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Abstract
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1 Introduction

The Global Financial Crisis triggered a strong renewed interest in understanding the causes,

consequences, and remedies of financial crises. In this context, dynamic stochastic gen-

eral equilibrium (DSGE) models with occasionally binding financial frictions or stochastic

volatility proved successful as laboratories for studying the anatomy of both business cycles

and crises and exploring optimal policy responses to these dynamics. This success is be-

cause occasionally binding financial frictions are mechanisms that create an amplification of

regular business cycle dynamics. At the same time, a now large literature has shown that

uncertainty modeled as stochastic volatility also contributes to cycles and crises, capturing

fat tails and skewness in the data. The structural estimation of these models is important

for inference on key parameters governing financial frictions and exogenous processes and

the decomposition of important historical episodes, yet it is very challenging.

In this paper, we develop a new model of cycles and crises in emerging markets, featuring

an occasionally binding borrowing constraint and stochastic volatility, and estimate it with

quarterly data for Mexico since 1981. The paper makes three contributions. First, we

propose a new specification of the occasionally binding collateral constraint that permits

matching crises of different durations and intensities. Second, we develop a perturbation

solution method suitable for solving models like ours in a way that allows for likelihood-

based estimation. Third, we apply the proposed framework to investigate sources of business

cycles and crises in Mexico since 1981–a case studied most often as a typical emerging market

economy.

As a first step, we propose a new formulation of occasionally binding constraint models.

As in the traditional specification of such models, our setup has two states or regimes:

in the first, limited leverage amplifies regular shocks and gives rise to fire sales and debt-

deflation dynamics; in the second, access to financing is unconstrained, and the economy

displays regular business cycles. However, in our specification, the transitions between the

two regimes depend on a range rather than a unique level of leverage, with endogenous

switching probabilities that are a function of the borrowing capacity of the economy and the

multiplier associated with the leverage constraint. This formulation maps the model with an

occasionally binding leverage constraint into an endogenous regime-switching model. The

paper focuses on a particular constraint and type of crisis, the so-called sudden stop in capital

flows, but the proposed specification has broader applicability to other types of occasionally

binding constraints and frictions. For example, our proposed approach could be applied to

the formulation and estimation of models with housing constraints, downward wage rigidity,

or the zero lower bound.
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Figure 1: Current Account and GDP in Mexico, 1981-2016
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(b) Quarterly GDP Growth Rate
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Note: Panel (a) plots Mexico’s current account balance as a share of GDP. Panel (b) shows Mexico’s

quarterly log-change of real GDP. The light gray regions denote the periods of currency or external debt

crisis according to Reinhart and Rogoff (2009), which we call the External Crisis Tally Index. See the

Supplementary Appendix for data sources. Sample period 1981:Q1-2016:Q4.

Next, we develop a perturbation-based solution method to solve the endogenous regime-

switching model. The perturbation method is fast enough to permit likelihood-based esti-

mation, is scalable to models larger than the one we estimate in this paper, and displays

typical levels of accuracy. We also analytically show that approximating the model solution

to the second-order is necessary and sufficient to capture at least some of the effects of the

endogenous transition probabilities on the model’s policy functions, including precautionary

behavior, and that these effects would be missed by linear approximations or exogenous

regime switching models. The second-order solution also allows us to capture the effects

of regime shifts in the volatility of exogenous shocks. Again, the solution method that we

develop can be applied to a wide range of models with endogenous regime-switching.

Finally, we apply the framework that we developed to the Bayesian estimation and anal-

ysis of Mexico’s history of cycles and sudden stop crises since 1981. The Mexican economy

is a particularly interesting laboratory because many of the seminal contributions to the

literature on business cycles and crises in emerging markets previously studied this case.

Figure 1 plots two critical Mexican data macroeconomic series: the current account balance

as a share of GDP and the quarterly real GDP growth. The figure also indicates as (gray)

shaded areas Mexico’s periods of currency and external debt crisis identified in Reinhart
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and Rogoff (2009). The figure illustrates the regular fluctuations in the data, as well as

the multiple episodes of large current account reversals and output growth declines. Large

current account reversals and output drops of heterogeneous size and persistence are the two

main empirical features commonly associated with sudden stops in capital flows, not only in

Mexico but also in many other emerging markets. In this paper, we focus on the challenge

of fitting a structural model to Mexico’s business cycle and sudden stop history without

imposing ad hoc restrictions on the magnitude or persistence of these episodes. The figure

also displays the marked shift in the volatility of the economy both before and after the

mid-1990s and during certain periods of time, which may not be captured by an occasionally

binding borrowing constraint or financial shocks.

Despite the econometric challenges in characterizing data like those shown in Figure 1,

our estimated model fits Mexico’s business cycles and sudden stop episodes well, without

systematically relying on large shocks to explain crises, but instead letting the economic

structure of the model explain those events. The inclusion of stochastic volatility helps us to

distinguish between the binding constraint and periods of more volatile shocks as drivers of

fluctuations. The model produces business cycle statistics that match the second moments of

the data and yields evidence that neither productivity nor interest rate shocks are the most

important drivers of Mexico’s business cycles. Most importantly, our specification of the

collateral constraint identifies crisis episodes and dynamics of varying duration and intensity

that match the crisis periods identified with a narrative approach in Reinhart and Rogoff

(2009).

Related Literature Our paper is connected to several strands of literature. The paper

relates to the large literature on the Bayesian estimation of DSGE models (for example,

Schorfheide, 2000; Otrok, 2001; Smets and Wouters, 2007; Iacoviello and Neri, 2010; Bianchi,

2013). We extend that successful approach to models with occasionally binding collateral

constraints, which have become the benchmark for normative analysis of macro-prudential

optimal policy.

Our paper is closely related to the empirical work in Bocola (2016), where the model

is solved with global methods and estimated. However, that estimation exercise is made

possible by first estimating the model outside the crisis, and then appending an estimate of

the crisis in a second step. While this procedure does not matter for the specific application

in Bocola (2016), it is not necessarily applicable more generally. Our approach permits joint

estimation of the model inside and outside the crises and is potentially scalable to larger and

more complex models, while maintaining a satisfactory level of accuracy relative to global

solution methods.
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The paper is also closely related to the literature on likelihood-based estimation of Markov

switching DSGE models initiated by the seminal contribution of Bianchi (2013), and applied

in Bianchi and Ilut (2017) and Bianchi et al. (2018). The filter we use in estimation differs

in two key respects. First, our regime-switching transition matrix is endogenous. Second,

conditional on the regime, we solve the model to the second order. So we employ the Sigma

Point Filter to evaluate the likelihood function in place of the modified Kalman filter in

Bianchi (2013).

In the literature on Markov-switching DSGE models, our paper builds on the method

proposed by Foerster et al. (2016), who developed perturbation methods for the solution of

exogenous regime-switching models. The perturbation approach that we propose allows for

second- and higher-order approximations that go beyond the linear models studied by Davig

and Leeper (2007) and Farmer et al. (2011). In fact, we show that at least a second-order

approximation is necessary in order to capture the effects of the endogenous switching.

The paper is naturally related to the literature that focuses on endogenous regime-

switching models. Davig and Leeper (2008), Davig et al. (2010), and Alpanda and Ueberfeldt

(2016) all consider endogenous regime-switching but employ global solution methods that

hinder likelihood-based estimation. Lind (2014) develops a regime-switching perturbation

approach for approximating non-linear models, but it requires repeatedly refining the points

of approximation and hence it is not suitable for estimation purposes.

Here, our paper relates closely to OccBin, a set of procedures for the solution of models

with occasionally binding constraints, developed in Guerrieri and Iacoviello (2015). OccBin

is a certainty equivalent solution method that captures non-linearities but not precautionary

effects, which are a critical feature of models with occasionally binding collateral constraints.1

A key feature of our approach is to preserve precautionary saving effects, as agents in the

model adjust their behavior due to the presence of the constraint even when the constraint

does not bind, and vice versa.

The specification of the inequality constraint and the accompanying solution method

that we propose can be applied to models with occasionally binding zero-lower bound on

interest rates (for example, Adam and Billi, 2007; Aruoba et al., 2018; Atkinson et al., 2018).2

Existing methods for the estimation of such models may limit scalability due computational

costs (Gust et al., 2017). The approach we propose is scalable and applicable to large models.

The application of the methodology that we propose relates to the literature on emerg-

1Cuba-Borda et al. (2019) study how the solution method and likelihood misspecification interact and
possibly compound each other.

2An occasionally binding zero-lower bound is not comparable to the constraint with endogenous collateral
value that we estimate in this paper. Indeed, endogenous collateral valuation features different amplification
mechanisms and entails additional computational complexities.
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ing market business cycles, which includes Aguiar and Gopinath (2007), Mendoza (2010),

Garcia-Cicco et al. (2010), Fernandez-Villaverde et al. (2011), among others. Encompass-

ing most shocks previously considered, we consider transitory and permanent technology,

preference, expenditure, interest rate, and terms of trade shocks in our analysis. We allow

for regime switching in the volatility of shocks as in (Liu et al., 2011; Bianchi, 2013) since

stochastic volatility has been shown to be an important feature of emerging markets data

(Fernandez-Villaverde et al., 2011). Relative to Mendoza (2010), we provide a Bayesian esti-

mation of the model and consider a wider set of structural shocks. Relative to Garcia-Cicco

et al. (2010), we empirically evaluate the relative importance of interest rate shocks by mod-

eling the amplification induced by financial frictions with an occasionally binding borrowing

constraint.

The rest of the paper is organized as follows. Section 2 describes the model and discusses

the proposed formulation of the collateral constraint and stochastic volatility. Section 3

presents our perturbation solution method for endogenous regime-switching models. Section

4 describes the Bayesian estimation procedure and reports the estimation results. Section 5

discusses the main empirical results on the analysis of Mexico’s business cycle and history of

sudden stop crises. Section 6 concludes. Technical details and additional results are reported

in the appendix and in the Supplementary Appendix (Benigno et al., 2024).

2 The Model

The framework is a medium-scale model for the analysis of business cycles and sudden-stop

crises in emerging market economies. The model is a small, open production economy as

in Mendoza (2010) with endogenous labor supply, investment, and an occasionally binding

collateral constraint. We consider a large set of shocks as in Garcia-Cicco et al. (2010),

including permanent and temporary productivity shocks (Aguiar and Gopinath, 2007), in-

tertemporal preference, expenditure, interest rate, and terms of trade shocks. The model

also features stochastic volatility in all shocks (Fernandez-Villaverde et al., 2011).

In the rest of this section, we briefly state the optimization problem of the representative

household-firm and then discuss the specification of the borrowing constraint and the shock

processes, which are the novel features of our model. The derivation of the equilibrium

conditions and the formal definition of the competitive equilibrium of the economy are in

Appendix A.

6



2.1 Preferences, Constraints, and Shock Processes

There is a representative household-firm that maximizes the following utility function:

U = E0

∞∑
t=0

dtβt
(
Ct − Zt−1

Hω
t

ω

)1−ρ
− 1

1− ρ

 , (1)

where Ct denotes consumption and Ht the supply of labor. The utility depends on an ex-

ogenous and stochastic preference shock dt, and the permanent technology level Zt−1, which

follow the processes specified below.3 The household-firm chooses consumption, labor, capi-

tal Kt, imported intermediate inputs Vt given an exogenous stochastic for their relative price

Pt also specified below, and holdings of real one-period international bonds, Bt. Negative

values of Bt indicate borrowing from abroad. The household-firm can borrow in international

markets by issuing one-period bonds that pay a market or country net interest rate rt.

