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In this paper, we study the asymptotic behavior of specification tests in con-
ditional moment restriction models under first-order local identification failure
with dependent data. More specifically, we obtain conditions under which the
conventional specification test for conditional moment restrictions retains its
standard normal limit when first-order local identification fails but global identifi-
cation is still attainable. In the process, we derive some novel intermediate results
that include extending the first- and second-order local identification framework
to models defined by conditional moment restrictions, establishing the rate of
convergence of the GMM estimator and characterizing the asymptotic represen-
tation for degenerate U-statistics under strong mixing dependence. Importantly,
the specification test is robust to first-order local identification failure regardless
of the number of directions in which the Jacobian of the conditional moment re-
strictions is degenerate and remains valid even if the model is first-order identi-
fied.
Keywords. GMM, conditional moment restrictions, test for overidentifying re-
strictions, local and global identification, first-order local identification failure,
second-order local identification, U-statistics, strong mixing dependence, robust-
ness.
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1. Introduction

While economic models are designed to be only partial and incomplete representations
of real economic phenomena, it is still highly desirable to quantify the degree of model
misspecification and the directions along which the model performance is unsatisfac-
tory. Even if the model is rejected by the data, it can still be useful for policy analysis but
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the inference and model comparison procedures should be adjusted for the underlying
model uncertainty. For these reasons, it is now common practice to first subject the can-
didate models to specification testing before committing to a particular analytical and
inference framework.

There are at least two characteristics of economic models that make the develop-
ment of fully robust and reliable specification testing procedures more challenging.
First, economic models are typically defined by a set of conditional moment restrictions.
The standard approach is to resort to the law of iterated expectations and reduce the
conditional restrictions to unconditional moment restrictions that are then used to de-
sign the proper estimation and testing framework. When this is done in ad hoc manner,
this approach could result in loss of efficiency and even in inconsistency of the estima-
tor (see, e.g., Dominguez and Lobato (2004)). On the other hand, a transformation that
preserves the information in the conditional moment restrictions leads to modified tests
based on a continuum of moment conditions (see Bierens (1982), Bierens and Ploberger
(1987), de Jong and Bierens (1994), Carrasco and Florens (2000), Kitamura, Tripathi, and
Ahn (2004) among others). A common feature of all these tests is that they rely on root-n
consistent estimators, which are readily available in models that are first-order locally
identified.

Second, it is often the case that the moment restriction model is locally underiden-
tified. In linear models, for example, the lack of first-order local identification—rank de-
ficiency of the Jacobian matrix of the moment conditions—implies global identification
failure, which typically renders the standard specification tests invalid under both the
null and alternative hypotheses as the power of the test, in certain contexts, is bounded
by its size (Gospodinov, Kan, and Robotti (2017)). The intuition behind this result is that
it is sometimes possible to recast the optimal specification test as a reduced rank test,
which highlights the difficulty of determining if the reduced rank is induced by correct
specification or identification failure. In nonlinear models, however, first-order identifi-
cation is no longer a necessary condition for global identification.

This paper builds on these two strands of literature to obtain conditions under which
the conventional specification tests of conditional moment conditions remain valid un-
der first-order local identification failure. It should be noted that this is not the case in
unconditional moment restriction models, where the second-order local identification
leads to overrejection of the standard specification test (Dovonon and Renault (2013)).
By contrast, our proposed test is characterized by robust properties as it preserves its
standard asymptotic limit irrespective of whether the model is first-order or second-
order identified. More specifically, the proposed conditional specification test retains its
validity in the presence of possible uncertainty about the parameter values or moment
conditions that determine first-order local identification. These robustness properties
constitute the main advantage of our approach and warrant some additional remarks.
Importantly, the proposed test is agnostic to the precise form of the local identification
failure, that is, the degree of rank deficiency of the expected Jacobian matrix of the mo-
ment conditions, the values of the model parameters that give rise to this rank deficiency
or if the Jacobian is exactly zero. In the latter case, and if prior knowledge of the zero Ja-
cobian is available to the researcher, Lee and Liao (2018) propose to augment the set
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of moment conditions with this additional restriction that restores the first-order local
identification and standard inference. However, if the source of the rank deficiency is
different or first-order local identification holds, imposing these Jacobian restrictions
would be invalid and lead to erroneous inference. By contrast, the implementation and
validity of our proposed test obviates the need to take a stand on the form of the rank de-
ficiency of the Jacobian matrix or, more generally, whether the model is first-order locally
identified or not. When the model is indeed first-order locally identified, the conditional
specification test continues to be characterized by the standard normal limit.

To this end, we formalize the concepts of point identification and first-order lo-
cal identification failure in conditional moment restriction models. Similar to point-
identified unconditional models, the first-order local identification failure allows only
for a reduced number of directions of the parameter vector to be identified while iden-
tification of the remaining directions is obtained via a second-order expansion of the
moment conditions. We then proceed with characterizing the limiting behavior of the
estimator and the specification test in models with an expanding set of moment condi-
tions when first-order local identification fails but global identification is still attainable.

Our main contributions can be summarized as follows. First, we extend the test for
validity of conditional moment restrictions (de Jong and Bierens (1994); Donald, Im-
bens, and Newey (2003)) to moment condition models that are first-order degenerate.
We establish our results in a two-step generalized method of moments (GMM) frame-
work with general forms of moment condition models and dependent data. While the
test proposed by de Jong and Bierens (1994) is obtained in the context of nonlinear re-
gression models, the test by Donald, Imbens, and Newey (2003) is also developed within
the GMM framework for a specific choice of basis functions and cross-sectional data.
Our results therefore show that the GMM-based test of Donald, Imbens, and Newey
(2003) retains its size control with dependent data and under first-order local identifica-
tion failure so long as second-order local identification holds. We should note that the
extension to dependent data and characterizing the limiting behavior of the GMM esti-
mator and the specification test in this context is nontrivial. We outline the conditions
under which the specification test with an increasing number of unconditional moment
restrictions is robust to the type of singularity arising from first-order local identifica-
tion failure. More specifically, we extend the notion of second-order local identification
to the setting of models defined by conditional moment restrictions. The limiting be-
havior of the GMM estimator and the specification test are studied in the setup where
point identification holds, first-order local identification fails while local identification
is maintained at second order.

We show that the GMM estimator, based on the expanding moment restrictions,
estimates the directions of the parameters that are locally first-order identified at the
standard

√
n-rate while the remaining directions are estimated at a slower rate. Interest-

ingly, this rate is faster than the n1/4-rate in second-order identified models with a fixed
number of moment restrictions (Dovonon and Renault (2020)). In the conditional set-
ting, the expanding number of moment restrictions enhances the identification signal
and accelerates the rate of convergence. We also derive the asymptotic distribution of
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the GMM estimator in the scalar case, which highlights the highly nonstandard limit-
ing behavior of the estimator. Despite this nonstandard asymptotic setup, we show that
the test for validity of conditional moment restrictions is characterized by a standard
normal limit even when the first-order local identification condition is compromised.
Another important intermediate result that we develop in the paper is a central limit
theorem (CLT) for degenerate U-statistics with linear kernels of increasing dimension
under strong mixing dependence. The CLT is novel and of independent interest. Estab-
lishing the asymptotic normality of the test for overidentifying restrictions draws heavily
on this CLT.

The rest of the paper is structured as follows. Section 2 introduces the main condi-
tional moment restriction setup and the testing framework. It also presents the notions
of first- and second-order local identification along with alternative characterizations in
the context of conditional moment restrictions. In order to enhance the intuition behind
the identification framework, Section 3 discusses the model with common conditionally
heteroskedastic features, which is later explored further in simulations and in the em-
pirical application. This example also allows us to highlight the robustness of our testing
approach to knowledge about the precise structure of the model. The asymptotic prop-
erties of the GMM estimator are analyzed in Section 4. Section 5 proposes a CLT for U-
statistics under strong mixing dependence and establishes the asymptotic normality of
the specification test statistic under the null hypothesis. In addition, this section shows
that this test is consistent against all alternatives. Section 6 reports simulation results for
the proposed specification test and provides an empirical application for the presence
of common conditionally heteroskedastic features in portfolio bond returns. Section 7
concludes. Proofs and additional results are provided in Appendices A and B, and the
Supplemental Material (Dovonon and Gospodinov (2024)).

Throughout the paper, we use the following notation. For any matrix C, ‖C‖2 =√
λmax(CC ′ ) denotes the spectral norm, where λmax(·) is the largest eigenvalue function.

If C is a vector, this amounts to its Euclidean norm as well. Also, let λmin(·) denote the
smallest eigenvalue function, and Z, N, and R

m signify the set of all integers, the set of
natural numbers, and the set of real m × 1 vectors, respectively. Furthermore, Card(S)
denotes the cardinality of a finite set S, defined to be the number of elements in the set
S, vec(C ) signifies column vectorization of a matrix C, a∨ b denotes the maximum of a
and b, Rank(C ) is the rank of a matrix C, and Diag(c11, c22, � � � , cmm ) denotes an m × m

diagonal matrix with (c11, c22, � � � , cmm )′ on its main diagonal. Convergence in probabil-

ity and convergence in distribution are denoted by
P→ and

d→, respectively, while the
abbreviation a.s. stands for almost surely. Let {Xt : t ∈ Z} be a sequence of random vari-
ables and Fb

a be the σ-algebra generated by {Xt : −∞ ≤ a≤ t ≤ b ≤ ∞}. Then {Xt } is said
to be strong mixing or α-mixing (Andrews (1984)) if

sup
−∞<t<∞

sup
A∈F t−∞,B∈F∞

t+s

∣∣Pr(A∩B) − Pr(A) Pr(B)
∣∣ = α(s) → 0 as s → ∞.

Finally, an = oP (1) denotes that the sequence an tends to zero in probability and an =
OP (1) signifies that an is bounded in probability.
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2. Model and identification

2.1 Conditional moment restriction setup

In this paper, we consider a single conditional moment restriction model:

E
(
u(yt , θ0 )|xt

) = 0 a.s., (1)

where u is a real-valued function, θ0 ∈�⊂ R
p is the parameter of interest, and {(xt , yt )}t

is a sequence of Rkx ×R
ky -valued random vectors. Many economic equilibrium models

take this conditional moment restriction form. A prominent example of the role of con-
ditioning is the stochastic discount factor framework in asset pricing (see, for instance,
Hansen (2014)).1 In this setup, the null hypothesis of validity of the conditional moment
restriction in (1) is

H0 : Pr
{
E

(
u(yt , θ0 )|xt

) = 0
} = 1 (2)

against the alternative

H1 : Pr
{
E

(
u(yt , θ)|xt

) = 0
}
< 1, for any θ ∈�. (3)

While the single conditional restriction setup covers a wide range of practically relevant
models, we focus on this case merely for the sake of notational simplicity. The main
results in this paper carry over to higher-dimensional conditional moment restrictions
at the cost of more cumbersome notation.

Consistent estimation of θ0 using (1) requires point identification, that is, for all θ ∈
�,

ρ(xt , θ) := E
(
u(yt , θ)|xt

) = 0, a.s. ⇔ θ = θ0. (4)

Moreover, inference about θ0 hinges on the sharpness of the slope of the function θ →
ρ(x, θ) at θ0. The local behavior of this function determines the rate of convergence of
the estimator of θ0. The standard approach to inference relies on a local identification
condition, which states that

E
(
ρθ(x, θ0 )′ρθ(x, θ0 )

)
is nonsingular, (5)

where ρθ(x, θ) := E(∇θu(y, θ)|x) with ∇θu(y, θ0 ) = ∂u(yt , θ)/∂θ′|θ=θ0 . Following the lit-
erature on unconditional moment restriction models (Sargan (1983); Dovonon and Re-
nault(2013); Dovonon and Hall (2018); among others), we shall refer to this condition
as first-order local identification condition for conditional moment restriction models.
This connection between the identification setups for unconditional and conditional
restriction models is formalized in the next subsection. As pointed out in the Introduc-
tion, this paper considers a framework where the conditional moment model is point
identified but there is a failure of the first-order local identification condition.

1For a comprehensive recent discussion of these issues in the context of asset pricing models, we refer
the reader to Antoine, Proulx, and Renault (2020).
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The rest of our main analytical and testing framework can be summarized as fol-
lows. Consider the separable Hilbert space L2(P ) := L2(Rkx , B(Rkx ), P ) of square P-
integrable real-valued functions defined on R

kx , where P is the common probability dis-
tribution of xt ’s—that are assumed to be stationary—and B(Rkx ) is the Borel σ-algebra
of Rkx . We equip L2(P ) with the inner product: 〈f (·), h(·)〉 = E(f (xt )g(xt )). Let (gl )l∈N
be a countable basis (not necessarily orthonormal) of L2(P ) and g(k) := (g1, � � � , gk )′.2
We investigate the null hypothesis in (2) by proposing a test for the sequence of uncon-
ditional moment restrictions

E
(
gl(xt )u(yt , θ0 )

) = 0, l = 1, � � � , k; t = 1, � � � , n,

or written more compactly as

E
(
g(k)(xt )u(yt , θ0 )

) = 0, (6)

where k = k(n) with k(n) → ∞ as n → ∞. The GMM estimator, based on these restric-
tions, is defined as

θ̂ = arg min
θ∈�

f̄k(θ)′Ŵkf̄k(θ), (7)

where

f̄k(θ) = 1√
n

n∑
t=1

fk(xt , yt , θ), fk(xt , yt , θ) = g(k)(xt )u(yt , θ),

and Ŵk is a sequence of symmetric, positive definite weighting matrices. The specifica-
tion test that we introduce next is expressed as a function of the two-step GMM estima-
tor, which uses the weighting matrix

Ŵk = V̂ −1
k , V̂k = 1

n

n∑
t=1

fk(xt , yt , θ̃)fk(xt , yt , θ̃)′. (8)

The preliminary (first-step) GMM estimator θ̃ used in (8) is obtained by commonly set-
ting Ŵk = Ik or, more generally, to a nonrandom matrix sequence Wk,0. Furthermore, we
will derive our results under the condition that the sequence (fk(xt , yt , θ0 ))t is serially
uncorrelated. This is ensured by our maintained assumption that

E
(
u(yt , θ0 )|Ft

) = 0, where Ft = σ
(
xt , u(yt−1, θ0 ), xt−1, u(yt−2, θ0 ), � � �

)
. (9)

2To enhance power, the sequence of functions (gl )l is chosen as an enumeration of some series expan-
sion that does not depend on θ. Furthermore, as discussed by de Jong and Bierens (1994), the conditioning
random variable x can be considered to be bounded since

E(Y |x) = E
(
Y |
(x)

)
for any one-to-one function 
 that maps R

kx into a compact subset D ⊂ R
kx . In that respect, if x

is not initially a bounded random variable, one can consider g(
(x)), instead of g(x). Examples of
bounded transformations 
(·) include the componentwise arc tangent function, that is, x → arctan(x) =
(arctan(x1 ), � � � , arctan(xkx ))′, while choices of enumeration of weight functions (gl )l include polynomial,
trigonometric, and flexible Fourier form families (de Jong and Bierens (1994); see also Andrews (1991), and
Gallant (1981), for more details on these families).
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In fact, under this condition and for any k, (fk(xt , yt , θ0 ))t is a martingale difference se-
quence with respect to its natural filtration. The weighting matrix for the two-step GMM
estimator is thus constructed as the inverse of V̂k, where V̂k is a sum of outer product of
fk(xt , yt , θ̃) as defined by (8).

