
A Statistical Properties of RIPW Estimators

A.1 Setup and preliminaries

We will consider the more general setting in Section 3 since it nests the setting in Section 2.

For ease of reference, we state the framework here, along with the list of assumptions some of

which are weaker than those stated in the main text.

Suppose the i-th unit is characterized by potential outcomes Yi(1) = (Yi1(1), . . . , YiT (1)),Yi(0) =

(Yi1(0), . . . , YiT (0)), the treatment path Wi = (Wi1, . . . ,WiT ), and a set of covariates Xi =

(Xi1, . . . , XiT ). The vector of time-varying treatment effects for unit i is denoted by τi =

(τi1, . . . , τiT ) = Yi(1) − Yi(0). We treat covariates as fixed and consider {(Yi(1),Yi(0),Wi) :

i ∈ [n]} as a random vector (jointly) drawn from a distribution (conditional on {Xi : i ∈ [n]}).
We let P denote the joint distribution of the entire random vector {(Yi(1),Yi(0),Wi) : i ∈ [n]}
(conditional on {Xi : i ∈ [n]}) and E denote the expectation over this distribution.

The assignment model is characterized by the generalized propensity score defined as

πi(w) = P(Wi = w).

The outcome model is characterized by {(mi,νi) : i ∈ [n]} where mi = (mi1, . . . ,miT ),νi =

(νi1, . . . , νiT ),

mit = E[Yit(0)]− 1

n

n∑
i=1

E[Yit(0)]− 1

T

T∑
t=1

E[Yit(0)] +
1

nT

n∑
i=1

T∑
t=1

E[Yit(0)],

τit = E[Yit(1)]− E[Yit(0)],

νit = τit − τ ∗(ξ).

Let {(π̂i, µ̂i(0), µ̂i(1)) : i ∈ [n]} be an estimate of {(πi,µi(0),µi(1))}. Further let m̂i =

(m̂i1, . . . , m̂iT ) and ν̂i = (ν̂i1, . . . , ν̂iT ), where

m̂it , µ̂it(0)− 1

n

n∑
i=1

µ̂it(0)− 1

T

T∑
t=1

µ̂it(0) +
1

nT

n∑
i=1

T∑
t=1

µ̂it(0),

τ̂it , µ̂it(1)− µ̂it(0),
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ν̂it , τ̂it −
T∑
t=1

ξt
n

n∑
i=1

τ̂it.

The results in Section 2 are given by the special case where π̂i = πi, m̂i = ν̂i = 0T .

Define the modified potential outcomes as

Ỹi(0) = Yi(0)− m̂i, Ỹi(1) = Yi(1)− m̂i − ν̂i,

and the modified treatment effects as

τ̃i = E[Ỹi(1)− Ỹi(0)] = τi − E[ν̂i]. (A.1)

By definition,

τ ∗(ξ) =
T∑
t=1

ξt
n

n∑
i=1

τit =
T∑
t=1

ξt
n

n∑
i=1

τ̃it. (A.2)

Then the modified observed outcome is Ỹi = (Ỹi1, . . . , ỸiT ) where

Ỹit = Ỹit(1)Wit + Ỹit(0)(1−Wit) = Yit − m̂it − ν̂itWit.

With a reshaped distribution Π on {0, 1}T , the RIPW estimator is defined as

τ̂(Π) , arg min
τ,µ,

∑
i αi=

∑
t λt=0

n∑
i=1

T∑
t=1

(Ỹit − µ− αi − λt −Witτ)2
Π(Wi)

π̂i(Wi)
.

We will suppress ξ from τ ∗(ξ) and Π from τ̂(Π) throughout the section.

Since τ̂(Π) remains invariant if we replace Yit by Yit − µ′ − α′i − λ′t, we assume that

Yi(0) = mi ⇐⇒ Ỹi(0) = mi − m̂i, (A.3)

by setting µ′ = (1/nT )
∑n

i=1

∑T
t=1 E[Yit(0)], α′i = (1/T )

∑T
t=1(E[Yit(0)]− µ′), and

λ′t = (1/n)
∑n

i=1(E[Yit(0)]− µ′).
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The accuracy of the assignment model and the outcome model for unit i are defined as

δπi =
√

E[|π̂i(Wi)− πi(Wi)|2], δyi =
√
E[‖m̂i −mi‖22 + ‖ν̂i − νi‖22].

In the proofs, we need the conditional version of these measures

∆πi =

√
E [|π̂i(Wi)− πi(Wi)|2 | π̂i]2, ∆yi =

√
E[‖m̂i −mi‖22 | m̂i] + E[‖ν̂i − νi‖22 | ν̂i].

We then define the unconditional and conditional average accuracy measures

δ̄π =

√√√√ 1

n

n∑
i=1

δ2πi, δ̄y =

√√√√ 1

n

n∑
i=1

δ2yi,

and

∆̄π =

√√√√ 1

n

n∑
i=1

∆2
πi, ∆̄y =

√√√√ 1

n

n∑
i=1

∆2
yi.

By law of iterated expectations,

E[∆̄2
π] = δ̄2π, E[∆̄2

y] = δ̄2y .

By Markov inequality,

∆̄π = OP(δ̄π), ∆̄y = OP(δ̄y). (A.4)

Therefore, if we can prove the result only assuming ∆̄π∆̄y = o(1) conditional on (π̂i, m̂i, ν̂i)
n
i=1,

we can prove it assuming that δ̄π δ̄y = o(1) as in Section 3.

To be self-contained, we list all quantities involved in the DATE equationand the asymp-

totically linear expansion of the RIPW estimator. Let J = IT − 1T1>T /T ,

Θi = Π(Wi)/π̂i(Wi),
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Γθ ,
1

n

n∑
i=1

Θi, Γww ,
1

n

n∑
i=1

ΘiW
>
i JWi, Γwy ,

1

n

n∑
i=1

ΘiW
>
i JỸi,

Γw ,
1

n

n∑
i=1

ΘiJWi, Γy ,
1

n

n∑
i=1

ΘiJỸi,

and

Vi = Θi

{
(E[Γwy]− τ ∗E[Γww])− (E[Γy]− τ ∗E[Γw])> JWi

+ E[Γθ]W
>
i J
(
Ỹi − τ ∗Wi

)
− E[Γw]>J

(
Ỹi − τ ∗Wi

)}
.

This coincides with the definition in Theorem 2.2 when π̂i = πi and m̂i = ν̂i = 0T .

Finally, we state the core assumptions, some of which are repeated and combined for ease

of reference and the rest of which are weakened. We start by restating the unit-specific mean

ignorability assumption.

Assumption A.1. For each i ∈ [n],

E[(Yi(1),Yi(0)) |Wi] = E[(Yi(1),Yi(0))]. (A.5)

Next, we combine the overlap condition for the true propensity scores (Assumption 2.2) and

that for the estimated propensity scores (Assumption 3.2) with the constant c replaced by cπ to

be more informative in the proofs.

Assumption A.2. There exists a universal constant c > 0 and a non-stochastic subset S∗ ⊂
{0, 1}T with at least two elements and at least one element not in {0T ,1T}, such that

π̂i(w) > cπ,πi(w) > cπ, ∀w ∈ S∗, i ∈ [n], almost surely. (A.6)

Lastly, we state the following assumption that unifies and weakens Assumptions 2.1, 2.3,

and 3.3.
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Assumption A.3. There exists q ∈ (0, 1],

1

n2

n∑
i=1

ρi

{
E‖Ỹi(1)‖22 + E‖Ỹi(0)‖22 + 1

}
= O(n−q),

and

1

n

n∑
i=1

{
E‖Ỹi(1)‖22 + E‖Ỹi(0)‖22

}
= O(1).

We close this section by a basic property of the maximal correlation.

Lemma A.1. Let Zi = (Yi(1),Yi(0),Xi) and fi be any deterministic function on the domain

of Zi. Then

Var

[
n∑
i=1

fi(Zi)

]
≤ 1

2

n∑
i=1

Var[fi(Zi)]ρi.

Proof. By definition of ρij,

Cov (fi(Zi), fj(Zj)) ≤ ρij

√
Var[fi(Zi)]Var[fj(Zj)] ≤

ρij
2
{Var[fi(Zi)] + Var[fj(Zj)]} .

Thus,

Var

[
n∑
i=1

fi(Zi)

]
=

n∑
i,j=1

Cov(fi(Zi), fj(Zj))

≤
n∑

i,j=1

ρij
2
{Var[fi(Zi)] + Var[fj(Zj)]} =

n∑
i=1

Var[fi(Zi)]ρi.

