing copies of the goods. With strictly convex
production costs, optimal mechanism design becomes a strictly concave maximization
problem, which allows the use of first-order conditions to characterize optimal mecha-
nisms. Our problem can be viewed as having a production cost that is 0 for selling at
most one unit of each good and infinity otherwise. While still convex, our production
function is not strictly convex and is discontinuous, making first-order conditions less
useful for characterizing optimal mechanisms. This motivates the use of duality theory
in our setting. From a technical standpoint, optimal mechanism design necessitates the
development of new tools in optimal transport theory Villani (2008), extending Monge—
Kantorovich duality to accommodate convexity constraints in the dual of the transporta-
tion problem. In our setting, the dual of the transportation problem corresponds to the
mechanism design problem and these constraints correspond to the requirement that the
utility function of the buyer be convex, which is intimately related to the truthfulness of
the mechanism Rochet (1987). In turn, accommodating the convexity constraints in the
mechanism design problem requires the introduction of mean-preserving spreads of mea-
sures in its transportation dual, resembling the “multidimensional sweeping” of Rochet
and Choné.

Ultimately, our work relies on and develops further a fundamental connection
of optimal transportation to designing optimal mechanisms. See Ekeland’s notes on
Optimal Transportation (Ekeland (2010)) for more connections to mechanism de-
sign.

2. REVENUE MAXIMIZATION AS OPTIMIZATION PROGRAM
2.1. Setting up the Optimization Program

Our goal is to find the revenue-optimal mechanism M for selling # goods to a single
additive buyer. An additive buyer has a type x specifying his value for each good. The type

x is an element of a type space X = []_,[x¥, x"®"], where xlov, x"*" are nonnegative real
numbers. While the buyer knows his type with certainty, the mechanism designer only
knows the probability distribution over X from which x is drawn. We assume that the
distribution has a density f : X — R that is continuous and differentiable with bounded
derivatives.

Without loss of generality, by the revelation principle, we consider direct mechanisms.
A (direct) mechanism consists of two functions: (i) an allocation function P : X — [0, 1]"
specifying the probabilities, for each possible type declaration of the buyer, that the
buyer will be allocated each good, and (ii) a price function T : X — R specifying,
for each declared type of the buyer, the price that he is charged. When an additive
buyer of type x declares himself to be of type x’ € X, he receives net expected utility
x-Px)—=T(x).

We restrict our attention to mechanisms that are incentive compatible, meaning that
the buyer must have adequate incentives to reveal his values for the items truthfully, and
individually rational, meaning that the buyer has an incentive to participate in the mecha-
nism.

DEFINITION 1: Mechanism M = (P, T) over type space X is incentive compatible (IC)
ifand only if x - P(x) — T (x) > x - P(x') — T (x') forall x, x' € X.
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DEFINITION 2: Mechanism M = (P, T) over type space X is individually rational (IR)
ifand only if x - P(x) — T (x) >0 forall x € X.

When a buyer truthfully reports his type to a mechanism M = (P, T') (over type space
X), we denote by u: X — R the function that maps the buyer’s valuation to the utility
he receives by M. It follows by the definitions of P and 7 that u(x) = x - P(x) — T (x).
It is well-known (see Rochet (1987), Rochet and Choné (1998), and Manelli and Vincent
(2006)) that an IC and IR mechanism has a convex, nonnegative, nondecreasing, and 1-
Lipschitz utility function with respect to the £; norm and that any utility function satisfying
these properties is the utility function of an IC and IR mechanism with P(x) = Vu(x) and
Tx)=P(x) - x—u(x).?

We clarify that a function u is 1-Lipschitz with respect to the ¢, norm if u(x) — u(y) <
lx — y|l; for all x, y € X. This is essentially equivalent to all partial derivatives having
magnitude at most 1 in each dimension.

We will formulate the mechanism design problem as an optimization problem over
feasible utility functions u. We first define the notation:

e U(X) is the set of all continuous, nondecreasing, and convex functions u : X — R.
e L(X) isthe set of all 1-Lipschitz with respect to the ¢, norm functions u : X — R.

In this notation, a mechanism M is IC and IR if and only if its utility function u satisfies
u>0and u eU(X) N L(X). It follows that the optimal mechanism design problem can
be viewed as an optimization problem:

sup / [Vu(x) SX— u(x)]f(x) dx.
X

ueld (X)NL1(X)
u>0

Notice that for any utility u defining an IC and IR mechanism, the function #u(x) =
u(x) — u(x'") also defines a valid IC and IR mechanism since & € U(X) N £:(X) and
u > 0. Moreover, u achieves at least as much revenue as u, and thus it suffices in the
above program to look only at feasible u with u(x'*) = 0.

We claim that we can therefore remove the constraint u > 0 and equivalently focus on
solving

sup /X[Vu(x) x = (u(x) —u(x))]f(x)dx. (1)

uel(X)NL1(X)

Indeed, this objective function agrees with the prior one whenever u(x'°") = 0. Further-
more, for any u € U(X) N L,(X), the function &(x) = u(x) — u(x'°) is nonnegative and
achieves the same objective value. Applying the divergence theorem as in Manelli and
Vincent (2006), we may rewrite the expression for expected revenue in (1) as follows:

/ [Vu(x) SX - (u(x) — u(x"’w))]f(x) dx
X
(2
= / u(x)f(x)(x-n)dx — / u@x)(VI(x)-x+ (n+1Df(x))dx + u(xv),
X X

20On the measure-0 set on which Vu is not defined, we can use an analogous expression for P by choosing
appropriate values of Vu from the subgradient of u.
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where 71 denotes the outer unit normal field to the boundary 4.X . To simplify notation, we
make the following definition.

DEFINITION 3—Transformed Measure: The transformed measure of f is the (signed)
measure pu (supported within X) given by the property that

u(A) éf La(x) f(x)(x - ) dx _/ L)V x4 (n+ Df () dx+La(x™) (3)
X X

for all measurable sets 4.}

Interpretation of Transformed Measure

Given (2) and (3), the revenue of the seller in Formulation (1) can be written as [, udp,
which is a linear functional of u with respect to the measure w. Hence, we will maintain
the following intuition of what measure u represents:

“Measure u quantifies the marginal change in revenue with respect to marginal changes in the rent paid
to subsets of buyer types.”

Moreover, our measure satisfies that w(X) = f  1dp = 0. Indeed, if we substitute
u(x) =1 to the left-hand side of (2), we have that

/;([Vu(x) - x = (u(x) — u(x'))]f(x)dx =0.

Furthermore, we have |u|(X) < oo, since f, Vf, and X are bounded.
Summarizing the above derivation, we obtain the following theorem.

THEOREM 1—Multi-Item Monopoly Problem: The problem of determining the optimal
IC and IR mechanism for a single additive buyer whose values for n goods are distributed ac-
cording to the joint distribution f : X — R is equivalent to solving the optimization problem

sup [ wd. ()
X

ueld(X)NLy(X)

where . is the transformed measure of f given in (3).

2.2. Example

Consider n independently distributed items, where the value of each item i is drawn
uniformly from the bounded interval [a;, b;] with 0 < a; < b; < co. The support of the
joint distribution is the set X =[] [a;, b;].

For notational convenience, define v = [1;(b; —a;), the volume of X . The joint distribu-
tion of the items is given by the constant density function f taking value 1/v throughout X.
The transformed measure u of f is given by the relation

1
/J«(A)=HA(01,-~7an)+;/

X

Ty (x)(x - ) dx — ”—H/ I,(x)dx
v X

31t follows from boundedness of f’s partial derivatives that u is a Radon measure. Throughout this paper,
all “measures” we use will be Radon measures.
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for all measurable sets A. Therefore, by Theorem 1, the optimal revenue is equal to
SUP,,cixne, x) Jx U A, Where w is the sum of:

e a point mass of +1 at the point (ay, ..., a,).

e amass of —(n+ 1) distributed uniformly throughout the region X.

e a mass of +ﬁ distributed uniformly on each surface {x € 6X : x; = b;}.

e a mass of —ﬁ distributed uniformly on each surface {x € dX : x; = a;}.

3. THE STRONG MECHANISM DESIGN DUALITY THEOREM

Thus far, we have compactly formulated the problem facing the multi-item monopo-
list as an optimization problem with respect to the buyer’s utility function; see Formula-
tion (4). Unfortunately, the problem is infinite-dimensional and cannot be solved directly.
Moreover, the problem is not strictly convex so we cannot characterize its optimum us-
ing first-order conditions. This is an important point of departure in comparison with the
work of Rochet and Choné (1998), where the strict convexity of the cost function allowed
first-order conditions to drive the characterization. For more discussion, see Section 1.