Our goal is to derive the asymptotic distribution of the test statistic of the null hy-
pothesis in (2)

Ẑ = 1√
2k

(
f̄k(θ̂)′V̂ −1

k f̄k(θ̂) − k
)

(10)

under first-order local identification failure. Characterizing the limiting distribution of
Ẑ requires that we determine the limiting behavior of θ̂ under (i) an expanding set of
moment conditions (k(n) → ∞ as n → ∞) and (ii) second-order local identification.
We show that even in this highly nonstandard identification setup, the test Ẑ retains
its N(0, 1) limit under H0 in (2)—which is the asymptotic distribution of the test in the
standard identification setting (de Jong and Bierens (1994))—and is consistent under H1

in (3).

2.2 Identification

Note that, for any k and any vector of instruments zt = g(xt ) ∈ R
k, a function of xt , the

conditional moment restriction in (1) implies the unconditional moment restriction:

E
(
zt · u(yt , θ0 )

) = 0. (11)

Following Sargan (1983) and Dovonon and Renault (2013), among others, the uncondi-
tional moment restriction (11) locally identifies θ0 at first order if

Rank
(
E

(
zt · ∇θu(yt , θ0 )

)) = p, (12)

whereas lack of first-order local identification occurs when

Rank
(
E

(
zt · ∇θu(yt , θ0 )

))
<p. (13)

Therefore, it is reasonable to conjecture that the conditional moment restriction (1)
identifies θ0 locally at first order if and only if there exists a set of instruments zi such
that (12) holds. Relatedly, first-order local identification fails if and only if (13) holds re-
gardless of the choice of instruments. The following proposition describes this property
in terms of degeneracy of the expected Jacobian of u(yt , θ) at θ0.

Proposition 2.1. The following two statements are equivalent:

(i) For any k and any Rk-valued measurable function g, Rank(E(zt ·∇θu(yt , θ0 ))) <p,
where zt = g(xt ) and assuming that the moment exists.

(ii) There exists at least one linear combination of the elements of E(∇θu(yt , θ0 )|xt ) that
is almost surely nil.3

3Note that, when u is a q-vector, “·” in part (i) should be replaced by the Kronecker product “⊗” and
“elements” in part (ii) should be replaced by “columns,” with the understanding that ∇θu(yt , θ0 ) is a (q, p)-
matrix.
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A proof of an alternative formulation of this proposition (Proposition A.1(ii)) is pro-
vided in Appendix B. The characterization in (ii) validates (5) as the first-order local iden-
tification condition in model (1). Furthermore, this highlights some similarities with
the first-order local identification failure in parametric models as studied by Lee and
Chesher (1986) and Rotnitzky, Cox, Bottai, and Robins (2000). In this setting, first-order
local identification failure amounts to linear dependence of the elements of the score
function of the model, evaluated at the true parameter value.

With the basis functions g(k)(x) as defined in Section 2.1, Proposition A.1 in Ap-
pendix A establishes the connection between point identification (resp., first-order local
identification failure) in conditional moment models such as (1) with point identifica-
tion (resp., first-order local identification failure) in their corresponding sequences of
unconditional moment models given by (6). While point identification by (1) amounts to
point identification by (6) for some k0, the fact that g(k)(x) is an increasingly embedded
sequence of vectors allows us to claim that (1) fails first-order local identification if and
only if there exists r such that, for any k large enough (say k ≥ k0), Rank(G(k) ) = r < p,
where G(k) is the expected Jacobian matrix:

G(k) := E
(
g(k)(x) · ∇θu(y, θ0 )

)
.

By construction, the null space of G(k) and the range of its transpose are fixed for any
k large enough. This stability of range and null space will be key to second-order local
identification that will be imposed on the moment restrictions in order to character-
ize the limiting behavior of estimators and specification tests. Indeed, the main con-
sequence of first-order local identification failure, while global identification holds, is
that only a certain number (r < p) of directions of the parameter vector are identified
through first-order expansions of the moment function.

Next, following Dovonon and Hall (2018) and Dovonon and Renault (2020), we focus
on configurations that allow the identification of the remaining directions via a second-
order expansion. Let k ≥ k0 such that Rank(G(k) ) = r < p, R1 be a (p, r )-matrix with
columns spanning the range of G(k)′ , and R2 denote a (p, p − r )-matrix with columns
spanning the null space of G(k). We say that the moment restriction (1) identifies θ0 at
second order if, for all a ∈R

r and b ∈R
p−r , we have4

(
G(k)R1a+ (

b′R′
2E

(
g(k)
l (x)∇θθu(y, θ0 )

)
R2b

)
1≤l≤k

) = 0 ⇔ (
(a, b) = (0, 0)

)
, (14)

where ∇θθu(y, θ0 ) := (∂2/∂θ∂θ′ )u(y, θ), evaluated at θ0.
Letting M(k) be the matrix of orthogonal projection on the null space of G(k)′ (or

equivalently the orthogonal of the column span of G(k)), Corollary 2.3 of Dovonon and
Renault (2020) ensures that (14) is equivalent to the existence of γk > 0 such that, for any
b ∈R

p−r , ∥∥M(k)(b′R′
2E

(
g(k)
l (x)∇θθu(y, θ0 )

)
R2b

)
1≤l≤k

∥∥
2 ≥ √

γk‖b‖2
2,

with γk = inf
‖b‖2=1

∥∥M(k)(b′R′
2E

(
g(k)
l (x)∇θθu(y, θ0 )

)
R2b

)
1≤l≤k

∥∥2
2. (15)

4From our discussion above, if (14) holds for a given k, it holds for all k′ ≥ k.
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This inequality is instrumental in deriving the rate of convergence of estimators of θ0.
We show in Appendix B that γk is a nondecreasing function of k and unlike the case of a
fixed set of unconditional moment restrictions (Dovonon and Hall (2018); Dovonon and
Renault (2020)), this property has the potential to affect the rate of convergence of the
estimators of θ0, especially if γk diverges to ∞ as k grows. We maintain (see Assumption
4(ii)) that γk =O(k).

We conclude this section with some remarks regarding second-order local identifi-
cation. We define the (k, p2 )-matrix

H(k)(θ) = E
(
g(k)(x)

[
vec′(∇θθu(y, θ)

)])
.

By definition, it follows that

(
b′R′

2E
(
g(k)
l (x)∇θθu(y, θ0 )

)
R2b

)
1≤l≤k

=H(k)(θ) · vec
(
R2bb

′R2
)
.

First, note that if p = 1, first-order local identification failure at θ0 amounts to G(k) = 0
for all k. Then second-order local identification amounts to H(k)(θ0 ) �= 0 for some k.
Second, if p ≥ 2 and Rank(G(k) ) = p− 1 for all k ≥ k0, second-order local identification
at θ0 amounts to

Rank
[
G(k)R1 H(k)(θ0 ) · vec

(
R2R

′
2

)] = p,

for R1 and R2 defined as in (14). More generally, suppose that Rank(G(k) ) = p− 1 for all
k ≥ k0, and in some parameter direction, say θh, we have E(g(k)(x)[∂u(y, θ0 )/∂θh]) = 0.
Then second-order local identification amounts to

Rank
[
G(k)dh H(k)(θ0 ) · vec

(
ehe

′
h

)] = p,

where G(k)dh is the (k, p − 1)-matrix of columns of G(k), except the hth column,
and eh is the p-vector of zeros with 1 in its hth entry so that H(k)(θ0 ) · vec(ehe′

h ) =
E(g(k)(x)[∂2u(y, θ0 )/∂θ2

h]).

3. Example: Common conditionally heteroskedastic features

In this section, we use a model with common conditionally heteroskedastic features
to illustrate the identification structure of interest in which the conditional moment
restriction fails first-order local identification but is point identified and satisfies the
second-order local identification condition. This example, which captures some im-
portant common drivers in financial asset returns (Engle and Kozicki (1993); see also
Dovonon and Renault (2013)), is further explored in our simulations and empirical ap-
plication.

Let Ft denote an increasing filtration to which all information available at date
t is adapted and ft+1 := (f1,t+1, f2,t+1 )′ be a vector of unobserved conditionally het-
eroskedastic (CH) factors with conditional mean and variance given by

E(ft+1|Ft ) = 0, Dt := Var(ft+1|Ft ) = Diag
(
σ2

1,t , σ
2
2,t

)
,
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where σ2
i,t (i = 1, 2) are time-varying volatility processes. Furthermore, let Yt be a bi-

variate process of asset (stock, bond, or other financial asset) excess returns that admits
the following CH factor representation (Engle, Ng, and Rothschild (1990); King, Sentana,
and Wadhwani (1994); Sentana and Fiorentini (2001)):

Yt+1 = �Dtτ +�ft+1 + et+1, (16)

where � is a (2 × 2) matrix of factor loadings, τ ∈ R
2 represents the vector of market

prices of risk associated with each of the volatility factors, and et+1 is the vector of id-
iosyncratic shocks that is assumed to satisfy the following restrictions:

E(et+1|Ft ) = 0, Var(et+1|Ft ) = �, Cov(et+1, ft+1|Ft ) = 0,

with � = (�11 �12
�21 �22

)
being time invariant. In this model, �Dtτ is the vector of risk premia

and, by definition, is also the conditional mean of Yt+1.
Each process is characterized by CH dynamics so that each return has at least one

nonzero factor loading. Interest lies in configurations where both assets have common-
ality in their CH dynamics in the sense that they share the same source of heteroskedas-
ticity. A common CH feature thus amounts to collinearity of the two columns of the
matrix of factor loadings � and is tested within (16) by investigating whether there exists
a linear combination of returns that offsets the CH feature. The null of commonality of
CH features can be posed as validity of the conditional moment restriction:

E
(
u1,t+1(θ)|Ft

)
) = 0, with u1,t+1(θ) := (Y1,t+1 +βY2,t+1 )2 − c, (17)

where θ := (β, c)′ ∈R
2 is the model parameter vector.

Point identification is ensured in this model since, under the null, the only value
of θ that offsets the CH factor is β0 = −�1,1/�2,1 and c0 = E(Y1,t+1 + β0Y2,t+1 )2. This
model also fails first-order local identification. Indeed, with ω= 2(�21 +β0�22 ), simple
calculations yield

ρθ(Ft , θ0 ) = E
(∇θu1,t+1(θ0 )|Ft

) =
(
ω −1

)
and

Rank
(
E

[
ρθ(Ft , θ0 )′ρθ(Ft , θ0 )

]) = 1 < 2.

To establish second-order local identification, consider a basis (gl(Ft ))l, of L2(P ) such
that g1(Ft ) = 1 and zt := g2(Ft ) satisfies Cov(zt , Y 2

2,t+1 ) �= 0. Consider Zt := g(2)(Ft ) =
(1, zt )′. Then we have

G(2) := E
(
Zt∇θu1,t+1(θ0 )

) =
(

1
E(zt )

)(
ω −1

)

so that the range of G(2)′ and the null space of G(2) are both of dimension one, spanned
by R1 = (ω− 1)′ and R2 = (1 −ω)′, respectively. Furthermore,

E
(∇θθu1,t+1(θ0 )

) =
(

2E
(
Y 2

2,t+1

)
0

0 0

)
and E

(
zt · ∇θθu1,t+1(θ0 )

) =
(

2E
(
ztY

2
2,t+1

)
0

0 0

)
.
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Hence, for a, b ∈ R, we have

G(2)R1a+ b2

(
R′

2E
(∇θθu1,t+1(θ0 )

)
R2

R′
2E

(
zt · ∇θθu1,t+1(θ0 )

)
R2

)
= 0 ⇔

(
1

E(zt )

)(
ω2 + 1

)
a+

(
E

(
Y 2

2,t+1
)

E
(
ztY

2
2,t+1

)
)
b2 = 0,

which yields a = b = 0.
Instead of constructing the test only based on (17), one may exploit information

about the conditional mean by adding the following moment restriction:

E
(
u2,t+1(β)|Ft

) = 0, with u2,t+1(β) := Y1,t+1 +βY2,t+1. (18)

The joint model (17)–(18) is obviously point identified. Furthermore, the possibility for
this extended model to be first-order locally identified by the restriction (18) depends on
the value of the market price of risk τ. In fact, the extended model is first-order locally
identified if and only if τ �= 0. Indeed, with ut+1(θ) = (u1,t+1(β, c), u2,t+1(β))′ and �2•
denoting the second row of �,

E
(∇θut+1(θ0 )|Ft

) =
(

ω −1
�2•Dtτ 0

)
, (19)

which is nondegenerate if and only if τ �= 0. Note that the second row in (19) is effectively
E(Y2,t+1|Ft ), which characterizes the predictability of Y2,t+1.

Nevertheless, when τ = 0, the augmented model (17)–(18) continues to be second-
order locally identified by the conditional moment restriction (17) while the additional
restriction (18) is completely uninformative about θ0 due to the unpredictability of
Y2,t+1. When the researcher is agnostic about the true value of τ, the robustness prop-
erties of the test proposed in this paper prove to be particularly appealing. More specifi-
cally, irrespective of the value of τ, this test maintains the same asymptotic distribution
under the null regardless of whether the simpler moment restriction (17) or the restric-
tions implied by the extended model (17)–(18) are used.

4. Asymptotic properties of the GMM estimator

In order to establish the limiting behavior of the test of H0 : Pr{E(u(yt , θ0 )|xt ) = 0} = 1
under second-order local identification, we first need to derive the asymptotic proper-
ties of the associated GMM estimators within this identification framework.

4.1 Assumptions

This section presents the main set of assumptions that allows us to characterize the lim-
iting behavior of the GMM estimator in the conditional moment setup under local iden-
tification failure.
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Assumption 1 (Data dependence structure). We assume that u(yt , θ0 ) is stationary and
satisfies the dependence structure in (9), and (yt , xt )t∈Z is a strong mixing process with
dependence measure α(s) = O(ρs ) for some 0 < ρ< 1.

Assumption 1 ensures that the conditional moment restriction (1) holds. It also im-
plies that fk(xt , yt , θ0 ) is a martingale difference sequence with respect to its natural
filtration, and is strong mixing with geometrically decreasing dependence coefficient.
The mixing property is useful to deal with the serial correlation of functions of fk. Al-
though this dependence structure may appear restrictive, it encompasses a large class
of time series representations that are useful in applications. This includes a wide range
of linear and nonlinear processes. Carrasco and Chen (2002) and Francq and Zakoian
(2006) establish the geometric strong mixing dependence property for conditionally
heteroskedastic processes such as GARCH and stochastic volatility processes. More re-
cently, Fryzlewicz and Subba Rao (2011) demonstrate that time-varying ARCH processes
also share this property.

