
ONLINE APPENDIX

A Additional Identification Results

In this section, we omit the subscript i in all random variables for notational simplicity.

In addition, we suppress the subscript D2|S2 in propensity score functions throughout

the online appendix

A.1 Multi-period CFR

The following lemma extends Lemma 2.1 to the general multi-period model discussed in

Section 3. First we extend the smoothness condition in Assumption 2.1.2.

Assumption A.1 There exists an ϵ > 0, such that E
[
Ỹ(1+τ)(d1)|Z1 = z1

]
is continuous

in z1 ∈ Nϵ for all τ = 2, ...,K − 1 and E
[
D̃(2+τ)(d1)|Z1 = z1

]
is continuous for all

τ = 1, ...,K − 2, for both d1 = 0, 1.

Meanwhile, the mean equivalence condition in (2.4) need to be extended to

ATEτ ≡ E [θτ,1|Z1 = 0] = E
[
θℓ

k

τ,(k+1)|Z1 = 0
]
, (A.1)

for all τ = 0, 1, ...,K − 1, ℓk ∈ Lk, and k = 1, ...,K − τ − 1. The random treatment

selection condition in (2.5) need to be extended to

E
[
θℓ

k

τ,(k+1)D(ℓk, 1)|Z1 = 0
]
= E

[
θℓ

k

τ,(k+1)|Z1 = 0
]
· E
[
D(ℓk, 1)|Z1 = 0

]
, (A.2)

for all τ = 0, 1, ...,K − 1, ℓk ∈ Lk, and k = 1, ...,K − τ − 1.

Lemma A.1 Under Assumptions 2.1, A.1 and conditions in equations (2.4), (2.5), (A.1),

and (A.2), the following CFR recursive identification result holds:

ATE0 = lim
z1↘0

E[Y1|Z1 = z1]− lim
z1↗0

E[Y1|Z1 = z1],

ATEτ = lim
z1↘0

E[Y1+τ |Z1 = z1]− lim
z1↗0

E[Y1+τ |Z1 = z1]

−
τ−1∑
s=0

ATEs ·
(
lim
z1↘0

E[D1+τ−s|Z1 = z1]− lim
z1↗0

E[D1+τ−s|Z1 = z1]

)
,

for all τ = 1, 2, ...,K − 1.

Lemma A.1 reduces to Lemma 2.1 when K = 2. The lemma is proven in Section C.
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A.2 Extended CFR with Covariates

This section extends the recursive CFR identification strategy using covariates.

Assumption A.2 There exists an ϵ > 0, such that for all x ∈ X ,

1. Z1 is continuous in z1 ∈ Nϵ with P [Z1 ≥ 0|X = x] ∈ (0, 1);

2. E[Y1(d1)|X = x, Z1 = z1], E[Ỹ2(d1)|Z1 = z1], and E[D2(d1)|X = x, Z1 = z1] are

all continuous in z1 ∈ Nϵ, for both d1, d2 = 0, 1.

The following Lemma summarizes the extension.

Lemma A.2 Under Assumption A.2 and conditions in equations (2.6) and (2.7), the

following recursive identification results hold:

ATE1 ≡ lim
z1↘0

E[Y2|Z1 = z1]− lim
z1↗0

E[Y2|Z1 = z1]− E[CATE0(X)p2(X)|Z1 = 0],

where CATE0(x) = limz1↘0E[Y1|X = x, Z1 = z1] − limz1↗0E[Y1|X = x, Z1 = z1] and

p2(x) = limz1↘0E[D2|X = x, Z1 = z1]− limz1↗0E[D2|X = x, Z1 = z1], for all x ∈ X .

The lemma is proven in Section C.

A.3 Partial Identification

In this section, we discuss partial identification of the one-period-after ATE by replacing

the CIA condition in Assumption 2.2 to a monotonicity condition that might be more

plausible in some empirical applications.

Assumption A.3 (Monotone 1 - Benchmark) E[Y2(d1, 0)|Z2(d1) = z2, S2(d1) = 1, Z1 =

z1] is (weakly) monotonically increasing in z2 for all z1 ∈ Nϵ.

Assumption A.3 assumes that the potential second-round running variable has a

monotonic relationship with the conditional mean of potential second-round outcomes

with no second-round treatment. The assumption nests the CIA condition in Assump-

tion 2.2. Under Assumption A.3, for d1 = 0, 1,

E[θd10,2|D2(d1) = 1, Z1 = 0]

=E[Y2(d1, 1)|D2(d1) = 1, Z1 = 0]− E[Y2(d1, 0)|S2(d1) = 1, Z2(d1) ≥ 0, Z1 = 0]

≤E[Y2(d1, 1)|D2(d1) = 1, Z1 = 0]− E[Y2(d1, 0)|S2(d1) = 1, Z2(d1) < 0, Z1 = 0].
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Then, following the identification results in Section 2.3, we know that

E[θ00,2D2(0)|Z1 = 0] ≤ lim
z1↗0

E[Y2S2(D2 − λ0)]/(1− λ0), and

E[θ10,2D2(1)|Z1 = 0] ≤ lim
z1↘0

E[Y2S2(D2 − λ1)]/(1− λ1).

Assumption A.4 (Monotone 2 - Benchmark) E[θd10,2|Z2(d1) = z2, S2(d1) = 1, Z1 =

z1] is (weakly) monotonically increasing in z2 ∈ R for all x ∈ X and z1 ∈ Nϵ.

Assumption A.4 assumes that the potential second-round running variable has a

monotonic relationship with the immediate second-period ATE. When the continuity

conditions in Assumptions 2.2 are extended to conditional means of potential outcomes

conditional on both Z1 and Z2, it is easy to show that under Assumption A.4,

E[θ00,2|D2(0) = 1, Z1 = 0] ≥ E[θ00,2|S2(0) = 1, Z2(0) = 0, Z1 = 0]

= lim
z1↗0,z2↘0

E[Y2|S2 = 1, Z2 = z2, Z1 = z1]− lim
z1↗0,z2↗0

E[Y2|S2 = 1, Z2 = z2, Z1 = z1] ≡ β0,

E[θ10,2|D2(1) = 1, Z1 = 0] ≥ E[θ10,2|S2(1) = 1, Z2(1) = 0, Z1 = 0]

= lim
z1↘0,z2↘0

E[Y2|S2 = 1, Z2 = z2, Z1 = z1]− lim
z1↘0,z2↗0

E[Y2|S2 = 1, Z2 = z2, Z1 = z1] ≡ β1.

Combining the inequalities above and the decomposition stated in equation (2.2), we

bound the one-period-after ATE E[θ1,1|Z1 = z1] as

α1 −
(
lim
z1↗0

E[Y2|Z1 = z1]− β0 · lim
z1↗0

P [D2 = 1|Z1 = z1]

)
≤E[θ1,1|Z1 = z1]

≤
(
lim
z1↘0

E[Y2|Z1 = z1]− β1 · lim
z1↘0

P [D2 = 1|Z1 = z1]

)
− α0.

where α0 and α1 are identified in Lemma 2.2 but used here without the conditioning

covariate X. The inequalities can also be extended trivially to include covariates.

A similar partial identification result of longer-term ATEs could also be obtained,

given the Markovian-type condition in Assumption 2.2.1 and generalized versions of As-

sumptions A.3 and A.4. Details are omitted for brevity of the paper. All identified

bounds can be estimated by conventional non-parametric RD estimators (see, for exam-

ple, Chiang et al., 2019).

A.4 Special Cases

A.4.1 Up-to-one Treatment Case I

An important special case of the dynamic RD model is that every individual can only re-

ceive up to one treatment. For example, the effect of unionization studied in DiNardo and
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Lee (2004) and Lee and Mas (2012) is a case where the treatment has an absorbing state.

Then, the universe of past treatment paths, or Lk for all k, only includes paths with up to

one treatment. For instance, L2 = {(0, 0), (0, 1)}, and L3 = {(0, 0, 0), (0, 1, 0), (0, 0, 1)}.
Consider the identification of one-period-after and two-period after ATEs. In this

special case, the relationship between total and direct effects reduces to

θ̃1,1 =θ1,1 − θ00,2D2(0),

θ̃2,1 =θ2,1 − θ̃01,2D2(0)− θ
(0,0)
0,3 D3(0, 0) = θ2,1 + θ̃01,2η0,1 + θ

(0,0)
0,3 η1,1.

This leads to simplification in Lemma 3.2. For one-period-after and two-period after

ATEs, we have that

E[θ1,1|Z1 = 0] = lim
z1↘0

E
[
Y2
∣∣Z1 = z1

]
− lim

z1↗0
E

[
Y2 −

Y2S2(D2 − λ0(X))

1− λ0(X)

∣∣Z1 = z1

]
;

E[η1,1|Z1 = 0] =− lim
z1↗0

E

[
D3 −

D3S2(D2 − λ0(X))

1− λ0(X)

∣∣Z1 = z1

]
;

E[θ2,1|Z1 = 0] = lim
z1↘0

E
[
Y3
∣∣Z1 = z1

]
− lim

z1↗0
E

[
Y3 −

Y3S2(D2 − λ0(X))

1− λ0(X)

∣∣Z1 = z1

]
− lim

z1↗0
E

[
Y2S2(D2 − λ0(X))

(1− λ0(X))E[D2|Z1 = z1]

∣∣Z1 = z1

]
× E[η1,1|Z1 = 0].

A.4.2 Up-to-one Treatment Case II

In a related but different special case, treatment is administrated after all rounds of RD

have taken place, if an individual qualifies for it in any round. For example, Clark and

Martorell (2014) use RD to study the effect of a high school diploma, whereby every

student has multiple chances to take the test and qualify for the diploma. This RD

setting could be regarded as a classic fuzzy RD model, where those who would opt out or

fail to meet later-round RD cutoffs upon failing the first round are compliers, and those

who earn eligibility for treatment through later rounds of RD are always-takers.

Use a two-round model for intuition. The potential outcome framework is

Y =Y (1)D + Y (0)(1−D),

D =D1 +D2 = 1(Z1 ≥ 0) + (1−D1) · S2(0) · 1(Z2(0) ≥ 0).

Let C = 1− S2(0) · 1(Z2(0) ≥ 0). Under smoothness conditions,

lim
z1↘0

E[Y |Z1 = z1] = lim
z1↘0

E[Y (1)|Z1 = z1] = E[Y (1)|Z1 = 0],

lim
z1↗0

E[Y |Z1 = z1] = lim
z1↗0

E[Y (1) · (1− C) + Y (0) · C|Z1 = z1]

=E[Y (1)|Z1 = 0]− E[(Y (1)− Y (0)) · C|Z1 = 0].
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In this special case, conventional RD smoothness conditions could identify the average

treatment effect among those who would opt out or fail to meet later-round RD cutoffs

upon barely failing the first round.

E[Y (1)− Y (0)|C = 1, Z1 = 0] =
limz1↘0E[Y |Z1 = z1]− limz1↗0E[Y |Z1 = z1]

limz1↗0 P [D2 = 0|Z1 = z1]

If the goal is, instead, to identify the average effect for everyone at the first-round RD

cutoff, then we would like to note that

lim
z1↘0

E[Y |Z1 = z1]− lim
z1↗0

E[Y |Z1 = z1]

=E[Y (1)− Y (0)|Z1 = 0]− E[Y (1)− Y (0)|D2(0) = 1, Z1 = 0] · P [D2(0) = 1|Z1 = 0],

where E[Y (1) − Y (0)|Z1 = 0] could then be identified following the same intuition of

point identifying E[θ1,1|Z1 = 0] in the general model.

A.4.3 Not Observing Some Initial Rounds of RD

In some empirical applications (e.g., U.S. House of Representative elections in Lee, 2008),

the first observed period may not be the first round of treatment. In such a case, identifi-

cation strategies described in Lemmas 2.2 and 3.2 need to be re-interpreted or modified.

Suppose the initial S rounds of RD (and treatment decisions) are unobserved. The

observed outcome discontinuity at the first observed RD cutoff then identifies a contempo-

raneous effect of treatment (CET) for individuals at the cutoff, following the terminology

in Blackwell and Glynn (2018). Let Lpre ∈ LS be the random variable denoting the

realized but unobserved treatment path of all unobserved rounds of RD. Let Y1(L
pre, d1)

be the potential outcome of the first observed outcome, characterized by the potential

treatment decision d1 in the first observed period. It is then clear that the following

average immediate treatment effect is identified under standard smoothness conditions:

E[Y1(L
pre, 1)|Z1 = 0]− E[Y1(L

pre, 0)|Z1 = 0]

= lim
z1↘0

E[Y1|Z1 = z1]− lim
z1↗0

E[Y1|Z1 = z1].

