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Appendix B: Theoretical extensions

B.1 Deterministic output

Assume that y is deterministic. Specifically, let y = e. In that case, both agent and prin-
cipal know that a higher output is due to higher effort. The question is whether higher
effort can be elicited when the principal chooses a stochastic contract instead of a stan-
dard deterministic one. As in main body of the paper, denote the deterministic contract
by t(y ).

Given the deterministic nature of output, Assumption 2 and Assumption 3 are no
longer necessary. Moreover, it is assumed that the agent’s cost of effort and preferences
are still governed by Assumption 1 and Assumption 4, respectively. All in all, the agent’s
preferences are given by

U
(
t(y ), e

) = u(t(y )
) − c(e). (37)

The objective function of the principal is given by

�(t, e) = S(y ) − t(y ) (38)

where S(y ) is a continuous and strictly concave function.
The principal could also choose to introduce risk in this otherwise deterministic set-

ting by paying with a stochastic contract L= (T (y ), r; 0, 1 − r ). In that case, the prefer-
ences of the decision maker are given by

RDU(L, e) =w(r )u
(
T (y )

) − c(e), (39)

where w adopts the properties of Assumption 5. The principal’s objective function be-
comes

E
(
�(t, e)

) = S(y ) −pT (y ). (40)

Finally, I assume that the equivalence in Assumption 7 also holds in this setting.
The following result presents the condition under which the stochastic contract out-

performs standard contracts t(y ). It turns out that the condition under which stochastic
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contracts outperform deterministic contracts is comparable to that presented in Propo-
sition 2.

Proposition 5. Let Assumptions 1, 4, and 7 hold. The stochastic contract L improves
upon any deterministic contract t(y ) if w(r )> u(r ).

Proof. First, I show that L leads to higher incentives as compared to t. Use Assump-
tion 7 to rewrite equation (39) as follows:

RDU(L, e) =w(r )u
(
t(y )
r

)
− c(y ). (41)

The optimal output level chosen by the agent with RDU preferences when working un-
der L, y∗∗, satisfies the following first-order condition:

w(r )
r
u′

(
t
(
y∗∗)
r

)
dt

(
y∗∗)
dy

− c′(y∗∗) = 0. (42)

That y∗∗ is a maximum requires the second-order condition to be negative. Formally,

w(r )

r2 u′′
(
t
(
y∗∗)
r

)(
dt

(
y∗∗)
dy

)2

+ w(r )
r
u′

(
t
(
y∗∗)
r

)
d2t

(
y∗∗)

dy2 − c′′(y∗∗)< 0. (43)

Instead, if the principal chooses to implement t(y ), the agent would choose to pro-
duce, y∗, which is the output level that satisfies the condition:

u′(t(y∗))dt(y∗)
dy

− c′(y∗) = 0. (44)

That y∗ is a maximum requires the second-order condition to be negative. Formally,

u′′(t(y∗))(dt(y∗)
dy

)2

+ u′(t(y∗))d2t
(
y∗)

dy2 − c′′(y∗)< 0. (45)

Note that when r = 1, then y∗∗|r=1 = y∗; in the absence of risk t and L yield the same
performance. Therefore, my analysis focuses on how changes in r alter y∗∗. To that end,
implicitly differentiate (42) with respect to y∗∗ and r to obtain

dy∗∗

dp
=

(
w′(r )
r

− w(r )

r2

)
u′

(
t
(
y∗∗)
r

)
dt

(
y∗∗)
dy

− w(r )

r3 u′′
(
t
(
y∗∗)
r

)
dt

(
y∗∗)
dy

c′′
(
y∗∗) − w(r )

r2 u′′
(
t
(
y∗∗)
r

)(
dt

(
y∗∗)
dy

)2

− w(r )
r
u′

(
t
(
y∗∗)
r

)
d2t

(
y∗∗)

dy2

. (46)

A necessary condition for equation (46) to be negative at the optimum, so that choosing
r = 1 is not optimal, is

w′(r )
w(r )

≤ 1
r

⎛
⎜⎜⎜⎝1 −

u′′
(
t
(
y∗∗)
r

)
t
(
y∗∗)
r

u′
(
t
(
y∗∗)
r

)
⎞
⎟⎟⎟⎠ . (47)
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The class of probability weighting functions w(r ) that satisfy (47) are found using
Grönwall’s lemma. First, find the solution to

v′(r )
v(r )

= 1
r

⎛
⎜⎜⎜⎝1 −

u′′
(
t
(
y∗∗)
r

)
t
(
y∗∗)
r

u′
(
t
(
y∗∗)
r

)
⎞
⎟⎟⎟⎠ , (48)

where v(r ) is a weighting function with the properties of Assumption 5, that is, it has the
same properties as w(p). The solution to (48) is given by

∫
v′(r )
v(r )

dr =
∫

1
r

⎛
⎜⎜⎜⎝1 −

u′′
(
t
(
y∗∗)
r

)
t
(
y∗∗)
r

u′
(
t
(
y∗∗)
r

)
⎞
⎟⎟⎟⎠ dr

⇔ ln
(
v(r )

) = ln(r ) − ln
(
u′

(
t

r

))
+ ln

(
u′(t )

)

⇔ v(r )
r

= u′(t )

u′
(
t

r

) . (49)

Solving for t in (49) gives

v(r )
r
u′

(
t

r

)
= u′(t ) ⇔

∫
v(r )
r
u′

(
t

r

)
dt =

∫
u′(t ) dt

⇔ v(r ) = u(t )

u

(
t

r

) . (50)

Second, the way in which w(r ) and v(r ) relate is investigated by computing the
derivative of the ratio w(r )

v(r ) :

d
(
w(r )
v(r )

)
dp

=
(
v(r )w′(r ) −w(r )v′(r )

)
v(r )2

=

v(r )

⎛
⎜⎜⎜⎝w′(r ) − w(r )

r

⎛
⎜⎜⎜⎝1 −

u′′
(
t
(
y∗∗)
r

)
t
(
y∗∗)
r

u′
(
t
(
y∗∗)
r

)
⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

v(r )2 , (51)

where the second equality results from replacing v′(r ) with (48). Using the last equality

of the above equation together with (47), it can be established that
d( w(r )

v(r ) )
dr ≤ 0. Thus, the
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minimum of w(r )
v(r ) is attained at r = 1 and it must be that for any r ∈ (0, 1]:

w(r )
v(r )

≥ w(1)
v(1)

= 1. (52)

Equation (52) implies that the solution to (47) must be bounded by (50) in the following
way:

w(r ) ≥ u(t )

u

(
t

r

) . (53)

Using the fact that T (y ) = t(y )
r , the above equation can be rewritten as

w(r ) ≥ u
(
rT (y )

)
u
(
T (y )

) . (54)

The above equation is similar to that given in (16), so I can proceed as in Proposition 1;
the condition w(r ) > u(r ) implies the inequality in (10). Hence, if w(r ) > u(r ) holds for
some nonempty interval in r ∈ (0, 1), then dy∗∗

dr ≤ 0 and the principal derives higher in-
centives from offering L.

Next, I show thatL can generate higher utility than t(y ). So, the agent is more willing
to work under L than under t(y ). This happens whenever

RDU(L, e)>U
(
t(y ), e

) ⇔ w(r )u
(
T (y )

) ≥ u(t(y )
) ⇔ u

(
rT (y )

)
u
(
T (y )

) . (55)

Again, this condition is similar to that given in (16), so I can proceed as in Proposition 1.
Namely it can be shown that w(r )> u(r ) implies the inequality in (55).

All in all, if w(r ) > u(r ), then L is implemented by the principal instead of t(y ); it
generates stronger incentives and motivates participation more often at a lower cost for
the principal.