Assumption 2 (Identification setup). There exists k0 ≥ 1 such that:

(i) (Point identification) The parameter space � is a compact subset of Rp and for all
k≥ k0,

∀θ ∈�, E
(
u(y, θ)g(k)(x)

) = 0 ⇔ θ = θ0.

(ii) (First-order local identification failure) For all k ≥ k0,

Rank
(
G(k)) = r < p.

(iii) (Second-order local identification) For any k≥ k0 and for R1 and R2 defined as in
(14), we have (

G(k)R1a+ (
b′R′

2E
(
g(k)
l (x)(∇θθu)(θ0 )

)
R2b

)
1≤l≤k

= 0
)

⇒ (
(a, b) = (0, 0)

)
(20)

for all a ∈R
r , all b ∈ R

p−r , and all k≥ k0.

Assumption 2 characterizes the identification framework for our analysis. Assump-
tion 2(i) is necessary for establishing the consistency of GMM estimators. As we argue in
Proposition A.1 in Appendix A, this condition is equivalent, under mild regularity condi-
tions, to point identification of the conditional moment restriction model. More specif-
ically, it is worth mentioning that this condition holds under the mild assumptions of
Proposition A.1(i) if we assume second-order local identification—which rules out so-
lutions of E[g(k)(xt )u(yt , θ)] = 0 lying in � \ {θ0} and converging to θ0 as k grows—and
point identification of the conditional moment restriction model. Assumption 2(ii) im-
poses first-order local identification failure. This condition is shown to be equivalent to
a lack of first-order local identification in conditional moment restriction models. As-
sumption 2(iii) claims second-order local identification.

Theorem A.2 in Appendix A shows that the GMM estimator, defined by (7), is consis-
tent under Assumptions 1, 2(i) and the following Assumption 3.
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Assumption 3 (Consistency of GMM estimators). Assume that:

(i) E(gl(xt )2u(yt , θ0 )2 ) ≤ �< ∞, for some �> 0; θ → E[gl(x)u(y, θ)] is continuous for
each l = 1, � � � , k0, with k0 as defined in Assumption 2(i); and

sup
θ∈�

∥∥∥∥∥1
n

n∑
t=1

g(k0 )(xt )u(yt , θ) −E
[
g(k0 )(xt )u(yt , θ)

]∥∥∥∥∥
2

P→ 0.

(ii) There exists a nonrandom sequence Wk of (k, k)-symmetric positive definite matri-
ces and �> 0 such that, with λ̄k := λmax(Wk ), we have

λ̄k/λmin(Wk ) ≤ �<∞, λmax(Ŵk )/λ̄k = 1 + oP (1),

λmin(Ŵk )/λmin(Wk ) = 1 + oP (1).

The existence of the second moment of gl(x)u(y, θ0 ) in Assumption 3(i) allows us
to control the order of magnitude of quantities such as ‖f̄k(θ0 )‖2

2. Under this condition,
‖f̄k(θ0 )‖2

2 = OP (k). The last part in Assumption 3(i) is the usual uniform law of large
numbers. Primitive conditions for this to hold for dependent data can be found in Do-
mowitz and White (1982) and Pötscher and Prucha (1989).

The first condition in Assumption 3(ii) serves as a sufficient condition and is not re-
strictive as it merely rules out the possibility that Wk is ill-conditioned. Note that similar
conditions on the boundedness of the eigenvalues are routinely assumed in models with
an expanding number of instruments or covariates (e.g., Han and Phillips (2006); Catta-
neo, Jansson, and Newey (2018)), and for estimation of large covariance matrices (e.g.,
Fan, Liao, and Mincheva (2013)). In standard problems where k is fixed, Ŵk is assumed
to converge in probability to Wk. With an increasing k, such a convergence needs to be
formalized. It turns out that the convergence of the extreme eigenvalues of Ŵk to those
of Wk, as stated by the second and third conditions of Assumption 3(ii), is sufficient to es-
tablish consistency of GMM. The conditions in Assumption 3(ii) are trivially fulfilled by
estimation procedures using a nonrandom weighting matrix with eigenvalues bounded
away from zero and from above. This is the case for the first-step GMM estimator in-
troduced above, which uses Wk,0 as a weighting matrix and, therefore, is consistent.
For the optimal weighting matrix, Assumption 3(ii)—the boundedness of the smallest
eigenvalue from zero, in particular—may appear restrictive. While the provision of more
primitive and less restrictive regularity conditions on the optimal weighting matrix may
still be possible,5 a more formal treatment is beyond the scope of this paper.

In Appendix A, we show that these conditions continue to hold for the two-step
GMM estimator and this estimator is consistent as well (see Assumption A.1 and Corol-
lary A.3 in Appendix A). To summarize, Assumptions 1, 2(i), and 3 already ensure the
consistency of the GMM estimator in point-identified, conditional restriction model un-
der first-order local identification failure (see Theorem A.2 in Appendix A). However, for

5In the Supplemental Material, we provide more explicit conditions—on the conditional expectation of
u(y, θ0 )2 and the density of xt—for the boundedness of the eigenvalues in our context. We show by simula-
tions that these conditions still appear to be only sufficient conditions and can be further relaxed.
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deriving the asymptotic distribution of the test for correct model specification, we need
to characterize the rate of convergence of the GMM estimator.

For this reason, we proceed with introducing additional conditions that will al-
low us to establish the rate of convergence of the GMM estimator in conditional mo-
ment restriction models under local identification failure. In what follows, we define
H̄(k)(θ) = n−1 ∑n

t=1 g
(k)(xt )[vec′(∇θθu(yt , θ))] and Ḡ(k)(θ) = n−1 ∑n

t=1 g
(k)(xt )∇θu(yt , θ)

to be the sample counterparts of H(k)(θ) and G(k)(θ), respectively, that were intro-
duced above. Also, let H(k) := H(k)(θ0 ), D1 = G(k)R1, D̄2 = √

nḠ(k)(θ0 )R2, M(k) =
Ik − W

1/2
k D1(D′

1WkD1 )−1D′
1W

1/2
k , γk = inf‖v‖=1 ‖M(k)W

1/2
k H(k) vec(R2vv

′R′
2 )‖2

2, λ̄k :=
λmax(Wk ), and λk := λmin(Wk ), where Wk is defined as in Assumption 3(ii).

We first state a condition (Condition C below) for an R
m-valued random function

Ut(θ) (with m fixed) that proves useful in obtaining the order of magnitude of quantities
such as (1/n)

∑n
t=1 g

(k)(xt )Ut(θ̄) − E(g(k)(xt )Ut(θ0 )), where θ̄ converges in probability
to θ0 (see Lemma B.1 in Appendix B).

Condition C. For an R
m -valued random function Ui(θ), there exists a neighborhood N

of θ0 such that

sup
θ∈N

∥∥∥∥∥1
n

n∑
t=1

g(k)(xt )Ut(θ)′ −E
(
g(k)(xt )Ut(θ)′

)∥∥∥∥∥
2

=OP

(√
k

n

)
,

and for each l ∈ {1, � � � , k}, and r ∈ {1, � � � , m}, the map θ → E(gl(xt )Ut,r(θ)) is Lipschitz
continuous on N with coefficient c > 0, that is,

∀θ1, θ2 ∈ N ,
∥∥E(

gl(xt )Ut,r(θ1 )
) −E

(
gl(xt )Ut,r(θ2 )

)∥∥
2 ≤ c‖θ1 − θ2‖2.

The first condition is warranted if the functional central limit theorem applies.
The Lipschitz property follows if the considered expectation functions are contin-
uous on a compact set containing a neighborhood of θ0. The common Lipschitz
constant may appear restrictive although such a constant exists if we assume that
supθ∈N E(|gl(x)|‖∂Ut,r(θ)/∂θ′‖2 ) ≤ � < ∞. We now present the final assumption that
is useful to derive the rate of convergence of the GMM estimator.

Assumption 4 (Orders of magnitude). Assume that:

(i) θ0 lies in the interior of �, θ → u(y, θ) is twice continuously differentiable
in a neighborhood of θ0 for each y, and the maps θ → ∇θu(y, θ) and θ →
vec(∇θθu(y, θ)) satisfy Condition C.

(ii) There exist α1, α2 > 0 such that α1
√
k ≤ ‖D1‖2 ≤ α2

√
k, α1

√
k ≤ ‖H(k)‖2 ≤ α2

√
k,

α1k≤ γk ≤ α2k, λmax(D′
1D1 )/λmin(D′

1D1 ) =O(1), and ‖D̄2‖2 =OP (
√
k).

(iii) Sk := γ
−1/2
k H(k)′W 1/2

k M(k)W
1/2
k f̄k(θ0 ) =OP (1).

(iv) λ̄k ≤ �<∞, for some �> 0 and
√
k‖Ŵk −Wk‖2 = oP (1).
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Note that D1 and H(k) are nonzero matrices and the condition on their spectral
norms in Assumption 4(ii) follows if each has at least one column with a number of
nonzero elements that is proportional to k. The magnitude of γk follows from the fact
that (a) it is a nondecreasing sequence in k, and (b) it is of order OP (‖H(k)‖2

2 ). The re-
quirement that the ratio of the extreme eigenvalues of D′

1D1 be bounded prevents this
nonsingular matrix from being ill-conditioned. The condition on the (k, p − r )-matrix
D̄2 is not particularly restrictive since each component of this matrix is OP (1) by virtue
of the central limit theorem.

In Assumption 4(iii), the order of magnitude of Sk follows if λmax(W 1/2
k VkW

1/2
k ) ≤ �<

∞, which is the case, for example, if Vk and Wk have bounded eigenvalues or if Wk = V −1
k .

To see this, note that if λ̄k is bounded, then for any unit vector c, we have

c′ Var(Sk )c = γ−1
k c′H(k)′W 1/2

k M(k)W
1/2
k VkW

1/2
k M(k)W

1/2
k H(k)c

≤ �γ−1
k c′H(k)′W 1/2

k M(k)W
1/2
k H(k)c ≤ �λmax(Wk )γ−1

k

∥∥H(k)
∥∥2

2 = O(1),

which is sufficient to claim that Sk =OP (1) since E(Sk ) = 0.
Lastly, Assumption 4(iv) imposes that the eigenvalues of Wk are bounded and Ŵk

is sufficiently close to Wk as n grows. Note that these two conditions are fulfilled by
the GMM estimator with nonrandom matrix having bounded eigenvalues such as Wk,0.
These conditions are also satisfied for the two-step GMM estimator as we show in Ap-
pendix B in the context of the rate-of-convergence results in the next subsection.

4.2 Limiting behavior of the GMM estimator

Given the set of assumptions stated above, we now proceed to establishing the rate of
convergence of the GMM estimator which, in turn, will be useful to characterize the
asymptotic distribution of the specification test. In the standard case of a fixed number
of moment restrictions (i.e., k is fixed), the GMM estimator is known to converge at a
sharp rate of n1/4 although a faster rate in some regions of the sample space is possible
(Dovonon and Renault (2013)). This mixture of rates is essential for deriving the asymp-
totic distribution of the GMM overidentification test statistic as a mixture of chi-squared
random variables. We show a similar rate behavior for the GMM estimator in the current
context under local identification failure although the original rate needs to be adjusted
in order to reflect the increasing number of moment restrictions.

The next theorem states the rate of convergence of the parameter vector. Recall that
R1 denotes a (p, r )-matrix with columns spanning the range of G(k)′ and R2 is a (p, p−
r )-matrix with columns spanning the null space of G(k), where Rank(G(k) ) = r < p.

Theorem 4.1. If Assumptions 1–4 hold and k→ ∞ as n→ ∞ with k3/n→ 0, then

‖θ̂− θ0‖2 = OP

(
γ

−1/4
k n−1/4),

∥∥R′
1(θ̂− θ0 )

∥∥
2 =OP

(
n−1/2), and∥∥R′

2(θ̂− θ0 )
∥∥

2 =OP

(
γ

−1/4
k n−1/4).
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Theorem 4.1 establishes that each of the components of the GMM estimator con-
verges at least at a nonstandard rate of γ1/4

k n1/4 while the standard
√
n-rate of conver-

gence is possible in some directions. More specifically, the directions of the parameter
vector that are identified at first order are

√
n-convergent while the directions that are

second-order locally identified converge at a slower, γ1/4
k n1/4 ∼ k1/4n1/4, rate. Interest-

ingly, this rate is faster than the result in Dovonon and Renault (2020) who obtain, in a
configuration of fixed number of moment restrictions, a slower rate n1/4 for the direc-
tions identified at second order. The faster rate in our context is essentially due to to the
increased information brought by the growing number of moment restrictions.

This finding bears some similarities to Han and Phillips (2006) who show, in the con-
text of weak instruments, that the GMM estimator may be consistent if the number of
instruments is allowed to increase with the sample size (see also Chao and Swanson
(2005), among others). The intuition behind this result is that the expanding number of
moment conditions, if growing at an appropriate rate with the sample size, enhances
the identification signal and renders a consistent estimator (in a location model) even
with possibly irrelevant instruments. In our framework, point identification is main-
tained and consistent estimation is therefore possible even if the number of moment
restrictions does not grow. But, as Theorem 4.1 shows, the second-order local identi-
fication also reaps important benefits from the expanding set of moment restrictions
as the second-order identified parameters can be estimated at a faster rate. It is worth
mentioning that since achieving consistent estimation requires the number of moment
restrictions to grow at a slower rate than the sample size, it will not be possible to ac-
celerate the convergence rate of second-order identified directions to the parametric√
n-rate.

Although the rates of convergence that are stated in Theorem 4.1 are sufficient to de-
rive the asymptotic distribution of the specification test, it is interesting to further inves-
tigate the large sample properties of the GMM estimators. Unfortunately, characterizing
the asymptotic distribution of the GMM estimator θ̂ in the general case proves difficult.
For this reason, we restrict our attention to the simplest case of single parameter (p = 1)
models with a second-order local identification property.

Theorem 4.2. Suppose that p = 1 and Assumptions 1–4 hold. In addition, if k → ∞ as

n → ∞ with k4/n → 0, and γ
−1/2
k H(k)′Wkf̄k(θ0 )

d→ Z := N(0, σ2 ) for some σ2 > 0, then

√
γkn(θ̂− θ0 )2 d−→ 1{Z≥0}(2Z ).