In the absence of strict convexity, our approach is to use duality theory. We are seeking
to identify a minimization problem, called “the dual problem,” and which is linked to
Formulation (4), henceforth called “the primal problem,” as follows:

1. We want that the value of any solution to the dual problem is larger than the rev-
enue achieved by any solution to the primal problem. If a minimization problem satisfies
this property, it is called a “weak dual problem.”

2. Additionally, we want that the optimum of the dual problem matches the optimum
of the primal problem. A minimization problem satisfying this property is called a “strong
dual problem.” It is clear that a strong dual problem is also a weak dual problem. This
type of strong dual problem is what we will identify in Theorem 2 of this section.

The importance of identifying a strong dual problem is the following. Given a candi-
date optimal mechanism, we are guaranteed that a solution to the dual problem with a
matching objective value exists if and only if the candidate mechanism is indeed optimal.
Therefore, solutions to the dual problem constitute “certificates of optimality” for solu-
tions to the primal, and strong duality guarantees that such dual certificates are always
possible to find for optimal solutions to the primal. Accordingly, we will be seeking solu-
tions to our dual problem from Theorem 2 to obtain “certificates, or witnesses, of optimal-
ity” for candidate optimal mechanisms. By this we mean that we will be seeking solutions
to the dual that prove (via duality theory) that a candidate optimal mechanism is indeed
optimal. Moreover, these dual solutions take the form of optimal transportation maps be-
tween submeasures induced by measure u of Definition 3. This tight connection between
optimal mechanisms (primal solutions) and optimal transportation maps (dual solutions)
drives our characterization of optimal mechanisms in Theorem 3, as well as the concrete
examples we work out in Sections 5, 6.1, and 8. Moreover, by “reverse-engineering the
duality theorem,” we provide a framework for identifying optimal mechanisms in Sec-
tion 7.

Recent work has applied duality theory to identify optimal mechanisms in the same set-
ting as ours Manelli and Vincent (2006), Daskalakis, Deckelbaum, and Tzamos (2013),
Giannakopoulos and Koutsoupias (2014), albeit this work is restricted in that they only
provided weak dual problems. These approaches remove constraints related to truthful-
ness from the primal formulation, and identify weak dual formulations to such relaxed
primal formulations. As such, they provide no guarantee that they can identify dual cer-
tificates of optimality for optimal mechanisms. Indeed, while these techniques suffice in
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certain settings (namely, when the constraints removed from the primal happen not to be
binding at the optimum), there are simple examples where they fail to apply. Section 5.2
provides such a two-item example with uniformly distributed values. In contrast to prior
work, we achieve strong duality for the (unrelaxed) primal formulation and our approach
is always guaranteed to work.

In this section, we show how to pin down the right dual formulation for the problem
and prove strong duality. The proof of the result requires many analytical tools from
measure theory. We give a rough sketch of the proof in this section and postpone the
more technical details to the Supplemental Material.

3.1. Measure-Theoretic Preliminaries

We start with some useful measure-theoretic notation:

e I'(X) and I', (X)) denote the sets of signed and unsigned (Radon) measures on X.

e Given an unsigned measure y € I', (X x X)), we denote by vy, vy, the two marginals
of v, that is, y;(A) = y(A x X) and y,(A) = y(X x A) for all measurable sets 4 C X.

e For a (signed) measure u and a measurable A € X, we define the restriction of u
to A, denoted u| 4, by the property u|4(S) = n(A N S) for all measurable S.

e For a signed measure u, we will denote by u,, u_ the positive and negative parts
of u, respectively. Thatis, u = w, — u_, where u, and p_ provide mass to disjoint subsets
of X.

We will also be needing certain stochastic dominance properties, namely, first- and
second-order stochastic dominance as well as the notion of convex dominance.

DEFINITION 4: We say that « first-order (respectively second-order) dominates B for
a, B € I'(X), denoted « >, B (respectively a >, B), if, for all nondecreasing continuous
(respectively nondecreasing concave) functions u: X — R, [uda> [udp.

Similarly, for vector random variables 4 and B with values in X, we say that 4 >, B (re-
spectively 4 >, B) if E[u(A)] > E[u(B)] for all nondecreasing continuous (respectively
nondecreasing concave) functions u : X — R.

DEFINITION 5: We say that « convexly dominates B for a, B € I'(X), denoted a > 3,
if, for all (nondecreasing, convex) functions u € U (X), f uda > [udp.

Similarly, for vector random variables 4 and B with values in X, we say that 4 >., B
if E[u(A)] > E[u(B)] for all u e U(X).

Interpretation of Convex Dominance

For intuition, a measure « > B if we can transform g to a by doing the following two

operations:

1. sending (positive) mass to coordinate-wise larger points: this makes the integral
[ udp larger since u is nondecreasing.

2. spreading (positive) mass so that the mean is preserved: this makes the integral
[ udp larger since u is convex.
The existence of a valid transformation using the above operations is equivalent to convex
dominance. This follows by Strassen’s theorem presented in the Supplemental Material.

3.2. Mechanism Design Duality

The main result of this paper is that the mechanism design problem, formulated as a
maximization problem in Theorem 1, has a strong dual problem, as follows:
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THEOREM 2—Strong Duality Theorem: Let u € I'(X) be the transformed measure of
the probability density f according to Definition 3. Then

sup / udp = inf / lx = yllidy(x,y) (5)
ueld(X)NLy(X)J x Zﬁl:tygcxvg) XxX

and both the supremum and infimum are achieved. Moreover, the infimum is achieved for
some y* such that y{(X) = y5(X) = u (X)), V] Zew My, and Y5 S .

Interpretation of the Strong Dual Problem

The dual problem of minimizing [ |x — y||; dy is an optimization problem that can be
intuitively thought of as a two-step process:

Step 1: Transform p into a new measure ' with (X)) = 0 such that u’ > w. This step
is similar to sweeping as defined in Rochet and Choné (1998) where they transformed
the original measure by mean-preserving spreads. However, here we are also allowed to
perform positive mass transfers to coordinate-wise larger points.

Step 2: Find a joint measure y € I', (X x X) with y; =, vy, = u’_ such that [ |lx —
yll1dy(x,y) is minimized. This is an optimal mass transportation problem where the cost
of transporting a unit of mass from a point x to a point y is the ¢; distance ||x — y||i,
and we are asked for the cheapest method of transforming the positive part of ' into
the negative part of u'. Transportation problems of this form have been studied in the
mathematical literature. See Villani (2008).

Overall, our goal in the dual problem is to match the positive part of u to the negative
part of p at a minimum cost where some operations come for free, namely, we can choose
any u' >.x u that is convenient to us, foreseeing that transporting ', to u’ comes at a
cost equal to the total ¢; distance that mass travels.

We remark that establishing that the right-hand side of (5) is a weak dual for the left-
hand side is easy. Proving strong duality is significantly more challenging, and relies on
nontrivial analytical tools such as the Fenchel-Rockafellar duality theorem. We postpone
that proof to the Supplemental Material, and proceed to show weak duality.

LEMMA 1—Weak Duality: Let u € I'(X). Then

sup /ud,ui inf / x =yl dy.
ueld(X)NLy(X)J X el (XxX) Sy x

Y1—Y2Zcvx M4

PROOF: For any feasible u for the left-hand side and feasible vy for the right-hand side,
we have

/udMS/ Md(71—72)=/ (u(x)—u(y))dy(x,y)g/ lx = ylhdy(x, y),
X X XxX XxX

where the first inequality follows from y; — v, >.x p and the second inequality follows
from the 1-Lipschitz condition on u. QE.D.

From the proof of Lemma 1, we note the following “complementary slackness” condi-
tions that a pair of optimal primal and dual solutions must satisfy.

COROLLARY 1: Let u* and vy* be feasible for their respective problems above. Then
Judw= [lx —yllidy* if and only if both of the following conditions hold:
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1. fud(y;—v;)=[udpu.
2. w(x) —u(y) = llx — ylh, v*(x, y)-almost surely.

PROOF: The inequalities in the proof of Lemma 1 are tight precisely when both condi-
tions hold. Q.E.D.

Interpretation of the Complementary Slackness Conditions

REMARK 1: It is useful to geometrically interpret Corollary 1:

CONDITION 1: We view y; — v; (denote this by u") as a “shuffled” n. Stemming from
the u' >.x p constraint, the shuffling of u into ' is obtained via any sequence of the
following operations: (1) Picking a positive point mass 8§, from u, and sending it from
point x to some other point y > x (coordinate-wise). The constraint [u*du = [u*du
requires that u*(x) = u*(y). Recall that u* is nondecreasing, so u*(z) = u*(x) for all z €
I1 % il Thus, if y is strictly larger than x in coordinate #, then (Vu*); = 0 at all points
z “in between” x and y. The other operation we are allowed, called a “mean-preserving
spread,” is (2) picking a positive point mass 8, from w,, splitting the point mass into
several pieces, and sending these pieces to multiple points while preserving the center of
mass. The constraint [ u*du’ = [ u*du requires that u* varies linearly between x and all
points z that received a piece.