The principal is better off introducing risk in the agent’s environment when his risk-
probabilistic–risk-seeking preferences outweigh the risk aversion emerging from utility
curvature. That is, whenw(r )> u(r ). In that case, the agent is globally risk seeking, has a
preference for risky contracts, and would thus prefer to face risk in a situation in which
he would otherwise not face any.

B.2 Binary effort

This subsection considers the special case in which effort is binary. Formally, the agent’s
action consists on exerting a high effort level or a low effort level e = {eL, eH }. In this
setting, only high effort is costly.
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Assumption 8 (Cost of effort).

c(e) =
{
c if eH ,

0 if eL,

where c > 0.

Output is still assumed to be a random variable taking any value in the interval
y ∈ [

¯
y, ȳ]. The simplifying assumption that effort is binary leads to less stringent assump-

tions on the density function of output. The following assumption relaxes Assumption 2.

Assumption 9 (Output distribution). F(y|e) : [
¯
y, ȳ] → [0, 1] admits a density function

f (y|e).

The relationship between effort and output is still given by the monotone likelihood
ratio property, which is now captured by the following assumption.

Assumption 10 (Monotone likelihood ratio property). Effort and output relate accord-
ing to ∂

∂y ( f (y|eH )
f (y|eL ) ) ≥ 0.

In the considered setting, the principal’s program is

max
{t(y )}

∫ ȳ

¯
y

(
S(y ) − t(y )

)
f (y|eH ) dy

s.t.
∫ ȳ

¯
y
u(t )w′(1 − F(y|eH )

)
f (y|eH ) dy − c ≥ Ū ,

∫ ȳ

¯
y
u(t )

(
w′(1 − F(y|eH )

)
f (y|eH ) −w′(1 − F(y|eL )

)
f (y|eL )

)
dy − c. (56)

The following proposition presents the condition under which the stochastic con-
tract outperforms standard contracts t(y ).

Proposition 6. Let Assumptions 4–10 hold. The stochastic contract L improves upon
any deterministic contract t(y ) if w(r )> u(r ).

Proof. Denote by tfo the standard solution to the principal’s problem (equation (56))
derived from the first-order approach. For the optimality of L= (r, T (y ); 1 − r, 0), it suf-
fices that for any generic tfo the following inequality holds:

RDU(L, e)>RDU
(
t(y ), e

)
⇔ w(r )

∫ ȳ

¯
y
u
(
T (y )

)
w′(1 − F(y|e)

)
f (y|e) dy >

∫ ȳ

¯
y
u
(
tfo(y )

)
w′(1 − F(y|e)

)
f (y|e) dy.

(57)
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Equation (57) holds if the following inequality holds for any output realization y∗ ∈ [
¯
y, ȳ]:

w(r )u
(
T

(
y∗))> u(tfo(

y∗)) ⇔ w(r )>
u
(
tfo

(
y∗))

u
(
T

(
y∗)) . (58)

Using Assumption 7, the inequality above can be rewritten as

w(r )>
u
(
rT

(
y∗))

u
(
T

(
y∗)) ⇒ w(r )> u(r )

u
(
T

(
y∗))

u
(
T

(
y∗)) ⇔ w(r )> r, (59)

where the second implication is due to the concavity of u (Assumption 4). Note that
u(r )> r due to the concavity of u, u(0) = 0, and the fact that u(M2 ) = 1> u(1). As such,
w(r )> u(r ) immediately implies w(r )> r.

Proposition 6 shows that the result from Proposition 2 holds when the effort space
is binarized. This modeling approach is often followed in the literature to avoid making
strong assumptions on the shape of the distribution function (See Assumption 2). For
instance, because some distributions cannot comply with the convexity requirement
Fee(y|e) > 0. The result in Proposition 6 shows that the effectiveness of stochastic con-
tracts go beyond imposing that assumption. Hence, the result from Proposition 2 is not
an artifact of the assumptions on the density function, but a consequence of the agent’s
risk preferences.

Appendix C: Agents with CPT preferences

In this Supplemental Appendix, I analyze the incentives generated by stochastic con-
tracts when agents have risk preferences characterized by CPT (Tversky and Kahneman
(1992)). I find that under mild additional conditions, the result stated in Proposition 2
holds: stochastic contracts that expose the agent to large amounts of risk can generate
higher output than linear piece-rate contracts. This finding is not surprising since CPT
incorporates probability distortions in the same way as RDU.

Agents with CPT preferences evaluate possible outcomes in the stochastic contract
relative to a reference pointR≥ 0. Outcomes below the reference point are coined losses
and outcomes above it are gains. In the original formulation of CPT, R represents the
status quo, or the monetary amount that the agent owns and is thus exogenous to the
principal’s choice. In the following, I adopt the assumption that the reference point is
exogenous to the principal’s offer.

The main difference of CPT with respect to RDU is that the agent can exhibit dif-
ferent risk preferences in the domain of gains and the domain of losses. This is partly
because outcomes are evaluated with a value function that exhibits the following prop-
erties.

Assumption 11. V (t(y ), R) is the piecewise function,

V (t, R) =
{
u
(
t(y ) −R)

if t(y ) ≥R,

−λu(R− t(y )
)

if t(y )<R
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withR≥ 0, λ > 1, u(0) = 0, u(M2 ) = 1, and u is strictly increasing in t, ut > 0, and concave
in t, utt ≤ 0.

In words, the value function, V , is an increasing function that is concave in the do-
main of gains and convex in the domain of losses. This S-shaped utility function gener-
ates risk averse and risk seeking attitudes in gains and losses, respectively. Additionally,
the worker is loss averse, that is, losses loom larger than equally-sized gains. This prop-
erty is captured by the parameter λ > 1, which only enters the value function for the
domain of losses.

Like the RDU agent, a CPT agent transforms probabilities using a probability weight-
ing function. However, transformations of probability can be different for gains and
losses. Let w(p) with the properties from Assumption 5 be the probability weighting
function used to transform probabilities in the domain of gains.

Let z(p) be the probability weighting function used to transform probabilities in the
domain of losses. To simplify matters, I assume that w(p) and z(p) relate through the
duality z(p) = 1 − w(1 − p). Hence, the weighting function for losses adopts the same
properties as that for gains, but differs in that probability transformations are applied to
loss ranks, or a ranking of outcomes from least-desirable to most-desirable, rather than
to gain ranks.33

All in all, the utility of the agent with CPT preferences when offered ts(y ) is equal to

CPT
(
ts(y ), t

) =
{
w(p)u

(
t(y ) −R) − c(e) if t ≥R≥ 0,

−z(p)λu
(
R− t(y )

) − c(e) if R> t > 0.
(60)

I am in a position to compare the two contracts with respect to the output that they
deliver. Proposition 7 provides the conditions under which the principal is better off
exposing the agent to large amounts of risk with the stochastic contract.

Proposition 7. Let Assumptions 1–7, and 11 hold. Contract L improves upon any con-
tract t(y ) if and only if w(r )> u(r ).