The household-firm faces the following budget constraint:

Ct + It + Et = Yt − φrt (WtHt + PtVt)−
1

(1 + rt)
Bt +Bt−1, (2)

where Yt is gross domestic product (GDP) given by

Yt = AtK
η
t−1 (ZtHt)

α V 1−α−η
t − PtVt. (3)

Here, At denotes a stationary, exogenous, and stochastic level of technology, and Zt is a non-

stationary, exogenous, and stochastic level of technology. Et is an exogenous and stochastic

expenditure process possibly interpreted as a fiscal or net export shock as in Garcia-Cicco

et al. (2010). The term φrt (WtHt + PtVt) describes a working capital constraint, stating that

a fraction of the wage and intermediate goods bill must be paid in advance of production with

borrowed funds. The relative price of labor and capital are given by Wt and qt, respectively,

both of which are endogenous but taken as given by the individual household-firm. Capital

accumulation depends on investment It and is subject to adjustment costs:

Kt = (1− δ)Kt−1 + It −
ι

2

(
Kt − ΛkKt−1

Kt−1

)2

Kt−1, (4)

where Λk denotes the growth rate of capital along the economy’s balanced growth path

(BGP).

3Scaling hours worked by Zt−1 permits obtaining a balanced growth path with GHH preferences (see, for
example, Garcia-Cicco et al., 2010).
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All exogenous processes have stochastic volatility, depending on a regime indicator sσt ∈
{H,L}, where H and L signify a high and low volatility regime, respectively, as in Liu et al.

(2011) or Bianchi (2013), among others. The preference process follows

log dt = ρd log dt−1 + σd(s
σ
t )εd,t. (5)

The stationary technology process follows

logAt = (1− ρA) logA∗ + ρA logAt−1 + σA(sσt )εA,t. (6)

The permanent technology process follows

∆ logZt = (1− ρz) logZ∗ + ρz∆ logZt−1 + σz(s
σ
t )εz,t. (7)

The interest rate process follows

rt = (1− ρr) r∗ + ρrrt−1 + σr(s
σ
t )εr,t. (8)

The process for the relative price of intermediate goods follows

logPt = (1− ρP ) logP ∗ + ρP logPt−1 + σP (sσt )εP,t. (9)

Finally, the process for the exogenous component of expenditure follows Et = et/Zt−1, where

log et = (1− ρe) log e∗ + ρe log et−1 + σe(s
σ
t )εe,t. (10)

The starred variables and the ρ coefficients denote the unconditional mean values and the

persistence parameters of these processes, respectively. The ε are assumed i.i.d. N(0, 1)

innovations, and the σ parameters control the size of their variances. The transition matrix

of the volatility regimes, Pσ, is exogenous and given by:

Pσ =

[
P σ
LL 1− P σ

LL

1− P σ
HH P σ

HH

]
,

where P σ
ij = Pr

(
sσt+1 = j|sσt+1 = i

)
.
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2.2 The Occasionally Binding Borrowing Constraint: An Endoge-

nous Regime-Switching Specification

As in typical models with occasionally binding inequality constraints, the economy fluctuates

between two states or regimes. In one state, denoted sct = 1 and called the binding or

constrained regime, the following constraint on total borrowing binds strictly:

1

(1 + rt)
Bt − φ (1 + rt) (WtHt + PtVt) = −κqtKt, (11)

with λt denoting the corresponding multiplier. Total debt includes borrowing for consump-

tion smoothing plus working capital for the purchase of intermediate inputs and labor for

production. Constrained working capital limits the supply response of the economy to shocks

in the binding regime. In the other state, denoted sct = 0 and called the non-binding or un-

constrained regime, the borrowing limit is slack and λt = 0, and the only constraint is the

natural debt limit.

Given these two regimes, which represent the occasionally binding nature of the con-

straint, we characterize the transition between them stochastically in the sense that, for given

values of capital, bond holding, and exogenous processes, there is an endogenous probability

of switching between the two regimes. This formulation contrasts with the deterministic

relationship between leverage and the regime for given values of endogenous and exogenous

state variables in a typical occasionally binding specification. In particular, we assume that

the probabilities of switching from one regime to the other follow a logistic function of a

restricted subset of the endogenous state variables in the model.4

Define the “borrowing cushion,” B∗t , as the distance of actual borrowing from the debt

limit:

B∗t =
1

(1 + rt)
Bt − φ (1 + rt) (WtHt + PtVt) + κqtKt, (12)

so that when B∗t is small, total borrowing and leverage are high relative to the value of the

collateral. We then assume that the transition from the non-binding to the binding regime

depends on B̃∗t = B∗t /Zt−1 according to:

Pr
(
sct+1 = 1|sct = 0, B̃∗t

)
=

exp
(
−γ0B̃

∗
t

)
1 + exp

(
−γ0B̃∗t

) . (13)

4This is similar to the logistic specification in Bocola (2016), where the economy switches between default
and non-default states. Kumhof et al. (2015) also use a logistic function to model the transition to the
default regime in the context of a positive analysis of the relationship between financial crises and inequality.
Davig et al. (2010) and Bi and Traum (2014) use a similar logistic formulation to study the macroeconomic
consequences of fiscal limits.
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Thus, the likelihood that the constraint binds in the following period depends on the size

of the borrowing cushion in the current period.5 The parameter γ0 controls the steepness

of the logistic function, determining the sensitivity of the probability of switching regime

to the size of the borrowing cushion. When γ0 is positive, the probability of switching to

the binding regime increases as the cushion declines. The critical difference between our

stochastic and the traditional specification of the occasionally borrowing constraint is that

the borrowing cushion could be negative but the economy could remain in the non-binding

regime if sct = 1 has not been drawn.

Similarly, when the constraint binds, the transition probability to the non-binding regime

is a logistic function of the Lagrange multiplier, λ̃t = λtZ
−ρ
t−1:

Pr
(
sct+1 = 0|sct = 1, λ̃t

)
=

exp
(
−γ1λ̃t

)
1 + exp

(
−γ1λ̃t

) . (14)

Therefore, the probability of switching back from the constrained to the unconstrained regime

depends on the shadow value of the economy’s desired borrowing relative to the limit set

by the collateral constraint. As in the case of a switch from the unconstrained to the

constrained regime, the parameter γ1 affects the sensitivity of this probability to the value of

the multiplier. When γ1 is positive, the probability of exiting the binding regime increases as

the multiplier declines. As in the non-binding regime, for certain draws from the logistic, it

is possible that the desired level of borrowing is less than the level forced upon the economy

by the binding constraint and this will manifest itself with a negative collateral constraint

multiplier.6

Putting equations (13) and (14) together, the resulting endogenous regime-switching

model has the following transition matrix

Pct =

 1− exp(−γ0B̃∗t )
1+exp(−γ0B̃∗t )

exp(−γ0B̃∗t )
1+exp(−γ0B̃∗t )

exp(−γ1λ̃t)
1+exp(−γ1λ̃t)

1− exp(−γ1λ̃t)
1+exp(−γ1λ̃t)

 . (15)

Agents in the model have full information and rational expectations about these transi-

5Appendix C shows that this timing difference with respect to a model with a traditional inequality
specification of the occasionally borrowing constraint does not affect the first and second moments of the
economy.

6By construction, the transition probabilities are 0.5 when their arguments are zero. This assumption
can be relaxed by introducing a constant into the arguments of equations (13-14). However, estimating the
model by allowing for such a degree of freedom suggests that these parameters were effectively zero. For
ease of presentation, we have omitted them from the beginning of the analysis.
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tion probabilities, which are affected by all endogenous variables in the model in general

equilibrium.

The combined regimes in volatility (sσt ) and in the borrowing constraint (sct) is de-

noted by st = sct × sσt . Since the two sets of transition probabilities are independent of

one another—switching in volatility regimes is independent of switching in the borrowing

constraint regimes—the combined transition matrix is given by Pt = Pct ⊗ Pσ.

2.3 Remarks on the Endogenous Regime-Switching Specification

Some remarks are useful here on how our stochastic formulation of the borrowing constraint

works and differs relative to the typical inequality formulation used in the literature.

First, in our setup, agents in the non-binding regime know that higher leverage increases

the probability of switching to the binding regime and vice-versa. Critically, this knowledge

preserves the interaction in agents’ behavior between regimes and gives rise to precautionary

behavior, distinguishing the model from those in which the occasionally binding constraint

is approximated with solution methods that eliminate the interactions across regimes as

in Guerrieri and Iacoviello (2015). One could certainly consider a wider range of variables

governing the regime transition. Our choice, as in Bocola (2016), reflects the need to adopt a

parsimonious representation and to choose variables motivated by the sudden stop literature.

The proposed specification allows us to identify all parameters of interest and fit the data

well with small, well-behaved shocks.

Second, as we already noted, for certain draws of the regime state from the logistic

distribution, the borrowing cushion and the multiplier can take negative values. This feature

of the model implies that the run-up to or the duration of a financial crisis has a variable

duration. As a result, unlike traditional models with inequality borrowing constraints, our

model generates crisis episodes of varying duration and can provide data-consistent accounts

of crisis dynamics without imposing any additional ad-hoc restrictions on the sudden stop

definition. For example, negative values of the borrowing cushion B̃∗t in the non-binding

regime are possible if the probability of a switch to the binding regime is elevated, but the

switch has not been drawn yet, prolonging the boom phase and postponing the beginning

of the crisis episode. In contrast, the economy can remain in the binding regime even

if the multiplier is no longer positive, but the non-binding regime has not been drawn yet,

prolonging the duration of the crisis and contributing to a sluggish recovery. Additionally, as

the transition probabilities are endogenous, they are time-varying. In contrast, the exogenous

Markov-switching setup (Davig and Leeper, 2007; Farmer et al., 2011; Bianchi, 2013; Foerster

et al., 2016) has a constant probability of transitioning between regimes that is independent of
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the structural shock realizations and the agent’s decisions. As we shall see, this specification

fits Mexican data better than an exogenous switching specification.

Additionally, this model feature is consistent with a growing body of microeconomic

evidence suggesting that a deterministic specification of the switch between regimes in models

with occasionally binding collateral constraints may not accurately capture lending and

borrowing behaviors at the household and firm or bank level. For example, Chodorow-

Reich and Falato (2017) and Greenwald (2019) show that loan covenants are frequently

violated, triggering renegotiation rather than suddenly cutting off borrowers from funding

once activated. Campello et al. (2010) also provide survey information on the behavior of

financially constrained firms, and Ivashina and Scharfstein (2010) examine loan level data,

showing that firms draw down preexisting credit lines in order to satisfy their liquidity needs

to avoid hitting borrowing limits. In emerging market economies, official reserves play a

similar liquidity role. Thus, in practice, collateral constraints are binding over a range of

leverage ratios rather than at any particular level as in a model with inequality constraints.

This model property is also consistent with the macroeconomic empirical evidence of Jorda

et al. (2013), who show that the exact level of leverage at which a crisis occurs varies

considerably across crisis episodes.7

Third, our stochastic specification of the borrowing constraint nests the deterministic

case in which regime switching is triggered with probability 1 by a unique level of leverage.

In Appendix C, we show that the policy functions of our model capture the typical debt-

deflation mechanism of models with occasionally binding borrowing constraints as Mendoza

(2010), while at the same time offering a dramatically improved trade-off between accuracy

in terms of Euler equation errors and speed in terms of solution time that allows for Bayesian

estimation. Moreover, the simulated second moments are practically indistinguishable from

those in Mendoza and Villalvazo (2020).