Theorem 4.2 first demonstrates that the slow rate of convergence derived in The-
orem 4.1 is, in fact, sharp meaning that within the assumed model and identification
framework, the estimator cannot converge at a faster rate. Furthermore, the asymptotic
distribution in Theorem 4.2 can be readily used to conduct inference about the true
parameter value θ0 by replacing γk with its sample counterpart. Note that this nonstan-
dard asymptotic distribution with an atom mass of 1/2 at the origin is similar to the one
derived by Dovonon and Hall (2018) for a fixed k. As pointed out above, the character-
ization of the asymptotic distribution in the general case of p > 1 appears to be quite
involved and is beyond the scope of this paper.
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5. Asymptotic distribution of the specification test

The characterization of the asymptotic distribution of our specification test statistic re-
quires a central limit theorem for degenerate U-statistics with a linear kernel of the form
hn(xt , xs ) := f ′

k(xt )V −1
k fk(xs ), where (xt )t∈Z is a stationary and strong mixing process

and (fk(xt ))t∈Z is a martingale difference sequence with respect to its natural filtration.
More specifically, we are interested in the asymptotic distribution of U-statistics of the
form:

Un = 1
n

∑
t �=s

fk(xt )′V −1
k fk(xs )√
k

, (21)

where Vk := Var(fk(xt )). The degeneracy of Un arises from the fact that∫
hn(x, y )dF(y ) = 0 for all x, with F denoting the marginal distribution of xt . While

the asymptotic theory for degenerate U-statistics has been extensively studied in the
literature (see the Supplemental Material), the available results are not well aligned with
our framework, which features an inner product with an increasing dimension. For this
reason, we develop a new CLT that is adapted to the form of the U-statistic in (21). Since
this result may be of independent interest, we collect the sufficient conditions for estab-
lishing the CLT in the following assumptions.

Assumption-clt 1. Assume that (xt )t∈Z is stationary and geometric strong mixing pro-
cess, fk(xt ) is an R

k-valued measurable function of xt such that the sequence (fk(xt ))t∈Z
is a martingale difference with respect to the σ-algebra σ(fk(xs ) : s ≤ t ).

Assumption-clt 2. Assume that k ∼ nα for some α ∈ (0, 1) and there exists ε > 0, such
that

sup
k∈N

1
k

k∑
h=1

E
∣∣[V −1/2

k fk(xt )
]
h

∣∣4+ε
<∞,

where [a]h is the h-th element of the vector a.

Assumption-clt 3. For some β ≥ 0,

E

(
max

1≤t≤n

∥∥V −1/2
k fk(xt )

∥∥/√k
)

=O
(
logβ n

)
and

E

(
max

1≤t �=s≤n

∣∣fk(xt )′V −1
k fk(xs )

∣∣/√k
)

=O
(
logβ n

)
.

Stationarity and mixing of (xt )t∈Z is already assumed above (see Assumption 1) and
is restated in Assumption-clt 1 to ensure that the results in Proposition S.2 in the Sup-
plemental Material and Theorem 5.1 below, which could be of independent interest, are
self-contained. Assumption-clt 2 is used to obtain the limit variance of Un because its
derivation requires dealing with fourth-order moments of fk(xt ). Replacing these mo-
ments by their analogues under independence is a common approach in the literature.
The remainder is then controlled by resorting to Lemma S.1 in the Supplemental Mate-
rial, due to Roussas and Ioannides (1987), which can be applied if the condition on the
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moments in Assumption-clt 2 is satisfied. Note that this condition is not particularly
restrictive. It imposes the existence of moments of order higher than the fourth for the
normalized components of fk(xt ). The boundedness of the average of these moments
means that no component dominates the others in terms of these moments.

The first bound in Assumption-clt 3 is not restrictive as it holds with β = 1 provided
that the moment generating function of zt := ‖V −1/2

k fk(xt )‖2/
√
k exists. This holds re-

gardless of the dependence structure.6 The second bound in Assumption-clt 3 is not
too restrictive either. If fk(xt ) and fk(xs ) are independent, then E[fk(xt )′V −1

k fk(xs )/√
k]2 = 1 so that |fk(xt )′V −1

k fk(xs )|/
√
k = OP (1) and, as before, we can claim that the

stated bound accommodates a large class of processes.
We are now ready to state the following CLT for the scaled U-statistic in (21).

Theorem 5.1. Under Assumptions-clt 1, 2, and 3,

Un√
2

d−→N(0, 1).

The proof of Theorem 5.1 follows similar arguments as in Kim, Luo, and Kim (2011)
and is provided in the Supplemental Material. We establish this CLT by showing that
the moments of Un converge to those of the normal distribution. Under Assumption-
clt 3, we show that the summands of Un are essentially bounded by a slowly increasing
function of the sample size, which turns out to be essential for controlling the difference
between the moments Un and those of its Gaussian limit.

Building on this central limit theorem, we now characterize the asymptotic distribu-
tion of the specification test statistic Ẑ = 1√

2k
(f̄k(xt , yt , θ̂)′V̂ −1

k f̄k(xt , yt , θ̂)−k) under the

null hypothesis that the conditional moment restriction (1) is correctly specified.

Theorem 5.2. Suppose that Assumptions 1, 2, 3(i), 4(i, ii), A.1(ii, iii, iv), and
Assumptions-clt 2–3 with fk(x) := fk(x, y, θ0 ), hold. Also, assume that k = o(n1/5 ) and
Wk,0 has bounded eigenvalues. Then, as n → ∞,

Ẑ
d−→ N(0, 1).

Several remarks are warranted regarding the result in Theorem 5.2. First, it is im-
portant to underscore that the standard normal limit distribution in Theorem 5.2 is ob-
tained in a highly non-standard setting. In particular, we have a lack of first-order local
identification which, as discussed earlier, gives rise to nonstandard limiting behavior of
the GMM estimator. The second-order local identification, in conjunction with the ex-
panding set of moment conditions, ensures the consistency of the estimator and deter-
mines its rate of convergence. The conditions for the consistency of the two-step GMM
estimator are collected in Assumption A.1 in Appendix A and are used in establishing the

6For instance, β = 1 if zt has a Gamma distribution, and β = 1/2 if zt is Gaussian. It is worth noting that
zt = OP (1) since E(z2

t ) = 1. If zt ’s are i.i.d. with common distribution F , it is known that this bound holds
for a large class of F but rules out those with Paretian tail (Pereira (1983); see also Berman (1964) and Isaev,
Rodionov, Zhang, and Zhukovskii (2020) for similar results for time-dependent processes).
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limit in Theorem 5.2. While the Ẑ test statistic is based on the two-step GMM estimator
with Ŵk = [ 1

n

∑n
t=1 fk(xt , yt , θ̃)fk(xt , yt , θ̃)′]−1, stating explicitly that Wk,0 has bounded

eigenvalues allows us to invoke Assumption 4(iii) in order to ensure the desired rate of
convergence for the preliminary GMM estimator θ̃. (See Remark 1 in Appendix B.) Also,
as discussed earlier, Assumption 4(iii) holds provided that λmax(W 1/2

k VkW
1/2
k ) ≤ � < ∞,

which is trivially satisfied by the two-step GMM estimator that sets Wk = V −1
k .

In the conventional framework where the conditional model is point identified, the
properly recentered and standardized specification test with an increasing number of
moment conditions converges, under some regularity conditions, to a standard nor-
mal limit (see, e.g., Carrasco and Florens (2000); Donald, Imbens, and Newey (2003);
Tripathi and Kitamura (2003); among others). Theorem 5.2 establishes that the stan-
dard normal distribution continues to be the correct limit for the Ẑ test statistic under
the null of correct specification, provided that k = o(n1/5 ) as n → ∞. Unlike the regu-
lar setup, this limit is obtained within the second-order local identification framework
in Assumption 2, which is characterized by first-order local identification failure. Intu-
itively, this is achieved by combining and balancing the benefits from the second-order
local identification and the expanding number of moment conditions. Importantly, for
the appropriate choice of k (as a function of n), inference for the correct specification of
the conditional moment restriction model is straightforward in practice as it is based on
the critical values from the standard normal distribution. In our simulations and empir-
ical application, we set k∝ n1/6. One may even choose k to grow arbitrarily slowly with n

and the results in this paper would continue to hold. However, a k that grows too slowly
may compromise power. It is worth stressing that the construction and implementation
of the test is agnostic about the precise form of first-order local identification failure.
This robustness property is further enhanced by the fact that the test remains valid even
if the model happens to be first-order identified.

We complete our theoretical analysis by characterizing the limiting behavior of Ẑ
under the alternative hypothesis H1, specified in (3). With appropriate choices of series
functions gl(·), H1 implies that infθ∈� ‖E(g(k0 )(x)u(y, θ))‖2 > 0 for a fixed k0 so that the
unconditional moment restriction E(g(k0 )(x)u(y, θ)) = 0 is misspecified. In this case, it
is known that the Sargan–Hansen specification test for this unconditional restriction—
albeit infeasible because k0 is unknown—would be consistent. Theorem 5.3 shows that
this result carries over to the feasible statistic Ẑ, which makes our specification test con-
sistent against all alternatives.7

Theorem 5.3. Let V̂k(θ) := n−1 ∑n
t=1 fk(xt , yt , θ)fk(xt , yt , θ)′. Assume that k2 = o(n), the

gl(·) series are as in Lemma B.4 in Appendix B, and the conditions of that lemma are sat-
isfied with u(θ) := u(y, θ). Assume further that there exists λ̄ > 0 such that, with proba-
bility approaching one, supθ∈� λmax(V̂k(θ)) ≤ λ̄k, and supθ∈� |(1/n)

∑n
t=1 gl(xt )u(yt , θ) −

7Studying the asymptotic behavior of the test under local alternatives proves to be very involved as it
requires characterizing the limiting behavior of the GMM estimator in misspecified conditional restric-
tion models under drifting sequences and first-order local identification failure. This analysis is beyond the
scope of this paper.
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E(gl(xt )u(yt , θ))| = oP (1) for each l. Then, under H1,

∃δ > 0 : lim
n→∞ Pr

(
k3/2n−1|Ẑ| > δ

) = 1.

The conditions of this theorem are essentially a subset of those of the main Theorem
5.2. The purpose of the condition on the bound of λmax(V̂k ) is to facilitate the proof as we
can rely on more primitive conditions. Theorem 5.3 shows that |Ẑ| diverges to infinity
if k is such that k3/2 = o(n). Note that in Theorem 5.2, which studies Ẑ under H0, we
impose k5 = o(n). This shows that the proposed test is consistent and has power against
all alternatives.

6. Simulations and empirical analysis

In this section, we provide simulation evidence on the empirical size and power of the
standard normal asymptotic approximation of the specification test. We also apply the
proposed testing framework to study the presence of a common CH factor in bond port-
folio returns.

6.1 Simulations

The simulation design for assessing the finite-sample properties of the specification test
Ẑ is tailored to the common CH factor example discussed in Section 3 and used in the
subsequent empirical application. More specifically, the data generating process has the
form:

Yt+1 = �Dtτ +�ft+1 + et+1, (22)

where Yt+1 and et+1 ∼ iidN(0, κIm ) are m × 1 vectors, and ft+1 is an m × 1 vector of
unobserved CH factors. The ith component fi,t+1 of ft+1 follows a GARCH(1,1) process:

fi,t+1 = σi,tεi,t+1, σ2
i,t = ωi,0 +ωi,1f

2
i,t +ωi,2σ

2
i,t−1, (23)

with ωi,0, ωi,1, ωi,2 > 0 and εi,t+1 ∼ iidN(0, 1).8 Finally, � is an m × m matrix of factor
loadings, Dt := Diag(σ2

1,t , � � � , σ2
m,t ) and τ is an m× 1 vector of market prices of risk (see,

e.g., King, Sentana, and Wadhwani (1994)). In all cases considered below, we set κ = 0.1
and ωi,0 = 1 − ωi,1 − ωi,2 for i = 1, 2, 3, where (ω1,1, ω1,2 ) = (0.2, 0.6), (ω2,1, ω2,2 ) =
(0.4, 0.4) and (ω3,1, ω3,2 ) = (0.1, 0.8).

The parameterization of the factor loading matrix determines if the model is under
the null (common CH features) or under the alternative. In evaluating the size properties
of the specification tests, we consider two cases: (i) m = 2, bivariate Yt+1 with a single
common CH factor, and (ii) m = 3, trivariate Yt+1 with two common CH factors. For

case (i), � = ( 1 0
0.5 0

)
, and for case (ii), � = ( 1 0 0

1 1 0
0.5 0.5 0

)
. In assessing the power properties of

the tests, we set � to be the identity matrix.

8Bougerol and Picard (1992) derive the conditions for strict stationarity of GARCH processes.
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As demonstrated in Section 3, the presence of common CH features amounts to test-
ing the conditional moment restriction E(u1,t+1(θ)|Ft )) = 0. In case (i), u1,t+1(θ) is pa-
rameterized as u1,t+1(θ) := (β1Y1,t+1 + (1 −β1 )Y2,t+1 )2 − c with θ = (β1, c)′ and for case
(ii), u1,t+1(θ) := (β1Y1,t+1 + β2Y2,t+1 + (1 − β1 − β2 )Y3,t+1 )2 − c with θ = (β1, β2, c)′.9
For some choice of instruments zt ∈ Ft , the parameter vector θ is estimated by the two-
step GMM based on the moment conditions E[ztu1,t+1(θ)] = 0. For the unconditional
GMM approach and the corresponding J (Sargan–Hansen) test, we use zt = (Y ′

t , Y 2′
t )′,

with Y 2
t := (Y 2

1,t , � � � , Y 2
m,t )′, which gives rise to k1 − p overidentifying restrictions: with

k1 = 4 and p = 2 for case (i), and k1 = 6 and p = 3 for case (ii). We report two versions
of the J test: one based on critical values from χ2(k1 −p) and one based on critical val-
ues from χ2(k1 ). As argued above, the former test is not valid when the model is not
first-order locally identified while the latter remains valid but is conservative.

The Ẑ test uses x := Yt as conditioning variables in constructing the functions
gl(·), l = 1, � � � , k, so that the GMM estimation is based on E(ztu1,t+1(θ)) = E(gl(Yt ) ×
u1,t+1(θ)) = 0. In the case where kx := size(x) = 1, the tuning parameters for the test
are 
(·) : R → [−π, π], x → 2 arctan(x), series of bounded functions gl(·) : [−π, π] →
[−1, +1], x → cos(lx) for l = 1, � � � k, and k = n1/6.10 In the case where kx > 1, 
(·) and
gl(·) are applied componentwise to x leading to k = kx · n1/6 moment restrictions.11 We
report results for the one-sided test Ẑ at nominal level α, Ẑ > q1−α, where q1−α denotes
the (1 − α) quantile of the N(0, 1) distribution.

The fourth specification that we consider is also a J test but it is based on the aug-

mented set of moment conditions E(zt
( u1,t+1(θ)
u2,t+1(β)

)
) = 0, where u2,t+1(β) := β1Y1,t+1 +

(1 − β1 )Y2,t+1 for case (i), and u2,t+1(β) := β1Y1,t+1 + β2Y2,t+1 + (1 − β1 − β2 )Y3,t+1

for case (ii). The value of the parameter τ in model (23) determines if the additional
restriction E(ztu2,t+1(β)) = 0 restores the first-order local identification (τ �= 0) or not
(τ = 0). For case (i), we set τ = (0, 0)′ or τ = (0.1, 0.1)′, and for case (ii), τ = (0, 0, 0)′ or
τ = (0.1, 0.1, 0.1)′. The J statistic in this augmented model is compared to critical values
from χ2(k2 −p), where k2 = 8 and p= 2 for case (i) and k2 = 12 and p= 3 for case (ii).