Similarly, the CET concept could be extended to capture long-term effects in the special

setting with unobserved initial rounds of data.

As is explained in Blackwell and Glynn (2018), CET reflects the effect of a treatment

averaged across all of the treatment histories up to the period of that treatment. In

other words, CET is a weighted average of path-specific treatment effects with unknown
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weights. Using notations of the previous sections,

E[Y1(L
pre, 1)|Z1 = 0]− E[Y1(L

pre, 1)|Z1 = 0]

=
∑

ℓpre∈LS

E[Y1(ℓ
pre, 1)− Y1(ℓ

pre, 0)|Dpre(ℓ
pre) = 1, Z1 = 0]P [Dpre(ℓ

pre) = 1|Z1 = 0],

where ℓpre is a pre-observation treatment path (e.g., ℓpre = (0, 1,0S−2)), and Dpre(.) is

the unobserved pre-observation treatment path indicator.

If a researcher would, instead, like to identify path-specific ATEs, then an alternative

strategy is to use a pre-focal-treatment condition using observed treatments, and then

use a Markovian-type assumption to eliminate the dependence of treatment effects on

the unobserved treatment history. The empirical section of the paper takes this approach

since the expenditure outcomes are not observed in the first several years of the data.

B Additional Inference Results

B.1 Additional Assumptions the Asymptotic Results

The following two assumptions are required for the asymptotic results stated in Theo-

rem 4.1 in Section 4.1.

Assumption B.1 For j = 1, . . . , k, the j-th element of γ(z1), or γj(z1), is twice con-

tinuously differentiable on (−ϵ, 0) and (0, ϵ) with corresponding derivatives bounded for

some ϵ > 0.

Assumption B.2 Moment E[∥X∥3|Z1 = z1] exists and is bounded on Nϵ for some ϵ > 0.

Recall that ϕγ0,ni(D2i, S2i, Z1i, Xi) and ϕγ1,ni(D2i, S2i, Z1i, Xi) are influence functions

of γ̂0 and γ̂1, respectively. Let Ik denote the k × k identity matrix and 0k×k denote the

k × k zero matrix. Under Assumptions 4.1-4.3 and B.1-B.2, one can show that

ϕγd,ni(D2i, S2i, Z1i, Xi) =(Ik 0k×k)(∆
d)−1S2i · 1(Z1i ≥ 0)d · 1(Z1i < 0)1−d

·K (Z1i/h)
(
D2i − L

(
X ′

i(γ
d + βdZ1i)

))( Xi

Z1iXi/h

)
,

for d = 0, 1.

The following two assumptions are required for the asymptotic results stated in The-

orem 4.1 and Theorem 4.2.

For notational simplicity, we use Ỹ2(γ) to denote Y2S2(D2−L(X′γ))
(1−L(X′γ)) . For d1 = 0, 1,

define Ỹ d1
2 = Y2S2(D2−L(X′γd1 ))

(1−L(X′γd1 ))
and ∇γ Ỹ

d1
2 = ∇γ Ỹ2(γ)|γ=γd1 . Let ∇2

γ Ỹ2(γ) be the Hessian

matrix of Ỹ2(γ).
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Assumption B.3 Assume that for some ϵ > 0,

1. E[Y2|Z = z] and E[Ỹ 0
2 |Z1 = z1] are twice continuously differentiable on z ∈ [−ϵ, 0)

with bounded corresponding derivatives;

2. E[Y2|Z = z] and E[Ỹ 1
2 |Z1 = z1] are twice continuously differentiable on z ∈ [0, ϵ]

with bounded corresponding derivatives;

3. E[|Y2|3|Z1 = z1] is bounded for z ∈ [−ϵ, ϵ], E[|Ỹ 0
2 |3|Z1 = z1] is bounded for z ∈

[−ϵ, 0), and E[|Ỹ 1
2 |3|Z1 = z1] is bounded for z ∈ [0, ϵ].

Assumption B.4 Assume that for some ϵ > 0,

1. The third moment of the j-th element of ∇γ Ỹ
0
2 , or E[|∇γ Ỹ

0
2j |3|Z1 = z1], is bounded

and twice continuously differentiable on z ∈ [−ϵ, 0) with bounded corresponding

derivatives;

2. The third moment of the j-th element of ∇γ Ỹ
1
2 , or E[|∇γ Ỹ

1
2j |3|Z1 = z1], is bounded

and twice continuously differentiable on z ∈ [0, ϵ] with bounded corresponding deriva-

tives;

3. E[sup∥γ−γ0∥≤ϵ ∥∇2
γ Ỹ2(γ)∥2] and E[sup∥γ−γ1∥≤ϵ ∥∇2

γ Ỹ2(γ)∥2] are bounded.

B.2 Alternative Inference Procedure with Robust RD Inference

In this section, we propose an alternative inference procedure that extends the robust

RD inference method in CCT to the two-step one-period-after ATE estimator proposed

in Section 2. The new inference procedure avoids under-smoothing in the second-step

estimation. On the other hand, the first-step propensity score estimation in the new

procedure needs to use a higher-order local polynomial and a larger bandwidth than the

second-step ATE estimation. We detail the procedure below.

To carry out the alternative inference procedure, we redefine the first-step estimators

γ̂0FS and γ̂1FS using a local quadratic method and a first-step specific bandwidth hFS .

(γ̂1FS , β̂
1
FS , ρ̂

1
FS) = argmax

γ,β,ρ

n∑
i=1

S2i1(Z1i ≥ 0)K

(
Z1i

hFS

)
·
[
D2i log p(Xi, γ + βZ1i + ρZ2

1i) + (1−D2i) log(1− p(Xi, γ + βZ1i + ρZ2
1i))
]
,

(γ̂0FS , β̂
0
FS , ρ̂

0
FS) = argmax

γ,β,ρ

n∑
i=1

S2i1(Z1i < 0)K

(
Z1i

hFS

)
·
[
D2i log p(Xi, γ + βZ1i + ρZ2

1i) + (1−D2i) log(1− p(Xi, γ + βZ1i + ρZ2
1i))
]
.
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where hFS is the bandwidth for the first-step propensity score estimator.

Given the first-step estimators, define

Ŷ1,i = Y2i −
Y2iS2i(D2i − p(Xi, γ̂

1
FS))

1− p(Xi, γ̂1FS)
, Ŷ0,i = Y2i −

Y2iS2i(D2i − p(Xi, γ̂
0
FS))

1− p(Xi, γ̂0FS)
.

Let α̂1(hn) and α̂0(hn) be estimators of α1 and α0, respectively, with the second-step

bandwidth hn:

(α̂1(hn), β̂
1(hn)) = argmin

α,β

n∑
i=1

1(Z1i ≥ 0)K

(
Z1i

hn

)[
Ŷ1,i − α− βZ1i

]2
,

(α̂0(hn), β̂
0(hn)) = argmin

α,β

n∑
i=1

1(Z1i < 0)K

(
Z1i

h

)[
Ŷ0,i − α− βZ1i

]2
.

Following CCT, we define a bias-corrected estimator for the one-period-after ATE,

θ̄1,1, as

θ̂bc1,1(hn, bn) = α̂1(hn)− α̂0(hn)− h2nB̂1,1(hn, bn)

where h2nB̂1,1(hn, bn) is the bias estimator of the local linear estimator α̂1(hn) − α̂0(hn)

using a pilot bandwidth bn defined later. Under proper assumptions, the first-step esti-

mation of γ0FS and γ1FS does not influence either the first-order asymptotic bias or the

asymptotic variance of α̂1(hn)− α̂0(hn). In other words, the bias term could be defined

as

B̂1,1(hn, bn) =
ρ̂1(bn)

2!
B+,1,1(hn)−

ρ̂0(bn)

2!
B−,1,1(hn)

with B+,1,1(hn) and B−,1,1(hn) following the definitions in Lemma A.1(B) of CCT re-

placing outcome variables in the Lemma by Ỹ1,i and Ỹ0,i. Let V
bc
1,1(hn, bn) be the variance

given in Theorem 1 of CCT with outcome variables replaced by Ỹ1,i and Ỹ0,i. Under

suitable conditions, we are able to show that

θ̂bc1,1(hn, bn)− θ̄1,1√
V bc
1,1(hn, bn)

d→ N(0, 1).

Next we study the asymptotic properties of the proposed two-step estimator with

p(x, γ) = L(x′γ) with L(a) = exp(a)/(1 + exp(a)). The following assumptions gives the

new bandwidth conditions.

Assumption B.5 Assume that

1. The bandwidth satisfies that hFS → 0, nhFS → ∞ and nh7FS → 0 as n → ∞.
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2. hn → 0, nhn → ∞ and nh7n → 0;

3. bn → 0, nbn → ∞ and nb7n → 0;

4. hn/hFS → 0 and bn/hFS → 0.

Redefine the influence function

ϕγd,ni(D2i, S2i, Z1i, Xi) =(Ik 0k×k)(∆
d)−1S2i · 1(Z1i ≥ 0)d · 1(Z1i < 0)1−d

·K
(

Z1i

hFS

)(
D2i − L

(
X ′

i(γ
d + βdZ1i + ρdZ2

1i)
))

Xi

XiZ1i
hFS
XiZ

2
1i

h2
FS

 ,

for d = 0, 1. The following lemma then provides asymptotic properties of the first-step

local MLE estimators under the new local quadratic regression set-up.

Lemma B.1 Suppose that Assumptions 4.1-B.2, and 4.3 hold, then for d = 0, 1,

√
nhFS


γ̂dFS − γdFS

hFS β̂
d
FS − hFSβ

d
FS

h2FS ρ̂
d
FS − h2FSρ

d
FS

 =
1√

nhFS

n∑
i=1

(∆d)−1S2i · 1(Z1i ≥ 0)d · 1(Z1i < 0)1−d

·K
(

Z1i

hFS

)(
D2i − L

(
X ′

i(γ
d
FS + βd

FSZ1i + ρdFSZ
2
1i)
))

Xi

XiZ1i
hFS
XiZ

2
1i

h2
FS

+ op(1),

where ∆d is given in the proof of the lemma. In addition, for d = 0, 1,

√
nhFS


γ̂dFS − γdFS

hFS β̂
d
FS − hFSβ

d
FS

h2FS ρ̂
d
FS − h2FSρ

d
FS

⇒ N

(
0,
(
∆d
)−1

Ωd
(
∆d
)−1

)
,

where Ωd is given in equation (D.3) in the proof.

Let Ỹ1,i and Ỹ0,i be the infeasible versions of Ŷ1,i and Ŷ0,i such that

Ỹ1,i = Y2i −
Y2iS2i(D2i − p(Xi, γ

1
FS))

1− p(Xi, γ1FS)
, Ỹ0,i = Y2i −

Y2iS2i(D2i − p(Xi, γ
0
FS))

1− p(Xi, γ0FS)
.

Given smoothness conditions on them, we can show asymptotic properties of the bias-

corrected estimator θ̂bc1,1(hn, bn).

Assumption B.6 Assume that for some ϵ > 0,
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1. E[Ỹ 4
1 |Z = z] and E[Ỹ 4

0 |Z = z] are bounded on z ∈ [−ϵ, ϵ];

2. E[Ỹ1|Z = z] and E[Ỹ0|Z = z] are three times continuously differentiable on z ∈
[−ϵ, ϵ];

3. V [Ỹ1|Z = z] and V [Ỹ0|Z = z] are continuously on z ∈ [−ϵ, ϵ] and bounded away

from zero.

Theorem B.1 Suppose that Assumptions 4.1-B.2, 4.3, and B.6 hold. Then

θ̂bc1,1(hn, bn)− θ̄1,1√
V bc
1,1(hn, bn)

d→ N(0, 1).

Results in the Theorem follows directly from Theorem 1 of CCT. Proof is given in

Section D. This is straightforward because Assumption B.5 implies that the first step

estimation converges at a faster rate than the resulting θ̂bc1,1(hn, bn) estimator and we

can ignore its effect on the AMSE of the final estimator. Then by the same reasoning,

we can show that the AMSE-optimal (infeasible) choices for hn and bn are the same as

those in Lemma 1 of CCT after replacing outcomes with Ỹ1,i and Ỹ0,i, respectively. The

data-driven plug-in bandwidth selectors then follow directly from Section S.2.6 of the

supplement material of CCT.

C Proofs for Identification Results

Proof of Lemma A.1

The identification result for ATE0 is a standard result in static sharp RD. Also by

standard static RD identification and the smoothness conditions in Assumption A.2, we

know that limz1↘0E[D1+τ−s|Z1 = z1] − limz1↗0E[D1+τ−s|Z1 = z1] = E[D̃1+τ−s(1) −
D̃1+τ−s(0)|Z1 = 0] ≡ πτ−s, for any τ ≥ 1 and s = 0, 1, · · · , τ − 1.