Fourth and finally, as in other specifications of occasionally binding collateral constraints

in the literature (e.g., Bianchi, 2011; Schmitt-Grohe and Uribe, 2020; Farhi and Werning,

2020), our formulation is not derived as an equilibrium outcome of a fully specified contract-

ing environment. However, it could be derived by generalizing existing contract environ-

ments. The traditional inequality formulation of our borrowing constraint,

1

(1 + rt)
Bt − φ (1 + rt) (WtHt + PtVt) ≥ −κqtKt. (16)

can be derived as an implication of incentive compatibility constraints on borrowers if limited

7The notion of “debt intolerance” discussed by Reinhart and Rogoff (2009) and credit surface of Fostel
and Geanakoplos (2015) also are consistent with our stochastic specification.
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enforcement prevents lenders from collecting more than a fraction κ of the value of the

assets owned by a defaulting borrower, for instance, as discussed in Bianchi and Mendoza

(2018). An endogenous transition between the two regimes associated with this constraint

could be derived in a standard costly state verification framework (Bernanke and Gertler,

1989). For example, Matsuyama (2007) shows how a borrower’s net worth causes endogenous

switching between investment projects with different productivity levels, which feeds back

into borrowers’ net worth. Martin (2008) shows that endogenous regime switches in financial

contracts from pooling to separating and vice-versa leads to switching in lending standards

between a “lax” and a “tight” regime.8

3 Solving the Endogenous Switching Model

This Section describes our solution method for endogenous regime-switching models. In

principle, our model can be solved using global methods, as for example in Davig et al.

(2010). However, as we discuss in Appendix C, with two endogenous and six exogenous

state variables, four regimes, and six exogenous shocks, using a global solution method

would prohibit likelihood-based estimation. Instead, we solve the model using a perturbation

approach, which allows for an accurate approximation fast enough to permit estimation and

is potentially applicable to even larger models.

We first describe how to implement occasionally binding constraints represented as en-

dogenous regime switching, the approximation point, how to define a steady state in this

setup, and the Taylor-series expansions. We then discuss the importance of approximating

at least to a second-order in our framework. The competitive equilibrium of the endogenous

regime-switching model is defined formally in Appendix A. The derivation of the Taylor-series

expansions and other details of the solution method are reported in Appendix B.

3.1 The Regime-Switching Slackness Condition

A critical step in applying our perturbation method is to ensure that the two variables B̃∗t

and λ̃t are zero if the economy is in the relevant regime: λ̃t = 0 in the non-binding regime,

and B̃∗t = 0 in the binding regime. This step ensures that the slackness condition B̃∗t λ̃t = 0

always holds. To implement this condition and be consistent with regime-switching DSGE

models in which the parameters are the model objects that change state, we define two

8Heterogeneous agent models with financial frictions imposed at the individual level could also be con-
sistent with a stochastic specification of the switching between regimes. For example, Fernandez-Villaverde
et al. (2019) study financial frictions and wealth distributions, where endogenous aggregate risk generates
an endogenous regime-switching process.
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auxiliary regime-dependent parameters, ϕ (sct) and ν (sct), such that ϕ (0) = ν (0) = 0, and

ϕ (1) = ν (1) = 1.9 Next, we introduce the following regime-switching slackness condition:

ϕ (sct) B̃
∗
ss + ν (sct)

(
B̃∗t − B̃∗ss

)
= (1− ϕ (sct)) λ̃ss + (1− ν (sct))

(
λ̃t − λ̃ss

)
, (17)

where B̃∗ss and λ̃ss are the steady state borrowing cushion and collateral constraint multiplier,

respectively, defined more precisely below. It is now easy to see from equation (17) that,

as desired, λ̃t = 0 when sct = 0, and B̃∗t = 0 when sct = 1, always satisfying the slackness

condition B̃∗t λ̃t = 0. Yet, given a regime sct , equation (17) remains continuously differentiable

for any value of B̃∗t or λ̃t.

Technically, equation (17) “preserves” information in the perturbation approximation

that we introduce in Section 3.3, since, at first order, both variables B̃∗t and λ̃t are constant

at zero in the respective regimes. The use of the regime-dependent switching parameters,

ϕ (sct) and ν (sct), follows from the Partition Principle of Foerster et al. (2016), which separates

parameters based upon whether they affect the steady state or not. Intuitively, ϕ(sct) captures

the level of the economy changing across regimes (e.g., the level of capital is lower when

the constraint binds), while ν(sct) captures the different dynamics across regimes (e.g., the

response of the economy to shocks changes when the constraint binds).

3.2 Defining the Steady State

Given the regime-switching slackness condition (17), we define a steady state as a state in

which all shocks have ceased and the regime-switching variables that affect the level of the

economy (ϕ(sct)) take the ergodic mean values associated with the steady state transition

matrix:

Pcss =

 1− exp(−γ0B̃∗ss)
1+exp(−γ0B̃∗ss)

exp(−γ0B̃∗ss)
1+exp(−γ0B̃∗ss)

exp(−γ1λ̃ss)
1+exp(−γ1λ̃ss)

1− exp(−γ1λ̃ss)
1+exp(−γ1λ̃ss)

 . (18)

Since this matrix depends on the steady state level of the borrowing cushion and the mul-

tiplier, B̃∗ss and λ̃ss, which in turn depend on the ergodic mean of the regime-switching pa-

rameter ϕ(sct), such a steady state is the solution of a fixed point problem that is described

in more detail in Appendix B.10

9In our model, these parameters coincide with the regime-switching indicator variable sct , but more
generally they may not. The notation provides a general formulation of the modified slackness condition
that is applicable to other setups. See, for example, the discussion of our stochastic specification in the
context of other model settings in Binning and Maih (2017).

10Stochastic volatility does not affect the steady state of the model. Therefore, we can focus on regime
switching on the borrowing constraint while finding the steady state.
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More specifically, consider the model regime-specific parameters defined above and dis-

tinguish between ϕ(sct), which affect the level of the economy, and ν(sct), which affect only its

dynamics with no effects on the steady state. Then denote ξ = [ξ0, ξ1] the ergodic vector of

Pcss. Next, apply the Partition Principle of Foerster et al. (2016) to focus only on parameters

that affect the level of the economy, and write the ergodic mean of ϕ(sct), denoted ϕ̄, as

ϕ̄ = ξ0ϕ (0) + ξ1ϕ (1) . (19)

Defining the steady state as the state in which the auxiliary parameter ϕ (sct) is at its

ergodic mean value ϕ̄ implies that the approximation point constructed is a weighted average

of the steady states of two separate models: one in which only the non-binding regime occurs

and one in which only the binding regime occurs. The distance of our approximation point

to each of these two other steady states, therefore, depends on the frequency of being in each

of the two regimes.11

3.3 The Solution and Its Properties

Equipped with the steady state of the endogenous regime-switching economy, we construct a

second-order approximation to the policy functions by taking derivatives of the equilibrium

conditions. We relegate details of these derivations to the Appendix B, but here we provide

a summary.

For each regime st, the policy functions of our model take the form

xt = hst (xt−1, εt, χ) , yt = gst (xt−1, εt, χ) , (20)

where xt denotes predetermined variables, yt non-predetermined variables, εt the set of

shocks, and χ a perturbation parameter such that when χ = 1 the fully stochastic model

results and when χ = 0 the model reduces to the non-stochastic steady state defined above.

Using these functional forms, we can express the equilibrium conditions conditional on regime

11The ergodic mean is a natural candidate perturbation point in models with endogenous state variables
where at least one regime has a short expected duration. These two features imply that the ergodic mean
is in the area of the state space in which the economy operates most frequently. In the specific case of the
model in this paper, debt and capital are slow-moving state variables, and the binding regime tends to be
self-limiting—that is, being in the binding regime causes the economy to reduce leverage and hence switch
back to the non-binding regime. Thus, the economy will rarely reach the area around the steady state of the
“binding regime only.” Alternative methods for finding solutions to endogenous regime-switching models,
such as Maih (2015) and Barthélemy and Marx (2017), propose using regime-dependent steady states as
multiple approximation points. Such a strategy would not be suitable for our purposes because the binding
regime steady state is a poor approximation point given that the regime is infrequent and usually of shorter
duration than normal cycles of expansions and contractions.
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st as

Fst (xt−1, εt, χ) = 0. (21)

We then stack the regime-dependent conditions for each st, denoting the resulting system

of equations with F (xt−1, εt, χ), and successively differentiate with respect to (xt−1, εt, χ),

evaluating them at the steady state. The systems

Fx (xss,0, 0) = 0, Fε (xss,0, 0) = 0, Fχ (xss,0, 0) = 0 (22)

can then be solved for the unknown coefficients of the first-order Taylor expansion of the

policy functions in equation (20).

It is important to note that since we are only approximating the decision rules and not

the probabilities in equation (15), the probabilities remain bounded between zero and one.

If we had instead directly generated approximations of the probability functions, we would

run the risk of approximated probabilities outside the unit interval. Our method avoids this

issue by only approximating the decision rules.

A second-order approximation of the policy functions in equation (20) can be found by

taking the second derivatives of F (xt−1, εt, χ). In the end, we have two sets of matrices:

H
(1)
st and G

(1)
st , characterizing the first-order coefficients; and H

(2)
st and G

(2)
st characterizing

the second-order coefficients. Therefore, the approximated policy functions are

xt ≈ xss +H(1)
st St +

1

2
H(2)
st (St ⊗ St) (23)

yt ≈ yss +G(1)
st St +

1

2
G(2)
st (St ⊗ St) (24)

where St =
[

(xt−1 − xss)
′ ε′t 1

]′
.

Our perturbation method produces stable approximated policy functions, but does not

guarantee the existence or uniqueness of the solution. As we discuss in Appendix B, this

limitation is shared with global solution methods of models of occasionally binding con-

straints that check convergence of the numerical algorithm without guaranteeing existence

or uniqueness.12

Our solution method is fast, and readily scales to handle larger models. In total, we have

20 equilibrium conditions, two endogenous and six exogenous state variables, four regimes,

12While in some simpler models with collateral constraints it is possible to impose parametric restrictions
that rule out multiple equilibria (Schmitt-Grohe and Uribe, 2020; Benigno et al., 2016), in the case of our
model, as in Mendoza (2010) and Bianchi and Mendoza (2018), there are no such restrictions and uniqueness
must be verified heuristically. We check the mean-squared stability of the first-order approximation paired
with the steady state transition matrix Pss (Farmer et al., 2011; Foerster et al., 2016), and additionally check
for explosive simulations.
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and six shocks. The model is solved in about a second on a standard laptop.13

As Appendix C discusses in more detail, the proposed solution method is also accurate.

We investigate its accuracy by applying it to the calibrated model in Mendoza and Villalvazo

(2020) and comparing our endogenous regime switching specification solved by perturbation

with the traditional inequality constraint specification solved with global methods. We com-

pare the first and second moments for all model variables and show that our solution method

yields results practically indistinguishable from those obtained from a traditional inequality

specification of the borrowing constraint. Specifically, we find Euler equation errors in line

with the accuracy of perturbation methods applied to exogenous regime-switching models

(Foerster et al., 2016) and models without regime-switching (Aruoba et al., 2006). We also

document a solution speed more than 800 times faster than the global method. Indeed, this

solution speed gain is what makes likelihood-based estimation of the model feasible.

3.4 Approximation Order and Endogenous Switching

Our endogenous regime-switching framework must be solved at least to the second order to

capture the effects of the endogenous switching on the policy rules, which include precau-

tionary effects that vary with the state of the economy. If we were to approximate only to

the first order, we would not capture the precautionary behavior stemming from rational

expectations about the dependency of the probability of a regime change on the borrowing

cushion and the multiplier. The following Proposition states this result formally.