CONDITION 2: The second condition is more straightforward than the first. We view y*
as a “transport” map between its component measures y; and ;. The condition states
that if y* transports from location x to location y, then u*(x) = u*(y) + ||x — y|;. If, for
some coordinate 7, x; < y;, then ||z — y||; < |[x — yl; for z with z; = max(x;, y;). This leads
to a contradiction since u*(x) —u*(y) < u*(z) —u*(y) < |lz—ylh < |x — y|l1- Therefore, it
must be the case that (1) x is component-wise greater than or equal to y and (2) if x; > y;
in coordinate i, then (Vu*); = 1 at all points “in between” x and y. That is, the mechanism
allocates item i with probability 1 to all those types.

By Lemma 1 and Corollary 1, if we can find a “tight pair” of u* and y*, then they are
optimal for their respective problems. This is useful since constructing a <y that satisfies
the conditions of Corollary 1 serves as a certificate of optimality for a mechanism. Theo-
rem 2 shows that this approach always works: for any optimal u*, there always exists a y*
satisfying the conditions of Corollary 1.

REMARK 2: It is useful to discuss what in our dual formulation in the RHS of (5) makes
it a strong dual, comparing to the previous work Daskalakis, Deckelbaum, and Tzamos
(2013), Giannakopoulos and Koutsoupias (2014). If we were to tighten the y; — y, > pt
constraint in our dual formulation to a first-order stochastic dominance constraint, we es-
sentially recover the duality framework of Daskalakis, Deckelbaum, and Tzamos (2013),
Giannakopoulos and Koutsoupias (2014). Tightening the dual constraint maintains the
weak duality but creates a gap between the optimal primal and dual values. In particular,
the dual problem resulting from tightening this constraint becomes a strong dual problem
for a relaxed version of the mechanism design problem in which the convexity constraint
on u is dropped.
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4. SINGLE-ITEM APPLICATIONS AND INTERPRETATION

Before considering multi-item settings, it is instructive to study the application of our
strong duality theorem to single-item settings. We seek to relate the task of minimizing
the transportation cost in the dual problem from Theorem 2 to the structure of Myerson’s
solution Myerson (1981).

Consider the task of selling a single item to a buyer whose value z for the item is dis-
tributed according to a twice-differentiable regular distribution F supported on [z, z].*
Since n = 1, if we were to apply our duality framework to this setting, we would choose
according to (3) as follows:

p(A) =14(2)- (1-f(2)-2) +14(2) -f(E)-Z—/ Li(2)(f'(2)-z+2f(2)dz

z 1-F !
—L(2)-(1-f(2)-2) +L4(2) - f(2)-Z— / HA<z><(z—fT§Z))f<z>) dz.

We can interpret the transportation problem of Theorem 2, defined in terms of u, as:

e The sub-population of buyers having the right-most type, z, in the support of the
distribution have an excess supply of f(z) - z.

e The sub-population of buyers with the left-most type, z, in the support have an
excess supply of 1 — f(2) - z.

¢ Finally, the sub-population of buyers at each other type, z, have a demand of

(=75 )o) o=

One way to satisfy the above supply/demand requirements is to have every infinitesimal

buyer of type z push mass of z — =£@ to its left. Since the fraction of buyers at z is f(z),

f(2)
the total amount of mass staying with them is then ((z — %) f(2)) dz as required.

Notice, in particular, that buyers with positive virtual types will push mass to their left,
while buyers with negative virtual types will push mass to their right.

The afore-described transportation map is feasible for our transportation problem as
it satisfies all demand/supply constraints. We also claim that this solution is optimal. To
see this, consider the mechanism that allocates the item to all buyers with nonnegative
virtual type at a fixed price p*. The resulting utility function is of the form max{z — p*, 0}.
We claim that this utility function satisfies the complementary slackness conditions of
Remark 1 with respect to the transportation map identified above. Indeed, when z > p*,
u is linear with u/(z) = 1 and mass is sent to the left—which is allowed by Part 2 of the
remark, while, when z < p*, u is 0 with «'(z) = 0 and mass is sent to the right—allowed
by Part 1(1) of the remark.

In conclusion, when F is regular, the virtual values dictate exactly how to optimally
solve the optimal transportation problem of Theorem 2. Each infinitesimal buyer of type
z will push mass that equals its virtual value to its left. In particular, the optimal trans-
portation does not need to use mean-preserving spreads. Moreover, measure pu can be

“We remind the reader that a differentiable distribution F is regular when its Myerson virtual value function

b(z)=z— 1}2 ()Z) is increasing in its support, where f is the distribution density function.
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interpreted as the “negative marginal normalized virtual value,” as it assigns measure
—((z— 1}{2()2) )f(2)) dz to the interval [z, z + dz], when z # z, Z.

When F is not regular, the afore-described transportation map is not optimal due to the
non-monotonicity of the virtual values. In this case, we need to preprocess our measure u
via mean-preserving spreads, prior to the transport, and ironing dictates how to do these
mean-preserving spreads. In other words, ironing dictates how to perform the sweeping

of the type set prior to transport.

5. MULTI-ITEM APPLICATIONS OF DUALITY

We now give two examples of using Theorem 2 to prove optimality of mechanisms for
selling two uniformly distributed independent items.

5.1. Two Uniform (0, 1] Items

Using Theorem 2, we provide a short proof of optimality of the mechanism for two
i.i.d. uniform [0, 1] items proposed by Manelli and Vincent (2006), which we refer to as
the MV-mechanism:

EXAMPLE 1: The optimal IC and IR mechanism for selling two items whose values are
distributed uniformly and independently on the interval [0, 1] is the following menu:
e buy any single item for a price of %; or
e buy both items for a price of =2

Let Z be the set of types that receive no goods and pay 0 to the MV-mechanism. Also,
let A, B be the set of types that receive only goods 1 and 2, respectively, and W be the
set of types that receive both goods. The sets A, B, Z, W are illustrated in Figure 1 and
separated by solid lines.

Let us now try to prove that the MV-mechanism is indeed optimal. As a first step, we
need to compute the transformed measure w of the uniform distribution on [0, 1]1>. We
have already computed w in Section 2.2. It has a point mass of +1 at (0, 0), a mass of —3
distributed uniformly over [0, 1]?, a mass of +1 distributed uniformly on the top boundary
of [0, 1]%, and a mass of +1 distributed uniformly on the right boundary. Notice that the
total net mass is equal to 0 within each region Z, 4, B, or W.

To prove optimality of the MV-mechanism, we will construct an optimal y* for the dual
program of Theorem 2 to match the positive mass w, to the negative w_. Our y* will be
decomposed into y* = y* + y* + y® + y" and to ensure that y} — v} > u, we will show
that

YE — ¥E e pl s Vi — 5 o VP — ¥ = B Vo=V e

We will also show that the conditions of Corollary 1 hold for each of the measures yZ, y4,
y®, and y" separately, namely, [u*d(y; — ;) = [ju*dp and u*(x) — u*(y) = ||x — yls
hold yS-almost surely for S = Z, A, B, and W

Construction of y#: Since u|, is a point mass at (0, 0) and u_| is distributed through-
out a region which is coordinate-wise greater than (0, 0), we notice that |z <. 0. We set
¥# to be the zero measure, and the relation y# — y# =0 >, u|z, as well as the two nec-
essary equalities from Corollary 1, are trivially satisfied.
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FIGURE 1.—The MV-mechanism for two i.i.d. uniform [0, 1] items.

Construction of y* and y®: In region A, u,|, is distributed on the right boundary
while p_| 4 is distributed uniformly on the interior of A. We construct y* by transporting
the positive mass u, | 4 to the left to match the negative mass p_| 4. Notice that this indeed
matches completely the positive mass to the negative since u(A) = 0 and intuitively mini-
mizes the ¢; transportation distance. To see that the two necessary equalities from Corol-
lary 1 are satisfied, notice that y;' = w, |4, y5' = u_| 4 so the first equality holds. The sec-
ond inequality holds as we are transporting mass only to the left and thus the measure y“
is concentrated on pairs (x,y) € A x Asuchthat 1 =x; > y; > % and x, = y,. Moreover,
for all such pairs (x, y), we have that u(x) —u(y) = (x;—3)— ()1 —3) = x;1—y1 = [[x — y|1.
The construction of y? is similar.