The empirical rejection probabilities of the four specification tests are based on
n = (2000, 5000, 10,000) and 10,000 Monte Carlo replications. Tables 1 and 2 present
the results for case (i), m = 2, and case (ii), m = 3, respectively, with the top panel in

9We consider in this section a linear combination of assets with coefficients adding to one to mimic
portfolio formation. This yields the same identifying properties for the resulting moment restrictions as
those obtained using the weight (1, β)′, considered in Section 3, so long as the matrix of factor loadings
does not contain a relevant column with equal elements.

10Even for large sample sizes, the choice k= n1/6 may result in a relatively small number of instruments.
It appears that further improvements can be obtained if we set k= const ·n1/6, where the constant “const” is
calibrated to the particular setup (to the values of n and m). Ideally, it seems desirable to target a more data-
driven choice of k via subsampling or resampling methods. But, as argued in the concluding section, such
methods may be difficult to implement due to the highly challenging nature of our setup: a conditional mo-
ment restrictions model with local first-order local identification failure, second-order local identification,
and dependent data. Fortunately, our simulation and empirical results suggest that the properties of the
test are not particularly sensitive to the values of “const” in k= const ·n1/6 for const ≥ 1.

11We experimented with the construction of the basis functions as in Bierens (1990) but the results are
broadly similar.
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Table 1. Empirical rejection rates of specification tests under the null (size) and alternative
(power): case m = 2.

Panel A: τ = (0, 0)′ Panel B: τ = (0.1, 0.1)′

J Test J Test J Augment Ẑ Test J Test J Test J Augment Ẑ Test
n χ2(k1-p) χ2(k1 ) χ2(k2-p) N(0, 1) χ2(k1-p) χ2(k1 ) χ2(k2-p) N(0, 1)

size 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%
2000 8.1 4.0 1.6 0.7 5.3 2.2 6.6 4.0 8.2 4.3 1.7 0.7 5.2 2.3 6.7 4.2
5000 10.7 5.7 2.4 1.1 6.6 3.1 9.0 5.6 11.3 6.0 2.6 1.2 5.4 2.3 8.8 5.7

10,000 13.3 7.7 3.6 1.7 8.9 4.5 9.4 5.9 13.6 7.6 3.7 1.8 6.2 2.7 9.7 6.2

power 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%
2000 10.8 5.5 2.3 0.9 10.7 5.6 99.1 98.4 14.9 8.0 3.3 1.4 89.4 82.6 99.0 98.5
5000 10.8 5.4 2.2 0.9 10.7 5.4 100 100 24.8 14.3 6.9 3.3 99.8 99.5 100 100

10,000 11.2 5.9 2.4 1.1 11.5 5.9 100 100 40.2 27.4 15.8 8.6 100 100 100 100

Note: In this simulation design (m= 2), “size” corresponds to a bivariate Yt+1 with a single common CH factor, and “power”
corresponds to a bivariate Yt+1 with two CH factors. The table presents the empirical size and power at 5% and 10% nominal
level of three J tests for overidentifying restrictions (p = 2, k1 = 4, and k2 = 8) and the Ẑ test, proposed in this paper. ‘‘J
augment” stands for the J test, augmented with an additional conditional moment restriction. The value of τ (τ �= 0 or τ =
0) determines if the augmented model is first-order locally identified or not. The results are based on 10,000 Monte Carlo
replications.

each table reporting the empirical size of the tests and the bottom panel reporting their
empirical power.

In the setup where the model is not first-order locally identified but globally iden-
tified, the standard J test for overidentifying restrictions is known to overreject under
the null (Dovonon and Renault (2013)). These overrejections are confirmed in Table 1

Table 2. Empirical rejection rates of specification tests under the null (size) and alternative
(power): case m = 3.

Panel A: τ = (0, 0, 0)′ Panel B: τ = (0.1, 0.1, 0.1)′

J Test J Test J Augment Ẑ Test J Test J Test J Augment Ẑ Test
n χ2(k1-p) χ2(k1 ) χ2(k2-p) N(0, 1) χ2(k1-p) χ2(k1 ) χ2(k2-p) N(0, 1)

size 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%
2000 4.3 1.8 0.5 0.1 2.4 1.0 3.6 2.0 4.8 2.1 0.7 0.2 3.9 1.6 3.7 2.2
5000 6.5 2.8 0.7 0.3 3.3 1.5 5.2 2.9 7.0 3.3 0.9 0.4 5.3 2.5 5.4 3.2

10,000 8.1 3.7 1.1 0.5 4.3 1.8 6.1 3.9 9.4 4.7 1.3 0.4 6.7 2.9 6.1 3.5

power 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%
2000 2.5 1.2 0.4 0.1 4.7 2.1 50.8 41.9 3.3 1.6 0.5 0.1 55.6 46.2 52.9 43.4
5000 1.8 0.6 0.1 0.0 2.4 1.0 97.3 95.7 3.0 0.9 0.3 0.1 95.2 91.0 97.8 96.4

10,000 5.2 1.9 0.3 0.1 4.6 2.3 100 100 9.7 3.9 0.8 0.3 100 99.9 100 100

Note: In this simulation design (m = 3), “size” corresponds to a trivariate Yt+1 with two common CH factors, and “power”
corresponds to a trivariate Yt+1 with three CH factors. The table presents the empirical size and power at 5% and 10% nominal
level of three J tests for overidentifying restrictions (p = 3, k1 = 6, and k2 = 12) and the Ẑ test, proposed in this paper. “J
augment” stands for the J test, augmented with an additional conditional moment restriction. The value of τ (τ �= 0 or τ =
0) determines if the augmented model is first-order locally identified or not. The results are based on 10,000 Monte Carlo
replications.
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and they continue to get larger as the sample size increases.12 While the J test based
on χ2(k1 ) critical values is valid, it is very conservative, which results in loss of power.
For τ = 0, the standard J test also exhibits lack of power due to the fact that only the
instruments Y 2

t carry information about the model parameters while the restrictions
based on the instruments Yt are uninformative as these restrictions are correct un-
der both the null and the alternative hypotheses and render the model just-identified.
When τ �= 0, the power of the standard J test is somewhat improved (in the case m = 2)
but it remains low because this test does not exploit explicitly the moment restriction
E(ztu2,t+1(β)) = 0. This restriction is used by the J test based on the augmented model
(“J augment” in Tables 1 and 2) whose power approaches 100% when τ �= 0. Because
the augmented model regains its first-order local identifiability for τ �= 0, the standard
inference (based on the χ2(k2 −p) distribution) restores its validity under both the null
and the alternative hypotheses.

But when τ = 0, the additional moment restriction E(ztu2,t+1(β)) = 0 is redundant
and the model remains first-order locally unidentified. This should manifest itself in size
distortions under the null (for n = 50,000, the rejection rates of the augmented J test
under the null are 14.9% and 8.6% at the 10% and 5% nominal level, respectively) and
lack of power under the alternative. This highlights the need for a robust test that does
not require prior knowledge of the true structure of the model and the value of τ.

Indeed, the Ẑ test proposed in this paper offers precisely this type of robustness
as it remains agnostic about the first-order identifiability of the model. Tables 1 and 2
demonstrate that the Ẑ test controls size for both τ = 0 and τ �= 0. The minor underrejec-
tions of the test for m = 3 arise from the fact that even for n = 10,000, the finite-sample
distribution of the Ẑ test is slightly asymmetric and it requires even larger sample sizes
for the N(0, 1) asymptotics to fully assert itself. Further simulation evidence and dis-
cussion regarding the absolute and relative finite-sample performance of the Ẑ test is
provided in the Supplemental Material.

6.2 Empirical application

In this subsection, we investigate the presence of a common CH factor in U.S. bond re-
turns of different maturities. After presenting some preliminary evidence on commonal-
ity in the GARCH-based volatility dynamics in bond returns, we subject these portfolio
returns to the test of common CH features, which amounts to testing the validity of a
version of the conditional moment restriction E(u(yt , θ0 )|xt ) = 0.

Let r(j)
t+1 denote the holding return, between periods t and t + 1, on a bond with j

years to maturity, in excess of the risk-free rate. Let Yt+1 = (r(1)
t+1, � � � , r(m)

t+1 )′. As in the
previous subsection, we posit that the m-vector of excess bond returns Yt+1, adapted to
the increasing filtration Ft , admits the representation (22) with common CH features.13

12In unreported results for n = 50,000 and m = 2, the empirical rejections for the standard J test based
on χ2(k1 − p) are 18.2% and 11.3% for τ = 0, and 16.9 and 10.1% for τ �= 0 at 10% and 5% nominal levels,
respectively. A similar increase in overrejections for the J test are observed for m = 3 in sample sizes that
exceed those reported in Table 2.

13The conventional term structure models impose no-arbitrage restrictions on the factor loading matrix
�. Recent research (Duffee (2011); Joslin, Singleton, and Zhu (2011); among others) casts doubt on the role
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Figure 1. Estimated GARCH(1,1) volatilities for portfolio bond excess returns of different ma-
turities.

This implies that there exists a vector β �= 0m in R
m such that E((β′Yt+1 )2|Ft ) is constant,

that is, E(ut+1(θ0 )|Ft ) = 0 with θ = (β′, c)′ and ut+1(θ) := (β′Yt+1 )2 − c.
In the empirical analysis, we use the Fama bond portfolio returns from the Center

for Research in Security Prices (CRSP) (2023) with the following maturities: 1 to 2 years,
2 to 3 years, 3 to 4 years, 4 to 5 years, and 5 to 10 years.14 The data is at monthly frequency
covering the period January 1952–December 2020. We construct excess bond returns by
subtracting the 1-month risk-free rate (retrieved from Kenneth R. French—Data Library
(2023)).

We start by fitting a GARCH(1,1) to each of these excess bond returns. The filtered
GARCH volatilities are plotted in Figure 1. As the graph reveals, there appears to be
a strong comovement in these GARCH volatilities. This is probably not too surprising
since the first principal component in these five bond returns explains in excess of 95%
of their volatility.

of no-arbitrage restrictions in modeling and forecasting bond yields. The forecasting properties are fur-
ther deteriorated by incorporating stochastic volatility. As Joslin and Le (2021) demonstrate, this is largely
attributed to the fact that these models impose a tight link between risk compensation and interest rate
volatility, and recommend the use of unrestricted factor models. This is the approach that we follow here.

14The data for the bond portfolio returns is obtained from the Wharton Research Data Services (WRDS),
using database CRSP Treasuries—Fama bond portfolios ©2023 (CRSP).



Quantitative Economics 15 (2024) Robust specification testing 873

Crump and Gospodinov (2022) argue that the cross-sectionally differenced re-
turns, dr(j)

t+1 = r
(j)
t+1 − r

(j−1)
t+1 , reveal better the underlying factor structure since the term-

structure identities induce elevated local correlations in r
(j)
t+1 across maturities that

obscure the true signal.15 For this reason, we use the vector of differenced returns
Yt+1 = (r(1)

t+1, dr(2)
t+1, � � � , dr(m)

t+1 )′, which brings down the explained variation by the first
principal component to 67%: more muted than that for excess bond returns but still
large enough to suggest commonality in bond return dynamics.

We estimate the parameters by the two-step GMM, based on the conditional re-
striction E(ut+1(θ0 )|Ft ) = 0, where ut+1(β, c) := (β1Y1,t+1 + · · · + β4Y4,t+1 + (1 − β1 −
· · · − β4 )Y5,t+1 )2 − c. We use Yt as a vector of conditioning variables and the choices
of gl(·) and k are as specified in the previous section. The obtained estimates for β̂ are
(−0.209, 0.191, 0.642, 0.438, −0.062)′ which, interestingly, produce a tent-shaped pat-
tern as in Cochrane and Piazzesi (2005). Figure 2 plots (β̂1Y1,t+1 + · · · + β̂4Y4,t+1 + (1 −
β̂1 − · · ·− β̂4 )Y5,t+1 )2. While this graph reveals that the strong CH structure, observed in
individual series, is largely eliminated, we subject this hypothesis to a formal test using
our Ẑ test statistic. The p-value of the one-sided Ẑ test is 0.533, suggesting that the null
H0 : E((β′Yt+1 )2 − c|Ft ) = 0 cannot be rejected.

7. Conclusions

Economic models are often defined by a set of conditional moment restrictions that can
be used to assess the degree of misspecification or the validity of a particular economic
theory. It is possible, however, that while the model remains globally identified, it suf-
fers from first-order local identification failure. This setup is the focus of our theoretical
analysis. First, we derive the rate of convergence of the GMM estimator with an expand-
ing number of moment conditions under the lack of first-order local identification. This
rate of convergence is shown to be faster than the case with a fixed number of restric-
tions. Unlike the standard case, the contribution of the increasing number of moment
restrictions translates into efficiency gains that drive the faster rate of convergence. We
also characterize the asymptotic distribution of the estimator, which is nonstandard and
has a mass point at zero. Finally, we establish the asymptotic normality of the condi-
tional moment restriction test in our setup. This result is obtained for time series data
by resorting to central limit theorems for degenerate U-statistics of weakly dependent
processes. Importantly, the limiting behavior is robust to first-order local identification
failure regardless of the number of directions in which the Jacobian of the conditional
moment restrictions is degenerate. The test has the additional advantage that it retains
its validity even when first-order local identification holds.

The validity of the standard normal limit for the specification test is established
for large samples. For empirical problems with limited sample sizes, finite-sample im-
provements based on subsampling or resampling methods are often desirable. However,
such finite-sample refinements may be difficult to develop and implement due to the

15When the maturity matches the frequency of the data, the differenced returns have the interpretation
of returns on a forward trade (see Crump and Gospodinov (2022)).
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Figure 2. Plot of (β̂′Yt+1 )2, where the estimates are based on E(ut+1(β, c)|Ft )) = 0.

highly challenging nature of our setup: a conditional moment restrictions model with
local first-order identification failure, second-order local identification, and dependent
data. While the analysis in this paper provides some guidance on how one could design
asymptotically valid methods with improved finite-sample properties, such an exten-
sion proves to be highly nontrivial. This is a fruitful direction for future research.

Appendix A: Identification and consistency of the GMM estimator

This Appendix covers some technicalities related to identification in conditional mo-
ment restrictions and consistency of GMM estimators with an increasing number of
moment conditions. Proposition A.1 expresses in terms of unconditional moment re-
strictions, the notions of point identification and first-order local identification failure
in conditional moment models. A general result on consistency is introduced in Theo-
rem A.2, which is specialized to the two-step estimator by Corollary A.3. Assumption A.1
provides sufficient conditions for Assumption 3(ii) in the main text to hold as established
by Lemma B.2.