Proposition 1 (Properties of the Approximated Solution). The first-order approxi-

mation to the endogenous regime-switching model is identical to the first-order approximate

solution of an exogenous regime-switching model in which the transition probabilities are

given by the steady-state value of the time-varying transition matrix. A second-order ap-

proximation to the endogenous regime-switching model is necessary and sufficient to capture

precautionary effects of the endogenous switching.

Proof. See Appendix B.

This result is analogous to stating that, in models without regime-switching, a first-order

solution is invariant to the size of the shocks, a second-order solution captures precautionary

13A MATLAB code for the proposed solution algorithm is available on the authors’ webpages. For this
paper, our computational approach is similar to that in Fernandez-Villaverde et al. (2015). We use Mathe-
matica to take symbolic derivatives and export these derivatives to C++. We then integrate them in Matlab
using mex files to solve the model for different parameterizations. In principle, we could solve and estimate
the model using only C++ or FORTRAN, but the gains in terms of speed would be relatively minor; for
larger models, these languages might yield more substantial efficiency gains. Since we use a nonlinear filter,
the filtering in estimation, not the model solution, is the most time-consuming computational step.
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behavior, and a third-order solution is needed to capture the effects of stochastic volatility

that follows an autoregressive process as in Fernandez-Villaverde et al. (2015). In our con-

text, since we have exogenous regime changes in volatility, a second-order approximation is

sufficient to capture precautionary effects associated with volatility changes (Foerster et al.,

2016). In our setting, the shocks to the volatility processes of a stochastic volatility speci-

fication manifest themselves as discrete changes in the volatilities and not as shocks to the

processes themselves.

Unfortunately, however, using a second-order approximation with endogenous regime-

switching poses additional challenges for estimation purposes. We now turn to our strategy

to address these issues.

4 Estimating the Endogenous Switching Model

We estimate the model with a Bayesian full information procedure. The posterior distribu-

tion has no analytical solution, and we use Markov-Chain Monte Carlo (MCMC) methods

to sample from it. Since the Metropolis-Hastings algorithm we use for sampling is standard,

we omit the discussion of this step in our procedure.

A critical challenge in posterior sampling is the evaluation of the likelihood function.

We face three difficulties relative to linear DSGE models (for example, Smets and Wouters,

2007). The first is the non-linearity induced by the presence of multiple regimes. The second

is the need to approximate to the second order. The third is the fact that the transition prob-

abilities are endogenous. Bianchi (2013) develops an algorithm to address the first difficulty.

Here, we must deal with the second-order approximation and endogenous probabilities in a

tractable manner. One alternative is the Particle Filter (Fernandez-Villaverde and Rubio-

Ramirez, 2007). However, the regime switching leads to the discarding of a large number

of simulated particles, lowering the accuracy for a given number of particles and greatly

increasing the computational cost of reaching accuracy (Doucet et al., 2001). To address

these challenges, we use the Unscented Kalman Filter (UKF) with Sigma Points (Julier and

Uhlmann, 1999). The Sigma Point filter has been shown to be an efficient way of estimating

regime-switching models (Binning and Maih, 2015). Details of the construction of the state

space representation and the filtering for the evaluation of the likelihood are reported in the

Supplementary Appendix.

18



Table 1: Calibrated Parameters

Parameter Description Value
β Discount Factor 0.99156
ρ Risk Aversion 2
ω Labor Supply 1.846
η Capital Share 0.3053
α Labor Share 0.5927
δ Depreciation Rate 0.0228
A∗ Mean Technology 1.7455
Z∗ Mean Growth 1.006
P ∗ Mean Import Price 1.028
e∗ Mean Expenditure 0.11

4.1 Observables, Data, and Measurement Errors

We estimate the model with quarterly data for GDP growth (gross output less intermediate

input payments), consumption growth, investment growth, and intermediate import price

growth, as well as the current account-to-GDP ratio, and a measure of the country real

interest rate.14

As there are six shocks with six observables, we do not necessarily need measurement

errors. However, measurement errors in the observation equation improve the performance

of the non-linear filter and account for any actual measurement error in the data. As in

Garcia-Cicco et al. (2010), we limit their variance to 5% of the variance of the observable

variables. As a consequence, the model will fit the data relatively closely on average, and

model fit or lack thereof will be assessed by checking whether it relies on large shocks to

generate crisis episodes and by comparing our model with alternative specifications.

4.2 Calibrated Parameters and Prior Distributions

Our objective is to estimate the critical parameters governing dynamics in both the bind-

ing and non-binding regimes. We calibrate a subset of model parameters listed in Table 1

on which we have strong prior information from the existing literature, including particu-

larly Mendoza (2010), who calibrated them based on the stylized facts of Mexico’s National

Accounts at an annual frequency. Our model is calibrated and estimated at a quarterly

frequency. The Supplementary Appendix provides details on the calibration of these param-

eters.

14See the Supplementary Appendix for details on variable definitions and data sources. The country
interest rate is constructed following Uribe and Yue (2006), and it is the US 3-Month Treasury Bill minus
ex post US CPI inflation rate plus Mexico’s EMBI Spread.
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For the estimated parameters, we set two types of prior. The first is directly on the

parameters. These priors are listed in Table 2. They are relatively diffuse, only imposing sign

restrictions or placing low prior probability on parameter values that generate implausible

moments in model simulations. The second type of prior is on a model-implied object.

The model has an ergodic mean conditional on the non-binding regime that depends on the

model solution. This mean is the level at which the economy stabilizes without any regime

changes or shocks. The borrowing cushion associated with this mean implies a transition

probability to the binding regime in equation (13). We set a prior on this model-object that

is a Beta distribution with mean 0.01 and variance of 0.05.15 This prior places very low

probability mass on combinations of parameters that imply too frequent transitions to the

binding regime. Intuitively, it reflects the belief that, in the absence of shocks, the probability

that the constraint becomes binding is very low.

4.3 Estimated Parameters and Model Fit

We now discuss the estimated parameters and the model’s fit to the data. Table 2 reports

the mode, the median, the 5th, and the 95th percentile of the posterior distribution. The

parameters have tightly estimated posteriors, so we focus on the posterior modes.

The estimated mean interest rate, with a mode of 0.6% per quarter, is higher than the

calibrated value in Mendoza (2010). Since we use data on the interest rate as an observable,

this parameter estimate is directly linked to that observable (see Figure 3). The observed

series exceeds our estimate of 0.6% for the early part of the sample, before gradually declining

to a value closer to our estimate. The estimated model interprets the sample interest rate

as a persistent process slowly converging to from a higher to a lower mean rate.

The mode of the estimated investment adjustment cost parameter (ι) is 5.769. This pa-

rameter critically interacts with the financial friction parameters (working capital, leverage,

and logistic function) to determine the dynamics of the model. Its estimated magnitude

cannot be compared with the data outside the model. The estimated working capital con-

straint parameter (φ) is plausible, indicating that 77% of the wage and intermediate goods

bill must be paid in advance with borrowed funds. This value is substantially higher than

the 25.79% calibrated in Mendoza (2010) but lower than the 100% assumed by Neumeyer

and Perri (2005) or the 125% used by Uribe and Yue (2006). The estimate is close to the

60% value estimated by Ates and Saffie (2016) using interest payments and production costs

from Chilean microeconomic data. The estimated value of the leverage parameter in the

15Priors on model-implied objects are used and discussed, for example, in Otrok (2001) and Del Negro
and Schorfheide (2008).
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Table 2: Estimated Parameters

Par. Description Prior Posterior
Mode 5% 50% 95%

r̄ Int. Rate Mean N(0.0177,0.005) 0.006 0.005 0.006 0.007
ι Capital Adj. N(10,5) 5.769 5.169 5.769 5.967
φ Working Cap. U(0,1) 0.769 0.737 0.769 0.799
κ∗ Leverage U(0,1) 0.182 0.171 0.182 0.195

log γ0 Logistic, Enter Binding U(-20,20) 2.065 2.033 2.065 2.090
log γ1 Logistic, Exit Binding U(-20,20) 4.925 4.900 4.925 4.961

ρa Autocor, TFP B(0.6,0.2) 0.982 0.961 0.982 0.988
ρz Autocor, TFP Growth B(0.6,0.2) 0.811 0.751 0.811 0.873
ρp Autocor, Imp Price B(0.6,0.2) 0.978 0.970 0.978 0.986
ρr Autocor, Int Rate B(0.6,0.2) 0.956 0.951 0.956 0.957
ρe Autocor, Expend B(0.6,0.2) 0.879 0.848 0.878 0.907
ρd Autocor, Pref B(0.6,0.2) 0.882 0.861 0.882 0.904

σa(L) Low SD, TFP IG(0.005,0.01) 0.005 0.004 0.005 0.005
σa(H) High SD, TFP IG(0.005,0.01) 0.012 0.011 0.012 0.012
σz(L) Low SD, TFP Growth IG(0.005,0.01) 0.003 0.001 0.003 0.003
σz(H) High SD, TFP Growth IG(0.005,0.01) 0.010 0.009 0.010 0.010
σp(L) Low SD, Imp Price IG(0.05,0.01) 0.027 0.025 0.027 0.029
σp(H) High SD, Imp Price IG(0.05,0.01) 0.063 0.061 0.063 0.065
σr(L) Low SD, Int Rate IG(0.01,0.025) 0.002 0.001 0.002 0.002
σr(H) High SD, Int Rate IG(0.01,0.025) 0.007 0.006 0.007 0.008
σe(L) Low SD, Exp IG(0.5,0.5) 0.160 0.117 0.160 0.194
σe(H) High SD, Exp IG(0.5,0.5) 0.384 0.322 0.384 0.438
σd(L) Low SD, Pref IG(0.05,0.01) 0.048 0.039 0.049 0.057
σd(H) High SD, Pref IG(0.05,0.01) 0.060 0.053 0.060 0.066

Pσl Prob, Stay Low Vol B(0.975,0.025) 0.958 0.937 0.958 0.976
Pσh Prob, Stay High Vol B(0.975,0.025) 0.949 0.941 0.949 0.955

Notes: This table reports the prior distribution and the posterior moments of the estimated pa-

rameters. Priors are Normal (N), Uniform (U), Beta (B), or Inverse Gamma (IG) and show mean

and variance, except for the uniform distribution showing the lower and upper bounds. Posterior

distributions show mode, along with 5-th, 50-th, and 95-th percentiles of the MCMC posterior

draws.

borrowing constraint (κ) is 0.18, suggesting that less than a fifth of the value of capital

serves as collateral. This value is slightly tighter than the baseline value of 0.20 calibrated

in Mendoza (2010), and is at the low end of the 0.15-0.30 range considered in that study.

The posterior modes of the logistic parameters in equations (13) and (14) are 2.065 and

4.925 (in log points), respectively. They are estimated to be in a tight range relative to

the very loose priors. Figure 2 illustrates their implications for model dynamics. The figure

plots the implied probabilities from equation (13) and (14), evaluated at the posterior mode

value of γ0 and γ1, together with the estimated ergodic distributions of their arguments, the
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Figure 2: The Logistic Functions and the Distributions of Their Arguments

(a) Borrowing Cushion and Transition Probability in the Non-Binding Regime
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(b) Multiplier and Transition Probability in the Binding Regime
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Note: The top panel shows the model-implied distribution of the borrowing cushion B̃∗ in the non-binding

regime, and the logistic transition function to the binding regime implied by our estimates in of equation

(13). The bottom panel shows the model-implied distribution of the multiplier λ in the binding regime, and

the transition function to the non-binding regime as implied by our estimates in equation (14).

borrowing cushion B̃∗ and the constraint multiplier λ̃.