A.2 A non-stochastic formula of RIPW estimators

Theorem A.1. With the same notation as Theorem 2.2, τ̂ = N /D, where

N = ΓwyΓθ − Γ>wΓy, D = ΓwwΓθ − Γ>wΓw. (A.7)
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Proof. Let γ = (λ1, . . . , λt) be any vector with γ>1T = 0. First we derive the optimum

µ̂(γ, τ), α̂i(γ, τ) given any values of γ and τ . Recall that

(µ̂(γ, τ), α̂i(γ, τ)) = arg min∑
i αi=0

n∑
i=1

(
T∑
t=1

(Ỹit − µ− αi − λt −Witτ)2

)
Θi.

Since the weight Θi only depends on i, it is easy to see that

µ̂(γ, τ) + α̂i(γ, τ) =
1

T

T∑
t=1

(Ỹit − λt −Witτ), µ̂(γ, τ) =
1

nT

n∑
i=1

T∑
t=1

(Ỹit − λt −Witτ).

As a result,

T∑
t=1

(Ỹit − µ̂(γ, µ)− α̂i(γ, µ)− λt −Witτ)2

=

∥∥∥∥(Ỹi − γ −Wiτ
)
− 1T1>T

T

(
Ỹi − γ −Wiτ

)∥∥∥∥2
2

=

∥∥∥∥J (Ỹi − γ −Wiτ
)∥∥∥∥2

2

.

This yields a profile loss function for γ and τ :

(γ̂, τ̂) = arg min
γ>1T=0

n∑
i=1

∥∥∥∥J (Ỹi − γ −Wiτ
)∥∥∥∥2

2

Θi = arg min
γ>1T=0

n∑
i=1

∥∥∥∥J (Ỹi −Wiτ
)
− γ

∥∥∥∥2
2

Θi,

where the last equality uses the fact that Jγ = γ. Given τ , the optimizer γ̂(τ) is simply the

weighted average of {J(Ỹi −Wiτ)}ni=1 in absence of the constraint γ>1T = 0, i.e.

γ̂(τ) =

∑n
i=1 ΘiJ(Ỹi −Wiτ)∑n

i=1 Θi

=
Γy

Γθ
− Γw

Γθ
τ.

Noting that γ̂(τ)>1T = 0 since J1T = 0, γ̂(τ) is also the minimizer of the constrained problem,

i.e.

γ̂(τ) = arg min
γ>1T=0

n∑
i=1

∥∥∥∥J (Ỹi −Wiτ
)
− γ

∥∥∥∥2
2

Θi.
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Plugging in γ̂(τ) yields a profile loss function for τ

τ̂ = arg min
n∑
i=1

∥∥∥∥J (Ỹi −Wiτ
)
− γ̂(τ)

∥∥∥∥2
2

Θi , L(τ).

A direct calculation shows that

L′(τ)

2n
=

1

n

n∑
i=1

Θi

(
−JWi +

Γw

Γθ

)>(
J
(
Ỹi −Wiτ

)
− Γy

Γθ
+

Γw

Γθ
τ

)

=
1

n

{
n∑
i=1

Θi

(
JWi −

Γw

Γθ

)>(
JWi −

Γw

Γθ

)}
τ − 1

n

{
n∑
i=1

Θi

(
JWi −

Γw

Γθ

)>(
JỸi −

Γy

Γθ

)}

=

{
Γww −

Γ>wΓw

Γθ

}
τ −

{
Γwy −

Γ>wΓy

Γθ

}

Since L(τ) is a convex quadratic function of τ , the first-order condition is sufficient and necessary

to determine the optimality. The proof is then completed by solving L′(τ̂) = 0.

A.3 Statistical properties of RIPW estimators with deterministic

(π̂i, m̂i, ν̂i)

A.3.1 Asymptotic linear expansion of RIPW estimators

As a warm-up, we assume that (π̂i, m̂i, ν̂i)
n
i=1 are deterministic. This, for example, includes the

pure design-based inference where π̂i = πi and m̂i = ν̂i = 0. In this case, the measures of

accuracy can be simplified as

∆πi =

√
E [π̂i(Wi)− πi(Wi)]

2, ∆yi =
√
‖m̂i −mi‖22 + ‖ν̂i − νi‖22. (A.8)

As a result, (∆πi,∆yi) are deterministic.

We start by a lemma showing that Γθ,Γwy,Γww,Γw,Γy concentrate around their means. For

notational convenience, we let Var(Z) denote E‖Z − E[Z]‖22 for a random vector Z.

Lemma A.2. Under Assumptions A.2 and A.3,

|E[Γθ]|+ |E[Γwy]|+ |E[Γww]|+ ‖E[Γw]‖2 + ‖E[Γy]‖2 = O(1),
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and

Var(Γθ) + Var(Γwy) + Var(Γww) + Var(Γw) + Var(Γy) = O(n−q).

As a consequence,

∣∣Γθ−E[Γθ]
∣∣+ ∣∣Γwy−E[Γwy]

∣∣+ ∣∣Γww−E[Γww]
∣∣+∥∥Γw−E[Γw]

∥∥
2
+
∥∥Γy−E[Γy]

∥∥
2

= OP
(
n−q/2

)
.

Proof. By Assumption A.2, Θi ≤ 1/cπ almost surely. Moreover, ‖Wi‖2 ≤
√
T since Wit ∈ {0, 1}.

Thus,

‖Γw‖2 ≤
√
T

cπ
, |Γww| ≤

T

cπ
, |Γθ| ≤

1

cπ
=⇒ E‖Γw‖2 + E|Γww|+ E|Γθ| = O(1).

Next, we derive bounds for (E[Γwy])
2 and ‖E[Γy]‖22 separately. For (E[Γwy])

2,

(E[Γwy])
2 ≤

(
1

n

n∑
i=1

E[ΘiW
>
i JỸi]

)2

≤ 1

n

n∑
i=1

E[ΘiW
>
i JỸi]

2

≤ 1

nc2π

n∑
i=1

E[W>
i JỸi]

2 ≤ T

nc2π

n∑
i=1

E‖Ỹi‖22

≤ T

nc2π

n∑
i=1

{
E‖Ỹi(0)‖22 + E‖Ỹi(1)‖22

}
= O(1),

where the last step follows from the Assumption A.3. For ‖E[Γy]‖22,

‖E[Γy]‖22 ≤
1

n

n∑
i=1

(E[ΘiJỸi])
2 ≤ 1

nc2π

n∑
i=1

‖Ỹi‖22

≤ 1

nc2π

n∑
i=1

{
E‖Ỹi(0)‖22 + E‖Ỹi(1)‖22

}
= O(1),

where the last step follows from the Assumption A.3. Putting the pieces together, the bound

on the sum of expectations is proved.
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Next, we turn to the bound on the variances. By Lemma A.1,

Var(Γθ) ≤
1

n2

n∑
i=1

Var(Θi)ρi ≤
1

n2c2π

n∑
i=1

ρi.

The Assumption A.2 implies that

1

n2

n∑
i=1

ρi = O(n−q).

Therefore, Var(Γθ) = O(n−q). For Γww,

Var(Γww) ≤ 1

n2

n∑
i=1

Var(ΘiW
>
i JWi)ρi ≤

1

n2

n∑
i=1

E(ΘiW
>
i JWi)

2ρi

≤ 1

n2c2π

n∑
i=1

E‖Wi‖22ρi ≤
T

n2c2π

n∑
i=1

ρi = O(n−q),

where the last equality uses the fact that ‖Wi‖2 ≤
√
T . For Γwy,

Var(Γwy) ≤
1

n2

n∑
i=1

Var(ΘiW
>
i JỸi)ρi ≤

1

n2

n∑
i=1

E(ΘiW
>
i JỸi)

2ρi

(i)

≤ 1

n2c2π

n∑
i=1

E
[
‖Wi‖22 · ‖Ỹi‖22

]
ρi

(ii)

≤ T

n2c2π

n∑
i=1

(
E‖Ỹi(1)‖22 + E‖Ỹi(0)‖22

)
ρi

(iii)
= O(n−q),

where (i) follows from the Cauchy-Schwarz inequality and that ‖J‖op = 1, (ii) is obtained from

the fact that ‖Wi‖22 ≤ T and Ỹi ∈ {Ỹi(1), Ỹi(0)}, and (iii) follows from the Assumption A.3.

For Γw, recall that Var(Γw) is the sum of the variance of each coordinate of Γw. By Lemma
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A.1,

Var(Γw) ≤ 1

n2

n∑
i=1

Var(ΘiJWi)ρi ≤
1

n2

n∑
i=1

E‖ΘiJWi‖22ρi

≤ 1

n2c2π

n∑
i=1

E‖Wi‖22ρi ≤
T

n2c2π

n∑
i=1

ρi = O(n−q).

For Γy, analogues to inequalities (i) - (iii) for Γwy, we obtain that

Var(Γy) ≤
1

n2

n∑
i=1

Var(ΘiJỸi)ρi ≤
1

n2

n∑
i=1

E‖ΘiJỸi‖22ρi

≤ 1

n2c2π

n∑
i=1

(
E[‖Ỹi(1)‖22] + E[‖Ỹi(0)‖22]

)
ρi = O(n−q),

where the last step follows from the Assumption A.3.