Set π0 = limz1↘0E[D1|Z1 = z1] − limz1↗0E[D1|Z1 = z1] = 1. To prove the lemma,

we only need to prove that for all τ ≥ 1,

lim
z1↘0

E[Y1+τ |Z1 = z1]− lim
z1↗0

E[Y1+τ |Z1 = z1] =
τ∑

s=0

ATEs · E[πτ−s|Z1 = 0].

We prove by induction. When τ = 1, the equation implies that limz1↘0E[Y2|Z1 =

z1] − limz1↗0E[Y2|Z1 = z1] = E[θ̃1,1|Z1 = 0] = ATE1 + ATE0E[π1|Z1 = 0], which is

already shown in Section 2. Now, suppose that the equation above holds for some k ≥ 1.
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This implies that

k∑
s=0

ATEs · E[πk−s|Z1 = 0] = lim
z1↘0

E[Y1+k|Z1 = z1]− lim
z1↗0

E[Y1+k|Z1 = z1]

= lim
z1↘0

E[Ỹ1+k(1)|Z1 = z1]− lim
z1↗0

E[Ỹ1+k(0)|Z1 = z1]

=E[Ỹ1+k|Z1 = 0]− E[Ỹ1+k|Z1 = 0]

=E

 ∑
ℓk∈Lk

(
Y1+k(1, ℓ

k) ·D2:(1+k)(1, ℓ
k)− Yt(0, ℓ

k) ·D2:(1+k)(0, ℓ
k)
)
|Z1 = 0

 , (C.1)

where the second and fourth equalities hold by definitions and the third equality holds

by smoothness conditions.
Now for period k + 1, under smoothness conditions,

lim
z1↘0

E[Y(k+1)+1|Z1 = z1]− lim
z1↗0

E[Y(k+1)+1|Z1 = z1]

=E

 ∑
ℓk∈Lk

Y(k+1)+1(1, ℓ
k, 1)D2:(k+1)(1, ℓ

k)D(k+1)+1(1, ℓ
k) + Y(k+1)+1(1, ℓ

k, 0)D2:(k+1)(1, ℓ
k)(1−D(k+1)+1(1, ℓ

k))|Z1 = 0


− E

 ∑
ℓk∈Lk

Y(k+1)+1(0, ℓ
k, 1)D2:(k+1)(0, ℓ

k)D(k+1)+1(0, ℓ
k) + Y(k+1)+1(0, ℓ

k, 0)D2:(k+1)(0, ℓ
k)(1−D(k+1)+1(0, ℓ

k))|Z1 = 0


=E

 ∑
ℓk∈Lk

(
Y(k+1)+1(1, ℓ

k, 0)D2:(k+1)(1, ℓ
k)− Y(k+1)+1(0, ℓ

k, 0)D2:(k+1)(0, ℓ
k
)
|Z1 = 0


+ E

 ∑
ℓk∈Lk

θ
(1,ℓk)
0,(k+1)+1

·D2:(k+1)+1(1, ℓ
k, 1)|Z1 = 0

− E

 ∑
ℓk∈Lk

θ
(0,ℓk)
0,(k+1)+1

·D2:(k+1)+1(0, ℓ
k, 1)|Z1 = 0


=A+ATE0 · E

 ∑
ℓk∈Lk

D2:(k+1)+1(1, ℓ
k, 1)|Z1 = 0

−ATE0 · E

 ∑
ℓk∈Lk

D2:(k+1)+1(0, ℓ
k, 1)|Z1 = 0


≡A+ATE0 · E

[
D̃(k+1)+1(1)− D̃(k+1)+1(0)|Z1 = 0

]
= A+ATE0 · E[πk+1|Z1 = 0]. (C.2)

The first two equalities hold by definitions. The third equality holds by the mean

equalivance condition and random treatment selection condition in (A.1) and (A.2). The

last two equalities again hold by definitions.

Now note that the only difference between the A term above and the conditional

mean expression in the right hand side of equation (C.1) is between the quasi potential

outcome Y(k+1)+1(d1, ℓ
k, 0) in (C.2) and the potential outcome Yk+1(d1, ℓ

k) in (C.1).

Given the definition of direct treatment effects, it is clear that

A =

k∑
s=0

ATEs+1 · E[πk−s|Z1 = 0] =

k+1∑
s=1

ATEs · E[π(k+1)−s|Z1 = 0]

Plugging the result into equation (C.2) therefore completes the proof by showing that

lim
z1↘0

E[Y1+(k+1)|Z1 = z1]− lim
z1↗0

E[Y1+(k+1)|Z1 = z1] =
k+1∑
s=0

ATEs · E[π(k+1)−s|Z1 = 0].
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Proof of Lemma A.2

From Equation (2.1) and the proof of Lemma A.1, we know that

ATE1 = lim
z1↘0

E[Y2|Z1 = z1]− lim
z1↗0

E[Y2|Z1 = z1]

− E
[
E[θ10,2D2(1)− θ00,2D2(0)|X,Z1 = 0]|Z1 = 0]

]
,

where

E[θ10,2D2(1)− θ00,2D2(0)|X,Z1 = 0]

=E[θ10,2|D2(1) = 1, X, Z1 = 0]E[D2(1)|X,Z1 = 0]

− E[θ00,2|D2(0) = 1, X, Z1 = 0]E[D2(0)|X,Z1 = 0]

=E[θ10,2|X,Z1 = 0]E[D2(1)|X,Z1 = 0]− E[θ00,2|X,Z1 = 0]E[D2(0)|X,Z1 = 0]

=CATE0(X) (E[D2(1)−D2(0)|X,Z1 = 0]) .

The second equality is by the extended random treatment selection assumption in (2.6)

and the third equality is by the extended homogeneous ATE assumption in (2.7). Then,

by the strengthened smoothness and overlapping conditions in Assumption A.2, we know

that CATE0(X) = limz1↘0E[Y1|X,Z1 = z1]− limz1↗0E[Y1|X,Z1 = z1] and E[D2(1)−
D2(0)|X,Z1 = 0] = limz1↘0E[D2|X,Z1 = z1] − limz1↗0E[D2|X,Z1 = z1]. The Lemma

is hence proven.

Proof of Lemma 2.2

By the definition of potential propensity scores, we have that

E[Y2(0, 1)|X(0), S2(0) = 1, Z2(0) ≥ 0, Z1 = 0]

=E[Y2(0, 1)1(Z2(0) ≥ 0)|X(0), S2(0) = 1, Z1 = 0]/P [Z2(0) ≥ 0|X(0), S2(0) = 1, Z1 = 0]

=E[Y2(0, 1)D2(0)|X(0), S2(0) = 1, Z1 = 0]/λ0(X(0)).

Under the CIA condition in Assumption 2.2, we also have that,

E[Y2(0, 0)|X(0), S2(0) = 1, Z2(0) ≥ 0, Z1 = 0]

=E[Y2(0, 0)|X(0), S2(0) = 1, Z2(0) < 0, Z1 = 0]

=E[Y2(0, 0)1(Z2(0) < 0)|X(0), S2(0) = 1, Z1 = 0]/P [Z2(0) < 0|X(0), S2(0) = 1, Z1 = 0]

=E[Y2(0, 0)(1−D2(0))|X(0), S2(0) = 1, Z1 = 0]/(1− λ0(X(0))).
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Then,

E[θ
0
0,2|D2(0) = 1, Z1 = 0] = E[E[Y2(0, 1) − Y2(0, 0)|X(0), S2(0) = 1, Z2(0) ≥ 0, Z1 = 0]|S2(0) = 1, Z2(0) ≥ 0, Z1 = 0]

=E

[
E

[
Y2(0, 1)D2(0)

λ0(X(0))
−

Y2(0, 0)(1 − D2(0))

1 − λ0(X(0))

∣∣X(0), S2(0) = 1, Z1 = 0

] ∣∣S2(0) = 1, Z2 ≥ 0, Z1 = 0

]

=

E

[
E

[
Y2(0,1)D2(0)

λ0(X(0))
− Y2(0,0)(1−D2(0))

1−λ0(X(0))

∣∣X(0), S2(0) = 1, Z1 = 0

]
· 1(Z2(0) ≥ 0)

∣∣S2(0) = 1, Z1 = 0

]
P [Z2(0) ≥ 0|S2(0) = 1, Z1 = 0]

=E

[
E

[
Y2(0, 1)D2(0)

λ0(X(0))
−

Y2(0, 0)(1 − D2(0))

1 − λ0(X(0))

∣∣X(0), S2(0) = 1, Z1 = 0

]
·
E[1(Z2(0) ≥ 0)|X(0), S2(0) = 1, Z1 = 0]

P [Z2(0) ≥ 0|S2(0) = 1, Z1 = 0]

∣∣S2(0) = 1, Z1 = 0

]

= lim
z1↗0

E

[
E

[
Y2D2

λ0(X)
−

Y2(1 − D2)

1 − λ0(X)

∣∣X,S2 = 1, Z1 = z1

]
·

λ0(X)

E[D2|S2 = 1, Z1 = z1]

∣∣S2 = 1, Z1 = z1

]

= lim
z1↗0

E

[
E

[
Y2(D2 − λ0(X))

(1 − λ0(X))E[D2|S2 = 1, Z1 = z1]

∣∣X,S2 = 1, Z1 = z1

]
|S2 = 1, Z1 = z1

]

= lim
z1↗0

E

[
Y2(D2 − λ0(X))

(1 − λ0(X))E[D2|S2 = 1, Z1 = z1]
|S2 = 1, Z1 = z1

]

= lim
z1↗0

E

[
Y2(D2 − λ0(X))

(1 − λ0(X))E[D2|S2 = 1, Z1 = z1]
·

S2

P [S2 = 1|Z1 = z1]
|Z1 = z1

]
= lim

z1↗0
E

[
Y2S2(D2 − λ0(X))

(1 − λ0(X))E[D2|Z1 = z1]
|Z1 = z1

]
.

The first and third equalities holds by the law of iterated expectations. The second holds

by plugging in the equations shown above. The fourth equality holds by smoothness

conditions in Assumption 2.2.2.

Similarly, we have that

E[θ10,2|D2(1) = 1, Z1 = 0] = lim
z1↘0

E

[
Y2S2(D2 − λ1(X))

(1− λ1(X))E[D2|Z1 = z1]

∣∣Z1 = z1

]
.

Plugging the results to equation (2.2) proves the lemma.

Proof of Lemma 3.1

First consider pairs of potential outcomes with only one flipped treatment status. Denote

the difference by Yk+τ (ℓ
k−1, 1, ητ )−Yk+τ (ℓ

k−1, 0, ητ ), where k = 1, ..., T−1, τ = 1, ..., T−
k, ℓk−1 ∈ Lk−1, and ητ ∈ Lτ . If all elements of η are zero, the above difference is a direct

effect of the k-th round treatment. If all but the s-th element of η are zero, for any

s = 1, · · · , τ , then the difference

Yk+τ (ℓ
k−1, 1, η)− Yk+τ (ℓ

k−1, 0, η) = Yk+τ (ℓ
k−1, 1,0τ )− Yk+τ (ℓ

k−1, 0,0τ )

+ Yk+τ (ℓ
k−1, 1, η)− Yk+τ (ℓ

k−1, 1,0τ )−
(
Yk+τ (ℓ

k−1, 0, η)− Yk+τ (ℓ
k−1, 0,0τ )

)
= θ

ℓk−1

τ,k + θ
(ℓk−1,1,0s−1)
τ−s,k+s − θ

(ℓk−1,0,0s−1)
τ−s,k+s . (C.3)

is a linear combination of long-term direct effects (or immediate effects and long-term

direct effects when τ = s).
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If all but the s-th and s′-th elements of η are zero, s < s′, then

Yk+τ (ℓ
k−1, 1, η)− Yk+τ (ℓ

k−1, 0, η)

=Yk+τ (ℓ
k−1, 1, η′)− Yk+τ (ℓ

k−1, 0, η′) + Yk+τ (ℓ
k−1, 1, η)− Yk+τ (ℓ

k−1, 1, η′)

−
(
Yk+τ (ℓ

k−1, 0, η)− Yk+τ (ℓ
k−1, 0, η′)

)
,

where η′ is a vector whose s-th element is one and all other elements are zero. The

first difference in the right hand side is between a pair of potential outcomes discussed

in (C.3). The other two differences are direct effects (or immediate effects when τ = s′).