The top panel of Figure 2 shows that the bulk of the probability mass is located on the

positive side of the ergodic support for this variable, as the economy spends most of its time

in the non-binding regime, above the borrowing limit. As the borrowing cushion declines, the

probability of switching to the binding regime increases very rapidly to 1 for small negative

values of B̃∗, with a negligible probability mass on larger negative realizations. This implies

a relatively quick transition into the binding regime once the borrowing cushion is exhausted

as a result of shocks and agents’ decisions.

The bottom panel of Figure 2 shows that once the economy is in the binding regime, the

ergodic distribution of the multiplier is centered on zero with approximately equal probability

on both tails of the support. As λ̃ approaches 0 from the positive side of the support, the

probability of switching to the non-binding regime increases only gradually, reaching 1 for

λ smaller than −0.02.16 As we noted earlier, negative values of λ reflect instances in which

16Values of λ approximately below −0.2, produce a nearly deterministic switch back to the binding regime.
The ergodic distribution of λ in the binding regime (Figure 2 b) implies that the probability of exiting that
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had the economy been in the non-binding regime, the borrowing cushion would have been

positive, but a switch to the non-binding regime has not been drawn yet. The estimated

values of the logistic function parameters imply that the economy suddenly enters a binding

state but exits it only gradually, consistent with the evidence in Cerra and Saxena (2008)

and Boissay et al. (2016), among others.

Turning to the exogenous process estimates, all persistent parameters are estimated pre-

cisely, with their 95th percentile value below one, except for the temporary productivity

shock, whose autocorrelation is very close to one. The estimated volatilities show that the

high- and low-volatility regimes are well identified. However, regime change is rare, perhaps

reflecting the one-off change in the observable variable behavior after the 1994 Tequila crisis,

which is distinctly visible in Figure 3.

The observables used in the estimation are shown in Figure 3, together with the model-

implied smoothed series based on the full sample period. The figure also highlights periods

of currency or external debt crisis as identified in Reinhart and Rogoff (2009), shown in

light gray areas. Since we have assumed a small variance of the measurement errors as a

share of the observables’, the model tracks the data closely by construction. However, the

tracking is consistent throughout the sample period, during both the regular business cycle

and the highlighted crisis periods. For example, at the beginning of the 1980s Debt Crisis

and during the 1994-95 Tequila Crisis, the data show huge swings in the current account and

large drops and rebounds in output, consumption, and investment growth without losing fit.

If instead one were to observe a loss of fit during crisis episodes, it would suggest that the

model finds it difficult to match the data dynamics during these episodes of critical interest

in our empirical analysis.17

Likelihood-based estimation permits us to recover the historical shock series that drive

the observable variables, which is not possible in a calibrated model. In other words, the

estimation not only permits to assess which shocks drive the business cycle in the model,

but also which shocks were historically more important in driving specific episodes of crises

in Mexico’s history.

Figure 4 plots the shocks implied by the estimated model in standard deviation units

together with a two-standard deviation band. Because the model tracks the observed series

closely and evenly over time, the recovered structural shocks are informative about the

model mechanisms’ ability to drive the outsize movements in the data during crisis periods.

If only normally sized shocks are needed, then the model’s internal propagation mechanisms

must account for the abnormal fluctuations in the data; alternatively, reliance on large, low-

regime exceeds 99% about a quarter of the time.
17See the Supplementary Appendix for more details.

23



Figure 3: Data and Model Estimates

(a) Output Growth
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(b) Consumption Growth
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(c) Investment Growth

Q1-85 Q1-90 Q1-95 Q1-00 Q1-05 Q1-10 Q1-15

-0.4

-0.2

0

0.2

(d) Interest Rate
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(e) Current Account to GDP Ratio

Q1-85 Q1-90 Q1-95 Q1-00 Q1-05 Q1-10 Q1-15

-0.05

0

0.05

(f) Import Price Growth

Q1-85 Q1-90 Q1-95 Q1-00 Q1-05 Q1-10 Q1-15

-0.2

0

0.2

Note: The figure plots observable variables used in estimation (solid black lines) and fitted values (i.e., model-

implied smoothed estimated series based on the full sample, dashed red lines). Light gray areas indicate

periods of currency or external debt crisis as identified in Reinhart and Rogoff (2009).
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Figure 4: Model Estimated Shocks

(a) Transitory TFP Shock
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(b) Permanent TFP Shock
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(c) Import Price Shock
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(d) Interest Rate Shock
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(e) Expenditure Shock
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(f) Preference Shock
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Notes: The figure plots the estimated model implied shocks, in standard deviation units, together with a

two-standard deviation band (black dashed lines). Light gray areas indicate periods of currency or external

debt crisis as identified in Reinhart and Rogoff (2009).
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Table 3: Model Comparison - Schwarz Information Criteria

Model With Stoch Vol No Stoch Vol
Endogenous Switching -4074 -3663
Exogenous Switching -4039 -3651

No Constraint -3842 -3465

probability shocks would cast doubt on the model’s ability to capture the crisis dynamics.

Well-behaved realized shocks also provide evidence that supports our choice of using the

Sigma Point filter.

As we can see from Figure 4, the estimated model fits the data without systematically

relying on large shocks, although there are two instances in which large shocks are needed.

First, at the beginning of the sample period in 1982:Q3 and Q4, at the peak of the Debt Crisis,

when Mexico devalued the Peso, declared default on its external debt, and nationalized the

banking system, very large expenditure and especially preference shocks help to match the

current account, which reverted by about 12 percentage points of GDP by the end of that

year. Second, an outsize interest rate shock is needed in 1995:Q1, when output dropped

by more than 5% in a quarter (the largest change in the sample period), at the end of the

Federal Reserve’s tightening cycle that started in 1994:Q1, and after the peg was abandoned

in December 1994. Two large temporary productivity shocks also match two high growth

quarters after the Tequila Crisis. All other shock realizations are within the two-standard

deviation band.18

4.4 Model Comparisons

As a further step in validating our model, Table 3 reports the results of a model comparison

exercise using the Schwarz Information Criterion (SIC). We compare our model with a speci-

fication with exogenous regime switching and another one without the borrowing constraint.

For each of these three models, we also consider a version without stochastic volatility. The

Supplementary Appendix provides more detail on their estimation and reports model-specific

parameter estimates. The statistic reported is the model’s posterior density at the posterior

mode, adjusted by the Schwarz Information Criteria (SIC) to penalize for additional param-

18Three more import price shocks are outside the two-standard deviation error bands: in 2008:Q3, when
the oil price reached its historical record high level of 150 Dollar per barrel; in 1986:Q1 during the Iran-Iraq
War before the oil price collapse later in 1986, and in 1990:Q4 and 1991:Q1 due to the 1991 Iraq War.
However, import price shocks are directly implied from the observable series based on commodity terms of
trade data.
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eters.19 A difference of 10 indicates ‘strong’ evidence in favor of the model with the lower

SIC, and a difference of 100 indicates ‘decisive’ evidence (Kass and Raftery, 1995).

The SIC results in Table 3 have three important implications about the fit of our model.

First, for all three model specifications, the data prefer the version with stochastic volatility.

This result underscores the importance of considering changes in volatility as a driving

force in emerging markets, as stressed in Fernandez-Villaverde et al. (2011). Second, the

data prefer switching models with a collateral constraint relative to a version without the

collateral constraint, where financial frictions take the form of a debt-elastic component on

the interest rate. Finally, the data prefer the model version with endogenous switching that

we propose to a traditional one in which regime switches are exogenous events with constant

transition probabilities. In other words, the model that fits the data best is one in which

there is stochastic volatility, regimes based on the state of the collateral constraint (and

hence a collateral constraint), and switching between the states of this constraint that is

endogenously driven by leverage rather than exogenous probabilities.

5 The Anatomy of Mexico’s Business Cycles and Fi-

nancial Crises

In this Section, we study Mexico’s history of business cycles and sudden stop crises through

the lens of our estimated model. We first compare moments simulated by the model and in

the data and assess the relative importance of different shocks in the business cycle by means

of a variance decomposition. We then focus on the model’s fit and the drivers of Mexico’s

history of sodden stop crises.

5.1 Business Cycles

Table 4 compares the data and the simulated second moments of the model, reporting results

for output growth, consumption growth, investment growth, the interest rate, trade balance,

and the current account.20

19See Liu et al. (2011) for a discussion of the SIC as a goodness-of-fit measure and the challenges of
computing Marginal Data Densities in the context of regime switching models, even without considering
endogenous switching as in our model.

20 All model-based statistics are based on simulated data from the posterior mode estimates. We generate
100,000 samples of 144 quarters length (the same as our data sample), after a burn-in period of 1,000 quarters.
We then compute the median values for these 100,000 runs. We use the pruning method in Andreasen et al.
(2018) to avoid explosive simulation paths. All reported simulated moments are unconditional rather than
conditional on a particular regime.
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Table 4: Simulated Second Moments: Data and Model

Std. Dev. Relative Std. Dev. Correlations
Data Series Data Model Data Model Data Model
GDP Growth 1.41 3.34 1 1 1 1
Cons Growth 1.76 6.44 1.25 1.93 0.73 0.75
Inv Growth 7.57 54.69 5.37 16.38 0.53 0.35
Interest Rate 1.92 1.35 1.36 0.41 -0.11 -0.04
TB/GDP 2.9 9.5 2.0 2.8 0.14 -0.31
CA/GDP 2.2 9.2 1.56 2.76 -0.1 -0.3

Notes: The table compares the second moments of the data relative to the moments

simulated from the model.

As in other studies, for example, in Mendoza (2010); Garcia-Cicco et al. (2010), the model

has more volatility than the data in absolute terms, especially in the case of investment

growth. The model also underestimates the volatility of the country’s interest rate process.

However, it matches the relative volatilities and the correlations with output very well.

Consumption is significantly more volatile than output, while the current account and the

interest rate are counter-cyclical, which are critical stylized facts of emerging market business

cycles.21

Table 5 reports a variance decomposition for all variables. The table illustrates that all

shocks play a significant role, although different shocks matter more for different variables.

Productivity and import price shocks and, to a lesser extent, expenditure shocks are the main

drivers of output. The main consumption driver is the expenditure shock, followed by the

temporary productivity shock. Expenditure and preference shocks are also the main drivers

of investment, the trade balance, and the current account. Interest rate shocks appear to

play a significant role only for the trade balance and the current account.

These results are most comparable to those estimated in Garcia-Cicco et al. (2010) be-

cause the shocks considered here are the same, except that we also have the import price

shock. In our decomposition, interest rate shocks and temporary productivity shocks ex-

plain a much smaller share of variance than in Garcia-Cicco et al. (2010) for all variables.

Moreover, Garcia-Cicco et al. (2010) and Miyamoto and Nguyen (2017) find that the per-

manent productivity shock is quantitatively unimportant in a model with financial frictions.

In contrast, in our model, this shock accounts for more than 20% of the variance of output

growth. As we shall see, this shock also play a role in driving crisis dynamics as in Aguiar and

Gopinath (2007). The variance share explained by interest rate shocks is also significantly

21Mexico’s trade balance is mildly pro-cyclical in our sample period that ends in 2016, but a counter-cyclical
behavior is typical of emerging market economies, which is what the model is designed to capture.
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Table 5: Variance Decomposition

Variables / Shocks Trans TFP Perm TFP Imp Price Int Rate Expend Pref.
Output Growth 33.76 22.86 19.33 4.15 15.21 4.69
Cons Growth 18.82 12.12 10.68 6.87 37.06 14.46
Inv Growth 3.62 2.73 2.23 6.45 65.63 19.35
TB/GDP 4.81 3.82 2.69 14.37 57.21 17.1
CA/GDP 4.99 3.99 2.79 9.15 60.89 18.2

Note: For each variable, the decomposition is calculated by setting all shocks to zero except the

relevant shock. We then report this variance relative to the sum of all other variances similarly

obtained. The variance decomposition sums 100 by construction, but estimates may not add up to

100 exactly due to rounding.

smaller than in Fernandez and Gulan (2015), where these shocks are amplified by a financial

accelerator mechanism. In contrast, in Garcia-Cicco et al. (2010), the financial friction is a

debt-elastic country premium, without amplification.