A.1 Identification

Proposition A.1. Let (gl )l∈N be a countable basis (not necessarily orthonormal) of
L2(P ). Let αl(θ) = 〈gl(·), ρ(·, θ)〉 := E(gl(x)ρ(x, θ)) and g(k) := (g1, � � � , gk )′.
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(i) – If the conditional moment restriction (1) satisfies the point identification prop-
erty in (4) and if there exists k0 ∈ N such that αl ≡ 0 for all l ≥ k0, then for all
k≥ k0,

∀θ ∈�, E
(
g(k)(x) · u(y, θ)

) = 0 ⇔ θ = θ0. (A.1)

– More generally, assume that (a) � is compact, (b) (gl )l is orthonormal, (c) θ →
E[ρ(x, θ)]2 is continuous on �, and (d) limk[supθ∈�

∑
i≥k αi(θ)2] = 0.

Then, if model (1) satisfies the point identification property in (4) and for every
k there exists θk ∈� \ {θ0} such that E[g(k)(x)u(y, θk )] = 0, we have

θk → θ0, as k→ ∞.

(ii) If E(∇θu(y, θ0 )|x) ∈ (L2(P ))p := L2(P )×· · ·×L2(P ), then the conditional moment
restriction (1) fails to satisfy the first-order local identification condition if and only
if there exist 0 ≤ r < p and k0 ∈N such that, for all k≥ k0,

Rank
(
E

(
g(k)(x) · ∇θu(y, θ0 )

)) = r < p.

Proof. See Appendix B.

Part (i) of Proposition A.1 aims to establish an equivalence between point identifi-
cation of conditional moment restriction (1)—as expressed by (4)—and point identifi-
cation of the unconditional moment restriction E(g(k)(x)u(y, θ)) = 0 for large enough
k. Note that point identification of the unconditional model for any value of k implies
point identification of the conditional model. Part (i) of the proposition establishes the
converse for estimating functions ρ(x, θ) that have finite number of nonzero compo-
nents in a given basis. This is typically the case for polynomial functions in x. In more
general cases, the second part of (i) establishes, under mild conditions, that all the so-
lutions to E(g(k)(x)u(y, θ)) = 0 eventually collapse to θ0 as k grows. Regarding condi-
tion (d), it is worth mentioning that x → ρ(x, θ) ∈ L2(P ) ensures that, for each θ ∈ �,∑

i≥k α
2
i → 0 as k grows. Condition (d) imposes uniformity to simplify the proof. Part (ii)

is concerned with first-order local identification as it relates local identification failure
in conditional and unconditional models.

A.2 Consistency of GMM estimator

Theorem A.2. Under Assumptions 1, 2(i), and 3, if k/n → 0 as n → ∞, then the GMM
estimator θ̂—defined by (7)—converges in probability to θ0.

The following assumption pertains to the consistency of the two-step GMM estima-
tor.

Assumption A.1 (Consistency of two-step GMM). (i) θ̃ − θ0 = OP (rn ), with θ̃ the first-
step GMM estimator of θ0 and rn → 0 as n → ∞.
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(ii) E[u(y, θ0 )2δ|gh(x)|δ|gl(x)|δ] ≤ � < ∞, for some δ > 2 and an absolute constant
�> 0.

(iii) For each y, the function θ → u(y, θ) is continuously differentiable in a neighbor-
hood N of θ0and E(gl(x)2 supθ∈N u(y, θ)2 ) ≤ �< ∞ and E(gl(x)2 supθ∈N ‖∇θu(y,
θ)‖2 ) ≤ �<∞.

(iv) Let λ̄k := λmax(Vk ) and λk := λmin(Vk ). There exists λ > 0: λk ≥ λ and λ̄k/λk ≤ �<

∞.

(v) k[rn ∨ n−1/2] → 0 as n → ∞.

Corollary A.3. If Assumptions 1, 2(i), 3(i), and A.1 hold, then the two-step GMM esti-
mator, defined with Ŵk = V̂ −1

k , is consistent.

Proof of Theorem A.2. Let ut := u(yt , θ0 ). Note that

E
(
f̄k(θ0 )′f̄k(θ0 )

) = 1
n

n∑
t,s=1

E
[
g(k)(xt )′g(k)(xs )utus

] = 1
n

n∑
t=1

E
[
g(k)(xt )′g(k)(xt )u2

t

]

= E
[
g(k)(xt )′g(k)(xt )u2

t

] ≤ k · max
1≤l≤k

E
[
gl(xt )2u2

t

]
.

Since max1≤l≤kE[gl(xt )2u2
t ] is bounded, we can claim that f̄k(θ0 )′f̄k(θ0 ) = OP (k). Also,

by definition,

λmin(Ŵk )
1
n
f̄k0 (θ̂)′f̄k0 (θ̂) ≤ λmin(Ŵk )

1
n
f̄k(θ̂)′f̄k(θ̂) ≤ 1

n
f̄k(θ̂)′Ŵkf̄k(θ̂)

≤ 1
n
f̄k(θ0 )′Ŵkf̄k(θ0 ) ≤ λmax(Ŵk )

1
n
f̄k(θ0 )′f̄k(θ0 ).

In particular,

1
n
f̄k0 (θ̂)′f̄k0 (θ̂) ≤ λmax(Ŵk )

λmin(Ŵk )

1
n
f̄k(θ0 )′f̄k(θ0 )

= λmax(Ŵk )
λmax(Wk )

λk

λmin(Ŵk )

λmax(Wk )
λk

1
n
f̄k(θ0 )′f̄k(θ0 ).

By Assumption 3(ii), we can therefore claim that

1
n
f̄k0 (θ̂)′f̄k0 (θ̂) :=

∥∥∥∥∥1
n

n∑
t=1

g(k0 )(xt )ut(θ̂)

∥∥∥∥∥
2

2

=OP (k/n) = oP (1).

Thus, by Assumption 3(i), we can claim that E(g(k0 )(xt )u(yt , θ̂))
P→ 0. We shall deduce

that θ̂ converges in probability to θ0 by the following standard argument (see, e.g.,
Newey and McFadden (1994)). Let N be an open neighborhood of θ0. By continuity of
θ → E(g(k0 )(xt )u(yt , θ)) and compactness of � \N ,

inf
θ∈�\N

∥∥E(
g(k0 )xt

)(
u(yt , θ)

)∥∥
2 = ∥∥E(

g(k0 )(xt )u(yt , θ∗ )
)∥∥

2 = ε



Quantitative Economics 15 (2024) Robust specification testing 877

with ε �= 0 because � \N � θ∗ �= θ0. Since E(g(k0 )(xt )u(yt , θ̂)) = oP (1),

Pr
(∥∥E(

g(k0 )(xt )u(yt , θ̂)
)∥∥

2 < ε/2
) → 1.

That is, Pr(θ̂ ∈ N ) → 1 and this concludes the proof.

Proof of Corollary A.3. Assumptions 1, and A.1(ii, iii) ensure that the orders of mag-
nitude derived by Lemma B.2 apply and the conditions in Assumption 3(ii) follow from
Assumption A.1(iv, v).

Appendix B: Preliminary lemmas and proofs of main results

B.1 Useful lemmas

Let ut(θ) = u(yt , θ), ∇θf̄k(θ) = ∂f̄k(θ)/∂θ′, ∇θut(θ) = ∂ut(θ)/∂θ′, ∇θθut(θ) = [vec(∂2ut(θ)/
∂θ∂θ′ )]′,

D̄1(θ) := 1
n

n∑
t=1

g(k)(xt )∇θut(θ)R1, D1 := E
[
g(k)(xt )∇θut(θ0 )R1

]
,

H̄(k)(θ) = 1
n

n∑
t=1

g(k)(xt )∇θθut(θ), and H := H(k)(θ0 ) = E
[
g(k)(xt )∇θθut(θ0 )

]
.

Lemma B.1. Let θ̄ be a random sequence converging in probability to θ0 as n grows. If
θ →Ut(θ) is a random R

m-valued function satisfying Condition C in the main text. Then∥∥∥∥∥1
n

n∑
t=1

g(k)(xt )Ut(θ̄)′ −E
(
g(k)(xt )Ut(θ0 )′

)∥∥∥∥∥
2

=OP

(√
k · (n−1/2 ∨ ‖θ̄− θ0‖2

))
.

Lemma B.2. Let θ̄ be a sequence of estimators converging in probability to θ0 and vn =
k(n−1/2 ∨ ‖θ̄− θ0‖2 ). Also, let λk := λmin(Vk ) and V̄k be defined by

V̄k = 1
n

n∑
t=1

fk(xt , yt , θ̄)fk(xt , yt , θ̄)′.

If Assumptions 1 and A.1(ii, iii) hold, then

(i) ‖V̄k − Vk‖2 =OP (vn ),

(ii) |λmin(V̄k ) − λk| = OP (vn ),

(iii) |λmin(V̄k )λ−1
k − 1| =OP (λ−1

k vn ),

(iv) ‖V̄ −1
k − V −1

k ‖2 = OP (λ−2
k vn )

1+OP (λ−1
k vn )

.

(v) If, in addition, λmax(Vk )/λmin(Vk ) = O(1), then |λmax(V̄k )λmax(Vk )−1 − 1| =
OP (λ−1

k vn ).
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Lemma B.3. Let θ̄ and θ̂ be two sequences of estimators converging to θ0 in probability.
Let Ŵk be a sequence of (k, k)-positive-definite weighting matrices and Wk be a (k, k)-
symmetric positive-definite matrix such that the eigenvalues of Ŵk and Wk satisfy As-
sumption 3(ii). Assume that the functions θ → ∇θui(θ) · R1 and θ → ∇θθui(θ) satisfy
Condition C in the main text. Furthermore, let D̄1 := D̄1(θ̄), D̂1 := D̄1(θ̂), D̄2 := D̄2(θ0 ),
H̄ := H̄(k)(θ̄), H :=H(k)(θ0 ), M̄(k) := Ik − P̄(k)with P̄(k) := Ŵ

1/2
k D̄1(D̄′

1ŴkD̄1 )−1D̄′
1Ŵ

1/2
k ,

M(k) := Ik − P(k), with P(k) := W
1/2
k D1(D′

1WkD1 )−1D′
1W

1/2
k , f̄k := f̄k(θ0 ), and M̂(k) de-

fined as M̄(k) but using D̂1. Finally, let

�1n = H̄ ′Ŵ 1/2
k M̄(k)Ŵ

1/2
k H̄ −H ′W 1/2

k M(k)W
1/2
k H and

�2n = H̄ ′Ŵ 1/2
k M̄(k)Ŵ

1/2
k f̄k −H ′W 1/2

k M(k)W
1/2
k f̄k.

If there exist α1, α2 > 0 such that

α1
√
k ≤ ‖D1‖2 ≤ α2

√
k, α1

√
k ≤ ‖H‖2 ≤ α2

√
k, λmax

(
D̄′

2D̄2
) = OP (k)

and

λmax
(
D′

1D1
)
/λmin

(
D′

1D1
) ≤ α2, and ‖f̄k‖2 =OP (

√
k),

then:

(i) ‖D̄′
2ŴkD̄2‖2 = OP (λ̄kk),

(ii) ‖Ŵ 1/2
k f̄k‖2 = OP (

√
λ̄kk),

(iii) ‖Ŵ 1/2
k H̄‖2 = OP (

√
λ̄kk),

(iv) ‖(D̄′
1ŴkD̄1 )−1‖2 = OP (λ̄−1

k k−1 ),

(v) ‖M̄(k) −M(k)‖2 = OP (λ̄−1
k ‖Ŵk −Wk‖2 ) +OP (n−1/2 ∨ ‖θ̄− θ0‖2 ),

(vi) ‖�1n‖2 = OP (k‖Ŵk −Wk‖2 ) +OP (λ̄kk[n−1/2 ∨ ‖θ̄− θ0‖2]),

(vii) ‖�2n‖2 =OP (kλ̄k[n−1/2 ∨ ‖θ̄− θ0‖2]) +OP (k‖Ŵk −Wk‖2 ),

(viii) If θ̄ ∈ (θ0, θ̂), we have ‖M̂(k) − M̄(k)‖2 =OP (n−1/2 ∨ ‖θ̂− θ0‖2 ).

Lemma B.4. Let � and D be compact subsets of Rp and R
kx , respectively. Let u(θ) be an

R-valued random function and x be a random variable with values in D. Assume that the
functions gl(x) form an algebra of continuous real-valued functions on D that separates
the points of D and contains the constant function. Assume further that θ → u(θ) is con-
tinuous on � almost everywhere and E(supθ∈� |u(θ)|) <∞. Then, if Pr(E(u(θ)|x) = 0) < 1
for each θ ∈ �,

∃k0 ∈N and δ0 > 0 : inf
θ∈�

∥∥E(
g(k0 )(x)u(θ)

)∥∥2
2 > δ0.

The proofs of Lemmas B.1, B.2, B.3, and B.4 are provided in the Supplemental Mate-
rial. Lemma B.4 is a strengthened version of Lemma 1 of de Jong and Bierens (1994). The
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conditions imposed on the series functions gl(·) are as in de Jong and Bierens (1994).
The continuity and dominance conditions on u(θ) are useful to guarantee the continu-
ity of θ → E(gl(x)u(y, θ)) for each l. Continuity of these functions and compactness of
� are essential to claim the stated result in Lemma B.4.

B.2 Proofs of main results

Proof of Proposition A.1. (i) It suffices to show that (A.1) holds for k0 to claim that it
holds for all k≥ k0. Since αl ≡ 0 for all l ≥ k0, we have

E
(
u(y, θ)|x

)
:= ρ(x, θ) =

k0−1∑
l=1

αl(θ)gl(x) and

[
ρ(x, θ) ≡ 0

] ⇔ [αl = 0, ∀l = 1, � � � , k0 − 1].

By the law of iterated expectations, αl(θ) = E(gl(x)u(y, θ)) = 0, ∀l = 1, � � � , k0 − 1 and
this establishes the claim since [ρ(x, θ) ≡ 0 ⇔ θ = θ0] holds by assumption.

To establish the second claim, recall that ρ(x, θ) = ∑∞
l=1 αl(θ)gl(x). Also, by the law

of iterated expectations, E(g(k)(x)u(y, θ)) = E(g(k)(x)ρ(x, θ)) so that

E
(
g(k)(x)u(y, θ)

) = (
α1(θ), � � � , αk(θ)

)′
.

Hence, by the definition of θk,

E
(
ρ(x, θk )

)2 = E

( ∑
l≥k+1

αl(θk )gl(x)

)2

=
∑

l≥k+1

αl(θk )2 → 0, as k→ ∞, (B.1)

where the second equality holds by the stated assumption that (gl )l are orthonormal
and the convergence follows from (d).

Consider an arbitrary small and open neighborhood of N of θ0 and let ε =
min�\N E(ρ(x, θ))2. By the continuity assumption (c), the compactness of � \ N , and
the identification property in (4), we can claim that ε > 0. Also, from (B.1), it is clear that
there exists k0 ∈N such that E[ρ(x, θk )]2 < ε for all k ≥ k0. It then follows that for k≥ k0,
we have θk ∈ N , which proves the claim.