Similarly, the difference Yk+τ (ℓ
k−1, 1, η) − Yk+τ (ℓ

k−1, 0, η) with three or more non-zero

elements in η could all be represented by linear combinations of immediate effects and

long-term direct effects.

Now consider pairs of potential outcomes with two flipped treatments. It is easy to

see that such differences, for example, Yk+τ (ℓ
k−1, 1, η, 1, ρ) − Yk+τ (ℓ

k−1, 0, η, 0, ρ), could

be represented by a linear combination of differences of potential outcomes with only one

flipped treatment status, which has been discussed above, and therefore could eventually

be represented by a linear combination of immediate effects and long-term direct effects.

Similarly, the difference of potential outcomes with three or more flipped treatment status

could be defined by a linear combination of immediate effects and long-term direct effects.

This completes the proof.

Proof of Equation (3.1)

Set θ̃ℓ
k−1

0,k = θℓ
k−1

0,k in this proof for nation simplicity. (There is no need to differentiate

direct immediate effect and total immediate effect.) First we notice that for both d1 =
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0, 1, the quasi-potential outcome Ỹτ+1(d1) could be decomposed as the following.

Ỹτ+1(d1) =Ỹτ+1(d1, 0) · (1−D2(d1)) + Ỹτ+1(d1, 1) ·D2(d1)

=Ỹτ+1(d1, 0) + θ̃d1τ−1,2 ·D2(d1)

=Ỹτ+1(d1, 0, 0) · (1−D3(d1, 0)) + Ỹτ+1(d1, 0, 1) ·D3(d1, 0) + θ̃d1τ−1,2 ·D2(d1)

=Ỹτ+1(d1,02) + θ̃
(d1,0)
τ−2,3 ·D3(d1, 0) + θ̃d1τ−1,2 ·D2(d1)

=Ỹτ+1(d1,03) · (1−D4(d1,02)) + Ỹτ+1(d1,02, 1) ·D4(d1,02)

+ θ̃
(d1,0)
τ−2,3 ·D3(d1, 0) + θ̃d1τ−1,2 ·D2(d1)

=Ỹτ+1(d1,03) + θ̃
(d1,02)
τ−3,4 ·D4(d1,02) + θ̃

(d1,0)
τ−2,3 ·D3(d1, 0) + θ̃d1τ−1,2 ·D2(d1)

=...

=Yτ+1(d1,0τ ) + θ̃d1τ−1,2 ·D2(d1) +

τ−2∑
s=0

θ̃
(d1,0τ−1−s)
s,τ+1−s ·Dτ+1−s(d1,0τ−1−s).

Then, it is clear that for all τ = 2, ...,K − 1,

θ̃τ,1 = Ỹτ+1(1)− Ỹτ+1(0)

=θτ,1 +
(
θ̃1τ−1,2 ·D2(1)− θ̃0τ−1,2 ·D2(0)

)
+

τ−2∑
s=0

(
θ̃
(1,0τ−1−s)
s,τ+1−s ·Dτ+1−s(1,0τ−1−s)− θ̃

(0,0τ−1−s)
s,τ+1−s ·Dτ+1−s(0,0τ−1−s)

)
.

This completes the proof of Equation (3.1).
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Proof of Lemma 3.2

Combining the decomposition in Equation (3.1) and the Markovian condition in Assump-

tion 3.1, we have that

E[θ̃τ,1|Z1 = 0] = E[θτ,1|Z1 = 0] + E
[
θ̃1τ−1,2|D2(1) = 1, Z1 = 0

]
· P [D2(1) = 1|Z1 = 0]

− E
[
θ̃0τ−1,2|D2(0) = 1, Z1 = 0

]
· P [D2(0) = 1|Z1 = 0]

+
τ−2∑
s=0

E
[
θ̃
(1,0τ−1−s)
s,τ+1−s |Dτ+1−s(1,0τ−1−s) = 1, Z1 = 0

]
P [Dτ+1−s(1,0τ−1−s) = 1|Z1 = 0]

−
τ−2∑
s=0

E
[
θ̃
(0,0τ−1−s)
s,τ+1−s |Dτ+1−s(0,0τ−1−s) = 1, Z1 = 0

]
P [Dτ+1−s(0,0τ−1−s) = 1|Z1 = 0]

=E[θτ,1|Z1 = 0] + E
[
θ̃1τ−1,2|D2(1) = 1, Z1 = 0

]
· P [D2(1) = 1|Z1 = 0]

− E
[
θ̃0τ−1,2|D2(0) = 1, Z1 = 0

]
· P [D2(0) = 1|Z1 = 0]

+
τ−2∑
s=0

E
[
θ̃0s,2|D2(0) = 1, Z1 = 0

]
P [Dτ+1−s(1,0τ−1−s) = 1|Z1 = 0]

−
τ−2∑
s=0

E
[
θ̃0s,2|D2(0) = 1, Z1 = 0

]
P [Dτ+1−s(0,0τ−1−s) = 1|Z1 = 0]

=E[θτ,1|Z1 = 0] + µ̃1
τ−1 · E[D2(1)|Z1 = 0]− µ̃0

τ−1 · E[D2(0)|Z1 = 0]

+

τ−2∑
s=0

µ̃0
s · E [ητ−1−s,1|Z1 = 0] . (C.4)

By smoothness conditions in Assumption 2.1, the left hand side could be identi-

fied as limz1↘0E[Ys+1|Z1 = z1] − limz1↗0E[Ys+1|Z1 = z1] while E[D2(1)|Z1 = 0] =

limz1↘0E[D2|Z1 = z1], and E[D2(0)|Z1 = 0] = limz1↗0E[D2|Z1 = z1] in the right hand

side. Meanwhile, since

E
[
θ̃ds,2|D2(d) = 1, Z1 = 0

]
= E

[
Ỹ2+s(d, 1)− Ỹ2+s(d, 0)|D2(d) = 1, Z1 = 0

]
,

it can be identified following the same steps in the proof of Lemma 2.2, by treating

Ỹ2+s(d, 0) and Ỹ2+s(d, 1) as potential second-period outcomes. Then, we have that µ̃0
s =

limz1↗0E
[

Y2+sS2(D2−λ0(X))
(1−λ0(X))E[D2|Z1=z1]

∣∣Z1 = z1

]
and µ̃1

s = limz1↘0E
[

Y2+sS2(D2−λ1(X))
(1−λ1(X))E[D2|Z1=z1]

∣∣Z1 = z1

]
for all s = 0, ..., τ − 1.

Lastly, we notice that ητ−1−s,1 = Dτ+1−s(1,0τ−1−s) −Dτ+1−s(0,0τ−1−s) is a direct

effect, viewing a subsequent treatment decision as an outcome. Then, applying the
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identification result in Lemma 2.2, we know that

E[η1,1|Z1 = 0] = lim
z1↘0

E

[
D3 −

D3S2(D2 − λ1(X))

1− λ1(X)

∣∣∣Z1 = z1

]
− lim

z1↗0
E

[
D3 −

D3S2(D2 − λ0(X))

1− λ0(X)

∣∣∣Z1 = z1

]
.

In addition, for all τ = 2, ...,K − 2, following the identification in equation (C.4) and

viewing a subsequent treatment decision as an outcome,

E[ητ,1|Z1 = 0] = lim
z1↘0

E[Dτ+2|Z1 = z1]− lim
z1↗0

E[Dτ+2|Z1 = z1]

− ν̃1τ−1 · lim
z1↘0

E[D2|Z1 = z1] + ν̃0τ−1 · lim
z1↗0

E[D2|Z1 = z1]−
τ−2∑
s=0

ν̃0s · E[ητ−1−s,1|Z1 = 0],

could be identified recursively, where ν̃0s = limz1↗0E
[

D3+sS2(D2−λ0(X))
(1−λ0(X))E[D2|Z1=z1]

∣∣Z1 = z1

]
and

ν̃1s = limz1↘0E
[

D3+sS2(D2−λ1(X))
(1−λ1(X))E[D2|Z1=z1]

∣∣Z1 = z1

]
for all s = 0, ..., τ − 1.

Plugging in all pieces to equation (C.4) completes the proof of Lemma 3.2.
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D Proofs for Inference Results

Proof of Lemma 4.1

Recall that

(γ̂1, β̂1
FS) = argmax

γ,β

n∑
i=1

S2i1(Z1i ≥ 0)K

(
Z1i

h

)
·[

D2i logL(X
′
i(γ + βZ1i)) + (1−D2i) log

(
1− L(X ′

i(γ + βZ1i))
)]
,

(γ̂0, β̂0
FS) = argmax

γ,β

n∑
i=1

S2i1(Z1i < 0)K

(
Z1i

h

)
·[

D2i logL(X
′
i(γ + βZ1i)) + (1−D2i) log

(
1− L(X ′

i(γ + βZ1i))
)]
.

We prove the lemma for γ̂1 following Cai et al. (2000). Results for γ̂0 could be shown

similarly. To simplify notations, we will drop the superscript 1 and subscript FS in the

rest of the proof. That is, we have

(γ̂, β̂) = argmax
γ,β

n∑
i=1

S2i1(Z1i ≥ 0)K

(
Z1i

h

)
·[

D2i logL(X
′
i(γ + βZ1i)) + (1−D2i) log

(
1− L(X ′

i(γ + βZ1i))
)]

≡ argmax
γ,β

ℓn(γ, β). (D.1)

Recall that γ1 = limz↘0 γ(z) and β1 = limz↘0 γ
′(z). Define

γ∗ =
√
nh(γ − γ1), β∗ =

√
nh(hβ − hβ1),

γ̂∗ =
√
nh(γ̂1 − γ1), β̂∗ =

√
nh(hβ̂1 − hβ1),

θ = ((γ∗)′, (β∗)′)′, θ̂ = ((γ̂∗)′, (β̂∗)′)′,

X̃i = (X ′
i

Z1iX
′
i

h
)′, δn =

1√
nh

, η(z, x) = (γ1 + β1z)′x.

Therefore, we have that

(γ + βZ1i)
′Xi = (γ1 + β1Z1i)

′Xi + δn((γ
∗)′Xi + (β∗)′

Z1iXi

h
) = η(Z1i, Xi) + δnθ

′X̃i,

and we define ℓ∗n(θ) as

ℓ∗n(θ) =

n∑
i=1

S2i1(Z1i ≥ 0)K

(
Z1i

h

)
·{[

D2i logL(η(Z1i, Xi) + δnθ
′X̃i) + (1−D2i) log

(
1− L(η(Z1i, Xi) + δnθ

′X̃i)
)]
−[

D2i logL(η(Z1i, Xi)) + (1−D2i) log
(
1− L(η(Z1i, Xi))

)]}
.

52



Given that (γ̂′, β̂′)′ maximizes ℓn(γ, β), we have θ̂ maximizes ℓ∗n(θ).

Let qi(a) = D2i logL(a) + (1 −D2i) log(1 − L(a)), then q′i(a) = D2i − L(a), q′′i (a) =

−L(a)(1− L(a)), and q′′′i (a) = (2L(a)− 1)L(a)(1− L(a)). Taking a Taylor expansion of

qi(η(Z1i, Xi) + δnθ
′X̃i) around η(Z1i, Xi) for each i, we obtain

ℓ∗n(θ) =

n∑
i=1

S2i1(Z1i ≥ 0)K

(
Z1i

h

)
·

{
(D2i − L(η(Z1i, Xi)))δnθ

′X̃i −
1

2
L(η(Z1i, Xi))(1− L(η(Z1i, Xi)))(δnθ

′X̃i)
2

+
1

6
(2L(η̄i)− 1)L(η̄i)(1− L(η̄i))(δnθ

′X̃i)
3
}
,

where η̄i is between η(Z1i, Xi)) and η(Z1i, Xi)) + δnθ
′X̃i for each i. Note that for each

i, the expected value of the last term, S2i1(Z1i ≥ 0)K
(
Z1i
h

)
(2L(η̄i) − 1)L(η̄i)(1 −

L(η̄i))(δnθ
′X̃i)

3, is bounded byO(δ3E|∥Xi∥·K(Z1i/h)|) = O(n−3/2·h−3/2·h) = O(n−1δn).

It then follows that

n∑
i=1

S2i1(Z1i ≥ 0)K

(
Z1i

h

)
· 1
6
(2L(η̄i)− 1)L(η̄i)(1− L(η̄i))(δnθ

′X̃i)
3 = O(δn) = o(1).

Therefore,

ℓ∗n(θ) = Q′
nθ −

1

2
θ′∆nθ + op(1), where

Qn = δn

n∑
i=1

S2i1(Z1i ≥ 0)K

(
Z1i

h

)
· (D2i − L(η(Z1i, Xi)))X̃i,

∆n = δ2n

n∑
i=1

S2i1(Z1i ≥ 0)K

(
Z1i

h

)
· L(η(Z1i, Xi))(1− L(η(Z1i, Xi)))X̃iX̃

′
i.