5.2 Financial Crises

A defining feature of small open economy models with occasionally binding borrowing con-

straints is their ability to fit not only the business cycle but also episodes of financial crisis,

and particularly the so-called sudden stops in capital flows. So, we now turn to the model-

implied reading of Mexico’s history of student stops. As a benchmark, we first compare

the model implied probability of being in a binding regime or a high volatility state against

three episodes of currency and external debt crisis in Mexico’s recent history identified in

Reinhart and Rogoff (2009): the Debt Crisis of the 1980s, the 1994-1995 Tequila’ Crisis, and

the Global Financial Crisis (GFC) in 2008-2009. Next, we investigate their drivers.

5.2.1 Model Validation

The estimated model allows us to make inferences on whether the economy is in the binding

regime, and thus identify periods of sudden stop crisis in a model-consistent manner without

additional ad hoc restrictions. In the model, the household firm knows the regime, but the

estimation procedure does not, and the regime must be inferred based on the information in

the data. The estimation results provide a time-varying estimate of the smoothed probability

of being in each regime based on the complete information of the sample and a filtered

probability based on the information up to time t. Figure 5 plots these two estimates of the

probability of being in the binding regime or the high volatility state (solid lines).

The figure shows that our model tracks the Debt Crisis in the 1980s and the 2008 GFC
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Figure 5: Mexico’s Model-identified Crisis Episodes

(a) Probability of Binding Regime and Reinhart-Rogoff Tally Index
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Notes: The darker solid (black) line is the model-implied smoothed probability of being in the binding regime

(panel a) or the high-volatility regime (panel b). The lighter solid line (blue) plots the filtered probabilities

using information only up to time t. The light gray regions denote the periods of currency or external debt

crisis according to Reinhart and Rogoff (2009), which we call the External Crisis Tally Index.

remarkably well. The model characterizes the Debt Crisis as a protracted episode (consistent

with this crisis being credited for a lost decade in Mexico) in which borrowing is constrained

and volatility is high. The filtered probabilities also capture the varying intensity of the

crisis.

The model characterizes the beginning of the Tequila crisis less sharply but captures its

end very precisely. This is because the probabilities of being in the binding regime do not

decline in the early 1990s when Mexico’s current account deteriorated sharply and persis-

tently before dramatically reverting during 1994:Q4-1995:Q1. However, these probabilities

drop to zero very quickly at the end of 1995. In contrast, the smoothed probability of being
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in a high volatility regime captures well the end of the Debt Crisis and the beginning of the

Tequila Crisis. Both smoothed and filtered probabilities declined in the run-up to NAFTA in

the early 1990s, although they do not increase to one at the peak of the crisis. Therefore, the

model fails to identify the early 1990s as a period in which the borrowing constraint is not

binding, but correctly characterizes the Tequila crisis as a short-lived episode of constrained

external borrowing and high volatility.22

The model does a very good job of capturing the short-lived nature of the impact of the

GFC on Mexico, again characterizing the episode with a spike in the probability of facing a

binding borrowing constraint and high volatility. The model does not give any crisis signal

matching the External Tally Index in 1998 at the peak of the Asian Crisis, when Russia and

Brazil experienced default and a huge sudden stops, respectively. However, in general, the

model does a remarkable job of identifying and characterizing crises of varying duration and

intensity.

5.2.2 Drivers of Mexico’s Sudden Stop Episodes

We now consider which shocks drove Mexico’s history of external crises outlined above. We

evaluate the relative importance of shocks that drive the economy before, during, and after

these events. This exercise is feasible due to our likelihood-based estimation of the model

generating shock sequences, as illustrated in Figure 4, which allows the construction of a

historical decomposition.

Many counterfactuals are possible, and there is no standard for this class of models, so

here we present results from one possible approach. The multiple sources of non-linearity

in the model, the endogenous regime-switching and the second-order approximation, pose

a challenge for computing historical decompositions. The task is further complicated by

the fact that shocks have nonlinear effects not only on the endogenous variables but also

on the realization of the regimes in subsequent periods. To address these issues, rather

than decomposing the change in individual endogenous variables, we compute a summary

measure, namely the importance of each shock in terms of its contribution to the likelihood.

Specifically, for each shock and time period, we counterfactually recalculate the model

likelihood, evaluated at the posterior mode, turning one shock off at the time while leaving

all other shocks at their estimated values, and then repeat the calculation for all six shocks

and all time periods. Denoting with LL the maximized log-likelihood, and letting CLLi,t

22Reinhart and Rogoff (2009) identify a protracted banking crisis in Mexico from 1994 to 2000. However,
the Tequila crisis is widely credited for being the first of a long sequence of V-shaped (i.e., short-lived)
external crises in emerging market economies, including for instance the Asian Crisis in 1997 and early 1998,
and the Russian and Brazilian crises in late 1998.
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Figure 6: Historical Importance of Shocks

(a) Transitory TFP
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Notes: The figure plots a measure of relative contribution to the likelihood for each shock in each quarter,

computed by setting the given shock to zero in the given quarter (solid thick black lines) as described in the

text. The figure also plots the average shock contribution over the full sample (dashed thin black lines). The

gray areas denote the currency and external debt crisis periods identified by Reinhart and Rogoff (2009).
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denote the counterfactual log likelihood when εi,t = 0, the measure is Λi,t =
LL−CLLi,t∑
j LL−CLLj,t

,

which measures the relative importance of εi,t in period t. By construction, the percentages

in Figure 6 add up to one across the shocks for each period.

First, consider the 1980s Debt Crisis. Productivity and import price shocks have above-

average relative importance in 1981, when the oil price starts to decline, and the economy

is slowing. The preference shock, the import price shock, and then the expenditure shock,

in this sequence, drive the current account reversal in 1982, possibly reflecting delayed fiscal

adjustment, the decline in the real oil price from its peak in 1979, and import and fiscal

contraction typically associated with a sudden stop and its aftermath. Temporary and

permanent productivity shocks and expenditure shocks are more important in the second

phase of the crisis, when the economy stagnates and the fiscal consolidation and the structural

reforms imposed by the IMF and the World Bank adjustment programs take hold. Interest

rate shocks seem more important in the mid-1985 and in 1987.

Next, consider the Tequila Crisis. Before the crisis, expenditure shocks play an important

role in 1992 at the expense of all other shocks. Permanent productivity and preference shocks

are the most important in 1993, possibly capturing the anticipation effects associated with

the signing of NAFTA. The importance of the preference shock increases again during 1994,

but less than in 1993. The peak of the crisis in 1994:Q4 and 1995:Q1 is captured by a

permanent productivity shock. In the aftermath of the crisis, all shocks matter, with small

increases in the importance of permanent productivity shocks.

Lastly, consider the 1998 period of sudden stops in other emerging markets and the GFC

episode. In 1998, no shock has a disproportionate impact on the likelihood. However, we

can see a slight increase in the importance of expenditure shocks at the expense of import

price shocks. In the run-up to the GFC, preference (2006:Q4) and expenditure (2007:Q1)

shocks have a lower importance, while productivity, import price shocks, and interest rate

shocks are of greater importance than average. During the crisis itself, no shock plays a

disproportionate role, and all shocks seem to contribute roughly equally. In the aftermath of

the crisis, again, all shocks have similar importance through the end of the sample period.

These results show that while all shocks have comparable average importance from a

likelihood perspective, as the mean differences are very small, some have higher weights

than others before or during periods of sudden stop in Mexico’s recent history. However,

and importantly, the few shock realizations that are outside the two-standard deviation error

band in Figure 4 are not those that are most important from a likelihood perspective. In

other words, they are not those that drive the likelihood before or during crisis periods.
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6 Conclusions

In this paper we propose a new approach to specifying and solving DSGE models with occa-

sionally binding constraints and stochastic volatility that is suitable for structural estimation

using full information methods. We then obtain estimates of critical model parameters and

conduct likelihood-based inference and counterfactual experiments. The critical step in our

approach is to specify the occasionally binding nature of the borrowing constraint stochas-

tically, so that the formulation can be mapped into an endogenous regime-switching model.

We apply this new framework to Mexico’s history of cycles and crises by estimating the

model with Bayesian methods on quarterly data since 1981. We find that the estimated

model fits Mexico’s business cycle and crisis episodes well without relying on large shocks.

We also find that critical parameter of the estimates differ from values previously used in

the literature, and that interest rate shocks may matter less than previously estimated in

the literature. Finally, we also show that our estimated model identifies sudden stops of

varying duration and intensity, without imposing ad hoc restrictions on their amplitude or

duration. The specific shocks that drive these episodes are found in line with commonly

accepted narratives of Mexico’s history of financial crises.

We regard the theoretical analysis of contracting environments in which the economy

switches endogenously but stochastically between lending regimes, consistent with grow-

ing microeconomic evidence of covenant contract violations and financing cut-off periods of

varying intensity and duration, as an important area of future research.
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Appendix A Model and Equilibrium Definition

This Appendix derives the equilibrium conditions and defines a competitive equilibrium of

the model.

A.1 Derivation of Equilibrium Conditions

The household-firm maximizes the utility function

U = E0

∞∑
t=0

dtβt
(
Ct − Zt−1

Hω
t

ω

)1−ρ
− 1

1− ρ

 , (A.1)

subject to

Ct+It+Et = AtK
η
t−1 (ZtHt)

α V 1−α−η
t −PtVt−φrt (WtHt + PtVt)−

1

(1 + rt)
Bt+Bt−1. (A.2)

The preference shock follows

log dt = ρd log dt−1 + σdεd,t. (A.3)

Transitory technology follows

logAt = (1− ρa) log Ā+ ρa logAt−1 + σaεa,t, (A.4)

while permanent technology follows

∆ logZt = (1− ρz) log Z̄ + ρz∆ logZt−1 + σzεz,t. (A.5)

Total value added or GDP is given by

Yt = AtK
η
t−1 (ZtHt)

α V 1−α−η
t − PtVt. (A.6)

Capital accumulates according to

Kt = (1− δ)Kt−1 + It −
ι

2

(
Kt − ΛkKt−1

Kt−1

)2

Kt−1, (A.7)

where It denotes investment and Λk the growth rate of capital along the balanced growth
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path. The expenditure process Et follows

log et = (1− ρe) log ē+ ρe log et−1 + σeεe,t, (A.8)

where

et = Et/Zt−1. (A.9)

In the binding regime, the collateral constraint is given by

1

(1 + rt)
Bt − φ (1 + rt) (WtHt + PtVt) = −κqtKt, (A.10)

with the corresponding multiplier denoted λt. In the non-binding regime, the collateral

constraint disappears, and the multiplier is λt = 0. The constraint is implemented by defining

B∗t =
1

(1 + rt)
Bt − φ (1 + rt) (WtHt + PtVt) + κqtKt (A.11)

and using the regime-switching slackness condition

ϕ (st)B
∗
ss + ν (st) (B∗t −B∗ss) = (1− ϕ (st))λss + (1− ν (st)) (λt − λss) (A.12)

The household-firm maximizes the following Lagrangian

L = E0

∞∑
t=0

dtβ
t

(
Ct − Zt−1

Hω
t

ω

)1−ρ
− 1

1− ρ

+
∞∑
t=0

βtµt


AtK

η
t−1 (ZtHt)

α V 1−α−η
t − PtVt − φrt (WtHt + PtVt)

− 1
(1+rt)

Bt +Bt−1

−Ct −Kt + (1− δ)Kt−1 − ι
2

(
Kt−ΛkKt−1

Kt−1

)2

Kt−1 − Et


+
∞∑
t=0

βtλt

[
1

(1 + rt)
Bt − φ (1 + rt) (WtHt + PtVt) + κqtKt

]
.