Proof. Let w(r )> u(r ) and t ≥ R. For the optimality of L= (r, t(y ); 1 − r, 0), it suffices
that for any generic contract t(y ),

CPT(L, e)>CPT
(
t(y ), e

)
⇔ w(r )

∫ ȳ

¯
y
u
(
T (y ) −R)

w′(1 − F(y|e)
)
f (y|e) dy

>

∫ ȳ

¯
y
u
(
t(y ) −R)

w′(1 − F(y|e)
)
f (y|e) dy. (61)

33Formally, an agent with CPT preferences facing a lottery (x1, p1; x2, p2; � � � ; xn, pn ) ranks the out-
comes using an increasing arrangement x1 < x2 < · · ·xr−1 < r < xr+1 · · · < xn and evaluates the outcomes
of the lottery relative to r through the function v(y, r ). The lottery outcomes xr+1, � � � xn are gains and the
outcomes x1, � � � xr−1 are losses. The individual assigns decision weights to gains in the following way:
πn = w(pn ), πn−1 = w(pn−1 + pn ) −w(pn )), � � � , πr+1 = 1 − ∑n

j=r+1w(pj ), and assigns decision weights to
losses in the following way: π1 = z(p1 ), π2 = z(p1 +p2 ) − z(p1 )), � � � , πr−1 = 1 − ∑n

j=r−1 z(pj ).
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the condition in (61) holds if for any realization ỹ ∈ [
¯
y, ȳ] the following inequality holds:

w(r )u
(
T (ỹ ) −R)

> u
(
t(ỹ ) −R) ⇔ w(r )>

u
(
t(ỹ ) −R)

u
(
T (ỹ ) −R) . (62)

Using Assumption 7, the above inequality can be rewritten as

w(r )>
u
(
rT (ỹ ) −R)

u
(
T (ỹ ) −R) ⇒ w(r )> r

u

(
T (ỹ ) − R

r

)
u
(
T (ỹ ) −R) , (63)

where the second equivalence is due to the concavity of u (Assumption 11). Since R
r > R

and ut > 0 (Assumption 11), then 0 <
u(T (ỹ )−R

r )
u(T (ỹ )−R) < 1. Hence, w(r ) > u(r ), which in turn

implies w(r )> r, suffices for the inequality in equation (63) to hold.
Let now T <R. In that case, the stochastic contract yields higher utility if

CPT(L, e)>CPT
(
t(y ), e

)
⇔ −z(r )λ

∫ ȳ

¯
y
u
(
R− T (y )

)
w′(1 − F(y|e)

)
f (y|e) dy

>−λ
∫ ȳ

¯
y
u
(
R− t(y )

)
w′(1 − F(y|e)

)
f (y|e) dy. (64)

The condition in (64) holds if for any given realization ỹ ∈ [
¯
y, ȳ] the following inequality

holds:

−z(r )u
(
R− T (ỹ )

)
>−u(R− t(ỹ )

) ⇔ z(r )<
u
(
R− t(ỹ )

)
u
(
R− T (ỹ )

) . (65)

Since t(ỹ )< T (ỹ ) and ut > 0 (Assumption 11), then u(R−t(ỹ ))
u(R−T (ỹ )) > 1. Therefore, the inequal-

ity in equation (65) holds for any r.
Consequently, contract L leaves the participation and incentive compatibility con-

straint unchanged as compared to offering a generic contract t(y ). It provides the same
utility and incentives (equation (63)) at the same costs for the principal (Assumption 7).

LetL be optimal. This part of the proof is identical to that presented in Proposition 1;
see equations (18)–(22).

As with RDU preferences, the principal derives greater motivation using the stochas-
tic contract. This result emerges when the agent sufficiently overweights the probability
specified by the principal, so that the probabilistic risk seeking attitude of the agent out-
weighs the risk averse attitudes stemming from his value function. When L is evaluated
as a gain, the lower bound of probability overweighting to be attained is u(r ). This is the
same requirement as in the RDU case presented in Section 2. Instead, when L is a loss,
that lower bound is no longer necessary but suffices to implement risk seeking.

To conclude this Supplemental Appendix, I comment on the role of loss aversion and
diminishing sensitivity, two factors that determine risk attitude under CPT preference
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and that are absent under RDU. The coefficient of loss aversion, λ, does not enter in the
requirement of Proposition 5. Therefore, that the agent exhibits strong or moderate loss
aversion is immaterial to the effectiveness of the stochastic contract.

The second component is diminishing sensitivity, that is, that the value function is
concave for gains and convex for losses. This property implies that the requirement on
probability overweighting to ensure risk seeking is less stringent in losses. Intuitively,
the convexity of the value function in the domain of losses generates risk seeking and
facilitates that the agent becomes more motivated with a contract that introduces risk.

Appendix D: Utility functions

This Supplemental Appendix investigates the properties of the elicited utility functions.
Decision sets 1 to 6 of the second part of the experiment are designed to elicit the
sequence of outcomes {x1, x2, x3, x4, x5, x6} for each subject. This elicited sequence
has the relevant property that it ensures equally-spaced utility values, that is, u(xj ) −
u(xj−1 ) = u(xj−1 ) − u(xj−2 ), allowing me to characterize a subject’s preference over
monetary outcomes by mapping each utility value, u(xj ) to the subject’s stated pref-
erence xj .

I focus on two properties of the utility function: the sign of the slope and the cur-
vature. To that end, I construct two variables. The first variable is �′

i := xj − xj−1, for
j = 1, � � � , 6 and the second is �′′

j := �′
j − �′

j−1 for i = 2, � � � , 6. The sign of �′
j as j in-

creases determines the sign of the slope, that is, whether a subject prefers larger mon-
etary outcomes to smaller monetary outcomes. Similarly, the sign of �′′

j as j increases
determines the utility curvature. For example, a subject with �′

j > 0 and �′′
j > 0 for all j

exhibits a preference for larger monetary outcomes and experiences smaller utility in-
crements with larger monetary outcomes. This is equivalent to say that this subject has
an increasing and concave utility function.

The first analysis focuses on classifications at the individual level. I classify subjects
according to the curvature of their utility function. Since I have multiple observations
for each subject and it was possible that subjects made mistakes, this classification is
based on the sign of �′′

j with the most occurrence. Specifically, a subject with at least
three negative �′′

j s was classified as having a convex utility, a subject with at least three
positive �′′

j s had a concave utility and subject with three or more �′′
i s had a linear utility.

A subject with a utility function that cannot be classified as concave, convex, or linear,
had a mixed utility. Furthermore, to statistically assess the sign of a �′′

j , I construct con-
fidence intervals around zero. In particular, I multiply the standard deviation of each �′′

j

by the factors 0.64 and −0.64. Thus, if �′′
j follows a normal distribution, 50% of the data

should lie within the confidence interval.34

34More stringent confidence intervals were also used for the analysis. These confidence intervals were
also constructed using the standard deviation of a �′′

j , which was multiplied by different factors, such as
1 and −1, 1.64 and −1.64, and 2 and −2. The qualitative results of these analyses are not different from
the main result presented here that the majority of subjects exhibit a linear utility function. This is not
surprising inasmuch as these confidence intervals are more stringent and yield less subjects classified as
having a mixed utility function and more subjects exhibiting a linear utility function.
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Table 7. Classification of subjects according to utility curvature.

Shape Convex Concave Linear Mixed Total

Observations 3 13 133 23 172

Note: This table presents the subjects classification according to the shape of their utility function. Subjects are classified
as having a convex, concave, linear, or mixed utility function based on the sign of �′′

j := (xj − xj−1 ) − (xj−1 − xj−2 ) for j =
2, 3, 4, 5, 6. A subject has linear utility if most values of �′′

j are close to zero, concave utility if most values of �′′
j are positive,

convex utility if most values �′′
j are negative, and mixed utility otherwise.

The data suggest that all subjects in the experiment exhibit an increasing sequence
{x1, � � � , x6}, which denotes, not surprisingly, a generalized preference for larger amounts
of money. Table 7 presents the classification of subjects according to the curvature of
their utility function. The data suggest that the majority of subjects exhibit linear utility
functions. Specifically, 77% of the subjects have linear utility, while the rest of the sub-
jects have mixed utility (13% of the subjects), and concave utility (7% of the subjects).
A proportions test suggest that the proportion of subjects with linear utility is signifi-
cantly larger than 50% (p< 0.001). Moreover, this test also yields that the proportion of
subjects having linear functions is significantly larger than the proportion of subjects
with mixed (p< 0.001) and concave utility (p< 0.001).