Construction of y": We construct an explicit matching that only matches leftwards and
downwards without doing any prior mass shuffling. We match the positive mass on the
segment p;p, to the negative mass on the rectangle p; p, p; p, by moving mass down-
wards. We match the positive mass of the segment p;p; to the negative mass on the
rectangle p;psps p7 by moving mass leftwards. Finally, we match the positive mass on the
segment p;p, to the negative mass on the triangle p,psps by moving mass downwards
and leftwards. Notice that all positive/negative mass in region W has been accounted for,
all of (| ) has been matched to all of () _, and all moves were down and to the left,

establishing u(x) —u(y) = (x; +x:— 52) — (43— E2) = xi+x -y —y = lx =yl

5.2. Two Uniform but not Identical Items

We now present an example with two items whose values are distributed uniformly
and independently on the intervals [4, 16] and [4, 7]. We note that the distributions are
not identical, and thus the characterization of Pavlov (2011) does not apply. In addition,
the relaxation-based duality framework of Daskalakis, Deckelbaum, and Tzamos (2013),
Giannakopoulos and Koutsoupias (2014) (see Remark 2) fails in this example: if we were
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4 8 16

FIGURE 2.—Partition of [4, 16] x [4, 7] into different regions by the optimal mechanism.

to relax the constraint that the utility function u be convex, the “mechanism design pro-
gram” would have a solution with greater revenue than is actually possible.

EXAMPLE 2: The optimal IC and IR mechanism for selling two items whose values are
distributed uniformly and independently on the intervals [4, 16] and [4, 7] partitions the
buyer types into 3 different regions as in Figure 2 and allocates the goods as follows:

o If the buyer’s declared type is in region Z, he receives no goods and pays nothing.

o If the buyer’s declared type is in region Y, he pays a price of 8 and receives the
first good with probability 50% and the second good with probability 1.

o If the buyer’s declared type is in region W, he gets both goods for a price of 12.

The proof of optimality of our proposed mechanism works by constructing a measure
v =7v%+vyY +v" separately in each region. The constructions of y" and y# are similar
to the previous example. The construction of v, however, is a little more intricate as it
requires an initial shuffling of the mass before computing the optimal way to transport
the resulting mass. The proof is presented in the Supplemental Material.

5.3. Discussion

Our examples in this section serve to illustrate how to use our duality theorem to verify
the optimality of our proposed mechanisms, without explaining how we identified these
mechanisms. These mechanisms were in fact identified by “reverse-engineering” the dual-
ity theorem. The next two sections provide tools for performing this reverse-engineering.
In particular, Section 6 provides a characterization of mechanism optimality in terms of
stochastic dominance conditions satisfied in regions partitioning the type space. Allevi-
ating the need to reverse-engineer the duality theorem, Section 7 prescribes a straight-
forward procedure for identifying optimal mechanisms. We use this procedure to solve
several examples in Section 8.

6. CHARACTERIZING OPTIMAL FINITE-MENU MECHANISMS

To prove the optimality of our mechanisms in the examples of Section 5, we explicitly
constructed a measure vy separately for each subset of types enjoying the same allocation
in the optimal mechanism, establishing that the conditions of Corollary 1 are satisfied
for each such subset of types separately. In this section, we show that decomposing the
solution vy of the optimal transportation dual of Theorem 2 into “regions” of types en-
joying the same allocation in the optimal solution u of the primal, and working on these
regions separately to establish the complementary slackness conditions of Corollary 1, is
guaranteed to work.

Even with this understanding of the structure of dual witnesses, it may still be non-
trivial work to identify a witness certifying the optimality of a given mechanism. We thus
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develop a more usable framework for certifying the optimality of mechanisms, which does
not involve finding dual witnesses at all. In particular, we show in Theorem 3 that a given
mechanism M is optimal for some f if and only if appropriate stochastic dominance con-
ditions are satisfied by the restriction of the transformed measure u of Definition 3 to
each region of types enjoying the same allocation under M. We thus provide conditions
that are both necessary and sufficient for a given mechanism M to be optimal, a charac-
terization result.

To describe our characterization, we define the intuitive notion a “menu” that a certain
mechanism offers.

DEFINITION 6: The menu of a mechanism M = (P, T) is the set
Menu, = {(p,t):Ix e X, (p, 1) = (P(x), T(x))}.

Clearly, an IC mechanism allocates to every type x the option in the menu that maximizes
that type’s utility. Figure 3 shows an example of a menu and the corresponding partition
of the type set into subsets of types that prefer each option in the menu.

The revenue of a mechanism with a finite menu-size comes from choices in the menu
that are bought with strictly positive probability. The menu might contain options that

(100%, 100%), $100
(58%,93%), 360

(15%,85%), §37 Eonilid o)

|

(35%,74%), $33

(7796,70%), $54

(82%,71%), 59

(47%,50%), $24

(42%,25%), $12 (71%,19%), $27

(41%,23%), 11

(57%,18%), $18

(0%,0%5), S0 (100%5,5%), $40
LY

(72%,5%), $26
0

0 100

FIGURE 3.—Partition of the type set X = [0, 100]? induced by some menu of lotteries.
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are only bought with probability 0, but we can get another mechanism that gives identical
revenue by removing all those options. We call this the essential form of a mechanism.

DEFINITION 7: A mechanism M is in essential form if, for all options (p, t) € Menu,,,
Pri[{xe X :(p,t) = (P(x), T(x))}]> 0.

We will now show our main result of this section under the assumption that the menu-
size is finite. We expect that our tools can be used to extend the results to the case of
infinite menu-size with a more careful analysis. We stress that the point of our result is
not to provide sufficient conditions to certify optimality of mechanisms, as in Manelli
and Vincent (2006), Daskalakis, Deckelbaum, and Tzamos (2013), Giannakopoulos and
Koutsoupias (2014), but to provide necessary and sufficient conditions. In particular, we
show that verifying optimality is equivalent to checking a collection of measure-theoretic
inequalities, and this applies to arbitrary mechanisms with a finite menu-size. The proof
of our result is intricate, requiring several technical lemmas, so it is postponed to the
Supplemental Material. The most crucial component of the proof establishes that the
optimal dual solution vy in Theorem 2 never convexly shuffles mass across regions of types
that enjoy different allocations. (I.e., to obtain u’' = y; — vy, from u, we never need to move
mass across different regions.) Similarly, we argue that the optimal y never transports
mass across regions.

Before formally stating our result, it is helpful to provide some intuition behind it. Con-
sider a region R corresponding to a menu choice (p, f) of an optimal mechanism M. As
we have already discussed, we can establish that the dual witness vy, which witnesses the
optimality of M, does not transport mass between regions and, likewise, the associated
“convex shuffling” transforming u to u' = y; — v, does not shuffle across regions. Given
this, our complementary slackness conditions of Corollary 1 imply then that u, |z can be
transformed to w_|r using the following (intra-region R) operations:

e spreading positive mass within R so that the mean is preserved,

e sending (positive) mass from a point x € R to a coordinate-wise larger point y € R
if, for all coordinates where y; > x;, we have that the corresponding probability of the
menu choice satisfies p; = 0;

e sending (positive) mass from a point x € R to a coordinate-wise smaller point y € R
if, for all coordinates where y; < x;, we have that p;, = 1.

Our characterization result involves stochastic dominance conditions that are slightly
more general than the standard notions of first, second, and convex dominance. We need
the following definition, which extends the notion of convex dominance.

DEFINITION 8: We say that a function u : X — R is v-monotone for a vector v €
{—1, 0, +1}" if it is nondecreasing in all coordinates i for which v; = 1 and non-increasing
in all coordinates i for which v, = —1.

A measure a convexly dominates a measure B with respect to a vector v € {—1, 0, +1}",
denoted a > B, if, for all convex v-monotone functions u € U(X),

/udaz/udﬁ.

Similarly, for vector random variables 4 and B with values in X, we say that A > s B
if E[u(A)] > E[u(B)] for all convex v-monotone functions u € U (X).
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The definition of convex dominance presented earlier coincides with convex dominance

with respect to the vector 1. Moreover, convex dominance with respect to the vector —1
is related to second-order stochastic dominance as follows:

@ Zcvx(—i) B < B .

Measures satisfying the dominance condition of Definition 8 must have equal mass.

PROPOSITION 1: Fix two measures «, 3 € I'(X) and a vector v € {—1,0, 1}". If it holds
that o Zevx(B) B, then a(X) = B(X)

We are now ready to describe our main characterization theorem. Our characterization,
stated below as Theorem 3 and proven in the Supplemental Material, is given in terms of
the conditions of Definition 9.

DEFINITION 9—Optimal Menu Conditions: A mechanism M safisfies the optimal menu
conditions with respect to w if, for all menu choices ( p, t) € Menu,,, we have

MilrR o) M—|r,

where R = {x € X : (P(x), T(x)) = (p, t)} is the subset of types that receive (p, t) and ¥
is the vector whose ith coordinate v; takes value 1 if p; =0, value —1 if p; =1, or value 0
if pPi € (O, 1).