The first-order conditions are:

Ct : dt

(
Ct − Zt−1

Hω
t

ω

)−ρ
− µt = 0; (A.13)

Pt : µt
(
(1− α− η)AtK

η
t−1 (ZtHt)

α V −α−ηt − Pt − φrtPt
)
− λtφ (1 + rt)Pt = 0; (A.14)
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Ht :

 −dt
(
Ct − Zt−1

Hω
t

ω

)−ρ
Zt−1H

ω−1
t

+µt
(
αAtK

η
t−1Z

α
t H

α−1
t V 1−α−η

t − φrtWt

)
− λtφ (1 + rt)Wt

 = 0; (A.15)

Bt : − µt
1 + rt

+ βµt+1 +
λt

1 + rt
= 0; (A.16)

Kt :


µt

(
−1− ι

(
Kt−ΛkKt−1

Kt−1

))
+ λtκqt

+βµt+1

 ηAt+1K
η−1
t (Zt+1Ht+1)α V 1−α−η

t+1 + 1− δ

+ιΛk

(
Kt+1−ΛkKt

Kt

)
+ ι

2

(
Kt+1−ΛkKt

Kt

)2


 = 0. (A.17)

Combining and simplifying these expressions produces:

dt

(
Ct − Zt−1

Hω
t

ω

)−ρ
= µt; (A.18)

(1− α− η)AtK
η
t−1 (ZtHt)

α V −α−ηt = Pt

(
1 + φrt +

λt
µt
φ (1 + rt)

)
; (A.19)

αAtK
η
t−1Z

α
t H

α−1
t V 1−α−η

t = φWt

(
rt +

λt
µt

(1 + rt)

)
+ Zt−1H

ω−1
t ; (A.20)

µt = λt + β (1 + rt)Etµt+1; (A.21)

βEtµt+1


ηAt+1K

η−1
t (Zt+1Ht+1)α V 1−α−η

t+1

+1− δ
+ιΛk

(
Kt+1−ΛkKt

Kt

)
+

ι
2

(
Kt+1−ΛkKt

Kt

)2

 = µt

(
1 + ι

(
Kt − ΛkKt−1

Kt−1

))
− λtκqt.

(A.22)

Factor prices must satisfy Wt = −∂U/∂Ht

∂U/∂Ct
and qt = ∂It/∂Kt, which means

Wt = Zt−1H
ω−1
t (A.23)

qt = 1 + ι

(
Kt − ΛkKt−1

Kt−1

)
. (A.24)
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The interest rate is an exogenous process given by

r∗t = (1− ρr) r̄∗ + ρrr
∗
t−1 + σrεr,t, (A.25)

with the possibility of a debt-premium (only in an alternative model specification, in the

baseline ψ = 0) specified as follows:

rt = r∗t + ψ
(
exp

(
b̄−Bt/Zt−1

)
− 1
)
. (A.26)

The external financing premium on debt is

EFPDt =
λt

βEtµt+1

. (A.27)

A.2 Competitive Equilibrium

A competitive equilibrium of our economy is a sequence of quantities {Kt, Bt, Ct, Ht, Vt, It,

At, Zt, dt, Et, B
∗
t } and prices {Pt, r∗t , rt, qt, wt, µt, λt} that, given the 5 exogenous processes

(A.3, A.4, A.5, A.8, A.25), satisfies the first-order conditions for the representative household-

firm (A.18)-(A.22), the market price equations (A.23)-(A.24), the market clearing conditions

(A.2)-(A.7), the debt cushion definition (A.11), regime-switching slackness condition (A.12),

and the equation for the interest rate (A.26).

Appendix B Perturbation Solution Method

This Appendix provides details about two aspects of the solution method: (1) the definition

of, and solution for, the steady state of the endogenous regime-switching economy; and (2)

the perturbation method that generates second order Taylor expansions to the solution of

the economy around the steady state. For notational simplicity, we focus on a version of the

model without volatility switching.

B.1 Regime Switching Equilibrium

Write the equilibrium conditions as

Etf (yt+1,yt,xt,xt−1, χεt+1, εt, θt+1, θt) = 0. (B.1)

Here yt denotes the non-predetermined variables, xt predetermined variables, εt the exoge-

nous shocks, θt the regime-switching parameters, and χ the perturbation parameter. In
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general, the regime-switching parameters are partitioned into those that affect the steady

state, θ1,t, and those that do not, θ2,t.
23 In the case of our specific application, the partition

is

θ1,t = [ϕ (st)] θ2,t = [ν (st)] . (B.2)

In order to solve the model, we assume the functional forms

θ1,t+1 = θ̄1 + χθ̂1 (st+1) , θ1,t = θ̄1 + χθ̂1 (st) (B.3)

θ2,t+1 = θ2 (st+1) , θ2,t = θ2 (st) (B.4)

xt = hst (xt−1, εt, χ) (B.5)

yt = gst (xt−1, εt, χ) , yt+1 = gst+1 (xt, χεt+1, χ) (B.6)

and

Pst,st+1,t = πst,st+1 (yt) . (B.7)

Now, substituting these functional forms in the equilibrium conditions and being more ex-

plicit about the expectation operator, given (xt−1, εt, χ) and st, we have:

Fst (xt−1, εt, χ) =

∫ 1∑
s′=0

πst,s′ (gst (xt−1, εt, χ)) f


gst+1 (hst (xt−1, εt, χ) , χε′, χ) ,

gst (xt−1, εt, χ) ,

hst (xt−1, εt, χ) ,

xt−1, χε
′, εt,

θ̄ + χθ̂ (s′) , θ̄ + χθ̂ (st)

 dµε′.

(B.8)

where dµε′ denotes the joint pdf of the shocks.

Finally, stacking all conditions by regime yields:

F (xt−1, εt, χ) =

[
Fst=0 (xt−1, εt, χ)

Fst=1 (xt−1, εt, χ)

]
= 0. (B.9)

23In the version with volatility switches, these parameters belong to the second set.
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B.2 Steady State Definition and Solution

The model has two features that make defining a steady state challenging. First, as it is

common in a regime-switching framework, some structural parameters may be switching. In

the case of our application, there is only one switching parameter that affects the steady state,

ϕ (st). Nonetheless, in principle, one could allow for regime switching also in the parameters

of the exogenous processes, A∗ (st) and P ∗ (st), or the structural parameter κ∗ (st), which

would affect the level of the economy and the steady state calculations. Following Foerster

et al. (2016), we define the steady state in terms of the ergodic means of these parameters

across regimes. To define the steady state, we set εt = 0 and χ = 0, which implies that the

steady state is given by

f
(
yss,yss,xss,xss, 0, 0, θ̄1, θ2(s′), θ̄1, θ2(s)

)
= 0 (B.10)

for all s′, s.

In our case, the transition matrix evaluated at steady state Pss is endogenous, since it

depends on variables that in turn depend on the steady state value of the transition matrix.

To find a solution for the steady state (balanced growth path), we proceed in two steps.

First, we assume the steady state transition matrix is known and solve for all the steady

state prices and quantities. Second, we use the steady state values of the borrowing cushion

B̃∗ss and multiplier λss from Step 1 to update the steady state transition matrix. We then

iterate to convergence.

Step 1: Solve steady state using a given steady state transition matrix. First,

assume that the steady state transition matrix at iteration i, P(i)
ss , is known. Next, let

ξ = [ξ0, ξ1] denote the ergodic vector of P(i)
ss . Then, as noted in the paper, define the ergodic

means of the switching parameters as

ϕ̄ = ξ0ϕ (0) + ξ1ϕ (1) .

The steady state of the regime-switching economy depends on these ergodic means, and we

can now solve for the steady states of all variables.

Step 2: Updating the transition matrix. Step 1 yields the variables B̃∗ss and λss, and

hence provides a new value of the transition matrix for iteration i+ 1:

P(i+1)
ss =

[
p00,ss p01,ss

p10,ss p11,ss

]
=

 1− exp(−γ0B̃∗ss)
1+exp(−γ0B̃∗ss)

exp(−γ0B̃∗ss)
1+exp(−γ0B̃∗ss)

exp(−γ1λss)
1+exp(−γ1λss)

1− exp(−γ1λss)
1+exp(−γ1λss)

 , (B.11)
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which can be checked against the guess in Step 1. We then iterate to convergence until

∥∥P(i+1)
ss − P(i)

ss

∥∥ < tolerance,

where in our application we use a tolerance of 10−10.

B.3 Generating Approximations

To compute a second order approximation to the endogenous regime-switching model solu-

tion, we largely follow Foerster et al. (2016), adapting to the case with endogenous proba-

bilities.

We take the stacked equilibrium conditions F (xt−1, εt, χ), and differentiate with respect

to (xt−1, εt, χ). The first-order derivative with respect to xt−1 produces a polynomial system

denoted

Fx (xss,0, 0) = 0. (B.12)

In Foerster et al. (2016), when the transition probabilities are exogenous and fixed, this

system needs to be solved via Gröbner bases, which finds all possible solutions in order

to check them for stability. The relevant stability concept is mean square stability (MSS),

which requires the expectation of first and second moments to be finite (see Costa et al.,

2005). In our case with endogenous probabilities, the check for MSS is not applicable,

so we focus on finding a single solution and ignore the possibility of multiple solutions or

indeterminacy, a common simplification in the regime-switching literature with and without

endogenous switching (e.g. Farmer et al., 2011; Foerster, 2015; Maih, 2015; Lind, 2014). This

simplification is also common to global solution methods of models with occasionally binding

constraints, where numerical methods converge to a given solution but do not guarantee

uniqueness of that solution. Instead, the focus typically is on checking robustness of the

solution to initial conditions. While in some simpler models with collateral constraints it is

possible to impose parametric restrictions that rule out multiple equilibria (Schmitt-Grohe

and Uribe, 2020; Benigno et al., 2016), in the case of our model, as in Mendoza (2010) and

Bianchi and Mendoza (2018), there are no such restrictions and uniqueness must be verified

numerically.

To find a model solution, we guess a set of policy functions for regime st = 1, which

reduces the equilibrium conditions Fx (xss,0, 0; st = 0) to a fixed-regime eigenvalue problem,

and solve for the policy functions for st = 0. Then, using this initial solution as a guess, we

solve for regime st = 0 under the fixed-regime eigenvalue problem, and iterate to convergence.
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After solving the iterative eigenvalue problem, the remaining systems to solve are

Fε (xss,0, 0) = 0 (B.13)

Fχ (xss,0, 0) = 0, (B.14)

and the second order systems of the form

Fi,j (xss,0, 0) = 0, i, j ∈{x, ε,χ} . (B.15)

Recalling now that the decision rules have the form

xt = hst (xt−1, εt, χ) (B.16)

yt = gst (xt−1, εt, χ) , (B.17)

the second-order approximation are

xt ≈ xss +H(1)
st St +

1

2
H(2)
st (St ⊗ St) (B.18)

yt ≈ yss +G(1)
st St +

1

2
G(2)
st (St ⊗ St) (B.19)

where St =
[

(xt−1 − xss)
′ ε′t 1

]′
, with xss denoting the value of the steady-state vari-

ables.