(ii) First, we establish the necessary condition. If the first-order local identification
condition fails, then

Rank
[
E

((
E

(∇θu(y, θ0 )|x
))′(

E
(∇θu(y, θ0 )|x

)))]
<p,

implying that there exists δ �= 0 ∈ R
p such that E(∇θu(y, θ0 )|x) · δ = 0 almost surely.

Therefore, for any k ∈N,

E
(
g(k)(x) · ∇θu(y, θ0 )

) · δ= E
(
g(k)(x) ·E(∇θu(y, θ0 )|x

)) · δ= 0.

As a result,

Rank
(
E

(
g(k)(x) · ∇θu(y, θ0 )

)) ≤ p− 1, ∀k.
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Since k → Rank(E(g(k)(x) · ∇θu(y, θ0 ))) takes integer values, it is nondecreasing and
bounded from above, it reaches its maximum, say r ≤ p − 1, as k increases. This shows
the necessary condition.

Next, we establish the sufficient condition. Under the stated condition, there exists
δ �= 0 such that

E
(
gl(x) · ∇θu(y, θ0 )

) · δ= E
(
gl(x) ·E(∇θu(y, θ0 )|x

)) · δ= 0, for all l ≥ 1. (B.2)

Since E(∇θu(y, θ0 )|x) ∈ (L2(P ))p, its ith component can be written as
∑

l≥1 αl,igl(x),
with αl,i’s being scalars. Taking the relevant linear combinations (over l) of the equalities
in (B.2), we have

E
((
E

(∇θu(y, θ0 )|x
))′(

E
(∇θu(y, θ0 )|x

))) · δ = 0

and this completes the proof.

Proof of Theorem 4.1. Let R = (R1|R2 ) and consider the transformation θ = Rη :=
R1η1 + R2η2, with θ, η ∈ R

p, η1 ∈ R
r and η2 ∈ R

p−r , and set θ̂ = Rη̂, and θ0 = Rη0.
Hence, f̄k(θ̂) = f̄k(Rη̂) = f̄k(R1η̂1 + R2η̂2 ). By a first-order Taylor expansion of η1 →
f̄k(R1η1 + R2η̂2 ) around η01 and a second-order Taylor expansion of η2 → f̄k(R1η01 +
R2η2 ) around η02, we have

f̄k(θ̂) = f̄k(θ0 ) + 1√
n

∇θf̄k(R1η̄1 +R2η̂2 )R1
√
n(η̂1 −η01 ) + ∇θf̄k(θ0 )R2(η̂2 −η02 )

+ 1
2
H̄(k)(θ̄) · √n · vec

(
R2(η̂2 −η02 )(η̂2 −η02 )′R′

2

)
,

where η̄1 ∈ (η01, η̂1 ) and θ̄ ∈ (θ0, θ̂) and both may differ from row to row.
Let θ̃ =R1η̄1 +R2η̂2, D̄1 = 1√

n
∇θf̄k(θ̃) ·R1, D̄2 = ∇θf̄k(θ0 )R2, z0n = √

n · vec(R2(η̃2 −
η02 )(η̃2 −η02 )′R′

2 ) and we write

f̄k(θ̂) = f̄k(θ0 ) + D̄1
√
n(η̂1 −η01 ) + D̄2(η̂2 −η02 ) + 1

2
H̄(k)(θ̄)z0n. (B.3)

By premultiplying this equation by D̄′
1Ŵk and solving for

√
n(η̂1 −η01 ), we obtain

√
n(η̂1 −η01 )

= −(
D̄′

1ŴkD̄1
)−1

D̄′
1Ŵk

(
f̄k(θ0 ) − f̄k(θ̂) + D̄2(η̂2 −η02 ) + 1

2
H̄(k)(θ̄)z0n

)
. (B.4)

Plugging this back into (B.3), we have

M̄(k)Ŵ
1/2
k f̄k(θ̂)

= M̄(k)Ŵ
1/2
k f̄k(θ0 ) + M̄(k)Ŵ

1/2
k D̄2(η̂2 −η02 ) + 1

2
M̄(k)Ŵ

1/2
k H̄(k)(θ̄)z0n, (B.5)
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with M̄(k) = Ik − P̄(k) and P̄(k) = Ŵ
1/2
k D̄1(D̄′

1ŴkD̄1 )−1D̄′
1Ŵ

1/2
k . Then multiplying each

side of (B.5) by its own transpose and rearranging yields

1
4
z′

0nH̄
(k)(θ̄)′Ŵ 1/2

k M̄(k)Ŵ
1/2
k H̄(k)(θ̄)z0n

= (
f̄k(θ̂)′Ŵ 1/2

k M̄(k)Ŵ
1/2
k f̄k(θ̂) − f̄k(θ0 )′Ŵ 1/2

k M̄(k)Ŵ
1/2
k f̄k(θ0 )

)
− (η̂2 −η02 )′D̄′

2Ŵ
1/2
k M̄(k)Ŵ

1/2
k D̄2(η̂2 −η02 ) − 2f̄k(θ0 )′Ŵ 1/2

k M̄(k)Ŵ
1/2
k D̄2(η̂2 −η02 )

− f̄k(θ0 )′Ŵ 1/2
k M̄(k)Ŵ

1/2
k H̄(k)(θ̄)z0n − (η̂2 −η02 )′D̄′

2Ŵ
1/2
k M̄(k)Ŵ

1/2
k H̄(k)(θ̄)z0n.

By definition, f̄k(θ̂)′Ŵkf̄k(θ̂) ≤ f̄k(θ0 )′Ŵkf̄k(θ0 ). Hence,

1
4
z′

0nH̄
(k)(θ̄)′Ŵ 1/2

k M̄(k)Ŵ
1/2
k H̄(k)(θ̄)z0n

= (
f̄k(θ̂)′Ŵ 1/2

k P̄(k)Ŵ
1/2
k f̄k(θ̂) − f̄k(θ0 )′Ŵ 1/2

k P̄(k)Ŵ
1/2
k f̄k(θ0 )

)
− (η̂2 −η02 )′D̄′

2Ŵ
1/2
k M̄(k)Ŵ

1/2
k D̄2(η̂2 −η02 ) − 2f̄k(θ0 )′Ŵ 1/2

k M̄(k)Ŵ
1/2
k D̄2(η̂2 −η02 )

− f̄k(θ0 )′Ŵ 1/2
k M̄(k)Ŵ

1/2
k H̄(k)(θ̄)z0n − (η̂2 −η02 )′D̄′

2Ŵ
1/2
k M̄(k)Ŵ

1/2
k H̄(k)(θ̄)z0n.

We show in the Supplemental Material that

∣∣f̄k(θ̂)′Ŵ 1/2
k P̄(k)Ŵ

1/2
k f̄k(θ̂) − f̄k(θ0 )′Ŵ 1/2

k P̄(k)Ŵ
1/2
k f̄k(θ0 )

∣∣
=OP (λ̄kk/

√
n) +OP

(
λ̄kk‖θ̂− θ0‖2

)
(B.6)

and, since λ̄k is bounded and k/
√
n → 0, only the second term matters.

Using this fact and letting H := H(k)(θ0 ) and

�1n := H̄(k)(θ̄)′Ŵ 1/2
k M̄(k)Ŵ

1/2
k H̄(k)(θ̄) −H ′W 1/2

k M(k)W
1/2
k H,

�2n := H̄(k)(θ̄)′Ŵ 1/2
k M̄(k)Ŵ

1/2
k f̄k(θ0 ) −H ′W 1/2

k M(k)W
1/2
k f̄k(θ0 ),

we can write

1
4
z′

0nH
′W 1/2

k M(k)W
1/2
k Hz0n

≤OP (λ̄kk)‖η̂−η0‖2 − (η̂2 −η02 )′D̄′
2Ŵ

1/2
k M̄(k)Ŵ

1/2
k D̄2(η̂2 −η02 )

− 2f̄k(θ0 )′Ŵ 1/2
k M̄(k)Ŵ

1/2
k D̄2(η̂2 −η02 ) − f̄k(θ0 )′W 1/2

k M(k)W
1/2
k Hz0n −�′

2nz0n

− (η̂2 −η02 )′D̄′
2Ŵ

1/2
k M̄(k)Ŵ

1/2
k H̄(k)(θ̄)z0n − 1

4
z′

0n�1nz0n. (B.7)

From (B.4), we can show that ‖η̂1 − η01‖2 = OP (‖η̂2 − η02‖2
2 ) so that ‖η̂ − η0‖2 =

OP (‖η̂2 −η02‖2 ). Also, from the second-order local identification property, we have

1
4
z′

0nH
′W 1/2

k M(k)W
1/2
k Hz0n ≥ 1

4
γk‖z0,n‖2

2 = 1
4
γkn‖η̂2 −η02‖4

2.
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Let z1n = γ
1/4
k n1/4(η̂2 −η02 ). By the Cauchy–Schwarz inequality, (B.7) yields

1
4
‖z1n‖4

2 ≤ 1

γ
1/4
k n1/4

OP (λ̄kk)‖z1n‖2 + 1√
nγk

∥∥D̄′
2ŴkD̄2

∥∥
2 · ‖z1n‖2

2

+ 2

(nγk )1/4

∥∥Ŵ 1/2
k f̄k(θ0 )

∥∥
2

∥∥Ŵ 1/2
k D̄2

∥∥
2 · ‖z1n‖2

+ ∥∥γ−1/2
k H ′W 1/2

k M(k)W
1/2
k f̄k(θ0 )

∥∥
2 · ‖z1n‖2

2 + 1√
γk

‖�2n‖2 · ‖z1n‖2
2

+ 1

γ
3/4
k n1/4

∥∥Ŵ 1/2
k D̄2

∥∥
2

∥∥Ŵ 1/2
k H̄(k)(θ̄)

∥∥
2 · ‖z1n‖3

2 + 1
4γk

‖�1n‖2 · ‖z1n‖4
2.

Since γk/k =O(1), by Lemma B.3, we have

1√
nγk

∥∥D̄′
2ŴkD̄2

∥∥
2 =OP (λ̄k

√
k/n),

1

(nγk )1/4

∥∥Ŵ 1/2
k f̄k(θ0 )

∥∥
2

∥∥Ŵ 1/2
k D̄2

∥∥
2 = OP

(
λ̄kk

3/4/n1/4),

1

γ
3/4
k n1/4

∥∥Ŵ 1/2
k D̄2

∥∥
2

∥∥Ŵ 1/2
k H̄(k)(θ̄)

∥∥
2 = OP

(
λ̄kk

1/4/n1/4),

1
γk

‖�1n‖2 = OP

(‖Ŵk −Wk‖2
) +OP (λ̄k/

√
n) +OP

(
λ̄k‖θ̂− θ0‖2

)
,

and

1√
γk

‖�2n‖2 = OP (λ̄k
√
k/n) +OP

(
λ̄k

√
k‖θ̂− θ0‖2

) +OP

(√
k‖Ŵk −Wk‖2

)
.

Since λ̄k is bounded, k3/n→ 0 and
√
k‖Ŵk −Wk‖2 = oP (1), it follows that

1
γk

‖�1n‖2 = oP (1), and
1√
γk

‖�2n‖2 =OP

(
k1/4/n1/4)‖z1n‖2 = oP (1)‖z1n‖2.

Hence,

‖z1n‖4
2 ≤ ∥∥γ−1/2

k H ′W 1/2
k M(k)W

1/2
k f̄k(θ0 )

∥∥
2 · ‖z1n‖2

2

+ oP (1) · ‖z1n‖2 + oP (1) · ‖z1n‖2
2

+ oP (1) · ‖z1n‖3
2 + oP (1) · ‖z1n‖4

2. (B.8)

Since γ
−1/2
k H ′W 1/2

k M(k)W
1/2
k f̄k(θ0 ) = OP (1), we can readily claim that ‖z1n‖ = OP (1).

Indeed, (B.8) amounts to

(
1 + oP (1)

)‖z1n‖2 ≤ OP (1)
‖z1n‖2

+ oP (1)

‖z1n‖2
2

+ oP (1)
‖z1n‖2

+ oP (1).

Hence, if ‖z1n‖2 > 1, this inequality implies (1 + oP (1))‖z1n‖2 ≤ OP (1) + oP (1). Thus,
we either have (‖z1n‖2 < 1) or (1 + oP (1))‖z1n‖2 ≤ OP (1), which ensures that ‖z1n‖2 =
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OP (1), that is,

γ
1/4
k n1/4(η̂2 −η02 ) =OP (1).

Using (B.4), we obtain that
√
n(η̂1 −η01 ) = OP (1). Recalling that θ̂−θ0 = R1(η̂1 −η01 ) +

R2(η̂2 −η02 ), we have

‖θ̂− θ0‖2 = OP

(
n−1/2) +OP

(
γ

−1/4
k n−1/4) =OP

(
γ

−1/4
k n−1/4).

Also, by the definition of R1 and R2 as spanning the range of the transpose a matrix and
the null space of that same matrix, respectively, we have R′

1R2 = 0. Hence,

R′
1(θ̂− θ0 ) =R′

1R1(η̂1 −η01 ) = OP

(
n−1/2)

and

R′
2(θ̂− θ0 ) =R′

2R2(η̂2 −η02 ) =OP

(
γ

−1/4
k n−1/4).

To complete the proof, it only remains to establish (B.6), which is done in the Supple-
mental Material.

The validity of the results in Theorem 4.1 hinges on verifying Assumptions 3(ii) and
4(iii, iv). For this reason, some further remarks on the rates of convergence in Theorem
4.1, specialized to the first-step and two-step GMM estimators, are warranted.

Remark 1. For the first-step GMM estimator, the weighting matrix Ŵk := Wk,0 is non-
random with bounded eigenvalues from above and away from zero, and Assumptions
3(ii) and 4(iv) are trivially verified. Assumption 4(iii) is also satisfied if, for instance,
Vk has bounded eigenvalues and this estimator, say θ̃, is characterized by θ̃ − θ0 =
OP (k−1/4n−1/4 ). Note that the eigenvalues of Vk are bounded under Assumption A.1(iv)
and if Vk has uniformly bounded diagonal elements. This latter condition is implied by
Assumption A.1(ii).

Remark 2. For the two-step estimator with Ŵk := V̂ −1
k , we assume that the smallest

eigenvalue of Vk is bounded away from 0, that is, λmin(Vk ) ≥ λ > 0 for all k. This is a
reasonable assumption since λmax(Vk ) is an increasing sequence and we require that
λmin(Vk ) and λmax(Vk ) are of the same order of magnitude to preserve Vk from being
ill-conditioned. In this case,

λmax
(
V −1
k

) = 1/λmin(Vk ) ≤ 1/λ.