THEOREM 3—Optimal Menu Theorem: Let w be the transformed measure of a proba-
bility density f as per Definition 3. Then a mechanism M with finite menu-size is an optimal
IC and IR mechanism for a single additive buyer whose values for n goods are distributed
according to the joint distribution f if and only if its essential form satisfies the optimal menu
conditions with respect to .

Interpretation of the Optimal Menu Conditions

A simple interpretation of the optimal menu conditions that Theorem 3 claims are
necessary and sufficient for the optimality of mechanisms is this. Take some region R
of the type set X corresponding to the types that are allocated a specific menu choice
(p, 1) by optimal mechanism M. Let us consider the revenue [, u*du extracted by M
from the types in region R. Is it possible to extract more revenue from these types? We
claim that the optimal menu condition for region R guarantees that no mechanism can
possibly extract more from the types in region R. Indeed, consider any utility function
u induced by some other mechanism. The revenue extracted by this other mechanism
in region R is [,udu = [,u du+ [,(u —u)du < [,u*du. That [ (u—u*)du <0
follows directly from the optimal menu condition for region R. Indeed, since u*(x) =
p - x — t in region R, it follows that, whatever choice of u we make, u — u* is a convex v-
monotone function in region R, where v is the vector defined by p as per Definition 9. Our
condition in region R reads w|r <uxa) 0, hence f R —u*)dw <0. Our line of argument
implies the sufficiency of the optimal menu conditions, as they imply that, for each region
separately, no mechanism can beat the revenue extracted by M. The more surprising
part (and harder to prove) is that the conditions are also necessary, implying that optimal
mechanisms are locally optimal for every region R of types that they allocate the same
menu choice to.
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A particularly simple special case of our characterization result pertains to the optimal-
ity of the grand-bundling mechanism. Theorem 3 implies that the mechanism that offers
the grand bundle at price p is optimal if and only if the transformed measure u satisfies a
pair of stochastic dominance conditions. In particular, we obtain the following theorem:

THEOREM 4—Grand-Bundling Optimality: For a single additive buyer whose values for
n goods are distributed according to the joint distribution f, the mechanism that only offers
the bundle of all items at price p is optimal if and only if the transformed measure . of f
satisfies |y =2 0 =cx |z, where VWV is the subset of types that can afford the grand bundle
at price p,and Z the subset of types who cannot.

Next, we explore implications of our characterization of grand-bundling optimality.

6.1. Example Applications of Grand-Bundling Optimality

We now present an example application of our characterization result to determine the
optimality of mechanisms that make a take-it-or-leave-it offer of the grand bundle of all
items at some price. Our result applies to a setting with arbitrarily many items, which is
relatively rare in the literature. More specifically, we consider a setting with # i.i.d. goods
whose values are uniformly distributed on [c, ¢ + 1]. It is easy to see that the ratio of the
revenue achievable by grand bundling to the social welfare goes to 1 when either # or ¢
goes to infinity.” This implies that grand bundling is optimal or close to optimal for large
values of n and c. Indeed, the following theorem shows that, for every », grand bundling
is the optimal mechanism for large values of c.

THEOREM 5: For any integer n > 0, there exists a ¢, such that, for all ¢ > cy, the optimal
mechanism for selling n i.i.d. goods whose values are uniform on [c, ¢ + 1] is a take-it-or-
leave-it offer for the grand bundle.

REMARK 3: Pavlov (2011) proved the above result for two items, and explicitly solved
for ¢y ~ 0.077. In our proof, for simplicity of analysis, we do not attempt to exactly com-
pute ¢ as a function of n.

Our proof of Theorem 5 uses the following lemma, which enables us to appropriately
match regions on the surface of a hypercube. The proofs of this lemma and of Theorem 5
appear in the Supplemental Material.

LEMMA 2: For n > 2 and p > 1, define the (n — 1)-dimensional subsets of [0, 1]":

p—l 1/(n—1)
A={x:1=x12x22--~2xnandx,,§1—(—) },
p

B={y:yz---zy,=0}

There exists a continuous bijective map ¢ : A — B such that
e Forall x € A, x is component-wise greater than or equal to ¢(x).

SThis follows by setting a price for the grand bundle equal to (¢ + %)n — /nlog cn and noting that a straight-
forward application of Hoeffding’s inequality gives that the bundle is accepted with probability close to 1.
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FIGURE 4.—The regions of Lemma 2 for the case n = 3.

e For subsets S C A which are measurable under the (n — 1)-dimensional surface
Lebesgue measure v(-), it holds that p - v(S) = v(¢(S)).

e Forall e > 0,if ¢1(x) <e,then x,>1— (%)1/(:171).

The main difficulty in proving Theorem 5 is verifying the necessary stochastic domi-
nance relations above the grand-bundling hyperplane. Our proof appropriately partitions
this part of the hypercube into 2(n! + 1) regions and uses Lemma 2 to show a desired
stochastic dominance relation holds for an appropriate pairing of regions. An example of
such a pairing for the case of three items is illustrated in Figure 4. The proof of Theorem 5
is in the Supplemental Material.

We now consider what happens when n becomes large while ¢ remains fixed. In this
case, in contrast to the previous result, we show using our strong duality theorem that
grand bundling is never the optimal mechanism for sufficiently large values of n.

THEOREM 6: For any ¢ > 0, there exists an integer ny such that, for all n > ny, the optimal
mechanism for selling n i.i.d. goods whose values are uniform on [c, c + 1] is not a take-it-
or-leave-it offer for the grand bundle.

PROOF: Given c, let n be large enough so that

n—|—1+ nc
n! (n—1)!

< 1.

To prove the theorem, we will assume that an optimal grand-bundling price p exists and
reach a contradiction.

As shown in Section 2.2, under the transformed measure p the hypercube has mass
—(n 4+ 1) in the interior, +1 on the origin, ¢ + 1 on every positive surface x; = ¢ + 1, and
—c on every negative surface x; = c.

According to Theorem 3, for grand bundling at price p to be optimal, it must hold
that |z, <ax 0 for the region Z, = {x : |x|; < p}. If p > nc + 1, this could not happen,
since for the function 1,,_..,(x) (which is increasing and convex in [c, ¢ 4+ 1]"), we have
that pr Lycenndp=p(Z,N{x;=c+1}) = u, (Z,N{x; = c+1}) > 0, which violates the
|z, Zox 0 condition.

To complete the proof, we now consider the case that p < nc 4+ 1 and will derive a
contradiction. For the necessary condition |z, <ax 0 to hold, it must be that u(Z,) = 0.
Since p < nc+ 1, none of the positive outer surfaces of the cube have nontrivial intersec-
tion with Z,, so all the positive mass in Z,, is located at the origin. Therefore, u,(Z,) =1,
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which means that u_(Z,) =1 as well. Moreover, since p <nc+1= Z, C Z,..,, we also
have that u_(Z,c11) > pn-(Z,) =1.

To reach a contradiction, we will show that u_(Z,.,1) < 1. We observe that we can
compute u_(Z,.41) directly by summing the n-dimensional volume of the negative inte-
rior with the (n — 1)-dimensional volumes of each of the n negative surfaces enclosed
in Z,.,1.% The first is equal to

(n+1) x Vol[{x € (c,c+1)": ||x|l; < nc+1}]

=(n+1) x Vol[{x € (0, 1)": [Ix|, < 1}] = (n; -,

while the latter is equal to

nxcxVol[{xe(c,c+1)" "t |lx|l; + c <nc+1}]
nc

=nxcx Vol[{x e (0, )" x|l < 1}] = m

Therefore, we get that 1 < pu (Z,.1) = (”;1) (n'f])!, which is a contradiction since we
chose 7 to be sufficiently large to make this quantity less than 1. Q.E.D.

7. CONSTRUCTING OPTIMAL MECHANISMS
7.1. Preliminaries

The results of the previous section characterize optimal mechanisms and give us the
tools to check if a mechanism is optimal. In this section, we show how to use the optimal
menu conditions we developed to identify candidate mechanisms. In particular, Theo-
rem 3 implies that (in the finite-menu case) to find an optimal mechanism, we need to
identify a set of choices for the menu such that, for every region R that corresponds to a
menu outcome, it holds that w. |g <ux@ M|z for the appropriate vector v. This implies
that u, (R) = u_(R), so at the very least the total positive and the total negative mass in
each region need to be equal. This property immediately helps us exclude a large class
of mechanisms and guides us to identify potential candidates. We note that in this sec-
tion we will develop techniques which apply not just to finite-menu mechanisms but to
mechanisms with infinite menus as well.