B.4 Proof of Proposition 1 (Properties of the Approximated So-

lution)

To prove Proposition 1, take the first-order derivatives of (B.9) with respect to its arguments,

evaluated at the steady state. This yields:

Fx,st (xss,0, 0) =
∑
s′

πst,s′,y (yss) gx,stfss (s′, st) (B.20)

+
∑
s′

πst,s′ (yss)

[
fyt+1 (s′, st) gx,s′hx,st + fyt (s′, st) gx,st

+fxt (s′, st)hx,st + fxt−1 (s′, st)

]
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Fε,st (xss,0, 0) =
∑
s′

πst,s′,y (yss) gε,stfss (s′, st) (B.21)

+
∑
s′

πst,s′ (yss)

[
fyt+1 (s′, st) gx,s′hε,st + fyt (s′, st) gε,st

+fxt (s′, st)hε,st + fεt (s′, st)

]

and

Fχ,st (xss,0, 0) =
∑
s′

πst,s′,y (yss) gχ,stfss (s′, st) (B.22)

+
∑
s′

πst,s′ (yss)

 fyt+1 (s′, st) gx,s′hχ,st + fyt (s′, st) gχ,st

+fxt (s′, st)hχ,st

+fθt+1 (s′, st) θ̂ (st+1) + fθt (s′, st) θ̂ (st)


Note now that, by definition of a steady state, fss (s′, st) = 0, and so the first term of each

of these expressions equals zero. Hence, we are left with the expressions for the exogenous

transition probabilities as in Foerster et al. (2016), given by Pss = πst,s′ (yss).

To prove the second part of the Proposition, namely that endogenous regime-switching

shows up at second-order, it suffices to show that the second derivatives of the system with

respect to xt−1 are dependent on the derivatives of the probability functions. We include

the full set of the second-order derivatives in the Supplementary Appendix. Now note that

the derivatives have the following form:

[Fs,xx]
a
b,c = A +

∑
s′

(∑
j

πs,s′,yj,tg
j
s,xb

)
B +

∑
s′

(∑
j

πs,s′,yj,tg
j
s,xc

)
C, (B.23)

where A,B,C are expressions include scalars and unknowns. It is now evident that this

equation is a function of πs,s′,yj,t , meaning that second-order coefficients of the decision-rules

are functions of the change in the probabilities. QED.

Appendix C Solution Accuracy and Comparison with

Traditional Inequality Specification

To gauge the accuracy and speed of our solution method and to compare the endogenous

regime switching specification of the borrowing constraint relative to the traditional inequal-

ity one, we compare a suitably modified and calibrated version of our model to Mendoza

(2010) solved with the FiPIt method of Mendoza and Villalvazo (2020).24 To do so, we

24See Binning and Maih (2017) for an analysis of the properties of our solution method applied to other
structural models, such as the zero lower bound, in which they found a high degree of accuracy.
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Table C.1: Solution Accuracy and Speed

FiPIt Mendoza (2010) End. Switch.
Euler Equation Errors (log10 units)

Bond - Mean -6.27 na -2.92
Bond - Max -1.56 na -1.61
Capital - Mean -7.04 na -3.61
Capital - Max -6.68 na -2.41

Computing Time (seconds) 810 na 1.00

calibrate our model at an annual frequency and retain the interest rate, productivity, and

intermediate input price shocks, as in Mendoza and Villalvazo (2020), and drop the ex-

penditure and preference shocks and the permanent productivity shock. We then compare

Euler equation errors and solution speed, simulated model first and second moments, ergodic

distributions, and decision rules for bond holding and capital.

In the endogenous regime switching model, we calibrate all common model parameters

as in Mendoza and Villalvazo (2020). The logistic function parameters are specific to our

model. We set γ0 = γ1 = 30 to match the probability of a positive multiplier on the borrowing

constraint. Both Mendoza (2010) and Mendoza and Villalvazo (2020) use finite-state Markov

processes, while we use discrete-time autoregressive processes over a continuous support. We

set these parameters so that the unconditional moments of the two sets of processes coincide.

Table C.1 reports the statistics on the errors in the Euler equation and the computation

time. The table illustrates a stark trade-off between speed and accuracy. Our method is

about 800 times faster than the FiPIt, with log-10 absolute Euler equation errors that are

1-3 times larger than FiPIt. The size of our Euler equation errors is in line with the values

typically found when solving exogenous regime-switching models with perturbation methods

(Foerster et al., 2016) and models without regime switching (Aruoba et al., 2006). To put

these numbers in perspective, the implied accuracy differences represent only a dollar error

per 1,000 dollars of consumption, which is very small in absolute terms by the standards in

the literature.

Table C.2 compares the first and second moments and the probability of a positive multi-

plier. To size the differences between FiPIt and our model, as a reference, we also report the

simulated second moments from the original Mendoza (2010). The comparison shows that

our specification of the occasionally binding borrowing constraint essentially produces the

same first and second moments as the FiPIt, with differences that are very small relative to

the gaps between the FiPIt and Mendoza (2010). Two exceptions are the net foreign asset

position as a share of GDP (b/GDP ) and the net export-to-GDP ratio (nx/GDP ). The

ergodic mean of b/GDP is about -17.9% in our model, while it is small and positive in the
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Table C.2: First and Second Moments

FiPIt Mendoza (2010) End. Switch.
Means

gdp 393.619 388.339 393.168
c 274.123 267.857 268.826
inv 67.481 65.802 67.136
nx/gdp (%) 1.5 2.4 -0.3
k 765.171 747.709 763.154
b/gdp (%) 1.3 -10.4 -17.9
q 1 1 1
lev (%) -10.3 -15.9 -19.4
v 42.617 41.949 42.600
wc 76.658 75.455 76.598

Standard Deviations (%)
gdp 3.94 3.85 3.81
c 4.03 3.69 3.628
inv 13.33 13.45 10.884
nx/gdp 2.94 2.58 1.307
k 4.49 4.31 4.185
b/gdp 19.62 8.9 2.154
q 3.2 3.23 2.568
lev 9.22 4.07 8.560
v 5.89 5.84 5.87
wc 4.35 4.26 4.21

Correlations with with gdp
gdp 1 1 1
c 0.842 0.931 0.984
inv 0.641 0.641 0.748
nx/gdp -0.117 -0.184 -0.047
k 0.761 0.744 0.849
b/gdp -0.12 -0.298 -0.172
q 0.387 0.406 0.478
lev -0.111 0.258 -0.076
v 0.832 0.823 0.832
wc 0.994 0.987 0.994

Autocorrelations
gdp 0.825 0.815 0.815
c 0.83 0.766 0.804
inv 0.501 0.483 0.441
nx/gdp 0.601 0.447 0.246
k 0.962 0.963 0.975
b/gdp 0.99 0.087 0.779
q 0.447 0.428 0.350
lev 0.992 0.04 0.864
v 0.777 0.764 0.774
wc 0.801 0.777 0.784

Sudden Stop Statistics (%)
Prob. Positive Multiplier 2.6 na 3.615
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Figure C.1: Endogenous Switching Model’s Ergodic Distributions

(a) Bonds
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Notes: The figure plots the simulated ergodic distribution of the bond and capital in the endogenous switching

model calibrated as described in the appendix text.

FiPIt model (1.3%).25 In Mendoza (2010), this simulated moment is about -10%. Mexico’s

net foreign asset position averaged -37% of GDP and was never positive from 1970 to 2015.

Therefore, our model generates an ergodic mean of debt significantly closer to the average

in the data compared to the FiPIt.

The second discrepancy is nx/GDP , which is negative -0.3% in our model, while it is

positive 1.5% in the FiPIt, and 2.4% in Mendoza (2010). The FiPIt generates a counter-

factual net foreign asset position with a positive net export-to-GDP ratio that should be

negative in the ergodic distribution if the bond position is positive. Our model generates

a data-consistent debt position with a small negative ergodic trade surplus. In contrast, in

25All model and solution variants reported in Mendoza and Villalvazo (2020) also have a positive level of
ergodic debt.
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Figure C.2: Endogenous Switching Model’s Decision Rules Across Regimes

(a) Capital: Non-binding (b) Capital: Binding

(c) Bond: Non-binding (d) Bond: Binding

(e) Borrow Cushion: Non-binding (f) Borrow Cushion: Binding
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Notes: The figure plots the bond and capital decision rules in the endogenous switching model calibrated

as discussed in the appendix text, by regime, evaluated at the steady-state value of the technology, interest

rate, and intermediate input price processes.

Mendoza (2010), the ergodic trade balance and debt proportions have the opposite sign as

one would expect. Our model also generates a less volatile bond position and trade balance
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relative to FiIPt, which in turn generates more volatility than the original Mendoza (2010).

A result that could be due to the mechanics of our specification of the borrowing constraint.

Figure C.1 plots the ergodic distributions of debt (panel a) and capital (panel b), together

with their joint distribution as in Figure 1 of Mendoza and Villalvazo (2020). The debt

distribution of our model has little or no density outside the [-100, 0] interval of the support.

In contrast, the FiPIt distribution has a significant probability mass on positive and large

values, which is counterfactual as we discussed above. Instead, the ergodic distribution of

capital has essentially the same support in the two models. The joint distribution reflects

these differences.

The policy functions of our model solved with perturbation methods illustrate its abil-

ity to capture the occasionally binding nature of the borrowing constraint consistent with

Proposition 1. Figure C.2 plots the decision rules for capital, bonds, and the borrowing

cushion in our model, in both the non-binding and the binding regimes. These rules are

evaluated at the steady-state values of the technology, interest rate, and intermediate input

price processes, covering a rectangular support associated with the joint ergodic distribution

of capital and debt. Therefore, the decision rules presented here are conditional on no shocks.

Importantly, note here that the actual behavior of the model also depends on the specific

values of the exogenous states. In our framework, endogenous states, exogenous processes,

and shocks all have continuous support; while FiPIt’s use of a discretized state space means

that a finite set of states are repeatedly visited. This fact is crucial because the ergodic sets

are influenced by the underlying processes. In other words, the portions of the distribution’s

support that the economy visits depend on the specific values of the exogenous processes.

In contrast, the decision rules of traditional occasionally binding models are functions of

the entire state space, encompassing shocks, previous period values of the processes, and

endogenous states.

First, consider the behavior of the economy in the non-binding regime and recall that, in

our framework, the regime assignment is predetermined relative to the shocks and the agent’s

decision. This means that, by construction, shocks cannot push the economy into the binding

region within the same period. The curvature in the non-binding regime reflects how likely

and how severely the credit constraint may be expected to bind at t+1 when it does not bind

at time t. In the non-binding regime, the capital decision rule is upward-sloping in the current

period debt (Figure C.2a). As the economy borrows more, investment, the price of capital,

and collateral value increase. However, the impact of higher borrowing on the borrowing

cushion is stronger than the impact on the collateral value. Consequently, the borrowing

cushion monotonically decreases as the current period debt increases (Figure C.2e). As we

move towards the tail of the ergodic distribution, the second-order approximation introduces
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some curvature, and the slopes of the policy functions change sign. However, these regions

of the distribution are seldom visited. Indeed, when we numerically evaluate the probability

of encountering derivatives with the wrong signs, we find that the upward-sloping behavior

occurs only in 1% of the ergodic set. This result simply highlights that, when solving by

perturbation methods, the decision rules can behave oddly in areas not frequently visited.

Second, consider the behavior of the economy in the binding regime when the borrowing

cushion, by definition, is at the steady-state values of the processes. In the binding regime,

the economy displays typical debt deflation dynamics. The capital decision rule is downward-

sloping. The debt decision rule is downward sloping at low levels of debt, but is upward

sloping at higher levels of debt because the approximation loses accuracy as we move toward

the edges of the ergodic support.
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