Finally, by Markov’s inequality,

∣∣Γθ − E[Γθ]
∣∣+
∣∣Γwy − E[Γwy]

∣∣+
∣∣Γww − E[Γww]

∣∣+
∥∥Γw − E[Γw]

∥∥
2

+
∥∥Γy − E[Γy]

∥∥
2

=OP

(√
Var(Γθ) + Var(Γwy) + Var(Γww) + Var(Γw) + Var(Γy)

)
= OP(n−q/2).

The following lemma shows that the denominator of τ̂ is bounded away from 0.

Lemma A.3. Under Assumptions A.3, regardless of the dependence between (π̂i, m̂i, ν̂i) and

the data,

D ≥ c2D

(
1

n

n∑
i=1

I(Wi = w1)

)(
1

n

n∑
i=1

I(Wi = w2)

)
,

for some constant cD that only depends on Π. As a result, D ≥ 0 almost surely. If Assumption
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A.2 also holds, 6

E[D] ≥ c2D

(
c2π −

1

n2

n∑
i=1

ρi

)
, D ≥ c2Dc

2
π − oP(1).

Proof. By definition,

D =

(
1

n

n∑
i=1

ΘiW̃
>
i JW̃i

)(
1

n

n∑
i=1

Θi

)
−

∥∥∥∥∥ 1

n

n∑
i=1

ΘiJW̃i

∥∥∥∥∥
2

2

=
1

n2

n∑
i,j=1

ΘiΘj

(
W̃>

i JW̃i + W̃>
j JW̃j − 2W̃>

i JW̃j

)
=

1

n2

n∑
i,j=1

ΘiΘj‖J(Wi −Wj)‖22.

Let w1,w2 be two distinct elements from S∗ with w1 6∈ {0T ,1T} and

1

n

n∑
i=1

πi(wk) > cπ, k ∈ {1, 2}. (A.9)

This is enabled by Assumption A.2. Note that J(w1 − w2) = 0 iff w1 − w2 = a1T for some

a ∈ R, which is impossible since w1 6∈ {0T ,1T} and all entries of w1 and w2 are binary. In

addition, since Π has support S∗, Π(w1),Π(w2) > 0. Let

cD = min{Π(w1),Π(w2)}‖J(w1 −w2)‖2 > 0.

Then

D ≥ c2D
n2

n∑
i,j=1

1

π̂i(Wi)π̂j(Wj)
I(Wi = w1,Wj = w2)

≥ c2D
n2

n∑
i,j=1

I(Wi = w1,Wj = w2)

= c2D

(
1

n

n∑
i=1

I(Wi = w1)

)(
1

n

n∑
i=1

I(Wi = w2)

)
,

6A more rigorous version of the second statement is max{c2Dc2π −D, 0} = oP(1)
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where the second inequality follows from the fact that π̂i(w) ≤ 1. By (A.9),

E

[
1

n

n∑
i=1

I(Wi = wk)

]
=

1

n

n∑
i=1

πi(wk) > cπ, k ∈ {1, 2}.

Furthermore, by Lemma A.1,∣∣∣∣∣Cov

[
1

n

n∑
i=1

I(Wi = w1),
1

n

n∑
i=1

I(Wi = w2)

] ∣∣∣∣∣
=

1

n2

∣∣∣∣ n∑
i,j=1

Cov(I(Wi = w1), I(Wj = w2))

∣∣∣∣
≤ 1

n2

n∑
i,j=1

∣∣Cov(I(Wi = w1), I(Wj = w2))
∣∣

≤ 1

n2

n∑
i,j=1

ρij

√
Var(I(Wi = w1))Var(I(Wj = w2))

≤ 1

n2

n∑
i,j=1

ρij =
1

n2

n∑
i=1

ρi.

Putting pieces together, we obtain that

E[D] ≥ c2DE

[(
1

n

n∑
i=1

I(Wi = w1)

)(
1

n

n∑
i=1

I(Wi = w2)

)]

= c2D

{
E

[
1

n

n∑
i=1

I(Wi = w1)

]
E

[
1

n

n∑
i=1

I(Wi = w2)

]

+ Cov

[
1

n

n∑
i=1

I(Wi = w1),
1

n

n∑
i=1

I(Wi = w2)

]}

≥ c2D

(
c2π −

1

n2

n∑
i=1

ρi

)
.

On the other hand, by Lemma A.1, for k ∈ {1, 2},

Var

(
1

n

n∑
i=1

I(Wi = wk)

)
≤ 1

n2

n∑
i=1

ρi = O(n−q) = o(1).
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By Markov’s inequality, for k ∈ {1, 2},

1

n

n∑
i=1

I(Wi = wk) =
1

n

n∑
i=1

P(Wi = w1)− oP (1) ≥ cπ − oP(1).

Therefore,

D ≥ c2D(cπ − oP(1))(cπ − oP(1)) ≥ c2Dc
2
π − oP(1).

Based on Lemma A.2 and A.3, we can derive an asymptotic linear expansion for the RIPW

estimator.

Theorem A.2. Under Assumptions A.2 and A.3,

D(τ̂ − τ ∗) = N∗ +
1

n

n∑
i=1

(Vi − E[Vi]) +OP
(
n−q
)
,

where

N∗ =
1

2n

n∑
i=1

E[Vi] = E[Γwy]E[Γθ]− E[Γw]>E[Γy]− τ ∗
(
E[Γww]E[Γθ]− E[Γw]>E[Γw]

)
.

Furthermore,

τ̂ − τ ∗ = OP(|N∗|) +OP(n−q/2).

Proof. Note that

D(τ̂ − τ ∗) = N − τ ∗D.

By Lemma A.2,

∣∣(Γwy − E[Γwy])(Γθ − E[Γθ])
∣∣+
∣∣(Γw − E[Γw])>(Γy − E[Γy])

∣∣
≤1

2

{
(Γwy − E[Γwy])

2 + (Γθ − E[Γθ])
2 + ‖Γw − E[Γw]‖22 + ‖Γy − E[Γy]‖22

}
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=OP (Var(Γwy) + Var(Γθ) + Var(Γw) + Var(Γy)) = OP(n−q).

Let

Vi1 = Θi

{
E[Γwy]− E[Γy]

>JWi + E[Γθ]W
>
i JỸi − E[Γw]>JỸi

}
.

Then,

N = E[Γwy]E[Γθ]− E[Γw]>E[Γy] +
1

n

n∑
i=1

(Vi1 − E[Vi1]) +OP(n−q),

Similarly,

D = E[Γww]E[Γθ]− E[Γw]>E[Γw] +
1

n

n∑
i=1

(Vi2 − E[Vi2]) +OP(n−q),

where

Vi2 = Θi

{
E[Γww]− E[Γw]>JWi + E[Γθ]W

>
i JWi − E[Γw]>JWi

}
.

Since Vi = Vi1 − τ ∗Vi2,

D(τ̂ − τ ∗) = N − τ ∗D = N∗ +
1

n

n∑
i=1

(Vi − E[Vi]) +OP(n−q).

This proves the first statement.

Next, we prove the second statement on τ̂ − τ ∗. By Lemma A.3, 1/D = OP(1). It is left to show

that

1

n

n∑
i=1

(Vi − E[Vi]) = OP(n−q/2).

Applying the inequality that Var(Z1 +Z2) = 2Var(Z1)+2Var(Z2)−Var(Z1−Z2) ≤ 2(Var(Z1)+
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Var(Z2)), we obtain that

1

4
Var(Vi1)

≤Var (ΘiE[Γwy]) + Var
(

ΘiE[Γθ]W
>
i JỸi

)
+ Var

(
ΘiE[Γw]>JỸi

)
+ Var

(
ΘiE[Γy]

>JWi

)
≤E (ΘiE[Γwy])

2 + E
(

ΘiE[Γθ]W
>
i JỸi

)2
+ E

(
ΘiE[Γw]>JỸi

)2
+ E

(
ΘiE[Γy]

>JWi

)2
(i)

≤ 1

c2π

{
(E[Γwy])

2 + (E[Γθ])
2E(W>

i JỸi)
2 + E

(
E[Γw]>JỸi

)2
+ E

(
E[Γy]

>JWi

)2}
(ii)

≤ 1

c2π

{
(E[Γwy])

2 + (E[Γθ])
2E‖Wi‖22E‖Ỹi‖22 + ‖E[Γw]‖22E‖Ỹi‖22 + ‖E[Γy]‖22E‖Wi‖22

}
(iii)

≤ 1

c2π

{
(E[Γwy])

2 + T (E[Γθ])
2E‖Ỹi‖22 + ‖E[Γw]‖22E‖Ỹi‖22 + T‖E[Γy]‖22

}
,

where (i) follows from the Assumption A.2 that Θi ≤ 1/cπ almost surely, (ii) follows from the

Cauchy-Schwarz inequality and the fact that ‖J‖op = 1, and (iii) follows from the fact that

‖Wi‖22 ≤ T . By Lemma A.2, we obtain that for all i ∈ [n],

Var(Vi1) ≤ C1

(
1 + E‖Ỹi‖22

)
≤ C1

(
1 + E‖Ỹi(0)‖22 + E‖Ỹi(1)‖22

)
, (A.10)

for some constant C1 that only depends on cπ and T . Similarly, we have that Var(Vi2) ≤ C2 for

some constant C2 that only depends on cπ and T . By Assumption A.3,

τ ∗ =
T∑
t=1

ξt

{
1

n

n∑
i=1

(
E[Ỹit(1)]− E[Ỹit(0)]

)}
= O(1).