The result that more than two-thirds of the subjects exhibit linear utility is at odds
with the principle of diminishing sensitivity, a key property of cumulative prospect the-
ory (CPT). However, disregarding CPT as a possible representation for the subjects’ pref-
erences for money on the basis of this classification may be incorrect. As pointed out by
Wakker and Deneffe (1996), their trade-off method, used to elicit {x1, x2, x3, x4, x5}, re-
quires lotteries with large monetary outcomes in order to obtain utility functions with
curvature. Therefore, one of the advantages of the experimental design, that it elicits the
utility function and the probability weighting function of subjects using monetary stakes
that reflect the monetary incentives in the first part of the experiment, is also the reason
that diminishing sensitivity is not be observed.

To understand how the aforementioned results aggregate, I analyze the sequence
{x1, � � � , x6} when each outcome xj is averaged for all subject. Table 8 presents the de-
scriptive statistics of the resulting outcomes. I find that the average outcome xj is in-
creasing with j, implying that on average subjects exhibit a taste for larger monetary
outcomes. Moreover, the column displaying the average values of the variable �′

j shows
that as j increases, increments of xj become larger. Thus, while on average subjects ex-
hibit linear utility, this tendency ceases as monetary outcomes in the lotteries become
larger. In fact, for large values of xj the average utility function displays concavity. This
result is also found by Abdellaoui (2000).

The last analysis of the data consists on fitting well-known parametric families of
utility functions. Specifically, I assume a power utility, belonging to the CRRA family of
utility functions, and an exponential function, belonging to the CARA family of utility
functions. Table 9 the regression estimates when nonlinear least squares is used to fit
the data to the assumed utility function. For the two parametric specifications, I find
that the average utility function of the subjects is approximately linear. For instance,
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Table 8. Aggregate results x1, x2, x3, x4, x5, and x6.

Variable Mean Std. dev. Mean �′
j

x1 2.580 1.996 1.580
x2 4.574 4.446 1.994
x3 6.684 6.792 2.110
x4 9.179 9.421 2.495
x5 11.774 11.881 2.595
x6 14.380 14.419 2.606

Note: This table presents the mean and standard deviation of each variable
included in the sequence {x1, x2, x3, x4, x5, x6}. It also presents the average dif-
ference �′

j = xj − xj−1 for each j = 1, 2, 3, 4, 5, 6.

when the power utility function u(x) = xk is assumed, the parameter attains a value of
0.995. This finding is consistent with the large proportion of subjects that were classified
as having a linear utility function in the individual analysis and the modest increments
that the averaged outcomes xj exhibit as j increases presented in Table 8.

To ensure robustness, I perform the above analyses assuming that subjects’ have
CPT preferences. Their reference point was assumed to be the monetary equivalent of
their performance belief. This analysis is performed to account for the possibility that
subjects form a belief about how much they think they will earn in the first part of the
experiment and evaluate potential earnings in the lotteries of the second part of the
experiment relative to that amount. The experiment elicited the subject’s performance
beliefs in the first part of the experiment by asking them to provide an estimate of the
amount of correct tasks they solved. If that belief was correct, they were given a small
bonus otherwise they received nothing. Naturally, this question was asked before sub-
jects received feedback about the performance on the task. I find that the result that

Table 9. Parametric estimates of average utility
function.

Panel 1. u(x) = 1−exp(−γx)
γ

γ̂ 0.000 (0.000)
Adj. R2 0.928
Observations 1032

Panel 2. u(x) = (x)k

k̂ 0.996 (0.002)
Adj. R2 0.926
Observations 1032

Note: This table presents the estimates of nonlinear least
squares regressions. The upper panel assumes the parametric

form u(x) = 1−exp(−γx)
γ belonging to the CARA utility family.

The lower panel assumes the parametric form u(x) = (x)k be-
longing to the CRRA utility family. Robust standard errors are
presented in parentheses.



12 Víctor González-Jiménez Supplementary Material

subjects have linear utility is robust to incorporating that reference point. Previous ver-
sions of the paper provided these analyses in more detail (see Gonzalez-Jimenez (2021)).

All in all, the data suggest that subjects have linear utility functions. This is not a
surprising finding given the magnitude of the stakes used to elicit the subject’s risk pref-
erences. Furthermore, the conclusion that the utility function is linear implies that prob-
ability risk attitudes fully determine the risk attitudes. Implying that performance differ-
ences across treatments must be explained by probability distortions.

Appendix E: Individual analysis of probability weighting functions

This Supplemental Appendix presents alternative analyses of the probability weighting
functions. Decision sets 7 to 11 included in the second part of the experiment were de-
signed to elicit the subjects’ weighting functions. In the main body of the paper, I present
parametric analyses of the average data. In this Supplemental Appendix, I present non-
parametric analyses of these data performed at the individual level.

The first analysis classifies each subject according to the shape of the elicited prob-
ability weighting function and is based on Bleichrodt and Pinto (2000). There were
five possible shapes of the probability weighting function. A subject could display a
weighting function with either lower subadditivity (LS), upper subadditivity (US), or
both properties. These classifications result from comparing the behavior of the proba-
bility weighting function at extreme probabilities to the behavior of the same function
at intermediate probabilities. Moreover, a subject could display a concave or a convex
probability weighting function.

To classify a subject into one of these five categories, I created the variable ∂jj−1 :=
w(pj )−w(pj−1 )

w−1(pj )−w−1(pj−1 )
, which captures the average slope of the probability weighting function

between probabilities j and j − 1. I also created the variable 
j
j−1 ≡ ∂

j
j−1 − ∂

j−1
j−2, which

represents the change of the average slope of the weighting function between successive
probabilities.

To understand the subjects’ behavior at extreme and intermediate probabilities, I fo-
cus on the sign of the variables 
0.33

0.16 and 
1
0.83. If a subject exhibits 
0.33

0.16 < 0, his prob-
ability weighting exhibits LS. In other words, his probability weighting function assigns
larger weights to small probabilities than to medium-ranged probabilities. Moreover, if
a subject has 
1

0.83 > 0, then his probability weighting function exhibits the property of
US. That is, his weighting function assigns larger weights to large probabilities than to
medium-ranged probabilities.

In addition, I examine the sign of 
j
j−1 as j increases to determine the shape of the

weighting function of each subject over the whole probability interval. A subject was
classified as having a concave weighting function if at least three (out of five) 
j

j−1 had a
negative sign and he did not exhibit US. Alternatively, a subject had a convex probability
weighting function if at least three (out of five) 
j

j−1 were positive and he did not exhibit
LS. Note that these classifications allow for the possibility of response error.
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Table 10. Classification of subjects according to the shape
of their weighting function.

Shape Convex Concave LS US LS and US

Observations 68 27 98 43 76

Note: This table presents the classification of subjects according to the
shape of their probability weighting function. Subjects are classified as having
a probability weighting function with upper subadditivity (US), lower subaddi-
tivity (LS), or both. Also, subjects are classified as having a convex or concave
probability weighting function if they do not exhibit LS and US. This classifica-

tion depends on the sign of 
jj−1 as explained in the text.