We will restrict ourselves to a particularly useful class of mechanisms defined com-
pletely by the set of types that are excluded from the mechanism, that is, they receive no
items and pay nothing. We call this set of types the exclusion set of a mechanism. The ex-
clusion set gives rise to a mechanism where the utility of a buyer is equal to the ¢; distance
between the buyer’s type and the closest point in the exclusion set. All known instances
of optimal mechanisms for independently distributed items fall under this category. We
proceed to define these concepts formally.

%The geometric intuition of this step of the argument is that, for large enough n, the fraction of the n-
dimensional hypercube [0, 1]” which lies below the diagonal ||x|| = 1 goes to zero, and similarly the fraction of
(n — 1)-dimensional surface area on the boundaries which lies below the diagonal also goes to zero as n gets
large.
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DEFINITION 10—Exclusion Set: Let X = [7_,[x!", x"*"]. An exclusion set Z of X is a
convex, compact, and decreasing’ subset of X with nonempty interior.

DEFINITION 11—Mechanism of an Exclusion Set: Every exclusion set Z of X induces
a mechanism whose utility function u; : X — R is defined by

Uz(x)=min|z — x|.
zeZ

Note that, since the exclusion set Z is closed, for any x € X there exists a z € Z such that
uz(x) = |z — x|l;. Moreover, we show below that any such utility function u satisfies the
constraints of the mechanism design problem. That is, the mechanism corresponding to
uz is IC and IR. The proof of the following claim is straightforward casework and appears
in the Supplemental Material.

CLAIM 1: Let Z be an exclusion set of X. Then uy is nonnegative, nondecreasing, convex,
and has Lipschitz constant (with respect to the £, norm) at most 1. In particular, uy is the
utility function of an incentive compatible and individually rational mechanism.

7.2. Constructing Optimal Mechanisms for Two Items

To provide sufficient conditions for u; to be optimal for the case of two items, we define
the concept of a canonical partition. A canonical partition divides X into regions such that
the mechanism’s allocation function within each region has a similar form. Roughly, the
canonical partition separates X based on which direction (either “down,” “left,” or “diag-
onally”) one must travel to reach the closest point in Z. While the definition is involved,
the geometric picture of Figure 5 is straightforward.

DEFINITION 12—Critical Price, Critical Point, Outer Boundary Functions: Let Z be an
exclusion set of X. Denote by P the maximum value P = max{x + y: (x, y) € Z}; we call

A decreasing subset Z C X satisfies the property that, for all a, b € X such that a is component-wise less
than or equal to b, if b € Z, then a € Z as well.

31
A
w
Z iz
Yerit cooeeerere i N
Z Z B
: «—S859
O Terit

FIGURE 5.—The canonical partition.
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P the critical price. We now define the critical point (X, Yerit), SUch that
Xep=min{x: (x,P—x)€Z} and y. =min{y:(P—y,y) € Z}.
We define the outer boundary functions of Z to be the functions sy, s, given by
s1(x) = max{y (x,y) € Z} and s (y) = max{x (x,y) € Z},
with domain [0, x;] and [0, y.:], respectively.

DEFINITION 13—Canonical Partition: Let Z be an exclusion set of X with critical point
(Xeit> Yeri) @s in Definition 12. We define the canonical partition of X induced by Z to be
the partition of X into ZU AU BUW, where

A={(x,y) e X x <xei}\ Z; B={(x,y) €X:y <Y} \ Z;
W=X\(ZUAUB),

as shown in Figure 5.

Note that the outer boundary functions s;, s, of an exclusion set Z are concave and thus
are differentiable almost everywhere on [0, ¢;] and have non-increasing derivatives.

We now restate the utility function u, of a mechanism with exclusion set Z in terms of
a canonical partition.

CLAIM 2: Let Z be an exclusion set of X with outer boundary functions s,, s, and critical
price P,and let Z U AU BUW be its canonical partition. Then for all (v,, v;) € X, the utility
function uy of the mechanism with exclusion set Z is given by

0, if (v, ) € Z,
v —s1(v), if (v, ) €A,
v —5(v2), if (v, 1) €5,
v+ v, — P, if (v, v) e W.

Uz(vi, 1) =

PROOF: The proof is fairly straightforward casework. We prove one of the cases here,
and the remaining cases are similar.

Pick any v = (v, v,) € A. We will show that the closest z € Z is the point z* =
(v, $1(v)). Pick 2 = (2], ;) € Z such that uz(v) = ||[v — Z/||;. It must be the case that
z} < vy, since otherwise (vy, z;) would be in Z (as Z is decreasing) and strictly closer to v.

We now have that |[v — 2'|l; > [[vlly — [IZ'[li = lIvlli — MaX,eo,0,(x + 51(x)). Since the
less restricted maximization problem, max, (X + s1(x)), is maximized at x.; and
the function (x + s;(x)) is concave, the maximum of the more constrained version is
achieved at x = v,. Thus, we have that |[v — Z/||; = ||[v]li — vi — $1(v1) = v, — 81(vy) =

lv— z*||;. O.E.D.
We now describe sufficient conditions under which u is optimal.

DEFINITION 14—Well-Formed Canonical Partition: Let ZU.4UBUW be a canonical
partition of X induced by exclusion set Z and let u be a signed Radon measure on X
such that u(X) = 0. We say that the canonical partition is well-formed with respect to w it
the following conditions are satisfied:
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1. ulz <ox 0 and w|y >, 0, and

2. forallve X and all € > 0:

o ul4([v1, vy + €] X [V, 00)) > 0, with equality whenever v, =0,
e u|s([v1, 00) X [V, v, + €]) > 0, with equality whenever v; = 0.

We point out the similarities between a well-formed canonical partition and the suffi-
cient conditions for menu optimality of Theorem 3. Condition 1 gives exactly the stochas-
tic dominance conditions that need to hold in regions Z and W. We interpret Condi-
tion 2 as saying that |, (resp. u|z) allows for the positive mass in any vertical (resp.
horizontal) “strip” to be matched to the negative mass in the strip by only transporting
“downwards” (resp. “leftwards”). These conditions guarantee (single-dimensional) first-
order dominance of the measures along each strip, which is a stronger requirement than
the convex dominance conditions of Theorem 3. In practice, when u is given by a den-
sity function, we verify these conditions by analyzing the integral of the density function
along appropriate vertical or horizontal lines. Even though Theorem 3 applies only for
mechanisms with finite menus, we prove in Theorem 7 that a mechanism induced by an
exclusion set is optimal for a two-item instance if the canonical partition of its exclusion
set is well-formed. Refer back to Figure 5 to visualize such a mechanism.

THEOREM 7: Let w be the transformed measure of a probability density function f. If there
exists an exclusion set Z inducing a canonical partition Z J AU BUW of X that is well-
formed with respect to ., then the optimal IC and IR mechanism for a single additive buyer
whose values for two goods are distributed according to the joint distribution f is the mecha-
nism induced by exclusion set Z. In particular, the mechanism uses the following allocation
and price for a buyer with reported type (x,y) € X:

e if (x,y) € Z, the buyer receives no goods and is charged 0;

o if (x,y) € A, the buyer receives item 1 with probability —s/(x), item 2 with probabil-
ity 1, and is charged s,(x) — xs,(x);

e if (x,y) € B, the buyer receives item 2 with probability —s,(y), item 1 with probabil-
ity 1, and is charged s,(y) — ys,(y);

o if (x,y) € W, the buyer receives both goods with probability 1 and is charged P;
where sy, s, are the boundary functions and P is the critical price as in Definition 12.

PROOF: We will show that u, maximizes Sup,, ., x )z, x) [y 4 du- By Corollary 1, it suf-
fices to provide a y € I', (X x X) such that y; — y2 =ex u, [z d(y1 — v2) = [uzdp, and
uz(x) —uz(y) = |lx — y|l; holds y-almost surely. The y we construct will never transport
mass between regions. That is, y = y; + Yy + Y4 + Vs, where®

e vz =0. We notice that (yz); — (vz)2 =0 >ex ptlz.

e 7y is constructed such that (yy )1 — (yw)2 =ex tlyw and the component-wise in-
equality x > y holds v,y (x, y) almost surely.’ As in our proof of Theorem 3, the existence
of such a v, is guaranteed by Strassen’s theorem for second-order dominance (presented
in the Supplemental Material).

o y4 €l (A x A) will be constructed to have respective marginals u, |4 and u_| 4,
and so that, y 4 (x, y) almost surely, it holds that x; = y; and x, > y,. Thus, (y4)1 — (y4)2 =
] .4, and y 4 sends positive mass “downwards.”'® We claim that such a map can indeed be

8We chose this notation for simplicity, where v, € '\ (Z x Z), y,» € [, (W x W), and so on.

As in Example 2 and as discussed in Remark 1, we aim for vy, to transport “downwards and leftwards”
since both items are allocated with probability 1 in W.