Next, we omit subscript i when there is no confusion for notational simplicity. For

the term ∆n, we have that

E[∆n] =
1

h
E

[
S21(Z1 ≥ 0)K

(
Z1

h

)
L(η(Z1, X))(1− L(η(Z1, X)))

(
X
Z1X
h

)(
X ′ Z1X

′

h

)]
.

Note that for any j = 0, 1, . . . and function g(.), by standard arguments,

1

h
E

[
S21(Z1 ≥ 0)K

(
Z1

h

)
L(η(Z1, X))(1− L(η(Z1, X)))g(X)

(Z1

h

)j]
=E
[
E[S2L(η(Z1, X))(1− L(η(Z1, X)))g(X)|Z1]1(Z1 ≥ 0)

(Z1

h

)j
K

(
Z1

h

)]
=fz1(0)E[S2L(η(Z1, X))(1− L(η(Z1, X)))g(X)|Z1 = 0]

∫
u≥0

ujK(u)du+ o(h).
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Let

∆z = fz(0) ·

(
µz,0 µz,1

µz,1 µz,2

)
with µz,j =

∫
u≥0

ujK(u)du, for j = 0, 1, . . ..

Then, we have

E[∆n] =∆z ⊗ E
[
S2L(η(Z1, X))(1− L(η(Z1, X)))XX ′

∣∣∣Z1 = 0
]
+ o(1) ≡ ∆+ o(1).

(D.2)

where ⊗ denotes Kronecker product. Similar arguments show that for each, (∆n)jk, the

(j, k)-th element of ∆n, V ar((∆n)jk) = O(δn) = o(1). Therefore, ∆n
p→ ∆ and it follows

that

ℓ∗n(θ) = Q′
nθ −

1

2
θ′∆θ + op(1).

Then by the quadratic approximation lemma in Fan and Gijbels. (1996), p. 210, we have

that

θ̂ = ∆−1Qn + op(1).

For the term Qn, we have that

E[Qn] = nδnE

[
S21(Z1 ≥ 0)K

(
Z1

h

)
· (D2 − L(η(Z1, X)))X̃

]
= nδnE

[
E[S2|X,Z1]1(Z1 ≥ 0)K

(
Z1

h

)
· (E[D2|S2 = 1, X, Z1]− L(η(Z1, X)))X̃

]
= nδnE

[
E[S2|X,Z1]1(Z1 ≥ 0)K

(
Z1

h

)
· (L(γ(Z1)

′X)− L(η(Z1, X)))X̃

]
= O(nδnh · h2) = O(

√
nh5) = o(1).

To see this, note that L(γ(Z1)
′X) = L(η(Z1, X)) + L(η̄)(1− L(η̄))(γ(Z1)

′X − η(Z1, X))

where η̄ is between η(Z1, X) and γ(Z1)
′X, so L(γ(Z1)

′X)−L(η(Z1, X)) = Op(γ(Z1)
′X−

η(Z1, X))) because L(η̄)(1 − L(η̄)) is bounded by 1/4. By a mean value expansion of

γ(Z1)
′X around 0, we have γ(Z1)

′X = (γ1 + β1Z1 + γ′′(Z̄1)Z
2
1 )

′X where Z̄1 is between

0 and Z1. Therefore, γ(Z1)
′X − η(Z1, X)′ = γ′′(Z̄1)

′Z2
1X. Therefore, L(γ(Z1)

′X) −
L(η(Z1, X)) = Op(Z

2
1 ). Given that K(Z1/h) is non-zero when |Z1/h| ≤ 1 or equivalently,

|Z1| ≤ h, K
(
Z1
h

)
· (L(γ(Z1)

′X) − L(η(Z1, X))) = Op(K(Z1/h)h
2). It follows that the

expectation is O(nδnh ·h2) = O(
√
nh5) and Assumption 4.3(iii) implies that O(

√
nh5) =

o(1).
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In addition, the variance-covariance matrix of Qn is given by

V [Qn] = δ2nE[S21(Z1 ≥ 0)K2

(
Z1

h

)
· (D2 − L(η(Z1, X)))2X̃X̃ ′]

=
1

h
E[E[S2|Z1, X]1(Z1 ≥ 0)K2

(
Z1

h

)
· L(η(Z1, X))(1− L(η(Z1, X)))X̃X̃ ′] +O(h2)

=fz1(0)

(
ν0,+ ν1,+

ν1,+ ν2,+

)
⊗ E

[
E[S2|Z1, X]L(η(Z1, X))(1− L(η(Z1, X)))XX ′

∣∣∣Z1 = 0
]
+O(h2)

≡Ω+ o(1), (D.3)

where νk,+ =
∫
u≥0 u

kK2(u)du for k = 0, 1, . . ..

Finally, let ξi = S2i1(Z1i ≥ 0)K (Z1i/h) (D2i − L(η(Z1i, Xi)))X̃i. ξi satisfies the

Lyapounov’s condition since nδ3nE[∥ξi∥3] = O(δn) → 0 by Assumption B.2. It then

follows that Qn
d→ (0,Ω) and θ̂

d→ (0,∆−1Ω∆−1).

Proof of Theorem 4.1

We derive the asymptotics of α̂1 and α̂0. Recall that

(α̂1, β̂1) = argmin
α,β

∑
{i:Z1i≥0}

K

(
Z1i

h

)[
Y2i −

Y2iS2i(D2i − L(X ′
iγ̂

1))

(1− L(X ′
iγ̂

1))
− α− βZ1i

]2
,

(α̂0, β̂0) = argmin
α,β

∑
{i:Z1i<0}

K

(
Z1i

h

)[
Y2i −

Y2iS2i(D2i − L(X ′
iγ̂

0))

(1− L(X ′
iγ̂

0))
− α− βZ1i

]2
.

Note that the local linear estimator is additive in the dependent variables in that if

(α̂ay+bx, β̂ay+bx) = argmin
α,β

n∑
i=1

1(Z1i ≥ 0)K

(
Z1i

h

)[
(aYi + bXi)− α− βZ1i

]2
,

(α̂y, β̂y) = argmin
α,β

n∑
i=1

1(Z1i ≥ 0)K

(
Z1i

h

)[
Yi − α− βZ1i

]2
,

(α̂x, β̂x) = argmin
α,β

n∑
i=1

1(Z1i ≥ 0)K

(
Z1i

h

)[
Xi − α− βZ1i

]2
,

then (α̂ay+bx, β̂ay+bx) = a(α̂y, β̂y)+b(α̂x, β̂x). In addition, suppose Yi satisfies Assumption

B.3 with Y2i replaced with Yi. By Chiang et al. (2019), we have

√
nh

(
α̂y − αy

hβ̂y − hβy

)
=

1√
nh

n∑
i=1

∆−1
z 1(Z1i ≥ 0)K

(
Z1i

h

)
(Yi − E[Yi|Z1i])

(
1
Z1i
h

)
+ op(1)

where αy = limz↘0E[Y |Z = z], βy = limz↘0 dE[Y |Z = z]/dz. For each i, we take a
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second order Taylor expansion of
Y2iS2i(D2i−L(X′

iγ̂
1))

1−L(X′
iγ̂

1)
around γ1 and

Y2iS2i(D2i − L(X ′
iγ̂

1))

1− L(X ′
iγ̂

1)
=
Y2iS2i(D2i − L(X ′

iγ
1))

1− L(X ′
iγ

1)

+
Y2iS2i(D2i − 1)L(X ′

iγ
1)

1− L(X ′
iγ

1)
X ′

i(γ̂
1 − γ1) +Op(n

−1h−1),

where Op(n
−1h−1) holds by the fact that (γ̂1 − γ1) is Op(n

−1/2h−1/2) and its coefficient

is Op(1). Therefore, it is true that

α̂1 = α̂y2 − α̂Y2iS2i(D2i−L(X′
i
γ1))

1−L(X′
i
γ1)

− α̃′
c(γ̂

1 − γ1) + op(
√
nh)

= α̃1 − α̃′
c(γ̂

1 − γ1) + op(
√
nh)

where for j = 1, . . . , k

α̃c = (α̃c,1, . . . , α̃c,1)
′,

(α̃c,j , β̃c,j) = argmin
α,β

n∑
i=1

1(Z1i ≥ 0)K

(
Z1i

h

)[Y2iS2i(D2i − 1)L(X ′
iγ

1)

1− L(X ′
iγ

1))
Xji − α− βZ1i

]2
.

Then it is true that

√
nh(α̃1 − α1) =

1√
nh

n∑
i=1

(1 0)∆−1
z 1(Z1i ≥ 0)K

(
Z1i

h

)(
Y2i − E[Y2i|Z1i]

− Y2iS2i(D2i − L(X ′
iγ

1))

1− L(X ′
iγ

1)
+ E

[Y2iS2i(D2i − L(X ′
iγ

1))

1− L(X ′
iγ

1)
|Z1i

])( 1
Z1i
h

)
+ op(1).

Given that

α̃c,j = αc,j + op(1), with αc,j = lim
z↘0

E

[
Y2S2(D2 − 1)L(X ′γ1)

1− L(X ′γ1))
Xj

∣∣∣Z = z

]
,

we have

√
nhα̂c = α̃′

c

√
nh(γ̂1 − γ1) = α′

c

√
nh(γ̂1 − γ1) + op(1)

= lim
z↘0

E

[
Y2S2(D2 − 1)L(X ′γ1)

1− L(X ′γ1))
X ′
∣∣∣Z = z

]√
nh(γ̂1 − γ1) + op(1)

≡ 1√
nh

n∑
i=1

▽1
γ · ϕγ1,ni(D2i, S2i, Z1i, Xi) + op(1),

where ▽1
γ is the gradient and ϕγ1,ni(D2i, Z1i, S2i, Xi) is the inference function of

√
nh(γ̂1−

γ1). Both notations are defined in Section 4.2. Then it is true that

√
nh(α̂1 − α1) =

1√
nh

n∑
i=1

(1 0)∆−1
z 1(Z1i ≥ 0)K

(
Z1i

h

)(
Y2i − E[Y2i|Z1i]
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− Y2iS2i(D2i − L(X ′
iγ

1))

1− L(X ′
iγ

1)
+ E

[Y2iS2i(D2i − L(X ′
iγ

1))

1− L(X ′
iγ

1)
|Z1i

])( 1
Z1i
h

)

− 1√
nh

n∑
i=1

▽1
γ · ϕγ1,ni(D2i, S2i, Z1i, Xi) + op(1)

=
1√
nh

n∑
i=1

(
ϕ̃α1,ni(Y2i, D2i, S2i, Z1i, Xi)−▽1

γ · ϕγ1,ni(D2i, S2i, Z1i, Xi)
)
+ op(1)

≡ 1√
nh

n∑
i=1

ϕα1(Y2i, D2i, S2i, Z1i, Xi) + op(1).

Similarly, we have

√
nh(α̂0 − α0) =

1√
nh

n∑
i=1

(1, 0)′∆−1
z,−1(Z1i < 0)K

(
Z1i

h

)(
Y2i − E[Y2i|Z1i]

− Y2iS2i(D2i − L(X ′
iγ

0))

1− L(X ′
iγ

0)
+ E

[Y2iS2i(D2i − L(X ′
iγ

0))

1− L(X ′
iγ

0)
|Z1i

])( 1
Z1i
h

)

− 1√
nh

n∑
i=1

▽0
γϕγ0,ni(D2i, S2i, Z1i, Xi) + op(1)

≡ 1√
nh

n∑
i=1

ϕα0(Y2i, D2i, S2i, Z1i, Xi) + op(1).

These results are enough to derive the asymptotic normality of α̂1 and α̂0 since α̂1 and

α̂0 are mutually independent.

Proof of Theorem 4.2

Recall that γ̂0,w, γ̂1,w, β̂0,w
FS , β̂

1,w
FS are given by

(γ̂1,w, β̂1,w
FS ) = argmax

γ,β

n∑
i=1

WiS2i1(Z1i ≥ 0)K

(
Z1i

h

)
·[

D2i logL(X
′
i(γ + βZ1i)) + (1−D2i) log

(
1− L(X ′

i(γ + βZ1i))
)]
,

(γ̂0,w, β̂0,w
FS ) = argmax

γ,β

n∑
i=1

WiS2i1(Z1i < 0)K

(
Z1i

h

)
·[

D2i logL(X
′
i(γ + βZ1i)) + (1−D2i) log

(
1− L(X ′

i(γ + βZ1i))
)]
.
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Again, for brevity, we focus on the γ̂1,w case and drop the superscript 1 and subscript

FS for notational simplicity. Therefore, by the same argument, we have

ℓwn (θ) = (Qw
n )

′θ − 1

2
θ′∆w

n θ + op(1), where

Qw
n = δn

n∑
i=1

WiS2i1(Z1i ≥ 0)K

(
Z1i

h

)
· (D2i − L(η(Z1i, Xi)))X̃i,

∆w
n = δ2n

n∑
i=1

WiS2i1(Z1i ≥ 0)K

(
Z1i

h

)
· L(η(Z1i, Xi))(1− L(η(Z1i, Xi)))X̃iX̃

′
i.