Table 10 presents the results of the individual classification. I find that 57% of sub-
jects exhibit LS, 25% of subjects exhibit US, and 44% of subjects display probability
weighting functions with both LS and US. Therefore, most subjects in the experiment
had weighting functions that yield overweighting of small probabilities or underweight-
ing of large probabilities. Also, almost half of subjects exhibit probability weighting func-
tions that assign large weights to small and large probabilities. These proportions are
however considerably lower than those reported by Bleichrodt and Pinto (2000). More-
over, I find that 39% of the subjects exhibit convex weighting functions and only 13% of
the subjects exhibit concave weighting functions. Thus, more subjects in the experiment
exhibit pessimism. Furthermore, the proportion of subjects in the experiment with ei-
ther concave or convex probability weighting functions is higher than that reported by
Bleichrodt and Pinto (2000), who finds that only 15% of the subjects have probability
weighting functions with either of these shapes.

For the sake of robustness, I perform an alternative classification of LS and US also
proposed by Bleichrodt and Pinto (2000). In comparison to the above classification,
weights given to extreme probabilities are contrasted to the corresponding objective
probability. In particular, a subject has a weighting function with LS if w−1( 1

6 ) < 0.16.
Similarly, a subject has a weighting function with US if 1 − w−1( 5

6 ) < 0.16. The result-
ing dummy variables LS and US or both were used in the main body of the paper to
investigate the effect of these properties of the weighting function on the treatment ef-
fects.

The results of the alternative classification are presented in Table 11. I find that a
similar proportion of subjects exhibit US and LS. Specifically, 40.12% of subjects exhibit
LS and 38.37% subjects exhibit US. Also, only 20% of subjects exhibit both LS and US.
These proportions are considerably lower than those obtained with the initial classifica-
tion and are also smaller to those reported by Bleichrodt and Pinto (2000).

The last classification of probability weighting functions, evaluates the strength of
the possibility effect relative to the certainty effect. A subject exhibits a weighting func-
tion with a possibility effect that is stronger than the certainty effect when 1 −w−1( 5

6 )>
w−1( 1

6 ). Table 12 shows that the majority of subjects in the experiment have probability
weighting functions with the certainty effect exceeding the possibility effect. This result
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Table 11. Classification of subjects according to LS,
US, or both.

Shape LS US Both

Observations 55 89 25

Note: This table presents an alternative classification of subjects
according to the shape of their weighting functions. Subjects are clas-
sified as having weighting functions with lower subadditivity (LS) if
w−1( 1

6 ) < w−1( 2
6 ) − w−1( 1

6 ). Subjects have weighting functions with

upper subadditivity (US) if 1 − w−1( 5
6 ) < w−1( 5

6 ) − w−1( 4
6 ). When

these two properties hold, subjects are classified in both.

is in line with the findings of Tversky and Fox (1995). Nevertheless, the proportion of
subjects for which Certainty exceeds Possibility is not negligible as it constitutes close to
32% of subjects.

I consider the possibility that subjects have CPT preferences with a reference point
equal to their earnings expectation in the first part of the experiment. The idea behind
this robustness check is to account for the possibility that subjects evaluate lotteries in
the second part of the experiment relative to their expected earnings in the first part of
the experiment. Supplemental Appendix D provides a detailed explanation of how these
beliefs were elicited in the experiment. All in all, I find that the aforementioned results
are robust to subjects having CPT preferences. In particular, for both domains there is
a large proportion of subjects with US and/or LS. Also, regardless of the domain, more
subjects exhibit weighting functions with the certainty effect being stronger than the
possibility effect. Previous versions of the paper provided these analyses in more detail
(see Gonzalez-Jimenez (2021)).

In conclusion, the analyses of the data at the individual level suggest that the ma-
jority of subjects have weighting functions with US or LS. Moreover, I find that less than
half of subjects exhibit both properties at the same time, which is a remarkable differ-
ence with respect to Bleichrodt and Pinto (2000). Finally, as in Abdellaoui (2000) and
Tversky and Fox (1995), I find that the certainty effect is stronger than the possibility
effect for a larger share of individuals.

Table 12. Classification of subjects according to
strength of possibility effect.

Shape Certainty Possibility Equal

Observations 107 55 10

Note: This table presents an alternative classification of subjects
according to the shape of their probability weighting function. Sub-
jects classified into Possibility have a weighting function with the
property 1 − w−1( 5

6 ) > w−1( 1
6 ). That is, the possibility effect is

stronger than the certainty effect. Instead, if 1 − w−1( 5
6 ) < w−1( 1

6 )
subjects were classified into Certainty. Their weighting function ex-
hibits a certainty effect that is stronger than the possibility effect. Fi-
nally, subjects with 1 −w−1( 5

6 ) =w−1( 1
6 ) were included in Equal.
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Appendix F: Additional analyses

F.1 Robustness of main results

Table 13. Regression of performance by round on treatments.

(1) (2) (3) (4)
Performance Performance Performance Performance

LowPr 1.674 1.656 1.937 1.600
(0.705) (0.741) (0.749) (0.739)

MePr 0.652 0.671 0.565 0.634
(0.645) (0.652) (0.642) (0.655)

HiPr 0.237 0.168 0.184 0.162
(0.595) (0.581) (0.582) (0.619)

Mixed U. 0.386 0.350 0.370
(0.654) (0.684) (0.657)

Convex U. 0.762 0.258 0.853
(0.997) (1.108) (1.027)

Concave U. 1.436 1.390 1.507
(0.928) (0.917) (0.935)

Overw. 1/6 0.852
(0.641)

Overw. 2/3 −2.013
(1.192)

Overw. 1/2 0.528
(1.285)

US 0.090
(0.509)

LS 0.292
(0.496)

Constant 6.369 6.213 6.153 6.081
(0.465) (0.484) (0.513) (0.502)

Round fixed effects Yes Yes Yes Yes
R2 0.070 0.083 0.103 0.084
Observations 1720 1720 1720 1720

Note: This table presents Random Effects estimates of model Performanceit = β0 + β1LowPr + β2MePr + β3HiPr +
Controls′
+ ∑10

t=1 γt + αi + εit , with E(εit |MepR, LowPr, HiPr, Controls) = 0. “Performance” is the number of calculations cor-
rectly solved by a subject i in each round t in the first part of the experiment. “LowPr,” “MePr,” and “HiPr” are binary variables
that indicate if a subject was assigned to the treatment offering stochastic contracts implemented with low, medium, or high
probability, respectively. “Piecerate” is the benchmark of the regression. Robust standard errors are presented in parentheses.
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Table 14. Regression of performance on treatments with continuous variables.

(1) (2) (3) (4) (5)
Performance Performance Performance Performance Performance

LowPr 16.739 16.103 18.279 15.506 16.044
(7.090) (7.179) (7.261) (7.150) (7.206)

MePr 6.522 6.730 5.574 6.339 6.979
(6.487) (6.444) (6.358) (6.475) (6.345)

HiPr 2.372 1.953 2.204 1.904 2.294
(5.985) (5.842) (5.925) (6.317) (5.800)

Curvature Utility 0.001 0.001 0.001 0.001
(0.000) (0.000) (0.000) (0.000)

Curvature Weighting −3.198
(2.654)

Overw. 1/6 9.989
(6.645)

Overw. 2/3 −20.130
(12.202)

Overw. 1/2 4.445
(13.246)

US 0.953
(5.140)

LS 3.288
(5.041)

Constant 81.378 76.146 74.881 74.407 75.628
(4.726) (5.285) (5.876) (5.752) (5.222)

R2 0.045 0.066 0.097 0.070 0.074
Observations 172 172 172 172 172

Note: This table presents OLS estimates of the model Performancei = β0 +β1LowPr +β2MePr +β3HiPr + Controls′
+ εi ,
with E(ε|MepR, LowPr, HiPr, Controls) = 0. “Performance” is the number of calculations correctly solved by a subject in the first
part of the experiment, “LowPr,” “MePr,” and “HiPr” are binary variables that indicate if a subject was assigned to the treatment
offering stochastic contracts implemented with low, medium, or high probability, respectively. “Piecerate” is the benchmark of
the regression. “Curvature Utility” measures each subject’s average deviation from the expected value of the lotteries presented
in the second part of the experiment. “Curvature Weighting” measures each subject’s deviation from the objective probabilities
implied by the lotteries in the second part of the experiment. Robust standard errors are presented in parentheses.
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Table 15. Nonparametric regression of performance.