¥Once again, the intuition for this construction follows Remark 1.
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constructed, by noticing that Property 2 of Definition 14 guarantees that, restricted to
any vertical strip inside A, u, first-order stochastically dominates u_.!"! Hence, Strassen’s
theorem for first-order dominance guarantees that, restricted to that strip, x. can be
coupled with w_ so that, with probability 1, mass is only moved downwards.

Measure vy 4 satisfies x; = y;, y4(x, y) almost surely, and hence also

uz(x) —uz(y) = (x2 —s(x1)) = (2 —sQ)) =x2 =y, = llx = yllx.

e ys €' (B x B) is constructed analogously to vy 4, except sending mass “leftwards.”
That is, ys(x, y) almost-surely, the relationships x; > y; and x, = y, hold.
It follows by our construction that y = y; 4+ v,y + v + v satisfies all necessary properties
to certify optimality of u. Q.E.D.

8. APPLYING THEOREM 7 TO FIND OPTIMAL MECHANISMS

In this section, we provide example applications of Theorem 7. A technical difficulty
is verifying the stochastic dominance relation w|,, >, 0 required to apply the theorem.
In our examples, we will have the stronger condition w|,, >; 0, which is easier to veritfy,
yet still imposes technical difficulties. In Section 8.1, we present a useful tool, Lemma 3,
for verifying first-order stochastic dominance. In Section 8.2, we then provide example
applications of Theorem 7 and Lemma 3 to solve for optimal mechanisms.

8.1. Verifying First-Order Stochastic Dominance

A useful tool for verifying first-order dominance between measures is the following.'

LEMMA 3: Let C = [p1, q1) X [p2, q2), where q, and g, are possibly infinite, and let R
be a decreasing nonempty subset of C. Consider two measures k, A € I, (C) with bounded
integrable density functions g, h : C — Ry, respectively, that satisfy the conditions:

o g(x,y)="h(x,y)=0forall (x,y)eR.
o [Lg(x,y)dxdy= [, h(x,y)dxdy.
e For any basis vector e; € {e; = (1,0), e, = (0, 1)} and any point z € R:

qi—zi
/ g(z+T1e)) —h(z+ 1e;))dr <0.
0

o There exist nonnegative functions « : [p1, q1) — R.oo and B : [p2, ¢2) — Ry, and an
increasing function n : C — R such that, for all (x,y) € C\ R,

glx,y)—h(x,y)=a(x) By n(x,y).
Then k > A.

Lemma 3 provides a sufficient condition for a measure to stochastically dominate an-
other in the first order. Its proof is given in the Supplemental Material and is an ap-
plication of a claim which states that an equivalent condition for first-order stochastic

UIndeed, as & — 0, Property 2 states exactly the one-dimensional equivalent condition for first-order
stochastic dominance in terms of cumulative density functions.

2The lemma also appeared as Theorem 7.4 of Daskalakis, Deckelbaum, and Tzamos (2013) without a
proof. We provide a detailed proof in the Supplemental Material.
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dominance is that one measure has more mass than the other on all sets that are unions
of finitely many “increasing boxes.” When the conditions of Lemma 3 are satisfied, we can
induct on the number of boxes by removing one box at a time. We note that Lemma 3 is
applicable even to distributions with unbounded support.

Interpreting the Conditions of Lemma 3

Lemma 3 is applicable whenever two density functions, g and 4, are nonzero on some
set C \ R, where R is a decreasing subset of some two-dimensional box C. This setting is
motivated by Figure 5 and Theorem 7. Recall that, in order to apply Theorem 7, we need
to check a second-order stochastic dominance condition in region W, namely, w|,, >, 0.

While Theorem 7 demands checking a second-order stochastic dominance condi-
tion, an easier and sufficient goal is to check first-order stochastic dominance, namely,
wlw >=1 0. To do this, we can readily use Lemma 3, by taking C = [X, 00) X [Verit, 00),
R=CnNZ, and g, h the densities corresponding to measures u, |, and w_|,,. The way
region W is defined in Theorem 7 guarantees that the two measures have equal mass, so
the first two conditions of the lemma will be satisfied automatically. For the third condi-
tion, we need to verify that, if we integrate g — & along either a vertical or a horizontal
line outwards starting from any point in R, the result is non-positive. The last condition of
Lemma 3 requires that the density function of the measure u|,y, that is, g — 4, have an ap-
propriate form. If the values of the buyer for the two items are independently distributed
according to distributions with densities f; and f5, then the density of measure w in the

interior according to Equation (3) can be written as — f (x) f2(y) (£ (DF L LY 4 3y The

Ji(x) L2
last condition of the lemma is thus satisfied if the functions ffll(:;); and fj%;yy) )y are decreasing,

a condition that is easy to verify.

8.2. Examples

We apply Theorem 7 to obtain optimal mechanisms in several two-item settings. In
Section 8.2.1, we consider two independent items distributed according to beta distri-
butions. We find the optimal mechanism, showing that it actually offers an uncountably
infinite menu of lotteries. We conclude with Section 8.2.2, where we discuss extensions
of Theorem 7 to distributions with infinite support, providing the optimal mechanism for
two arbitrary independent exponential items, as well as the optimal mechanism for an
instance with two independent power-law items.

8.2.1. An Optimal Mechanism With Infinite Menu-Size: Two Beta Items

In this section, we will use Theorem 7 to calculate the optimal mechanism for two
items distributed according to Beta distributions. In doing so, we illustrate a general
approach for finding closed-form descriptions of optimal mechanisms via the following
steps: (i) definition of the sets S, and Syign;, (ii) computation of a critical price p*, (iii) def-
inition of a canonical partition in terms of (i) and (ii), and (iv) application of Theorem 7.
Our approach succeeds in pinning down optimal mechanisms in all examples considered
in Sections 8.2.1-8.2.2, and we expect it to be broadly applicable. Finally, it is noteworthy
that the optimal mechanism for the setting studied in this section offers the buyer a menu
of uncountably many lotteries to choose from. Using our approach, we can nevertheless
compute and succinctly describe the optimal mechanism. We also note in Remark 4 that
our identified mechanism is essentially unique, hence the uncountability of the menu is
inevitable.
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Consider two items whose values are distributed independently according to the distri-
butions Beta(a;, b;) and Beta(a,, b,), respectively. That is, the distributions are given by
the following two density functions on [0, 1]:

1
fi(x) = ———x" (1 = )" L) =

a271(1 _ )hzfl.
B(ay, by) Y Y

B(as, b,)

To find the optimal mechanism for our example setting, we first compute the measure u
induced by f. Notice that

—Vf(x,y)-(x,y) =3f(x,y)

d J
LU VAR K EC L VARV
X dy
= —(@ = DA@AW + (b1 = DT A0 )

—(ap =D fi(x) fa(y) + (b2 —1) Y yfl(x)fz(Y) =3fi(x) f2(y)

1-—

bi—1 by—1
+
1—x 1—y

Zfl(x)fz()")< —|—(1—a1—b1—a2—b2)>,

where the last equality used the identity 2~ = -~ — 1. We also observe that fi(x)x =0
whenever x =0 or x =1 (as long as b, > 1), and an analogous property holds for y. Thus,
the transformed measure w is composed of:

e a point mass of +1 at the origin; and

e mass distributed on [0, 1]* according to the density function

by—1 by—1
+
1—x 1-y

fl(x)fz()’)< +(1_a1_b1_a2_b2)>-

Note that in the case b; = 1, our analysis still holds, except there is also positive mass on
the boundary x; = 1.

Deriving the Optimal Mechanism for a Concrete Setting of Parameters. We now analyze
a concrete example of two independent Beta distributed items where a; = a, = 1 and
b, = b, =2. That is, we consider two items whose values are distributed independently
according to the following two density functions on [0, 1]:

filx) =2(1 —x); L) =2(1-y).

As discussed above, the transformed measure p comprises:
e a point mass of +1 at the origin; and
e mass distributed on [0, 1]* according to the density function

1 1
—t+—-5).
ﬁunxw(l_x+1_y )
Note that the density of w is positive on P = {(x, y) € (0, 1)*: ﬁ + ﬁ > 5}U {6} and

non-positive on N = {(x, y) € [0, 1)?\ {0} : =+ 11_y <5}, and that A"U{0} is a decreasing
set.
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Step (i). We first attempt to identify candidate functions for s; and s, that will lead
to a well-formed canonical partition. We do this by defining two sets Siqp, Sright C [0, 1)%.

We require that (x,y) € S iff fy ! w(x,t)dt = 0. That is, starting from any point z €
Swp and integrating the density of u “upwards” from ¢ =y to ¢ =1 yields zero. Since

N U{0} is a decreasing set, it follows that S, C N and that integrating u upwards starting

from any point above S,,, yields a positive integral. Similarly, we say that (x, y) € Sygn iff
fxl wm(t,y)dt =0, noting that Syen C N. Swp and Syen are shown in Figure 6.