Therefore,

Var(Vi) ≤ 2Var(Vi1) + 2(τ ∗)2Var(Vi2) ≤ C
(

1 + E‖Ỹi(0)‖22 + E‖Ỹi(1)‖22
)
.

for some constant C that only depends on cπ and T . Since Vi is a function of (Yi(1),Yi(0),Xi),

by Lemma A.1 and Assumption A.3,

Var

(
1

n

n∑
i=1

Vi

)
≤ 1

n2

n∑
i=1

Var(Vi)ρi = O(n−q).
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By Chebyshev’s inequality,

1

n

n∑
i=1

(Vi − E[Vi]) = OP(n−q/2).

The proof is then completed.

A.3.2 DATE equation and consistency

Theorem A.2 shows that the asymptotic limit of D(τ̂ − τ ∗) is N∗. For consistency, it remains

to prove that N∗ = o(1). We start by proving that the asymptotic bias is zero when either the

treatment or the outcome model is perfectly estimated.

Lemma A.4. Under Assumptions A.1, A.2, and A.3, N∗ = 0, if either (1) ∆yi = 0 for all

i ∈ [n], or (2) ∆πi = 0 for all i ∈ [n], and Π satisfies the DATE equation (2.14).

Proof. Without loss of generality, we assume that τ ∗ = 0; otherwise, we replace Yit(1) by

Yit(1)− τ ∗ and the resulting τ̂ becomes τ̂ − τ ∗. Then

N∗ = E[Γwy]E[Γθ]− E[Γw]>E[Γy].

It remains to prove that N∗ = 0. Since (π̂i, m̂i, ν̂i) are deterministic, by Assumption A.1 and

(A.1),

E[Γwy] =
1

n

n∑
i=1

E[ΘiW
>
i JỸi] =

1

n

n∑
i=1

E[ΘiW
>
i J{Ỹi(0) + diag(Wi)(Ỹi(1)− Ỹi(0))}]

=
1

n

n∑
i=1

E[ΘiJWi]
>E[Ỹi(0)] +

1

n

n∑
i=1

E[ΘiW
>
i J diag(Wi)]τ̃i.

Similarly,

E[Γy] =
1

n

n∑
i=1

E[Θi]JE[Ỹi(0)] +
1

n

n∑
i=1

E[Θi diag(Wi)]τ̃i.
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As a result,

N∗ =
1

n

n∑
i=1

{E[ΘiJWi]E[Γθ]− E[Θi]E[Γw]}> E[Ỹi(0)]

+
1

n

n∑
i=1

{
E[ΘiW

>
i J diag(Wi)]E[Γθ]− E[Γw]>E[Θi diag(Wi)]

}
τ̃i. (A.11)

If ∆yi = 0, m̂i = mi and ν̂i = νi. Since we have assumed τ ∗ = 0, τ̃i = 0T . By (A.3),

E[Ỹi(0)] = 0T . It is then obvious from (A.11) that N∗ = 0.

If ∆πi = 0, π̂i = πi and thus for any function f(·),

E[Θif(Wi)] =
∑

w∈{0,1}T

Π(w)

πi(w)
f(w)πi(w) = EW∼Π[f(W )]. (A.12)

As a result,

E[ΘiJWi] = EW∼Π[JW ] = E[Γw], E[Θi] = 1 = E[Γθ],

and

E[ΘiW
>
i J diag(Wi)] = EW∼Π[WJ diag(W )], E[Θi diag(Wi)] = EW∼Π[diag(W )].

Then

E[ΘiJWi]E[Γθ]− E[Θi]E[Γw] = EW∼Π[JW ]− EW∼Π[JW ] = 0,

and by DATE equation,

E[ΘiW
>
i J diag(Wi)]E[Γθ]− E[Γw]>E[Θi diag(Wi)]

= EW∼Π[(W − EW∼Π[W ])>J diag(W )]

= EW∼Π[(W − EW∼Π[W ])>JW ]ξ>.
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By (A.11) and (A.2),

N∗ =
1

n

n∑
i=1

EW∼Π[(W − EW∼Π[W ])>JW ]ξ>τ̃i

= EW∼Π[(W − EW∼Π[W ])>JW ]

(
1

n

n∑
i=1

ξ>τ̃i

)
= EW∼Π[(W − EW∼Π[W ])>JW ]τ ∗ = 0.

Next, we prove a general bound for the asymptotic bias N∗ as a function of (∆yi,∆πi)
n
i=1.

Theorem A.3. Let Π be an solution of the DATE equation (2.14). Under Assumptions A.1,

A.2, and A.3,

|N∗| = O
(
∆̄π∆̄y

)
.

Proof. As in the proof of Lemma A.4, we assume that τ ∗ = 0. Let

Θ∗i =
Π(Wi)

πi(Wi)
, Ỹ ∗i = Yi −mi − diag(Wi)νi.

Further, let Γ∗θ and Γ∗w be the counterpart of Γθ and Γw with (Θi, Ỹi) replaced by (Θ∗i , Ỹ
∗
i ).

For any function f : {0, 1}T 7→ R such that E[f 2(Wi)] ≤ C1 for some constant C1 > 0, by

Cauchy-Schwarz inequality,

E[Θif(Wi)−Θ∗i f(Wi)] = E[(Θi −Θ∗i )f(Wi)] ≤
√
C1

√
E (Θi −Θ∗i )

2

=
√
C1

√
E
[

Π(Wi)2

π̂i(Wi)2πi(Wi)2
(π̂i(Wi)− πi(Wi))

2

]
≤
√
C1

c2π
∆πi. (A.13)

Thus, there exists a constant C2 that only depends on cπ and T such that

|E[Θi]− E[Θ∗i ]|+ ‖E[ΘiJWi]− E[Θ∗iJWi]‖2 + ‖E[ΘiW
>
i J diag(Wi)]− E[Θ∗iW

>
i J diag(Wi)]‖2

+ ‖E[Θi diag(Wi)]− E[Θ∗i diag(Wi)]‖op ≤ C2∆πi.
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By triangle inequality and Cauchy-Schwarz inequality, we also have

|E[Γθ]− E[Γ∗θ]|+ ‖E[Γw]− E[Γ∗w]‖2 ≤
C2

n

n∑
i=1

∆πi ≤ C2∆̄π.

On the other hand, by Lemma A.2, there exists a constant C3 that only depends on cπ and T ,

|E[Γθ]|+ ‖E[Γw]‖2 ≤ C3.

Without loss of generality, we assume that

C3 ≥ 1 +
√
T ≥ 1 + ‖EW∼Π[JW ]‖2 = E[Θ∗i ] + ‖E[Θ∗iJWi]‖2.

Putting pieces together,∣∣∣∣E[ΘiJWi]E[Γθ]− E[Θi]E[Γw]− (E[Θ∗iJWi]E[Γ∗θ]− E[Θ∗i ]E[Γ∗w])

∣∣∣∣
≤
∣∣E[ΘiJWi]− E[Θ∗iJWi]

∣∣ · E[Γθ] +
∣∣E[Θi]− E[Θ∗i ]

∣∣ · ‖E[Γw]‖2

+
∣∣E[Γθ]− E[Γ∗θ]

∣∣ · ‖E[Θ∗iJWi]‖2 +
∥∥E[Γw]− E[Γ∗w]

∥∥ · E[Θ∗i ]

≤ 2C3C2(∆πi + ∆̄π).

Similarly,∣∣∣∣E[ΘiW
>
i J diag(Wi)]E[Γθ]− E[Γw]>E[Θi diag(Wi)]

−
(
E[Θ∗iW

>
i J diag(Wi)]E[Γ∗θ]− E[Γ∗w]>E[Θ∗i diag(Wi)]

) ∣∣∣∣
≤ 2C3C2(∆πi + ∆̄π).