Note that

E[∆w
n ] =

1

h
E

[
WS21(Z1 ≥ 0)K

(
Z1

h

)
L(η(Z1, X))(1− L(η(Z1, X)))X̃iX̃

′
i

]
=

1

h
E

[
S21(Z1 ≥ 0)K

(
Z1

h

)
L(η(Z1, X))(1− L(η(Z1, X)))X̃iX̃

′
i

]
= ∆+ o(1),

where the second equality holds by the fact that W is independent of (S,Z1, X) and

E[W ] = 1.

Similar arguments show that for each, (∆w
n )jk, the (j, k)-th element of ∆w

n , V [(∆w
n )jk] =

O(δn) = o(1). Therefore, ∆w
n

p→ ∆ and it follows that

ℓwn (θ) = (Qw
n )

′θ − 1

2
θ′∆θ + op(1).

Let γ̂∗,w =
√
nh(γ̂1,w − γ1), β̂∗,w =

√
nh(hβ̂1,w − hβ1), θ̂w = ((γ̂∗,w)′, (β̂∗,w)′)′. Then,

by the quadratic approximation lemma again, we have that θ̂w = ∆−1Qw
n +op(1). There-

fore,

θ̂w − θ̂ = ∆−1(Qw
n −Qn) + op(1)

=
n∑

i=1

(Wi − 1)
[
S2i1(Z1i ≥ 0)K

(
Z1i

h

)
· (D2i − L(η(Z1i, Xi)))X̃i

]
+ op(1).

Given that E[Wi − 1] = 0 and V ar(Wi − 1) = 1 and that {Wi − 1}ni=1 is independent

of the sample path, we can apply the standard multiplier bootstrap argument as in Ma

and Kosorok (2005) to show that conditional on the sample path with probability one,

θ̂w − θ̂
d→ (0,∆−1Ω∆−1) which shows the validity of the weighted bootstrap for the local

MLE estimator.
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Following the same arguments in the proof of Theorem 4.1, we can show that

√
nh(α̂1,w − α1) =

1√
nh

n∑
i=1

Wi · ϕα1(Y2i, D2i, S2i, Z1i, Xi) + op(1),

√
nh(α̂0,w − α0) =

1√
nh

n∑
i=1

Wi · ϕα0(Y2i, D2i, S2i, Z1i, Xi) + op(1),

and it follows that

√
nh(α̂1,w − α̂1) =

1√
nh

n∑
i=1

(Wi − 1) · ϕα1(Y2i, D2i, S2i, Z1i, Xi) + op(1),

√
nh(α̂0,w − α̂0) =

1√
nh

n∑
i=1

(Wi − 1) · ϕα0(Y2i, D2i, S2i, Z1i, Xi) + op(1).

Therefore, the two left hand side expressions converge to the same distributions as
√
nh(α̂1−α1) and

√
nh(α̂0−α0), respectively, conditional on sample path with probability

approaching one.

With all the results above, we know that
√
nh(ˆ̄θw1,1 − ˆ̄θ1,1) is asymptotic normal and

converges to the same limiting distribution as
√
nh(ˆ̄θ1,1 − θ̄1,1) conditional on sample

path with probability approaching one.

Proof of Lemma B.1

Recall that for the alternative estimation and inference procedure proposed in Section B,

the first-step propensity estimation uses the local quadratic method:

(γ̂1, β̂1
FS , ρ̂

1
FS) = argmax

γ,β,ρ

n∑
i=1

S2i1(Z1i ≥ 0)K

(
Z1i

h

)
·[

D2i logL(X
′
i(γ + βZ1i + ρZ2

1i)) + (1−D2i) log
(
1− L(X ′

i(γ + βZ1i + ρZ2
1i))
)]
,

(γ̂0, β̂0
FS , ρ̂

0
FS) = argmax

γ,β,ρ

n∑
i=1

S2i1(Z1i < 0)K

(
Z1i

h

)
·[

D2i logL(X
′
i(γ + βZ1i + ρZ2

1i)) + (1−D2i) log
(
1− L(X ′

i(γ + βZ1i + ρZ2
1i))
)]
.

We prove the lemma for γ̂1. Results for γ̂0 could be shown similarly. To simplify

notations, we again drop the superscript 1 and subscript FS in the rest of the proof.

That is, we have

(γ̂, β̂, ρ̂) = argmax
γ,β,ρ

n∑
i=1

S2i1(Z1i ≥ 0)K

(
Z1i

h

)
·[

D2i logL(X
′
i(γ + βZ1i + ρZ2

1i)) + (1−D2i) log
(
1− L(X ′

i(γ + βZ1i + ρZ2
1i))
)]

≡ argmax
γ,β,ρ

ℓn(γ, β, ρ). (D.4)

59



Recall that γ1 = limz↘0 γ(z), β
1 = limz↘0 γ

′(z) and ρ1 = limz↘0 γ
′′(z). Define

γ∗ =
√
nh(γ − γ1), β∗ =

√
nh(hβ − hβ1), ρ∗ =

√
nh(h2ρ− h2ρ1)

γ̂∗ =
√
nh(γ̂1 − γ1), β̂∗ =

√
nh(hβ̂1 − hβ1), ρ̂∗ =

√
nh(h2ρ̂1 − h2ρ1)

θ = ((γ∗)′, (β∗)′, (ρ∗)′)′, θ̂ = ((γ̂∗)′, (β̂∗)′, (ρ̂∗)′)′,

X̃i =
(
X ′

i

Z1iX
′
i

h

Z2
1iX

′
i

h2

)′
, δn =

1√
nh

, η(z, x) = (γ1 + β1z + ρ1z2)′x.

Therefore, we have that

(γ + βZ1i + ρZ2
1i)

′Xi = (γ1 + β1Z1i + ρ1Z2
1i)

′Xi + δn((γ
∗)′Xi + (β∗)′

Z1iXi

h
+ (ρ∗)′

Z2
1iXi

h2
)

= η(Z1i, Xi) + δnθ
′X̃i,

and we define ℓ∗n(θ) as

ℓ∗n(θ) =
n∑

i=1

S2i1(Z1i ≥ 0)K

(
Z1i

h

)
·{[

D2i logL(η(Z1i, Xi) + δnθ
′X̃i) + (1−D2i) log

(
1− L(η(Z1i, Xi) + δnθ

′X̃i)
)]

−
[
D2i logL(η(Z1i, Xi)) + (1−D2i) log

(
1− L(η(Z1i, Xi))

)]}
.

Given that (γ̂′, β̂′, ρ̂′)′ maximizes ℓn(γ, β, ρ), we have θ̂ maximizes ℓ∗n(θ).

Let qi(a) = D2i logL(a) + (1−D2i) log(1− L(a)), then

q′i(a) = D2i − L(a), q′′i (a) = −L(a)(1− L(a)), q′′′i (a) = (2L(a)− 1)L(a)(1− L(a)).

Taking a Taylor expansion of qi(η(Z1i, Xi) + δnθ
′X̃i) around η(Z1i, Xi) for each i, we

obtain

ℓ∗n(θ) =
n∑

i=1

S2i1(Z1i ≥ 0)K

(
Z1i

h

)
·

{
(D2i − L(η(Z1i, Xi)))δnθ

′X̃i −
1

2
L(η(Z1i, Xi))(1− L(η(Z1i, Xi)))(δnθ

′X̃i)
2

+
1

6
(2L(η̄i)− 1)L(η̄i)(1− L(η̄i))(δnθ

′X̃i)
3
}
,

where η̄i is between η(Z1i, Xi)) and η(Z1i, Xi)) + δnθ
′X̃i for each i. Note that for each

i, the expected value of the last term, S2i1(Z1i ≥ 0)K
(
Z1i
h

)
(2L(η̄i) − 1)L(η̄i)(1 −

L(η̄i))(δnθ
′X̃i)

3, is bounded by

O(δ3nE|∥Xi∥ ·K(Z1i/h)|) = O(n−3/2 · h−3/2 · h) = O(n−1δn).
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It then follows that

n∑
i=1

S2i1(Z1i ≥ 0)K

(
Z1i

h

)
· 1
6
(2L(η̄i)− 1)L(η̄i)(1− L(η̄i))(δnθ

′X̃i)
3 = O(δn) = o(1).

Therefore,

ℓ∗n(θ) = Q′
nθ −

1

2
θ′∆nθ + op(1), where

Qn = δn

n∑
i=1

S2i1(Z1i ≥ 0)K

(
Z1i

h

)
· (D2i − L(η(Z1i, Xi)))X̃i,

∆n = δ2n

n∑
i=1

S2i1(Z1i ≥ 0)K

(
Z1i

h

)
· L(η(Z1i, Xi))(1− L(η(Z1i, Xi)))X̃iX̃

′
i.

For the term ∆n, we have that

E[∆n] =
1

h
E

S21(Z1 ≥ 0)K

(
Z1

h

)
L(η(Z1, X))(1− L(η(Z1, X)))


X

Z1X
h

Z2
1X

h2

(
X′ Z1X′

h

Z2
1X

′

h2

) .

Note that for any j = 0, 1, . . . and function g(.), by standard arguments,

1

h
E

[
S21(Z1 ≥ 0)K

(
Z1

h

)
L(η(Z1, X))(1− L(η(Z1, X)))g(X)

(Z1

h

)j]
=E
[
E[S2L(η(Z1, X))(1− L(η(Z1, X)))g(X)|Z1]1(Z1 ≥ 0)

(Z1

h

)j
K

(
Z1

h

)]
=fz1(0)E[S2L(η(Z1, X))(1− L(η(Z1, X)))g(X)|Z1 = 0]

∫
u≥0

ujK(u)du+ o(h).

Let

∆z = fz(0) ·


µz,0 µz,1 µz,2

µz,1 µz,2 µz,3

µz,2 µz,3 µz,4

 with µz,j =

∫
u≥0

ujK(u)du, for j = 0, 1, . . ..

Then, we again have

E[∆n] = ∆z ⊗ E
[
S2L(η(Z1, X))(1− L(η(Z1, X)))XX ′

∣∣∣Z1 = 0
]
+ o(1) ≡ ∆+ o(1),

and similar arguments show that for each, (∆n)jk, the (j, k)-th element of ∆n, V ar((∆n)jk) =

O(δn) = o(1). Therefore, ∆n
p→ ∆ and it follows that

ℓ∗n(θ) = Q′
nθ −

1

2
θ′∆θ + op(1).

and

θ̂ = ∆−1Qn + op(1).
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For the term Qn, we have that

E[Qn] = nδnE

[
S21(Z1 ≥ 0)K

(
Z1

h

)
· (D2 − L(η(Z1, X)))X̃

]
= nδnE

[
E[S2|X,Z1]1(Z1 ≥ 0)K

(
Z1

h

)
· (E[D2|S2 = 1, X, Z1]− L(η(Z1, X)))X̃

]
= nδnE

[
E[S2|X,Z1]1(Z1 ≥ 0)K

(
Z1

h

)
· (L(γ(Z1)

′X)− L(η(Z1, X)))X̃

]
= O(nδnh · h3) = O(

√
nh7) = o(1).

To see this, note that L(γ(Z1)
′X) = L(η(Z1, X)) + L(η̄)(1− L(η̄))(γ(Z1)

′X − η(Z1, X))

where η̄ is between η(Z1, X) and γ(Z1)
′X, so L(γ(Z1)

′X)−L(η(Z1, X)) = Op(γ(Z1)
′X−

η(Z1, X))) because L(η̄)(1 − L(η̄)) is bounded by 1/4. By a mean value expansion

of γ(Z1)
′X around 0, we have γ(Z1)

′X = (γ1 + β1Z1 + ρ2Z2
1 + γ′′′(Z̄1)Z

3
1 )

′X where

Z̄1 is between 0 and Z1. Therefore, γ(Z1)
′X − η(Z1, X)′ = γ′′′(Z̄1)

′Z3
1X. Therefore,

L(γ(Z1)
′X)− L(η(Z1, X)) = Op(Z

3
1 ). Given that K(Z1/h) is non-zero when |Z1/h| ≤ 1

or equivalently, |Z1| ≤ h, K
(
Z1
h

)
· (L(γ(Z1)

′X) − L(η(Z1, X))) = Op(K(Z1/h)h
3). It

follows that the expectation is O(nδnh · h3) = O(
√
nh7) and Assumption 4.3(iii) implies

that O(
√
nh7) = o(1).