(1) (2) (3) (4)
Performance Performance Performance Marginal effects

LowPr 11.649 12.667 8.621
(5.143) (5.938) (3.920)

LowPr 3.116
× Likelihood Ins. (1.383)

LowPr −0.388
* Optimism (1.326)

MePr 4.573 4.604 3.243
(4.261) (5.430) (3.609)

MePr 2.034
× Likelihood Ins. (1.718)

MePr −0.303
× Optimism (0.984)

HiPr 1.684 0.301 0.009
(4.523) (4.563) (3.738)

HiPr −0.256
× Likelihood Ins. (1.506)

HiPr −1.290
× Optimism . (0.937)

Likelihood Ins. 1.445 1.010
(1.327) (1.735)

Optimism −0.797 −1.142
(0.891) (1.170)

Concave U. 1.219 1.413
(0.914) (1.097)

Convex U. 0.201 0.384
(0.198) (0.325)

Mixed U. 0.193 0.243
(0.444) (0.677)

Mean 87.665 87.241 87.380
(2.416) (2.382) (2.335)

Method Nonpara- Nonpara- Nonpara-
metric metric metric

N 172 172 172 172

Note: This table presents estimates of a nonparametric regression using a B-spline basis. The model to be estimated is:
Performancei = β0 + β1LowPr ∗ Likelihood ins. + β2LowPr ∗ Optimism + β3LowPr + β4MePr + β5HiPr + β6Likelihood ins. +
β7Optimism + Controls′ + εi , with E(εi|MePr, LowPr, HiPr, Piecerate, Optimism, Likelihood ins., Controls) = 0. “Perfor-
mance” is the number of calculations correctly solved by a subject in the first part of the experiment, “LowPr,” “MePr,” and
“HiPr” are binary variables that indicate if a subject was assigned to a treatment offering a stochastic contract implemented
with low, medium, or high probability, respectively. “Piecerate” is the benchmark of the regression. “Likelihood ins.” is a binary
variable that takes a value of one if the subject is likelihood insensitive and zero otherwise. “Optimism” is a binary variable
that takes a value of one if the subject displays optimism and zero otherwise. Columns (1)–(3) present estimates of different
specifications. Column (4) presents average marginal effects that capture the effect of a subject becoming optimistic or likeli-
hood insensitive for each of the treatments. Marginal effects are computed using the estimates presented in column (3). Robust
standard errors are presented in parentheses.
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Table 16. Parametric estimates of the probability
weighting function using other functions.

Panel 1: w(p) = pψ

(pψ+(1−p)ψ )
1
ψ

ψ̂

0.599
(0.016)

Adj. R2 0.838
N 860

Panel 2: w(p) = δpγ

δpγ+(1−p)γ

γ̂ δ̂

0.281 0.922
(0.025) (0.021)

Adj. R2 0.864
N 860

Note: This table presents the subject’s average probability weight-
ing function when different parametric forms are assumed. Panel 1
presents nonlinear least squares estimates of the model w(p) =

pψ

(pψ+(1−p)ψ )
1
ψ

. Panel 2 presents the nonlinear least squares esti-

mates of the function δpγ

δpγ+(1−p)γ
. Robust standard errors are pre-

sented in parentheses.
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Table 17. The influence of continuous probability overweighting on treatment effects.

(1) (2) (3) (4) (5) (6)
Performance Performance Performance Performance Performance Performance

LowPr × Curvature 9.299 10.906
Weighting (5.073) (4.916)

LowPr × Curvature 18.700 17.776
WeightingS (10.353) (10.309)

LowPr × Curvature 6.090 7.750
WeightingM (11.944) (12.453)

Curvature Weighting −3.777 −14.348
(2.887) (6.392)

Curvature WeightingS −14.606 −8.209 −16.209 −10.462
(6.827) (6.239) (6.713) (6.167)

Curvature WeightingM 5.014 2.845 16.714 4.887 2.352
(6.908) (7.636) (11.138) (6.921) (7.490)

Curvature WeightingL 1.107 1.121 13.125 1.651 1.690
(13.834) (14.022) (14.280) (13.178) (13.279)

LowPr 15.273 12.292 7.613 13.945 12.317 4.879
(7.296) (8.108) (18.268) (7.674) (8.350) (18.712)

MePr 6.770 6.982 6.756 7.546 7.411 7.219
(6.449) (6.603) (6.654) (6.717) (6.707) (6.756)

HiPr 2.869 3.893 3.190 3.185 3.280 2.582
(6.015) (6.499) (6.496) (6.299) (6.316) (6.311)

Convex U. 4.419 5.326 9.913
(12.420) (10.260) (14.198)

Mixed U. 7.736 6.607 6.942
(6.984) (7.000) (6.941)

Concave U. 15.476 14.819 15.630
(8.724) (8.994) (9.137)

Constant 81.930 78.339 79.683 60.216 76.937 78.824
(4.745) (11.384) (12.236) (15.493) (11.610) (12.333)

Wald test of
CurvatureW vs. p= 0.068 p= 0.028 p= 0.840 p= 0.008 p= 0.023 p= 0.739
LowPr * CurvatureW

R2 0.060 0.069 0.056 0.092 0.088 0.078
Observations 172 172 172 172 172 172

Note: This table presents OLS estimates of the model Performancei = β0 +β1LowPr+β2Curv∗LowPr+β3Curv+β4MePr+
β5HiPr + Controls′
 + εi , with E(ε|MePr, LowPr, HiPr, Controls) = 0. “Performance” is the number of calculations correctly
solved by a subject in the first part of the experiment, “LowPr,” “MePr,” and “HiPr” are binary variables that indicate if a subject
was assigned to the treatment offering stochastic contracts implemented with low, medium, or high probability, respectively.
“Piecerate” is the benchmark of the regression. “Curvature Weighting” measures probability overweighting w(p)j − pj for all

five measurements of probability. “Curvature WeightingS” measures probability overweighting w(p) − p for p= 1
6 and p= 1

3 .

“Curvature WeightingM” measures probability overweighting w(p)j − pj for p = 1
2 and p = 2

3 . Robust standard errors are
presented in parentheses.
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Table 18. The influence of likelihood insensitivity and optimism on treatment effects.