Let

N ′∗ =
1

n

n∑
i=1

{E[Θ∗iJWi]E[Γ∗θ]− E[Θ∗i ]E[Γ∗w]}> E[Ỹi(0)]

+
1

n

n∑
i=1

{
E[Θ∗iW

>
i J diag(Wi)]E[Γ∗θ]− E[Γ∗w]>E[Θ∗i diag(Wi)]

}
τ̃i.
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Using the same arguments as in the proof of Lemma A.4,

E[Θ∗iJWi]E[Γ∗θ]− E[Θ∗i ]E[Γ∗w] = 0,

and

E[Θ∗iW
>
i J diag(Wi)]E[Γ∗θ]− E[Γ∗w]>E[Θ∗i diag(Wi)] = EW∼Π[(W − EW∼Π[W ])>JW ]ξ>.

Then

N ′∗ =
1

n

n∑
i=1

EW∼Π[(W − EW∼Π[W ])>JW ]ξ>τ̃i = EW∼Π[(W − EW∼Π[W ])>JW ]τ ∗ = 0.

This entails that

|N∗| = |N∗ −N ′∗| ≤
2C3C2

n

n∑
i=1

(∆πi + ∆̄π)(‖E[Ỹi(0)]‖2 + ‖τ̃i‖2).

By (A.1), (A.2), and (A.3),

‖E[Ỹi(0)]‖2 + ‖τ̃i‖2 = ‖m̂i −mi‖2 + ‖ν̂i − νi‖2 ≤ 2∆yi.

Since (1/n)
∑n

i=1 ∆yi ≤
√

(1/n)
∑n

i=1 ∆2
yi,

|N∗| ≤
4C3C2

n

n∑
i=1

(∆πi + ∆̄π)∆yi = 4C3C2∆̄π∆̄y.

The proof is then completed.

A.3.3 Asymptotic inference under independence

Theorem A.2 and Theorem A.3 imply the following properties of RIPW estimators.

Theorem A.4. Let Π be an solution of the DATE equation (2.14). Under Assumptions A.1,
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A.2, and A.3,

τ̂ − τ ∗ = oP(1), if ∆̄π∆̄y = o(1).

If, further, q > 1/2 in Assumption A.3 and ∆̄π∆̄y = o(1/
√
n),

D ·
√
n(τ̂ − τ ∗) =

1√
n

n∑
i=1

(Vi − E[Vi]) + oP(1).

Recalling (A.8) that (∆πi,∆yi) are deterministic, ∆̄π∆̄y = E[∆̄π∆̄y]. Since Assumptions A.2

and A.3 generalize Assumptions 2.1-2.3, Theorem A.4 implies Theorem 2.1 and 2.2. Similarly,

Theorem 3.1 is implied by Theorem A.4.

Throughout the rest of the subsection, we focus on the special case where {(Yi(1),Yi(0),Xi) :

i ∈ [n]} are independent. In this case, Assumption A.3 holds with q = 1 > 1/2 and thus the

asymptotically linear expansion in Theorem A.4 holds. To obtain the asymptotic normality and

a consistent variance estimator, we modify Assumption A.3 as follows.

Assumption A.4. {(Yi(1),Yi(0),Xi) : i = 1, . . . , n} are independent (but not necessarily iden-

tically distributed), and there exists ω > 0 such that

1

n

n∑
i=1

{
E‖Ỹi(1)‖2+ω2 + E‖Ỹi(0)‖2+ω2

}
= O(1).

To derive the asymptotic normality of the RIPW estimator, we need the following assumption

that prevents the variance from being too small.

Assumption A.5. There exists v0 > 0 such that

σ2 ,
1

n

n∑
i=1

Var(Vi) ≥ v0.

The following lemma shows the asymptotic normality of the term 1√
n

∑n
i=1(Vi − E[Vi]).

Lemma A.5. Then under Assumptions A.2, A.4, and A.5,

dK

(
L

(
1√
nσ

n∑
i=1

(Vi − E[Vi])

)
, N(0, 1)

)
→ 0,
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where L(·) denotes the probability law, dK denotes the Kolmogorov-Smirnov distance (i.e., the

`∞-norm of the difference of CDFs)

Proof. Since (π̂i, m̂i, ν̂i) are deterministic, by Assumption A.4, {Vi : i ∈ [n]} are independent.

Recalling the definition of Vi, it is easy to see that Assumption A.4 implies

1

n

n∑
i=1

E|Vi|2+ω = O(1). (A.14)

By Assumption A.4,

n∑
i=1

E
∣∣∣∣ Vi√nσ

∣∣∣∣2+ω = O
(
n−ω/2

)
= o(1).

The proof is completed by the Berry-Esseen inequality (Proposition A.1) with g(x) = xω.

Let V̂i denote the plug-in estimate of Vi, i.e.,

V̂i = Θi

{
(Γwy − τ̂Γww)− (Γy − τ̂Γw)> JWi + ΓθW

>
i J
(
Ỹi − τ̂Wi

)
− Γ>wJ

(
Ỹi − τ̂Wi

)}
.

(A.15)

We first prove that V̂i is an accurate approximation of Vi on average, even without the indepen-

dence assumption.

Lemma A.6. Let Π be a solution of the DATE equation. Under Assumptions A.1-A.3,

1

n

n∑
i=1

(V̂i − Vi)2 = oP(1), if ∆̄π∆̄y = o(1).

Proof. Let

V̂ ′i = Θi

{
(Γwy − τ ∗Γww)− (Γy − τ ∗Γw)> JWi + ΓθW

>
i J
(
Ỹi − τ ∗Wi

)
− Γ>wJ

(
Ỹi − τ ∗Wi

)}
.

Then

V̂i − V̂ ′i = (τ̂ − τ ∗)Θi

{
− Γww + Γ>wJWi − ΓθW

>
i JWi + Γ>wJWi

}
.
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Under Assumption A.2, there exists a constant C that only depends on cπ and T such that

|V̂i − V̂ ′i| ≤ C|τ̂ − τ ∗|.

By Theorem A.4,

1

n

n∑
i=1

(V̂i − V̂ ′i)2 = O((τ̂ − τ ∗)2) = oP(1) (A.16)

Next,

V̂ ′i − Vi = Θi

{
((Γwy − E[Γwy])− τ ∗(Γww − E[Γww]))− ((Γy − E[Γy])− τ ∗(Γw − E[Γw]))> JWi

+ (Γθ − E[Γθ])W
>
i J
(
Ỹi − τ ∗Wi

)
− (Γw − E[Γw])>J

(
Ỹi − τ ∗Wi

)}
.

By Jensen’s inequality and Assumption A.2,

1

n

n∑
i=1

(V̂ ′i − Vi)2

≤ 5

nc2π

n∑
i=1

{
(Γwy − E[Γwy])

2 + (Γww − E[Γww])2 · τ ∗2 + ‖(Γy − E[Γy])‖22 · ‖JWi‖22

+ ‖(Γw − E[Γw])‖22 · ‖J(Ỹi − 2τ ∗Wi)‖22 + (Γθ − E[Γθ])
2
(
W>

i J
(
Ỹi − τ ∗Wi

))2}

=
5

c2π

{
(Γwy − E[Γwy])

2 + (Γww − E[Γww])2 · τ ∗2 + ‖(Γy − E[Γy])‖22 · T

+ ‖(Γw − E[Γw])‖22 ·
1

n

n∑
i=1

‖(Ỹi − 2τ ∗Wi)‖22

+ ‖(Γθ − E[Γθ])‖22 ·
T

n

n∑
i=1

‖Ỹi − τ ∗Wi‖22

}
.

By Lemma A.2,

E

[
1

n

n∑
i=1

(V̂ ′i − Vi)2
]

= o(1).
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By Markov’s inequality,

1

n

n∑
i=1

(V̂ ′i − Vi)2 = oP(1). (A.17)

Putting (A.16) and (A.17) together, we obtain that

1

n

n∑
i=1

(V̂i − Vi)2 ≤
2

n

n∑
i=1

{(V̂i − V̂ ′i)2 + (V̂ ′i − Vi)2} = oP(1).

As in Section 2, we estimate the (conservative) variance of the term 1√
n

∑n
i=1(Vi−E[Vi]) as

σ̂2 =
1

n− 1

n∑
i=1

(
V̂i −

1

n

n∑
i=1

V̂i

)2

=
n

n− 1

 1

n

n∑
i=1

V̂2
i −

(
1

n

n∑
i=1

V̂i

)2
 . (A.18)

This yields a Wald-type confidence interval for DATE,

Ĉ1−α = [τ̂ − z1−α/2σ̂/
√
nD, τ̂ + z1−α/2σ̂/

√
nD], (A.19)

where zη is the η-th quantile of the standard normal distribution.

Theorem A.5. Assume that ∆̄π∆̄y = o(1/
√
n). Under Assumptions A.1, A.2, A.4, and A.5,

lim inf
n→∞

P
(
τ ∗ ∈ Ĉ1−α

)
≥ 1− α.