In addition, the variance-covariance matrix of Qn is given by

V [Qn] = δ2nE[S21(Z1 ≥ 0)K2

(
Z1

h

)
· (D2 − L(η(Z1, X)))2X̃X̃′]

=
1

h
E[E[S2|Z1, X]1(Z1 ≥ 0)K2

(
Z1

h

)
· L(η(Z1, X))(1− L(η(Z1, X)))X̃X̃′] +O(h3)

=fz1 (0)

 ν0,+ ν1,+ ν2,+

ν1,+ ν2,+ ν3,+

ν2,+ ν3,+ ν4,+

⊗ E
[
E[S2|Z1, X]L(η(Z1, X))(1− L(η(Z1, X)))XX′

∣∣∣Z1 = 0
]
+O(h3)

≡Ω+ o(1),

where νk,+ =
∫
u≥0 u

kK2(u)du for k = 0, 1, . . ..

Finally, let ξi = S2i1(Z1i ≥ 0)K (Z1i/h) (D2i − L(η(Z1i, Xi)))X̃i. ξi satisfies the

Lyapounov’s condition since nδ3nE[∥ξi∥3] = O(δn) → 0 by Assumption B.2. It then

follows that Qn
d→ (0,Ω) and θ̂

d→ (0,∆−1Ω∆−1).

E Monte Carlo Simulations

We first use the simple case of T = 2 to showcase the advantages of our proposed

estimator compared to the recursive CFR strategy.

We use six data-generating processes (DGPs). DGP 1 illustrates a case where in-

dividual treatment effects are non-random and only need to be labeled by the number
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of periods between the outcome variable and the focal round of RD. DGP 2 illustrates

a case where individual treatment effects are non-random but path-dependent. DGP 3

modifies DGP 1 by simulating individual treatment effects as random variables. In DGP

3, individual treatment effects are still independent of treatment decisions of later rounds.

DGP 4 modifies DGP 3 by adding a correlation between the second-round immediate

treatment effect and the second-round RD participation decision. In DGP 5, potential

second-period outcomes with second-round treatments are designed to be correlated with

the second-round running variable. In DGP 6, potential second-period outcomes without

second-round treatments are designed to be correlated with the second-round running

variable. As is stated in the CIA condition of Assumption 2.2, the case of DGP 5 is com-

patible with the proposed estimation procedure described in Lemma 2.2, while the case

of DGP 6 is not. Summing up, the proposed estimation strategy described in Lemma 2.2

is valid under DGPs 1-5. The recursive CFR estimator described in Lemma 2.1 is only

valid under DGPs 1 and 3. Under DGP 6, both estimation strategies are invalid.

For all DGPs, we first simulate random variables

X ∼ U [0, 10], Z1 ∼ X − 10 ·Beta(2, 2),

uy1, uy2, us2, as ∼ N(0, 0.5), vz2 ∼ logis(0, 1),

all independent of each other. Then we simulate potential random variables following

Y1(0) = 0.1X + 0.5Z1 + 0.1XZ1 + 0.1Z2
1 + uy1,

S2(0) = 1(us2 + as ≥ 0), S2(1) = 1(1 + us2 + as ≥ 0),

Z2(0) = 0.3 + 0.1X + vz2, Z2(1) = Z2(0) + (1 X)γ0, γ0 = (−0.4 − 0.2)′,

Y2(0, 0) = 0.1X + 0.5Z1 + 0.1XZ1 + 0.1Z2
1 + uy2,

Y1(1) = Y1(0) + θ0,1, Y2(0, 1) = Y2(0, 0) + θ00,2,

Y2(1, 0) = Y2(0, 0) + θ1,1, Y2(1, 1) = Y2(0, 0) + θ1,1 + θ10,2,

with treatment and first-stage effect parameters θ0,1, θ
0
0,2, θ

1
0,2, and θ1,1 varying across

different DGPs.

DGP 1: θ0,1 = 0.5, θ00,2 = θ10,2 = 0.5, θ1,1 = 0.2.

DGP 2: θ0,1 = 0.5, θ00,2 = 0.5, θ10,2 = 0.1, θ1,1 = 0.2.

DGP 3: θ0,1 = 0.5, θ00,2 = θ10,2 = 0.5 + e, θ1,1 = 0.2 + e, e ∼ N(0, 0.5).

DGP 4: θ0,1 = 0.5, θ00,2 = 0.5 + as, θ
1
0,2 = 0.5, θ1,1 = 0.2.

DGP 5: θ0,1 = 0.5, θ00,2 = θ10,2 = 0.5 + vz2, θ1,1 = 0.2.

DGP 6: θ0,1 = 0.5, θ00,2 = θ10,2 = 0.5 + vz2, θ1,1 = 0.2 + vz2.
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Given the above potential random variables, observed random variables Y1, S2, Z2,

D2, and Y2 are defined following the potential outcome framework in Section 2. For

each DGP, we carry out 1,000 simulations and estimate both the proposed and the

recursive CFR immediate and one-period-after ATEs. Standard errors are calculated us-

ing weighted bootstrap discussed in Section 4.1. Bandwidth is chosen following h =

hCCT × n1/5−1/k, where hCCT is the CCT bandwidth for classic RD estimation of

E[θ̃1,1|Z1 = 0], and k < 5 is an under-smoothing parameter. Simulation codes are written

using R. The CCT bandwidth is calculated using R package “rdrobust” (Calonico et al.,

2015). Different k choices are used to examine the robustness of proposed estimators

with respect to bandwidth choice.

Table A1 reports the mean and the mean squared error (MSE) of both the proposed

and the recursive CFR one-period-after ATE estimators. As is predicted by the theory,

both estimators average around the true value in DGPs 1 and 3. The proposed estimator

has larger MSEs due to first-step local likelihood estimation. Under DGPs 2, 4, and 5, the

recursive CFR estimator does not center around the true value 0.2, while the proposed

estimator still performs well. Under DGP 6, neither estimators have correct centering.

Table A2 reports the proportion of rejections in 5% two-sided t-tests associated with

proposed immediate and one-period-after ATE estimators. The left half of the table

shows the size of the tests with the true value stated under the null. The right half of the

table shows the power of the tests with the null set incorrectly to 0.3 for the immediate

ATE and 0 for the one-period-after ATE. It is clear that for all DGPs that are compatible

with the proposed estimation procedure, t-tests following the proposed estimators control

size well under the null and have power going to one under the alternative. Choice of the

under-smoothing parameter k does not seem to affect simulation results much, either,

under the DGPs considered in this section.
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Table A1: One-period-after ATE: Proposed Estimator vs. Recursive CFR Estimator

Proposed Estimation Strategy Recursive CFR

Mean MSE Mean MSE

k 4.25 4.5 4.75 4.25 4.5 4.75 4.25 4.5 4.75 4.25 4.5 4.75

DGP 1

n=2000 0.208 0.209 0.210 0.021 0.020 0.020 0.214 0.215 0.215 0.014 0.013 0.013

n=4000 0.205 0.206 0.207 0.010 0.009 0.009 0.212 0.213 0.214 0.007 0.007 0.007

n=8000 0.202 0.202 0.203 0.005 0.005 0.005 0.205 0.206 0.206 0.004 0.003 0.003

DGP 2

n=2000 0.205 0.206 0.208 0.022 0.021 0.020 0.152 0.154 0.155 0.016 0.015 0.014

n=4000 0.196 0.197 0.198 0.010 0.010 0.009 0.145 0.146 0.147 0.011 0.010 0.010

n=8000 0.203 0.205 0.205 0.006 0.005 0.005 0.151 0.153 0.154 0.007 0.006 0.006

DGP 3

n=2000 0.209 0.209 0.210 0.026 0.025 0.024 0.211 0.212 0.212 0.021 0.020 0.019

n=4000 0.199 0.200 0.201 0.013 0.012 0.012 0.203 0.205 0.206 0.012 0.011 0.011

n=8000 0.203 0.203 0.204 0.006 0.006 0.006 0.205 0.206 0.206 0.005 0.005 0.005

DGP 4

n=2000 0.202 0.204 0.205 0.021 0.020 0.019 0.166 0.168 0.169 0.017 0.016 0.016

n=4000 0.200 0.200 0.201 0.010 0.010 0.010 0.169 0.170 0.171 0.009 0.008 0.008

n=8000 0.204 0.205 0.205 0.005 0.005 0.005 0.172 0.173 0.173 0.005 0.004 0.004

DGP 5

n=2000 0.203 0.204 0.205 0.021 0.019 0.019 0.076 0.077 0.077 0.035 0.034 0.033

n=4000 0.203 0.204 0.205 0.010 0.010 0.010 0.069 0.071 0.071 0.027 0.026 0.026

n=8000 0.203 0.203 0.204 0.005 0.005 0.005 0.066 0.067 0.068 0.023 0.023 0.022

DGP 6

n=2000 -0.004 -0.003 -0.002 0.073 0.071 0.070 0.062 0.062 0.062 0.059 0.057 0.056

n=4000 0.0004 0.002 0.003 0.055 0.053 0.053 0.068 0.069 0.070 0.038 0.036 0.036

n=8000 -0.004 -0.002 -0.002 0.049 0.048 0.047 0.065 0.066 0.067 0.028 0.027 0.027

Note: All Monte Carlo experiments use 1,000 simulation repetitions and weighted bootstrap with 1,000 bootstrap

repetitions.
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Table A2: Two-sided T-tests with Proposed Immediate and One-period-after ATE Esti-

mators

Size Power

Immediate ATE One-period-after ATE Immediate ATE One-period-after ATE

k 4.25 4.5 4.75 4.25 4.5 4.75 4.25 4.5 4.75 4.25 4.5 4.75

DGP 1

n=2000 0.060 0.060 0.058 0.069 0.068 0.069 0.634 0.670 0.683 0.353 0.379 0.388

n=4000 0.041 0.041 0.042 0.047 0.045 0.043 0.878 0.893 0.902 0.553 0.585 0.604

n=8000 0.049 0.050 0.055 0.044 0.044 0.045 0.982 0.987 0.990 0.786 0.803 0.817

DGP 2

n=2000 0.056 0.054 0.056 0.079 0.077 0.072 0.592 0.617 0.629 0.356 0.380 0.380

n=4000 0.057 0.051 0.056 0.057 0.055 0.050 0.823 0.848 0.854 0.537 0.557 0.562

n=8000 0.063 0.063 0.058 0.064 0.063 0.069 0.973 0.984 0.985 0.793 0.826 0.834

DGP 3

n=2000 0.052 0.048 0.050 0.072 0.075 0.076 0.471 0.491 0.499 0.314 0.331 0.339

n=4000 0.050 0.051 0.054 0.066 0.066 0.066 0.724 0.756 0.768 0.473 0.499 0.501

n=8000 0.050 0.051 0.050 0.050 0.048 0.050 0.938 0.949 0.952 0.734 0.764 0.771

DGP 4

n=2000 0.061 0.064 0.063 0.080 0.078 0.071 0.591 0.627 0.638 0.369 0.393 0.395

n=4000 0.056 0.052 0.054 0.063 0.065 0.063 0.846 0.872 0.886 0.535 0.557 0.575

n=8000 0.060 0.060 0.063 0.046 0.050 0.047 0.985 0.990 0.991 0.814 0.834 0.844

DGP 5

n=2000 0.058 0.058 0.055 0.075 0.078 0.077 0.602 0.623 0.636 0.345 0.358 0.366

n=4000 0.053 0.058 0.060 0.057 0.053 0.059 0.861 0.883 0.892 0.566 0.601 0.611

n=8000 0.048 0.043 0.039 0.063 0.059 0.061 0.985 0.992 0.992 0.815 0.842 0.849

DGP 6

n=2000 0.048 0.047 0.046 0.244 0.254 0.257 0.622 0.654 0.668 0.062 0.059 0.058

n=4000 0.050 0.054 0.061 0.387 0.400 0.404 0.860 0.873 0.887 0.048 0.049 0.050

n=8000 0.053 0.062 0.064 0.657 0.671 0.687 0.990 0.993 0.995 0.038 0.040 0.041

Note: All Monte Carlo experiments use 1,000 simulation repetitions and weighted bootstrap with 1,000 bootstrap

repetitions. The true value of the estimated parameter is 0.2. All t-tests use the 5% significance level.