(1) (2) (3) (4) (5) (6)
Performance Performance Performance Performance Performance Performance

LowPr 21.944 23.815
×Likelihood Ins. (9.031) (8.992)

LowPr 6.713 10.829
×Optimism (12.115) (12.007)

LowPr 21.251 16.533 13.288 21.752 15.935 17.546
(7.624) (13.045) (11.622) (7.637) (11.492) (9.103)

MePr 12.596 11.795
×Likelihood Ins. (9.693) (9.221)

MePr 0.105 −0.344
× Optimism (10.773) (9.956)

MePr 12.301 10.394 8.244 12.347 14.741 13.355
(6.925) (8.415) (11.250) (6.906) (8.486) (8.905)

HiPr 3.807 2.260
×Likelihood Ins. (6.825) (6.537)

HiPr −8.421 −13.911
× Optimism (7.274) (6.212)

HiPr 4.903 5.085 5.278 5.739 11.517 12.807
(5.727) (8.684) (8.266) (5.738) (8.413) (7.158)

Likelihood Ins. 0.964 −0.979 1.877 −1.469 0.934 −1.419
(4.765) (8.967) (5.069) (4.690) (9.054) (4.714)

Optimism −2.336 −1.991 −6.969 −0.580 −0.635 2.166
(4.852) (5.113) (9.549) (4.851) (4.897) (9.872)

Mixed U. 6.489 6.825 5.872 6.683 7.726 6.311
(7.396) (7.578) (7.221) (7.362) (7.554) (6.972)

Convex U. 6.679 5.994 11.419 8.263 6.140 13.396
(10.673) (11.029) (12.006) (10.488) (11.092) (11.229)

Concave U. 16.562 16.359 14.646 16.035 14.600 14.601
(9.368) (9.493) (10.075) (9.135) (8.999) (8.924)

Constant 75.106 76.062 77.416 75.454 74.045 74.477
(5.697) (6.433) (7.125) (5.210) (5.774) (5.465)

Parametric family Prelec (1998) Prelec (1998) Prelec (1998) Goldstein
and Einhorn

(1987)

Goldstein
and Einhorn

(1987)

Goldstein
and Einhorn

(1987)
Likelihood ins. α̂ < 1 α̂ < 1 α̂ < 1 ĝ < 1 ĝ < 1 ĝ < 1
Optimist β̂ < 1 β̂ < 1 β̂ < 1 δ̂ > 1 δ̂ > 1 δ̂ > 1

R2 0.099 0.100 0.108 0.095 0.104 0.118
Observations 156 156 156 157 157 157

Note: This table presents the OLS estimates of the model Performancei = β0 + β1LowPr ∗ Likelihood ins. +
β2LowPr ∗ Optimism + β3LowPr + β4MePr + β5HiPr + β6Likelihood ins. + β7Optimism + Controls′ + εi , with
E(εi|MePr, LowPr, HiPr, Piecerate, Optimism, Likelihood ins., Controls) = 0. “Performance” is the number of calculations
correctly solved by a subject in the first part of the experiment, “LowPr,” “MePr,” and “HiPr” are binary variables that indicate
if a subject was assigned to a treatment offering a stochastic contract implemented with low, medium, or high probability,
respectively. “Piecerate” is the benchmark of the regression. “Likelihood ins.” is a binary variable that takes a value of one if the
subject is classified as likelihood insensitive and zero otherwise. “Optimist” is a binary variable that takes a value of one if the
subject displays optimism and zero otherwise. Robust standard errors in parenthesis. In columns (1)–(3), Likelihood ins. and

Optimism are constructed with the nonlinear least squares estimates of the function w(pj ) =
δp
γ
j

δpγ+(1−pj )γ
estimated for each

subject. In columns (4)–(6), likelihood insensitivity and optimism are constructed using the nonlinear least squares estimates
of the function w(p) = exp(−β(− ln(p))α ) estimated for each subject. Robust standard errors are presented in parentheses.
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Table 19. The influence of continuous likelihood insensitivity and optimism on treatment ef-
fects.

(1) (2) (3) (4)
Performance Performance Performance Performance

LowP × (1 − ŝ) −0.879 0.207
(3.950) (3.804)

MePr × (1 − ŝ) −1.573 −1.015
(4.155) (4.201)

HiPr × (1 − ŝ) −4.919 −5.197
(1.317) (1.390)

LowPr × 2ĉ+ŝ
2 6.921 12.871

(4.768) (5.511)
MePr × 2ĉ+ŝ

2 −22.138 −17.172
(15.153) (16.230)

HiPr × 2ĉ+ŝ
2 −10.618 −7.920

(11.773) (9.710)
1 − ŝ −8.005 −7.911 −4.811 −4.806

(2.572) (2.590) (1.332) (1.310)
2ĉ+ŝ

2 −2.517 1.314 13.203 13.187
(7.407) (7.693) (10.990) (10.523)

LowPr 16.458 15.801 20.203 17.075
(7.609) (7.250) (8.335) (8.104)

MePr 4.944 4.893 21.359 18.721
(6.924) (6.746) (11.732) (11.740)

HiPr 0.180 0.302 11.409 10.279
(5.795) (5.701) (8.732) (7.936)

Optimism −2.517 1.314
(7.407) (7.693)

Mixed U. 3.462 2.829
(6.636) (6.826)

Concave U. 13.550 14.001
(9.828) (9.962)

Convex U. 6.553 8.483
(10.675) (10.753)

Curvature U. 0.001 0.001
(0.000) (0.000)

Constant 82.323 76.349 74.696 70.845
(6.070) (6.766) (6.689) (6.613)

Wald test
LowPr + LowPr ∗ (1 − ŝ) vs. 1 − ŝ p= 0.013 p= 0.007
LowPr + LowPr ∗ 2c+s

2 vs. 2c+s
2 p= 0.227 p= 0.138

R2 0.105 0.113 0.113 0.117
Observations 170 170 170 170

Note: This table presents the OLS estimates of a regression relating each subject’s performance on the real-effort task, the
assignment to the treatments, and indexes of optimism and likelihood insensitivity. “Performance” is the number of calcula-
tions correctly solved by a subject in the first part of the experiment, “LowPr,” “MePr,” and “HiPr” are binary variables that
indicate if a subject was assigned to a treatment offering a stochastic contract implemented with low, medium, or high proba-
bility, respectively. “Piecerate” is the benchmark of the regression. 1 − ŝ is an index of likelihood insensitivity. 2c+s

2 is an index
of optimism. Estimates c and s are obtained from a truncated regression of the model w(pj ) = c + spj + ε estimated for each
subject. Robust standard errors are presented in parentheses.
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F.2 Descriptions and comparisons with previous studies

Panel 1 in Table 4 presents the estimates of a truncated regression of the neo-additive
function, w(p) = c+ sp.35 The resulting estimates display ĉ > 0 and ĉ+ ŝ < 1, which im-
ply that subjects on average overweighted small probabilities and underweighted large
probabilities. Furthermore, ĉ and ŝ are larger and smaller, respectively, than the esti-
mates reported in Abdellaoui, Baillon, Placido, and Wakker (2011), suggesting that sub-
jects in my experiment exhibit higher degrees of optimism toward risk as well as higher
degrees of likelihood insensitivity.

A more traditional parametric representation of the probability weighting function
was proposed by Tversky and Kahneman (1992). Their proposal relates probabilities
and their associated weights according to the following nonlinear function: w(p) =

pψ

(pψ+(1−p)ψ )
1
ψ

. The first panel of Table 16 shows that the nonlinear least squares method

generates an estimate ψ̂= 0.59, which is lower than those reported in previous studies.
Specifically, classical experiments report estimates in the range 0.60–0.75 (Bleichrodt
and Pinto (2000), Abdellaoui (2000), Wu and Gonzalez (1996), Tversky and Kahneman
(1992)). Therefore, subjects in my experiment display a weighting function with more
severe probability distortion.

A crucial disadvantage of Tversky and Kahneman’s (1992) weighting function is that
likelihood insensitivity and optimism/pessimism influence ψ, so their effect on prob-
abilistic risk attitudes cannot be identified. To overcome such disadvantage, I also use
the log-odds weighting function proposed by Goldstein and Einhorn (1987), w(p) =

δpγ

δpγ+(1−p)γ , which can, up to some extent, separate these two components. The esti-
mates of a nonlinear least squares regression are presented in panel 2 of Table 16. The
magnitude of ĝ indicates that the average weighting function has a strong inverse-S
shape and the magnitude of δ̂ an strikingly small degree of pessimism. These coeffi-
cients are lower and higher, respectively, than those found in previous studies (Bruhin,
Fehr-Duda, and Epper (2010), Bleichrodt and Pinto (2000), Abdellaoui (2000), Gonzalez
and Wu (1999), Wu and Gonzalez (1996), Tversky and Fox (1995)). Thus, subjects in the
experiment had an average weighting function with more likelihood insensitivity and
optimism than previously documented.