Proof. By Theorem A.2, Theorem A.3, Lemma A.5, and Assumption A.5,

D ·
√
n(τ̂ − τ ∗)
σ

=
1√
nσ

n∑
i=1

(Vi−E[Vi]) + oP(1)
d→ N(0, 1) in Kolmogorov-Smirnov distance,

As a result,∣∣∣∣P(∣∣∣∣D · √n(τ̂ − τ ∗)
σ

∣∣∣∣ ≤ z1−α/2 ·
σ̂

σ

)
−
{

2Φ

(
z1−α/2 ·

σ̂

σ

)
− 1

} ∣∣∣∣ = o(1), (A.20)
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where Φ is the cumulative distribution function of the standard normal distribution. Let

σ2
+ =

1

n

n∑
i=1

E

(
Vi −

1

n

n∑
i=1

E[Vi]

)2

=
1

n

n∑
i=1

E[V2
i ]−

(
1

n

n∑
i=1

E[Vi]

)2

. (A.21)

Clearly, σ2
+ is deterministic and

σ2
+ = σ2 +

1

n

n∑
i=1

(
E[Vi]−

1

n

n∑
i=1

E[Vi]

)2

≥ σ2.

It remains to show that∣∣∣∣n− 1

n
σ̂2 − σ2

+

∣∣∣∣ = oP(1). (A.22)

In fact, by Assumption A.5, (A.22) implies that

√
n− 1

n

σ̂

σ

p→ σ+
σ
≥ 1 =⇒ σ̂

σ

p→ σ+
σ
≥ 1.

By continuous mapping theorem,

2Φ

(
z1−α/2 ·

σ̂

σ

)
− 1

p→ 2Φ
(
z1−α/2 ·

σ+
σ

)
− 1 ≥ 1− α,

which completes the proof.

Now we prove (A.22). By Proposition A.2 and Jensen’s inequality,

E

∣∣∣∣∣ 1n
n∑
i=1

(V2
i − E[V2

i ])

∣∣∣∣∣
1+ω/2

≤ 2

n1+ω/2

n∑
i=1

E|V2
i − E[V2

i ]|1+ω/2

≤ 21+ω/2

n1+ω/2

n∑
i=1

(
E[|Vi|2+ω] + E[V2

i ]1+ω/2
)
≤ 22+ω/2

n1+ω/2

n∑
i=1

E
[
|Vi|2+ω

]
.

By (A.14),

E

∣∣∣∣∣ 1n
n∑
i=1

(V2
i − E[V2

i ])

∣∣∣∣∣
1+ω/2

= o(1).
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By Markov’s inequality,

1

n

n∑
i=1

(V2
i − E[V2

i ]) = oP(1). (A.23)

Similarly, we have that

1

n

n∑
i=1

(Vi − E[Vi]) = oP(1). (A.24)

In addition, (A.14) and Hölder’s inequality imply that

1

n

n∑
i=1

E[V2
i ] = O(1),

1

n

n∑
i=1

E[Vi] = O(1).

As a result,

1

n

n∑
i=1

V2
i = OP(1),

1

n

n∑
i=1

Vi = OP(1). (A.25)

By Lemma A.6, (A.25), and Cauchy-Schwarz inequality,∣∣∣∣∣ 1n
n∑
i=1

V̂2
i −

1

n

n∑
i=1

V2
i

∣∣∣∣∣ ≤ 2

n

n∑
i=1

Vi|V̂i − Vi|+
1

n

n∑
i=1

(V̂i − Vi)2

≤ 2

√√√√ 1

n

n∑
i=1

V2
i

√√√√ 1

n

n∑
i=1

(V̂i − Vi)2 +
1

n

n∑
i=1

(V̂i − Vi)2 = oP(1). (A.26)

Similarly,∣∣∣∣∣∣
(

1

n

n∑
i=1

V̂i

)2

−

(
1

n

n∑
i=1

Vi

)2
∣∣∣∣∣∣ = oP(1). (A.27)
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By (A.23), (A.24), and (A.25),∣∣∣∣∣∣ 1n
n∑
i=1

V2
i −

(
1

n

n∑
i=1

Vi

)2

− σ2
+

∣∣∣∣∣∣ = oP(1). (A.28)

Putting (A.26) - (A.28) together, we complete the proof of (A.22).

A.4 Inference with deterministic (π̂i, m̂i, ν̂i) and dependent assign-

ments across units

Recall Theorem A.4 that

D ·
√
n(τ̂ − τ ∗) =

1√
n

n∑
i=1

(Vi − E[Vi]) + oP(1).

This is true even when (Yi(1),Yi(0),Xi) are dependent as long as Assumption A.3 holds.

If Vi’s are observable, a valid confidence interval for τ ∗ can be derived if the distribution of

(1/
√
n)
∑n

i=1(Vi − E[Vi]) can be approximated. Specifically, assume that

(1/
√
n)
∑n

i=1(Vi − E[Vi])√
(1/n)Var[

∑n
i=1 Vi]

d→ N(0, 1), (A.29)

and there exists a conservative oracle variance estimator σ̂∗2 based on (V1, . . . ,Vn) in the sense

that

(1/n)Var[
∑n

i=1 Vi]
σ̂∗2

≤ 1 + oP(1). (A.30)

Then, [τ̂ − z1−α/2σ̂∗/
√
nD, τ̂ + z1−α/2σ̂

∗/
√
nD] is an asymptotically valid confidence interval for

τ ∗. Of course, this interval cannot be computed in practice because Vi is unobserved due to the

unknown quantities including E[Γθ],E[Γw],E[Γy],E[Γww], E[Γwy], and τ ∗. A natural variance

estimator can be obtained by replacing V , (V1, . . . ,Vn) with V̂ , (V̂1, . . . , V̂n) in σ̂∗2. The

following theorem makes this intuition rigorous for generic quadratic oracle variance estimators.

Theorem A.6. Suppose there exists an oracle variance estimator σ̂∗2 such that
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(i) σ̂∗2 = V>AnV/n for some positive semidefinite (and potentially random) matrix An with

‖An‖op = OP(1);

(ii) σ̂∗2 is conservative in the sense that, for every η in a neighborhood of α,

lim
n→∞

P
(∣∣∣∣(1/√n)

∑n
i=1(Vi − E[Vi])
σ̂∗

∣∣∣∣ ≥ z1−η/2

)
≤ η;

(iii) 1/σ̂∗2 = OP(1).

Let σ̂2 = V̂
>
AnV̂/n and

Ĉ1−α = [τ̂ − z1−α/2σ̂/
√
nD, τ̂ + z1−α/2σ̂/

√
nD].

Under Assumptions A.1, A.2, and A.3 with q > 1/2, if Π be an solution of the DATE equa-

tion (2.14) and ∆̄π∆̄y = o(1/
√
n),

lim inf
n→∞

P
(
τ ∗ ∈ Ĉ1−α

)
≥ 1− α.

Proof. By Lemma A.6,

1

n
‖V̂ − V‖22 =

1

n

n∑
i=1

(V̂i − Vi)2 = oP(1).

Since An is positive semidefinite, for any ε ∈ (0, 1),

(1−ε)σ̂∗2−
(

1

ε
− 1

)
1

n
(V̂−V)>An(V̂−V) ≤ σ̂2 ≤ (1+ε)σ̂∗2+

(
1

ε
+ 1

)
1

n
(V̂−V)>An(V̂−V)

Thus, for any ε ∈ (0, 1),

P
(
σ̂2 6∈ [(1− ε)σ̂∗2, (1 + ε)σ̂∗2]

)
= o(1).

By condition (iii), the above result implies that∣∣∣∣ σ̂σ̂∗ − 1

∣∣∣∣ = oP(1). (A.31)

73



By Theorem A.4,

D ·
√
n(τ̂ − τ ∗) =

1√
n

n∑
i=1

(Vi − E[Vi]) + oP(1).

It remains to show that

lim
n→∞

P
(∣∣∣∣(1/√n)

∑n
i=1(Vi − E[Vi])
σ̂

∣∣∣∣ ≥ z1−α/2

)
≤ α.

Let η(ε) be the quantity such that z1−η(ε)/2 = z1−α/2 · (1 − ε). For any sufficiently small ε such

that η(ε) lies in the neighborhood of α in condition (ii),

P
(∣∣∣∣(1/√n)

∑n
i=1(Vi − E[Vi])
σ̂

∣∣∣∣ ≥ z1−α/2

)
= P

(∣∣∣∣(1/√n)
∑n

i=1(Vi − E[Vi])
σ̂∗

∣∣∣∣ ≥ z1−α/2 ·
σ̂

σ̂∗

)
≤ P

(∣∣∣∣(1/√n)
∑n

i=1(Vi − E[Vi])
σ̂∗

∣∣∣∣ ≥ z1−η(ε)/2

)
+ P

(
σ̂

σ̂∗
≤ 1− ε

)
.