Furthermore, Lemma B.2(ii, v) ensures that

λmax
(
V̂ −1
k

)
/λmax

(
V −1
k

) = 1 + oP (1), and λmin
(
V̂ −1
k

)
/λmin

(
V −1
k

) = 1 + oP (1).

Note that in this lemma, vn = (k3/n)1/4 = o(1). This shows that Assumption 3(ii) holds.

Remark 3. Finally, from Lemma B.2(iv), we have that
√
k‖V̂ −1

k −V −1
k ‖2 =OP (k5/4/n1/4 ),

which ensures that Assumption 4(iv) holds if k5/n→ 0 as n→ ∞.
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Proof of Theorem 4.2. Since θ0 is in the interior of � and θ̂ converges in probability
to θ0, θ̂ is also an interior optimum with probability approaching one. Therefore, this
estimator solves (∇θf̄k(θ̂)

)′
Ŵkf̄k(θ̂) = 0. (B.9)

By a mean-value expansion of ∇ f̄k(θ̂) and a second-order Taylor expansion f̄k(θ̂)
around θ0, we have

∇θf̄k(θ̂) = ∇θf̄k(θ0 ) + H̄(k)(θ̇)
√
n(θ̂− θ0 )

and

f̄k(θ̂) = f̄k(θ0 ) + ∇θf̄k(θ0 )(θ̂− θ0 ) + 1
2
H̄(k)(θ̈)

√
n(θ̂− θ0 )2,

with θ̇, θ̈ ∈ (θ0, θ̂). Let ḣ := H̄(k)(θ̇), ḧ := H̄(k)(θ̈), and D̄2 := ∇θf̄k(θ0 ). The first-order
condition (B.9) yields

n−1/4(∇ f̄k(θ̂)
)′
Ŵkf̄k(θ̂)

= n−1/4D̄′
2Ŵkf̄k(θ0 ) + n−1/4D̄′

2ŴkD̄2(θ̂− θ0 ) + 1
2
D̄′

2Ŵkḧn
1/4(θ̂− θ0 )2

+ ḣ′Ŵkf̄k(θ0 )n1/4(θ̂− θ0 ) + ḣ′ŴkD̄2n
1/4(θ̂− θ0 )2

+ 1
2
ḣ′Ŵkḧn

3/4(θ̂− θ0 )3 = 0.

In this framework, γk =H ′WkH. With H := H(k)(θ0 ), we can write

1
2

(γkn)3/4(θ̂− θ0 )3 + 1
2γk

(
ḣ′Ŵkḧ−H ′WkH

)
(γkn)3/4(θ̂− θ0 )3

+ 3

2γ3/4
k n1/4

H ′ŴkD̄2
√
γkn(θ̂− θ0 )2

+ 1

γ
3/4
k n1/4

(ḣ−H )′ŴkD̄2
√
γkn(θ̂− θ0 )2 + 1√

γk
H ′Wkf̄k(θ0 )(γkn)1/4(θ̂− θ0 )

+ 1√
γk

(
ḣ′Ŵk −H ′Wk

)
f̄k(θ0 )(γkn)1/4(θ̂− θ0 ) + 1

2γ3/4
k n1/4

D̄′
2Ŵk(ḧ−H )

√
γkn(θ̂− θ0 )2

+ 1√
γkn

D̄′
2ŴkD̄2(γkn)1/4(θ̂− θ0 ) + n−1/4D̄′

2Ŵkf̄k(θ0 ) = 0.

Similar to the lines of the proof of Lemma B.3, it is not hard to see that

1
γk

(
ḣ′Ŵkḧ−H ′WkH

) = oP (1), H ′ŴkD̄2 = OP (k),

‖ḣ−H‖2 =OP

(√
k
[
n−1/2 ∨ ‖θ̂− θ0‖2

]) =OP

(
k1/4/n1/4),

(ḣ−H )′ŴkD̄2 =OP

(
k3/4/n1/4), and

1√
γk

(
ḣ′Ŵk −HWk

)
f̄k(θ0 ) = oP (1).
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Then, letting z1n := (γkn)1/4(θ̂− θ0 ) and Zn := 1√
γk
H ′Wkf̄k(θ0 ), we have

z1n
(
z2

1n + 2Zn
) = oP (1). (B.10)

Since (z1n, Zn ) = OP (1), by the Prokhorov’s theorem, each subsequence of has a further
subsequence that converges in distribution to, say, (V , Z ). Thus, along this converging
subsequence, (B.10) implies that

V
(
V 2 + 2Z

) = 0.

Therefore, it is not difficult to see that |V | = 1Z≤0
√−2Z and, since as a Gaussian random

variable Z has a symmetric distribution, |V | = 1Z≥0
√

2Z. The fact that this limit distri-
bution is not specific to the subsequence implies that the whole sequence converges to

(V , Z ). By the continuous mapping theorem, it follows that z2
1n

d→ V 2 = 1Z≥0(2Z ) and
this completes the proof.

Proof of Theorem 5.2. We proceed in two steps by showing first that Ẑ is bounded by
two statistics Ẑ1 and Ẑ2, that is,

Ẑ1 + oP (1) ≤ Ẑ ≤ Ẑ2 + oP (1). (B.11)

We then show in the second step that Ẑ1 and Ẑ2 converge in distribution to N(0, 1),
which establishes the stated result.

Step 1: By definition,

f̄k(θ̂)′V̂ −1
k f̄k(θ̂) ≤ f̄k(θ0 )′V̂ −1

k f̄k(θ0 ) = f̄k(θ0 )′V −1
k f̄k(θ0 ) + f̄k(θ0 )′

(
V̂ −1
k − V −1

k

)
f̄k(θ0 ).

Note that ∣∣f̄k(θ0 )′
(
V̂ −1
k − V −1

k

)
f̄k(θ0 )

∣∣ ≤ ∥∥V̂ −1
k − V −1

k

∥∥
2

∥∥f̄k(θ0 )
∥∥2

2.

From Theorem 4.1, the first-step GMM estimator θ̃ is such that θ̃−θ0 =OP (k−1/4n−1/4 ).
Hence, Lemma B.2(iv) implies that ‖V̂ −1

k − V −1
k ‖2 = OP (k3/4n−1/4 ). Thus,

∥∥V̂ −1
k − V −1

k

∥∥
2

∥∥f̄k(θ0 )
∥∥2

2 = OP

(
k7/4n−1/4) = √

kOP

(
k5/4n−1/4) = oP (

√
k).

As a result, we have

Ẑ = f̄k(θ̂)′V̂ −1
k f̄k(θ̂) − k√

2k
≤ f̄k(θ0 )′V −1

k f̄k(θ0 ) − k√
2k

+ oP (1) := Ẑ2 + oP (1). (B.12)

On the other hand, using (B.5), we can write

f̄k(θ̂)′V̂ −1
k f̄k(θ̂)

= [
f̄k(θ̂)′V̂ −1/2

k P̄(k)V̂
−1/2
k f̄k(θ̂) − f̄k(θ0 )′V̂ −1/2

k P̄(k)V̂
−1/2
k f̄k(θ0 )

] + f̄k(θ0 )′V̂ −1
k f̄k(θ0 )

+ (η̂2 −η02 )′D̄′
2V̂

−1/2
k M̄(k)V̂

−1/2
k D̄2(η̂2 −η02 )
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+ 1
4
z′

0nH̄
(k)(θ̄)′V̂ −1/2

k M̄(k)V̂
−1/2
k H̄(k)(θ̄)z0n

+ 2f̄k(θ0 )′V̂ −1/2
k M̄(k)V̂

−1/2
k D̄2(η̂2 −η02 ) + f̄k(θ0 )′V̂ −1/2

k M̄(k)V̂
−1/2
k H̄(k)(θ̄)z0n

+ (η̂2 −η02 )′D̄′
2V̂

−1/2
k M̄(k)V̂

−1/2
k H̄(k)(θ̄)z0n

:= (1) + (2) + (3) + (4) + (5) + (6) + (7).

From (B.6), and Lemma B.2, we have

(1) =OP

(
k3/4n−1/4) = oP (1), (3) =OP

(
k1/2n−1/2) = oP (1),

(4) = 1
4
z′

0nH
′V −1/2

k M(k)V
−1/2
k Hz0n + oP (1), (5) =OP

(
k3/4n−1/4) = oP (1),

(6) = f̄k(θ0 )′V −1/2
k M(k)V

−1/2
k Hz0n + oP (1), (7) =OP

(
k1/4n−1/4) = oP (1)

and from the lines above, (2) = f̄k(θ0 )′V −1
k f̄k(θ0 ) + oP (

√
k). As a result, we write

f̄k(θ̂)′V̂ −1
k f̄k(θ̂) = f̄k(θ0 )′V −1

k f̄k(θ0 ) + f̄k(θ0 )′V −1/2
k M(k)V

−1/2
k Hz0n

+ 1
4
z′

0nH
′V −1/2

k M(k)V
−1/2
k Hz0n + oP (

√
k). (B.13)

Let the rank factorization of M(k)V
−1/2
k H be M(k)V

−1/2
k H = H1H2, where H1 and

H2 are a (k, rh )-matrix and a (rh, p2 )-matrix, respectively, with the same rank rh =
Rank(M(k)V

−1/2
k H ) ≤ p2. By second-order local identification, rh �= 0 so that

M(k)V
−1/2
k H �= 0.

Thus, (B.13) can be written as

f̄k(θ̂)′V̂ −1
k f̄k(θ̂) = f̄k(θ0 )′V −1

k f̄k(θ0 ) + f̄k(θ0 )′V −1/2
k H1H2z0n

+ 1
4
z′

0nH
′
2H

′
1H1H2z0n + oP (

√
k).

Letting m(u) := f̄k(θ0 )′V −1
k f̄k(θ0 ) + f̄k(θ0 )′V −1/2

k H1u + 1
4u

′H ′
1H1u, and M1 := Ik −

H1(H ′
1H1 )−1H ′

1, we can claim that

min
u∈Rrh

m(u) + oP (
√
k) = f̄k(θ0 )′V −1/2

k M1V
−1/2
k f̄k(θ0 ) + oP (

√
k) ≤ f̄k(θ̂)′V̂ −1

k f̄k(θ̂).

Letting Ẑ1 := f̄k(θ0 )′V −1/2
k M1V

−1/2
k f̄k(θ0 )−k√

2k
, we obtain (B.11).

Step 2: We now show that both Ẑ1 and Ẑ2 are asymptotically standard normal. We
first consider Ẑ2. We have

Ẑ2 = 1

n
√

2k

n∑
t �=s:t,s=1

fk(xs , ys , θ0 )′V −1
k fk(xt , yt , θ0 )

+

1
n

n∑
t=1

fk(xt , yt , θ0 )′V −1
k fk(xt , yt , θ0 ) − k

√
2k

:=U1n +U2n.
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The asymptotic normality of U1n follows readily from the central limit theorem stated by
Theorem 5.1. In addition, it is not hard to see that E(U2n ) = 0. Using similar arguments as
in the proof of Proposition S.2 in the Supplemental Material, we can show that E(U2

2n ) =
o(1). This establishes that U2n = oP (1). We can then conclude that Ẑ2 is asymptotically
standard normal.

We now consider Ẑ1. Note first that, since M1 is an orthogonal projection matrix on a
space of dimension k− rh, there exists a (k, k− rh )-matrix S1 such that S′

1S1 = Ik−rh and

M1 = S1S
′
1. In that respect, f̄k(θ0 )′V −1/2

k M1V
−1/2
k f̄k(θ0 ) = f̄k(θ0 )′V −1/2

k S1S
′
1V

−1/2
k f̄k(θ0 ).

Also, Var(S′
1V

−1/2
k f̄k(θ0 )) = Ik−rh . Using Theorem 5.1 and similar to the lines above for

Ẑ2, we can claim that

Ẑ3 := f̄k(θ0 )′V −1/2
k S1S

′
1V

−1/2
k f̄k(θ0 ) − (k− rh )√

2(k− rh )

d→N(0, 1).

Since 0 ≤ rh ≤ p2 with p fixed, we can see that Ẑ1 = Ẑ3 +oP (1). Therefore, Ẑ1
d→N(0, 1).

Proof of Theorem 5.3. From Lemma B.4, there exist k0 and δ0 > 0 such that k > k0

and
E(fk0 (xt , yt , θ̂))′E(fk0 (xt , yt , θ̂)) ≥ δ0. We have

k3/2n−1|Ẑ| ≥ 2−1/2kn−1(f̄k(θ̂)′V̂ −1
k f̄k(θ̂) − k

)
≥ 2−1/2kn−1f̄k(θ̂)′f̄k(θ̂)/λmax(V̂k ) + 21/2k2n−1

≥ (
2−1/2/λ̄

)
n−1f̄k0 (θ̂)′f̄k0 (θ̂) + o(1), with probability approaching one.

Also,

n−1f̄k0 (θ̂)′f̄k0 (θ̂) ≥ E
(
fk0 (xt , yt , θ̂)

)′
E

(
fk0 (xt , yt , θ̂)

)

+ 2

(
1
n

n∑
t=1

fk0 (xt , yt , θ̂) −E
[
fk0 (xt , yt , θ̂)

])′
E

(
fk0 (xt , yt , θ̂)

)

≥ δ0 − 2

∥∥∥∥∥1
n

n∑
t=1

fk0 (xt , yt , θ̂) −E
[
fk0 (xt , yt , θ̂)

]∥∥∥∥∥
2

∥∥E(
fk0 (xt , yt , θ̂)

)∥∥
2

= δ0 + oP (1)OP (1).

It follows that, with probability approaching one, k3/2n−1|Ẑ| ≥ (2−1/2/λ̄)δ0 + oP (1) and
this concludes the proof by setting δ := (2−1/2/λ̄)δ0.

Proof of nondecreasing γk in Equation (15). We need to show that for k ≥ k0,
γk ≤ γk+1. For this, we note that R2 is fixed for k ≥ k0. Therefore, it suffices to show
that for any a ∈R

k and b ∈R, and letting v := (a′, b)′ ∈R
k+1,

a′M(k)a≤ v′M(k+1)v.
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Let μ= E(gk+1(x) · (∇θu(y, θ0 )′ )), G1 =G(k) and G =G(k+1). We have

G =
(
G1

μ′

)
, M(k) = Ik −G1

(
G′

1G1
)−1

G′
1, and M(k+1) = Ik+1 −G

(
G′G

)−1
G′.

Write A := G′
1G1. Using the Woodbury formula, we can claim that

(
G′G

)−1 = (
A+μμ′)−1 =A−1 − A−1μμ′A−1

1 +μ′A−1μ
.

Thus,

v′M(k+1)v = a′a+ b2 − a′G1
(
A+μμ′)−1

G′
1a− 2ba′G1

(
A+μμ′)−1

μ

− b2μ′(A+μμ′)−1
μ

= a′M(k)a+
(
b− a′G1A

−1μ
)2

1 +μ′A−1μ
.

It follows that, for any a ∈R
k and b ∈R,

v′M(k+1)v ≥ a′M(k)a

and this completes the proof.
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