Lastly, I also estimate a regression assuming Prelec’s (1998) probability weighting
function with two parameters,w(p) = exp(−β(− ln(p))α ). This parametric function also
separates, up to some extent, optimism from likelihood insensitivity. Panel 3 in Table 4
presents the estimates of a nonlinear least squares regression. The estimate α̂, which is
statistically lower than one, entails that the average probability function has a strong
inverse-S shape. Moreover, the estimate β̂, which is also statistically lower than one,
entails that subjects on average display optimism. Previous estimations of this proba-
bility weighting function report larger values of α and β (Murphy and Brincke (2018),
L’Haridon, Aycinena, Vieider, Belianin, and Bandur (2018), Fehr-Duda and Epper (2012),
Abdellaoui et al. (2011), Bleichrodt and Pinto (2000)). Hence, these subjects display an

35The assumed truncation at the extremes, w(0) and w(1), provides the estimation with the flexibility to
admit weighting functions with S-shape.
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average probability weighting function with a stronger inverse-S shape and more opti-
mism as compared to previous studies.

Appendix G: Instructions

This is an experiment in the economics of decision-making. The instructions are simple
and if you follow them carefully and make certain decisions, you might earn a consid-
erable amount of money, which will be paid to you via bank transfer at the end of the
experiment. The amount of money that you earn will depend on your decisions and ef-
fort, and partly on chance. Once the experiment has started, no one is allowed to talk to
anybody other than the experimenter. Anyone who violates this rule will lose his or her
right to participate in this experiment. If you have further questions when reading these
instructions, please do not hesitate to raise your hand and formulate the question to the
experimenter.

The experiment consists of two parts. Your earnings in part 1 or part 2 of the ex-
periment will be chosen at the end of the experiment and become your final earnings.
Whether the earnings of part1 or the earnings of part 2 will be your final earnings will be
established by roll of a die.

Part 1 of the experiment

In this part of the experiment, your task is to complete summations. Your earnings in
this part of the experiment depend only on the number of correct summations that you
deliver. You need to complete as many summations as you can in 10 rounds, each round
lasts four minutes. In other words, you will have a total of 40 minutes to complete as
many summations as you can.

Each summation consists of five two-digit numbers. For example, 11+22+33+44+
55 =? Once you know the answer to the sum of these five two-digit numbers, input the
answer in the interface, click OK, and a new set of numbers will appear on your screen.

For your better understanding, you will face with two examples next.

[Examples displayed]

The previous examples show what you have to do in this part of the experiment.
The only thing left to be explained is to specify how you are going to earn money by
completing the summations.

Piecerate treatment payment rule: In this part of the experiment, each correct sum-
mation will add 25 euro cents to your experimental earnings.

Remember: You have 40 minutes to complete summations, and only correct summa-
tions will count toward your earnings at a rate of 25 euro cents each. If you understood
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these instructions, press “OK.” When everyone is ready, we will start with this part of the
experiment.

LowPr treatment payment rule: In this part of the experiment, 1 out of all the 10
rounds will be randomly chosen. The specific round is chosen at random by the com-
puter at the end of this part of the experiment. This is, once you completed summations
in all the 10 rounds, only the correct summations in a randomly chosen round will count
toward your earnings at a rate of 250 euro cents per correct summation.

Remember: You have 40 minutes to complete summations, and only correct sum-
mations in 1 specific round, chosen randomly by the computer at the end of the experi-
ment, will count toward your earnings at a rate of 250 euro cents each. If you understood
these instructions, press “OK.” When everyone is ready, we will start with this part of the
experiment.

MePr Ttreatment payment rule: In this part of the experiment, 3 out of all the 10
rounds will be randomly chosen. The specific rounds are chosen at randomly by the
computer at the end of this part of the experiment. This is, once you completed summa-
tions in all the 10 rounds, only the correct summations in that randomly chosen round
will count toward your earnings at a rate of 85 euro cents per correct summation.

Remember: You have 40 minutes to complete summations, and only correct sum-
mations in 3 specific rounds, chosen randomly by the computer at the end of the exper-
iment, will count toward your earnings at a rate of 85 euro cents each. If you understood
these instructions, press “OK.” When everyone is ready, we will start with this part of the
experiment.

HiPr treatment payment rule: In this part of the experiment, 5 out of all the 10 rounds
will be randomly chosen. The specific rounds are chosen at random by the computer at
the end of this part of the experiment. This is once you completed summations in all
the 10 rounds, only the correct summations in that randomly chosen round will count
toward your earnings at a rate 50 euro cents per correct summation.

Remember: You have 40 minutes to complete summations, and only correct sum-
mations in 5 specific rounds, chosen randomly by the computer at the end of the exper-
iment, will count toward your earnings at a rate of 50 euro cents each. If you understood
these instructions, press “OK.” When everyone is ready, we will start with this part of the
experiment.

[First part of the experiment taking place]

Belief elicitation
We are interested in knowing your belief about the amount of correct summations

that you performed. Please enter that estimate below. If your estimate is correct, that is,
it is exactly equal to the total amount of summations over the 10 rounds, you will gain 1
euro. Otherwise, you will receive nothing.
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Part 2 of the experiment

In this part of the experiment, your task is to choose among two possible alternatives.
Your earnings on this part of the experiment depend on how good your choices are.
Particularly, you will face with 11 decision sets. In each of these sets, you need to choose
between the option L, that delivers a fixed amount of money, and the option R that is a
lottery between two monetary amounts. Each decision set contains six choices.

Be careful! Every time you make a choice between L and R, the monetary prizes of the
options are going to change and you ought to make a choice again. One of your choices
will be randomly picked by the computer, will be played, and its realization will count
toward your earnings for this part of the experiment. You will be faced with one example
next.

[Example displayed]

If it is clear what you have to do in this part of the experiment, press “OK” to start.
Once everyone is ready, this part of the experiment will begin.

[Second part of the experiment taking place]

Survey

In the last part of the experiment, we would like to know some information about you.
Please fill the following survey:

• Gender:

• Age:

• What is your education level? (Bachelor, Exchange, Pre-Master, Master, PhD):

• What is the name of your program of studies?

• How difficult did you find the task? (where 1 stands for easy and 5 for very difficult)

• Rate how confident you are that you can do the task good enough so you can be
in the top half of performers in this group as of now. (1—Not confident, 10—Very
confident)

• Are you any good at adding numbers? (1—Not good at all, 10—Very good)

• Are you generally a person who is fully prepared to take risks or do you try to avoid
taking risks?

• Rate yourself from 0 to 10, where 0 means “unwilling to take any risks” and 10 means
“fully prepared to take risks.”
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• People can behave differently in different situations. How would you rate your will-
ingness to take risks while driving? Rate yourself from 0 to 10, where 0 means “un-
willing to take any risks” and 10 means “fully prepared to take risks.”

• How would you rate your willingness to take risks in financial matters? Rate your-
self from 0 to 10, where 0 means “unwilling to take any risks” and 10 means “fully
prepared to take risks.”

• How would you rate your willingness to take risks with your health? Rate yourself
from 0 to 10, where 0 means “unwilling to take any risks” and 10 means “fully pre-
pared to take risks.”

• How would you rate your willingness to take risks in your occupation? Rate your-
self from 0 to 10, where 0 means “unwilling to take any risks” and 10 means “fully
prepared to take risks.”

• How would you rate your willingness to take risks in your faith in other people? Rate
yourself from 0 to 10, where 0 means “unwilling to take any risks” and 10 means
“fully prepared to take risks.”
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