By (A.31), when n tends to infinity,

lim
n→∞

P
(∣∣∣∣(1/√n)

∑n
i=1(Vi − E[Vi])
σ̂

∣∣∣∣ ≥ z1−α/2

)
≤ η(ε).

The proof is completed by letting ε→ 0 and noting that limε→0 η(ε) = α.

When Wi’s are independent,

σ̂∗2 =
1

n− 1

n∑
i=1

(Vi − V̄)2.

Thus, An = (n/(n− 1))(In − 1n1
T
n/n). Clearly, the condition (i) is satisfied because ‖An‖op =

n/(n − 1). Under the assumptions in Theorem A.5, the condition (ii) is satisfied. Moreover,

we have shown that σ̂∗2 converges to σ2
+ ≥ σ2 > 0, and thus the condition (iii) is satisfied.

Therefore, Theorem A.5 can be implied by Theorem A.6.

When Vi’s are observed, the variance estimators are quadratic under nearly all types of

dependent assignment mechanisms. With fixed potential outcomes, Theorem A.6 applies to
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completely randomized experiments [Hoeffding, 1951, Li and Ding, 2017], blocked and matched

experiments [Pashley and Miratrix, 2021], two-stage randomized experiments [Ohlsson, 1989],

and so on. Below, we prove the results for completely randomized experiments with fixed

potential outcomes to illustrate how to apply Theorem A.6. The notation is chosen to mimic

Theorem 5 and Proposition 3 in Li and Ding [2017].

Theorem A.7. Assume that (Yit(1), Yit(0)) are fixed, and π̂i = πi as in Section 2 (while

(m̂it, ν̂it) are allowed to be non-zero). Consider a completely randomized experiments where the

treatment assignments are sampled without replacement from Q possible assignments {w[1], . . . ,w[Q]}
with nq units assigned w[q]. Let Π be a solution of the DATE equation (2.14) with support

{w[1], . . . ,w[Q]}, and Vi(q) be the “potential outcome” for Vi where (Yit,Wit) is replaced by

(Yit(w[q],t),w[q],t), i.e.,

Vi(q) =
Π(w[q])

π̂i(w[q])

{
(E[Γwy]− τ ∗E[Γww])− (E[Γy]− τ ∗E[Γw])> Jw[q]

+ E[Γθ]w
>
[q]J
(
Ỹi(q)− τ ∗w[q]

)
− E[Γw]>J

(
Ỹi(q)− τ ∗w[q]

)}
,

and Ỹi(q) =
(
Yi1(w[q],1) − m̂i1 − w[q],1ν̂i1, . . . , YiT (w[q],T ) − m̂iT − w[q],1ν̂iT

)
. Further, for any

q, r = 1, . . . , Q, let

S2
q =

1

n− 1

n∑
i=1

(Vi(q)− V̄(q))2, Sqr =
1

n− 1

n∑
i=1

(Vi(q)− V̄(q))(Vi(r)− V̄(r)),

where V̄(q) = (1/n)
∑n

i=1 Vi(q). Define the variance estimate σ̂2 as

σ̂2 =

Q∑
q=1

nq
n
s2q, where s2q =

1

nq − 1

∑
i:wi=w[q]

(V̂i − ˆ̄V(q))2, ˆ̄V(q) =
1

nq

∑
i:wi=w[q]

V̂i.

Further, define the confidence interval as

Ĉ1−α = [τ̂ − z1−α/2σ̂/
√
nD, τ̂ + z1−α/2σ̂/

√
nD].

Assume that
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(a) Q = O(1) and nq/n→ πq for some constant πq > 0;

(b) for any q, r = 1, . . . , Q, S2
q and Sqr have limiting values S∗2q , S

∗
qr;

(c) there exists a constant cτ > 0 such that
∑Q

q=1 πqS
∗2
q > cτ ;

(d) there exists a constant M <∞ such that maxi,q{‖Ỹi(q)‖2} < M .

Then,

lim inf
n→∞

P
(
τ ∗ ∈ Ĉ1−α

)
≥ 1− α.

Proof. By definition, for any i 6= j ∈ [n] and q 6= r ∈ [Q],

P(Wi = w[q]) =
nq
n
, P(Wi = Wj = w[q]) =

nq(nq − 1)

n(n− 1)
, P(Wi = w[q],Wj = w[r]) =

nqnr
n(n− 1)

.

For any functions f and g on [0, 1]T ,

E[f(Wi)] =

Q∑
q=1

nq
n
f(w[q]), E[g(Wj)] =

Q∑
q=1

nq
n
g(w[q]),

E[f 2(Wi)] =

Q∑
q=1

nq
n
f 2(w[q]), E[g2(Wj)] =

Q∑
q=1

nq
n
g2(w[q]),

and

E[f(Wi)g(Wi)] =

Q∑
q=1

nq
n
f(w[q])g(w[q]),

E[f(Wi)g(Wj)] =

Q∑
q=1

nq(nq − 1)

n(n− 1)
f(w[q])g(w[q]) +

∑
q 6=r

nqnr
n(n− 1)

f(w[q])g(w[r]).

As a result, for any i 6= j

Cov(f(Wi), g(Wj)) = E[f(Wi)g(Wj)]− E[f(Wi)]E[g(Wj)]

=

Q∑
q=1

(
nq(nq − 1)

n(n− 1)
−
n2
q

n2

)
f(w[q])g(w[q]) +

∑
q 6=r

(
nqnr

n(n− 1)
− nqnr

n2

)
f(w[q])g(w[r])
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=

Q∑
q=1

−nq(n− nq)
n2(n− 1)

f(w[q])g(w[q]) +
∑
q 6=r

nqnr
n2(n− 1)

f(w[q])g(w[r])

= − 1

n− 1

Q∑
q=1

nq
n
f(w[q])g(w[q]) +

1

n− 1

(
Q∑
q=1

nq
n
f(w[q])

)(
Q∑
q=1

nq
n
g(w[r])

)

= − 1

n− 1
(E[f(Wi)g(Wi)]− E[f(Wi)]E[g(Wi)])

= − 1

n− 1
Cov(f(Wi), g(Wi))

By Cauchy-Schwarz inequality,

|Cov(f(Wi), g(Wj))| ≤
1

n− 1
|Cov(f(Wi), g(Wi))|

≤ 1

n− 1

√
Var[f(Wi)]Var[g(Wi)] =

1

n− 1

√
Var[f(Wi)]Var[g(Wj)].

This implies that

ρij ≤
1

n− 1
=⇒ ρi ≤ 2.

It is then clear that Assumption A.3 holds under the condition (d). Further, since π̂i(w[q]) =

πi(w[q]) = nq/n, the condition (a) implies Assumption A.2 and that ∆̄π∆̄y = 0 . On the other

hand, Assumption A.1 holds because Wi is completely randomized. Therefore, it remains to

check the condition (i) - (iii) in Theorem A.6 with

σ̂∗2 =

Q∑
q=1

nq
n
s∗2q , where s∗2q =

1

nq − 1

∑
i:wi=w[q]

(Vi − V̄(q))2, V̄(q) =
1

nq

∑
i:wi=w[q]

Vi.

In this case, An is a block-diagonal matrix with

An,Iq ,Iq =
nq

nq − 1

(
Inq −

1nq1
>
nq

nq

)
,

where Iq = {i : Wi = w[q]}. As a result,

‖An‖op = max
q

nq
nq − 1

= O(1).
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Thus, the condition (i) holds. The condition (ii) is implied by Proposition 3 in Li and Ding

[2017] and the condition (iii) is implied by the condition (c). The theorem is then implied by

Theorem A.6.

A.5 Inference of RIPW estimators when δ̄πδ̄y 6= o(1/
√
n)

In this section, we study the asymptotic inference on the RIPW estimator when one of the mod-

els is globally misspecified. Doubly robust inference is hard even for cross-sectional data [e.g.

Benkeser et al., 2017]. Here, we focus on a practically relevant case where the researcher fits para-

metric models for both assignments and outcomes. Specifically, we consider a parametric family

fκ(w,Xi) for πi(w), gt,φt(Xi) for mit, and ht,ψt(Xi) for νit, where κ ∈ Rd,φt ∈ Rdφ,t ,ψt ∈ Rdψ,t

are parameter vectors to estimate. We impose the standard regularity conditions on these para-

metric families.

Assumption A.6. (a) 1/fκ(w;x) is bounded away from zero uniformly over (κ,w,x);

(b) ‖∇2
κfκ(w;x)‖ is uniformly bounded over (κ,w,x);

(c) ‖∇2
φt
gt,φt(x)‖+ ‖∇2

ψt
ht,ψt(x)‖ is uniformly bounded over (φt,ψt,x, t).