We analytically compute that (x, y) € Sy, if and only if y = i:gi Similarly, (x, y) € Srignt
if and only if x = %.

In particular, for any x < 2/3, there exists a y such that (x, y) € S, and there does
not exist such a y if x > 2/3. Furthermore, it is easy to verify by computing the second
derivative of jx—zz 3 = —ﬁ < 0 that the region below S,,, and the region below g
are strictly convex.

Step (ii). We now need to calculate the critical point and the critical price. To do this,
we set the critical price p* ~ 0.5535 as the intercept of the 45° line in Figure 6, which
causes u(Z) = 0 for the set Z C [0, 1]* lying below Stops Srignt> and the 45° line. We can
also compute the critical point (X, Verir) & (0.0618, 0.0618) by finding the intersection
of the critical price line with the sets Si,, and Spuom. Moreover, by the definition of the

sets Siop and Spouom, We know that the candidate boundary functions are s;(x) = =2 and
$(y) = %, with domain [0, x;;) and [0, y.i), respectively.

Step (iii). We can now compute the canonical partition and decompose [0, 1]* into the
following regions:

A={(x,y):x€[0, xo) and y € [s1(x), 1] }:
B={(x,y):y€l0, yu) and x € [s2(y), 1];

T Stop
./4 Sright
2/3 W
12
7
| \ B
1/2 2/3

FIGURE 6.—The well-formed canonical partition for fi(x) =2(1 — x) and f>2(y) =2(1 — y).
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W ={(x,y) € [Xarits 1] X [Yerit 11 : x +y = p*};
Z=[0,1"\ (WU AUB),

as illustrated in Figure 6.

Step (iv). We claim that the canonical partition Z U A U BU W is well-formed with
respect to u. Condition 2 is satisfied by construction of S, and S and the corre-
sponding discussion in Step (i). To check for Condition 1, note that given the definition
of p*, it holds that for all regiops R=2Z, A, B, and W, we have u(R) = 0. Recall that
Siops Srignt C N and, since N/ U {0} is a decreasing set, u has negative density along these
curves and all points below either curve, other than at the origin. Hence, u_|; =1 u.|z,
which implies that u|; <. 0. Hence, the only nontrivial condition of Definition 14 that we
need to verify is w|,, >, 0. In fact, we can apply Lemma 3 to conclude the stronger dom-
inance relation u|,, > 0. See the Supplemental Material. Having verified all conditions
of Definition 14, we apply Theorem 7 to conclude the following.

EXAMPLE 3: The optimal mechanism for selling two independent items whose values
are distributed according to fi(x) =2(1 — x) and f,(y) =2(1 — y) has the following out-
come for a buyer of type (x, y):

e If (x,y) € Z, the buyer receives no goods and is charged 0.

e If (x,y) € A, the buyer receives item 1 with probability —s;(x) = (47%)2, item 2
with probability 1, and is charged s;(x) — xs;(x) = = + ( 43;‘x>2.
e If (x,y) € B, the buyer receives item 2 with probability —s,(y) = ﬁ, item 1

with probability 1, and is charged s,(y) — ys,(y) = i:—gi +; 435yy)2.

o If (x,y) € W, the buyer receives both items and is charged p* =~ 0.5535.

REMARK 4: Note that the mechanism identified in Example 3 offers an uncountably
large menu of lotteries. One could wonder whether there exists a different optimal mech-
anism offering a finite menu. Using our duality theorem, we can easily argue that the
utility function induced by every optimal mechanism equals the utility function u(x) in-
duced by our mechanism in Example 3. Hence, up to the choice of subgradients at the
measure-zero set of types where Vu(x) is discontinuous, the allocations offered by any
optimal mechanism must agree with those of our mechanism in Example 3. Therefore,
every optimal mechanism must offer an uncountably large menu. The proof of unique-
ness is given in the Supplemental Material.

Summary of Beta Distributions. Example 3 shows that the optimal mechanism for two
Beta distributed items offers a continuum of lotteries, thereby having infinite menu-size
complexity (Hart and Nisan (2013)). Still, using our techniques, we can obtain a succinct
and easily computable description of the mechanism.

Working similarly to Example 3, we can obtain the optimal mechanism for broader set-
tings of parameters. Figure 7 illustrates the optimal mechanism for two items distributed
according to Beta distributions with different parameters. The reader can experiment with
different settings of parameters at http://christos.me/betas.

8.2.2. Distributions of Unbounded Support: Exponential and Power-Law

So far, this paper has focused on type distributions with bounded support. In this sec-
tion, we note that Theorem 1, Lemma 1, and Theorem 7 can be easily modified to ac-
commodate settings with unbounded type spaces, as long as the type distribution decays
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(1) @ ()

- k =

FIGURE 7.—Canonical partitions for different cases of Beta distributions. The shaded region is where the
measure u becomes negative. (Note that when the second parameter b; of the Beta distribution of some item
i equals 1, u has positive mass on the outer boundary x; = 1.) (1) Beta(1, 1) and Beta(1, 1), (2) Beta(2,2) and
Beta(1, 1), (3) Beta(2, 2) and Beta(2, 2).

sufficiently rapidly towards infinity. On the other hand, we do not know extensions of our
strong duality theorem (Theorem 2), and the optimal menu conditions (Theorem 3) for
unbounded type distributions, due to technical issues.

In the Supplemental Material, we provide a short discussion of the modifications re-
quired to obtain an analog of Theorem 7 for unbounded distributions that are sufficiently
fast-decaying, and present below two example settings that can be analyzed using the mod-
ified characterization theorem. Both examples are taken from Daskalakis, Deckelbaum,
and Tzamos (2013).

In Example 4, the optimal mechanism for selling two power-law items is a grand-
bundling mechanism. The canonical partition induced by the exclusion set of the grand-
bundling mechanism is degenerate (regions A and B are empty), and establishing the
optimality of the mechanism amounts to establishing that the first-order stochastic domi-
nance condition for the induced measure p holds in region W.

EXAMPLE 4: The optimal IC and IR mechanism for selling two items whose values
are distributed independently according to the probability densities fi(x) =5/(1 + x)°
and f>(y) =6/(1 + y)’, respectively, is a take-it-or-leave-it offer of the bundle of the two
goods for price p* ~ 0.35725.

Example 5 provides a complete solution for the optimal mechanism for two items dis-
tributed according to independent exponential distributions. In this case, the canonical
partition, illustrated in Figure 8, induced by the exclusion set of the mechanism is missing
region .4, and possibly region B (if A; = A,).

EXAMPLE 5: For all A; > A, > 0, the optimal IC and IR mechanism for selling two
items whose values are distributed independently according to exponential distributions
f1 and f, with respective parameters A; and A, offers the following menu:

1. receive nothing, and pay 0;

2. receive the first item with probability 1 and the second item with probability A,/A4,
and pay 2/A;; and

3. receive both items, and pay p*;
where p* is the unique 0 < p* < 2/A, such that

r({(x,y) €Ry:x+y < p*and \ix + dy <2}) =0,

where u is the transformed measure of the joint distribution.
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FIGURE 8.—The canonical partition of R, for the proof of Example 5. In this diagram, p* > 2/A;. If

p* <2/\, B is empty. The positive part w, of w is supported inside P N {6} while the negative part u_ is
supported within Z,» UN".

9. CONCLUSIONS

We provided a duality-based framework for revenue maximization in a multiple-good
monopoly. Our framework shows that every optimal mechanism has a certificate of opti-
mality, taking the form of an optimal transportation map between measures. Using this
framework, we characterized optimal mechanisms, showing that a mechanism is optimal
if and only if certain stochastic dominance conditions are satisfied by a measure induced
by the buyer’s type distribution. This measure expresses the marginal change in the seller’s
revenue under marginal changes in the rent paid to subsets of buyer types.

We also provided several tools for checking the pertinent stochastic dominance condi-
tions in two dimensions. These tools were useful in establishing the optimality of mech-
anisms in a multitude of two-item examples that we studied. While our characterization
holds for an arbitrary number of items, verifying stochastic dominance in higher dimen-
sions becomes significantly harder. An interesting future direction is to develop tools for
checking stochastic dominance in higher dimensions. This will be useful for establishing
optimality of mechanisms for three and more items.

Another important research direction is to obtain conditions for the type distribution
under which the optimal mechanism has a simple closed-form description. For example,
are there broad conditions implying that grand bundling is optimal or that the optimal
mechanism takes the form of the mechanisms in Theorem 7?7

Finally, a major open problem is to extend our results to multiple bidders. Even for
the presumably simple setting of two bidders with independent and identical values for
two items that are uniformly distributed in [0, 1], the revenue-optimal mechanism is un-
known.
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