Next, we extend DGPs 1-4 to examine small sample performances of proposed esti-

mators of E[θτ,1|Z1 = 0] for τ = 0, 1, 2, 3. For all DGPs, let

X ∼ U [0, 10], Z1 ∼ X − 10 ·Beta(2, 2), (uy1, uy2, uy3, uy4, as) ∼ i.i.d. N(0, 0.5),

Yt(0t) = 0.1X + 0.5Z1 + 0.1XZ1 + 0.1Z2
1 + uyt, for t = 1, 2, 3, 4.

Potential outcomes with nonzero treatment status are simulated different in each

DGP, based on the longer-term direct treatment effect parameters specific to each DGP,

as is stated in the following.

DGP 1-T4: θ0,1 = θ00 = θ10 = 0.5, θ1,1 = θ01 = θ11 = 0.2, θ2,1 = θ02 = θ12 = 0.3, θ3,1 = 0.

DGP 2-T4: θ0,1 = θ00 = 0.5, θ10 = 0.1, θ1,1 = θ01 = 0.2, θ11 = −0.2, θ2,1 = θ02 = 0.3,

θ12 = −0.3, θ3,1 = 0.
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DGP 3-T4: θ0,1 = θ00 = θ10 = 0.5 + e0, θ1,1 = θ01 = θ11 = 0.2 + e1, θ2,1 = θ02 = θ12 =

0.3 + e2, θ3,1 = e3, (e0, e1, e2, e3) ∼ i.i.d. N(0, 0.5).

DGP 4-T4: θ0,1 = 0.5, θ00 = 0.5 + as, θ
1
0 = 0.5, θ1,1 = 0.2, θ01 = 0.2 + as, θ

1
1 = 0.2,

θ2,1 = 0.3, θ02 = 0.3 + as, θ
1
2 = 0.3, θ3,1 = 0.

Note that path-dependency in direct effects are restricted with the same Markovian

assumption in Assumption 3.1. For example, Y2(1, 1) is simulated using the fact that

Y2(1, 1) = Y2(0, 0) + [Y2(1, 0) − Y2(0, 0)] + [Y2(1, 1) − Y2(1, 0)] = Y2(0, 0) + θ1,1 + θ10,

while Y3(1, 0, 1)is simulated using the fact that Y3(1, 0, 1) = Y3(0, 0, 0) + [Y3(1, 0, 0) −
Y3(0, 0, 0)] + [Y3(1, 0, 1) − Y3(1, 0, 0)] = Y3(0, 0, 0) + θ2,1 + θ00. The proposed estimators

are valid under all four DGPs while the recursive CFR estimators are only valid under

DGPs 1-T4 and 3-T4.

Meanwhile, potential running variables and RD participation decisions are simulated

as following

(vz1, vz2, vz3, vz4) ∼ i.i.d. logis(0, 1), Zt(0t) = 0.3 + 0.1X + vzt, for t = 2, 3, 4,

Z2(1) = Z2(0) + (1 X)γ0, Z3(0, 1) = Z3(02) + (1 X)γ00 ,

Z3(1, 0) = Z3(02) + (1 X)γ1,1, Z3(1, 1) = Z3(02) + (1 X)(γ1,1 + γ10),

Z4(0, 0, 1) = Z4(03) + (1 X)γ00 , Z4(0, 1, 0) = Z4(03) + (1 X)γ01 ,

Z4(0, 1, 1) = Z4(03) + (1 X)(γ01 + γ10), Z4(1, 0, 0) = Z4(03) + (1 X)γ2,1,

Z4(1, 1, 0) = Z4(03) + (1 X)(γ2,1 + γ11), Z4(1, 0, 1) = Z4(03) + (1 X)(γ2,1 + γ00),

γ0,1 = (−0.3 − 0.1), γ00 = (0.1 0.1), γ10 = (−0.2 − 0.1),

γ1,1 = γ01 = γ11 = γ2,1 = (−0.1 − 0.1),

(us1, us2, us3, us4) ∼ i.i.d. N(0, 0.5),

St(0) = 1(ust + as ≥ 0), St(1) = 1(1 + ust + as ≥ 0), for t = 2, 3, 4.

Table A3 reports the average of the proposed and recursive CFR estimators among

1,000 simulations. The true value is 0.5, 0.2, 0.3, and 0 for the immediate, one-period-

after, two-period-after, and three-period-after ATEs. As is predicted by the theory,

the proposed estimators average around the true value among all four DGPs, while the

recursive estimators only perform well under DGPs 1-T4 and 3-T4.

Table A4 reports proportions of rejections in two-sided t-tests associated with pro-

posed ATE estimators. The first half of the table shows the size of the tests with the

true value of ATEs stated under the null. The second half of the table shows the power

of the tests with the null set incorrectly to 0.3 for the immediate ATE and 0 for all other

longer-term ATEs. Thus, it is clear that the proposed method controls size well under
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the null and has power going to one under the alternative.

Table A3: Performance of Proposed and CFR Estimators

Immediate One-period-after Two-period-after Three-period-after

k 4.25 4.5 4.75 4.25 4.5 4.75 4.25 4.5 4.75 4.25 4.5 4.75

True Parameter Values

0.5 0.5 0.5 0.2 0.2 0.2 0.3 0.3 0.3 0.0 0.0 0.0

Averages Across Simulations: the Proposed Strategy

DGP 1-T4

n=2000 0.501 0.502 0.502 0.199 0.202 0.204 0.303 0.305 0.307 0.003 0.007 0.010

n=4000 0.504 0.505 0.506 0.193 0.194 0.196 0.299 0.301 0.302 -0.000 0.001 0.002

n=8000 0.504 0.504 0.505 0.203 0.204 0.205 0.307 0.308 0.309 0.003 0.004 0.005

DGP 2-T4

n=2000 0.505 0.505 0.505 0.200 0.202 0.204 0.296 0.298 0.300 0.008 0.010 0.012

n=4000 0.504 0.505 0.506 0.203 0.204 0.205 0.303 0.305 0.306 0.018 0.019 0.021

n=8000 0.504 0.505 0.505 0.203 0.204 0.205 0.301 0.302 0.302 0.015 0.015 0.016

DGP 3-T4

n=2000 0.512 0.512 0.513 0.205 0.207 0.210 0.300 0.302 0.304 0.008 0.011 0.013

n=4000 0.505 0.505 0.506 0.202 0.204 0.205 0.301 0.303 0.304 -0.000 0.002 0.004

n=8000 0.505 0.506 0.506 0.203 0.204 0.205 0.305 0.307 0.308 0.005 0.006 0.007

DGP 4-T4

n=2000 0.506 0.507 0.508 0.201 0.203 0.204 0.304 0.306 0.309 -0.001 0.003 0.006

n=4000 0.504 0.505 0.506 0.200 0.201 0.202 0.297 0.298 0.299 -0.001 0.0003 0.002

n=8000 0.506 0.507 0.507 0.202 0.203 0.204 0.306 0.308 0.309 0.013 0.014 0.014

Averages Across Simulations: the Recursive CFR Strategy

DGP 1-T4

n=2000 0.501 0.502 0.502 0.205 0.206 0.207 0.312 0.313 0.313 0.013 0.015 0.016

n=4000 0.504 0.505 0.506 0.202 0.203 0.204 0.305 0.307 0.307 0.010 0.011 0.011

n=8000 0.504 0.504 0.505 0.204 0.205 0.206 0.306 0.308 0.309 0.008 0.009 0.010

DGP 2-T4

n=2000 0.505 0.505 0.505 0.097 0.098 0.098 0.238 0.239 0.240 -0.095 -0.094 -0.093

n=4000 0.504 0.505 0.506 0.103 0.104 0.105 0.247 0.248 0.249 -0.085 -0.084 -0.083

n=8000 0.504 0.505 0.505 0.099 0.100 0.101 0.243 0.244 0.245 -0.091 -0.090 -0.089

DGP 3-T4

n.2000.2 0.512 0.512 0.513 0.218 0.219 0.219 0.320 0.321 0.321 0.022 0.023 0.024

n.4000.2 0.505 0.505 0.506 0.207 0.208 0.208 0.307 0.308 0.309 0.006 0.007 0.007

n.8000.2 0.505 0.506 0.506 0.207 0.208 0.209 0.307 0.309 0.310 0.008 0.010 0.010

DGP 4-T4

n=2000 0.506 0.507 0.508 0.172 0.172 0.173 0.257 0.257 0.258 -0.033 -0.032 -0.031

n=4000 0.504 0.505 0.506 0.171 0.171 0.172 0.250 0.250 0.251 -0.036 -0.035 -0.035

n=8000 0.506 0.507 0.507 0.167 0.168 0.169 0.249 0.251 0.252 -0.033 -0.032 -0.031

Note: All Monte Carlo experiments use 1,000 simulation repetitions and weighted bootstrap with 1,000 bootstrap

repetitions.
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Table A4: Performance of Proposed Estimators: Rejection Proportion of Two-sided Tests

Immediate One-period-after Two-period-after Three-period-after

k 4.25 4.5 4.75 4.25 4.5 4.75 4.25 4.5 4.75 4.25 4.5 4.75

Size of Two-sided T-tests

DGP 1-T4

n=2000 0.056 0.057 0.056 0.063 0.069 0.074 0.048 0.052 0.052 0.055 0.058 0.056

n=4000 0.062 0.067 0.066 0.056 0.055 0.058 0.045 0.049 0.047 0.051 0.050 0.051

n=8000 0.046 0.043 0.046 0.065 0.062 0.058 0.052 0.050 0.052 0.050 0.052 0.049

DGP 2-T4

n=2000 0.053 0.054 0.052 0.067 0.066 0.068 0.057 0.056 0.052 0.064 0.064 0.063

n=4000 0.047 0.051 0.054 0.055 0.055 0.052 0.070 0.069 0.069 0.077 0.072 0.068

n=8000 0.047 0.048 0.050 0.066 0.060 0.062 0.050 0.051 0.053 0.057 0.059 0.056

DGP 3-T4

n=2000 0.046 0.045 0.046 0.075 0.072 0.074 0.062 0.060 0.057 0.052 0.051 0.052

n=4000 0.047 0.051 0.051 0.057 0.061 0.061 0.062 0.061 0.058 0.064 0.069 0.063

n=8000 0.052 0.054 0.055 0.053 0.049 0.049 0.060 0.061 0.058 0.058 0.060 0.059

DGP 4-T4

n=2000 0.039 0.041 0.042 0.062 0.069 0.067 0.071 0.070 0.075 0.056 0.055 0.058

n=4000 0.052 0.056 0.051 0.064 0.062 0.065 0.050 0.052 0.049 0.059 0.062 0.061

n=8000 0.053 0.051 0.058 0.052 0.048 0.049 0.051 0.050 0.049 0.063 0.059 0.060

Power of Two-sided T-tests

DGP 1-T4

n=2000 0.598 0.615 0.626 0.325 0.335 0.351 0.515 0.540 0.552 0.442 0.464 0.467

n=4000 0.824 0.850 0.862 0.460 0.479 0.485 0.783 0.806 0.816 0.757 0.770 0.784

n=8000 0.974 0.983 0.988 0.749 0.770 0.781 0.961 0.973 0.974 0.950 0.960 0.961

DGP 2-T4

n=2000 0.590 0.619 0.633 0.311 0.327 0.328 0.474 0.524 0.538 0.427 0.448 0.452

n=4000 0.856 0.885 0.889 0.509 0.541 0.555 0.791 0.807 0.824 0.716 0.730 0.729

n=8000 0.977 0.985 0.987 0.768 0.785 0.793 0.965 0.975 0.978 0.944 0.949 0.949

DGP 3-T4

n=2000 0.479 0.506 0.521 0.269 0.281 0.289 0.366 0.379 0.390 0.270 0.281 0.289

n=4000 0.739 0.756 0.775 0.454 0.470 0.488 0.594 0.616 0.630 0.481 0.497 0.507

n=8000 0.931 0.941 0.949 0.686 0.711 0.726 0.845 0.869 0.883 0.745 0.765 0.774

DGP 4-T4

n=2000 0.596 0.631 0.643 0.304 0.325 0.330 0.425 0.453 0.465 0.339 0.346 0.345

n=4000 0.838 0.862 0.877 0.506 0.530 0.540 0.661 0.688 0.696 0.602 0.616 0.621

n=8000 0.983 0.989 0.990 0.760 0.802 0.808 0.907 0.926 0.929 0.813 0.831 0.846

Note: All Monte Carlo experiments use 1,000 simulation repetitions and weighted bootstrap with 1,000 bootstrap

repetitions. All t-tests use the 5% significance level.
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