To ease notation, we denote by φ (resp. ψ) the concatenation of φ1, . . . ,φT (resp. ψ1, . . . ,ψT )

and by θ the concatenation of κ,φ,ψ. We assume that θ̂ has an asymptotically linear expansion:

Assumption A.7. For some pseudo parameter θ′,

θ̂ = θ′ +
1

n

n∑
i=1

Ci + oP(n−1/2),

where Ci is a function of (Yi,Wi,Xi) that has zero mean and bounded second moment.

When (Yi(1),Yi(0),Wi) are independent or weakly dependent, Assumption A.7 holds under

standard regularity conditions [Fan and Yao, 2003, Wooldridge, 2010] with root-n rate. In

particular, ‖θ̂ − θ′‖ = OP(1/
√
n).

Let κ′,φ′t,ψ
′
t denote the corresponding elements of θ′. Further let

π′i(w) = fκ′(w,Xi), m′it = gt,φ′t(Xi), ν ′it = ht,ψ′t(Xi). (A.32)
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We say the assignment model is correctly specified if

πi(w) = π′i(w), (A.33)

and the outcome model is correctly specified if

mi = m′i, νi = ν ′i. (A.34)

When one of these two models is globally misspecified and the other one is correctly specified,

δ̄π δ̄y = O(1/
√
n).

Thus, Theorems 3.2 and 3.3 do not apply. Nevertheless, we prove that the RIPW estimator

remains asymptotically linear though an additional term is added to Vi to account for the

estimation uncertainty of θ̂ under the assumption that units are independent. We leave the

general dependent case for future research.

Since the result is very complicated, we first define several quantities. Let Γ′θ,Γ
′
ww,Γ

′
wy,Γ

′
w,Γ

′
y,

Θ′i, Ỹ
′
it be the counterparts of Γθ,Γww,Γwy,Γw, Γy,Θi, Ỹit with (π̂i, m̂i, ν̂i) replaced by (π′i,m

′
i,ν
′
i).

Further let

Li = ∇κ log fκ′(Wi, Xi), Gi =


∇φ1g1,φ′1(Xi) 0 · · · 0

0 ∇φ2g2,φ′2(Xi) · · · 0
...

...
...

...

0 0 · · · ∇φT gT,φ′T (Xi)

 ,

and

Hi =


∇ψ1h1,ψ′1(Xi) 0 · · · 0

0 ∇ψ2h2,ψ′2(Xi) · · · 0
...

...
...

...

0 0 · · · ∇ψThT,ψ′T (Xi)

 .

For any vector v that has the same dimension as θ, let Pκ(v),Pφ(v),Pψ(v) denote the subvectors
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corresponding to the positions of κ,φ,ψ in θ. We define A and B as two vectors such that

Pκ(A) =
1

n

n∑
i=1

{
− E[Θ′iLi]E[Γ′wy]− E[Θ′iLiW

>
i JỸ

′
i ]E[Γ′θ] + E[Θ′iLiỸ

′>
i J ]E[Γ′w]

+ E[Θ′iLiW
>
i J ]E[Γ′y]

}
Pφ(A) =

1

n

n∑
i=1

{E[Θ′iGiJ ]E[Γ′w]− E[Θ′iGiJWi]E[Γ′θ]}

Pψ(A) =
1

n

n∑
i=1

{E[Θ′iHi diag(Wi)J ]E[Γ′w]− E[Θ′iHi diag(Wi)JWi]E[Γ′θ]} ,

and

Pκ(B) =
1

n

n∑
i=1

(
2E[Θ′iLiW

>
i JWi]E[Γw]− E[Θ′iLi]E[Γ′ww]− E[Θ′iLiW

>
i JWi]E[Γ′θ]

)
Pφ(B) = Pψ(B) = 0.

Theorem A.8. Assume that (Yi(1),Yi(0),Wi,Xi) are independent. Further assume that either

(A.33) or (A.34) holds. In the setting of Theorem 3.2, under Assumptions A.6 and A.7,

D ·
√
n(τ̂(Π)− τ ∗) =

1√
n

n∑
i=1

(V ′i + Ui − E[V ′i]) + oP(1/
√
n),

if either the assignment model or the outcome model is correctly specified. Above, V ′i is defined

as in Theorem 3.2 with (π̂i, m̂i, ν̂i) replaced by (π′i,m
′
i,ν
′
i) and

Ui = 〈Ci,A−Bτ ∗〉 , E[Ui] = 0,

where A and B are defined above.

Remark A.1. To make inference, we can replace A, B, and Ci by their plug-in estimates. It

is straightforward, though tedious, to prove that the plug-in variance estimator is consistent.

Importantly, this does not require the researcher to know which model is misspecified apriori.

Here we present a proof sketch to illustrate why this is true. First, we can define an oracle RIPW

estimate τ̂ ′ with the model estimates (A.32). Under Assumptions A.6 and A.7, we can derive
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an asymptotically linear expansion of
√
n(τ̂ − τ̂ ′) via the Taylor expansion. These estimates are

deterministic and δ̄′π δ̄
′
y = 0 if (A.33) or (A.34) holds, we can apply Theorem A.4 to obtain an

asymptotically linear expansion of
√
n(τ̂ ′ − τ ∗) where the influence function can be estimated

consistently without knowing which model is misspecified. Adding up two asymptotically linear

expansions yields our result.

Proof. Write τ̂ for τ̂(Π). Further let

τ̂ ′ =
N ′

D′
, N ′ = Γ′wyΓ

′
θ − Γ

′>
w Γ′y, D′ = Γ′wwΓ′θ − Γ

′>
w Γ′w.

We will show that

N = N ′ +
〈
A, θ̂ − θ′

〉
+ oP

(
1√
n

)
, D = D′ +

〈
B, θ̂ − θ′

〉
+ oP

(
1√
n

)
. (A.35)

Under (A.35),

D ·
√
n(τ̂ − τ̂ ′) =

√
n

(
N −N ′ D

D′

)
=
√
n

(
N −N ′ −N ′D −D

′

D′

)
=
√
n (N −N ′ − τ̂ ′(D −D′)) =

〈
A−Bτ̂ ′,

√
n(θ̂ − θ′)

〉
+ oP (1)

It is easy to see that the assumptions of Theorem A.4 are implied by independence, Assump-

tion 3.3, and Assumption A.6. Since τ̂ ′ is the RIPW estimator with deterministic (πi,mi,νi),

Theorem A.4 implies that

τ̂ ′ = τ ∗ + oP(1).

By definition and Assumption (A.3), ‖A‖+ ‖B‖ = OP(1). Under Assumption A.7, ‖θ̂ − θ′‖ =

OP(1/
√
n). Together with Assumption A.7, it implies

D ·
√
n(τ̂ − τ̂ ′) =

〈
A−Bτ ∗,

√
n(θ̂ − θ′)

〉
+ oP (1) =

1√
n

n∑
i=1

Ui + oP(1).
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By Theorem A.4 again,

D ·
√
n(τ̂ ′ − τ ∗) =

1√
n

n∑
i=1

(V ′i − E[V ′i]) + oP(1).

Combining the two pieces yields the desired result.

Now we turn to proving (A.35). By Assumption A.6,

Θi −Θ′i =
Π(Wi)

fκ̂(Wi,Xi)
− Π(Wi)

fκ′(Wi,Xi)
= −Θ′i 〈Li, κ̂− κ′〉+O(1) · ‖θ̂ − θ′‖2. (A.36)

where the O(1) terms are uniformly bounded across all units. By (A.36),

Γθ − Γ′θ = −

〈
1

n

n∑
i=1

Θ′iLi, κ̂− κ′
〉

+ oP

(
1√
n

)

Similar to Lemma A.2, we can show

1

n

n∑
i=1

Θ′iLi =
1

n

n∑
i=1

E[Θ′iLi] +OP

(
1√
n

)
.

Thus,

Γθ − Γ′θ = −

〈
1

n

n∑
i=1

E[Θ′iLi], κ̂− κ′
〉

+ oP

(
1√
n

)
. (A.37)

Using the same argument, we can prove that

Γww − Γ′ww = −

〈
1

n

n∑
i=1

E[Θ′iLiW
>
i JWi], κ̂− κ′

〉
+ oP

(
1√
n

)
, (A.38)

and

Γw − Γ′w = −

〈
1

n

n∑
i=1

E[Θ′iLiW
>
i J ], κ̂− κ′

〉
+ oP

(
1√
n

)
, (A.39)
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where we define 〈A, b〉 to be A>b for a matrix A and vector b. In particular,

|Γθ − Γ′θ|+ |Γww − Γ′ww|+ ‖Γw − Γ′w‖ = OP

(
1√
n

)
.

Putting (A.37) - (A.39) and Lemma A.2 together, we have

D −D′

= Γ′ww(Γθ − Γ′θ) + Γ′θ(Γww − Γ′ww)− 2Γ
′>
w (Γw − Γ′w) + oP

(
1√
n

)
= E[Γ′ww](Γθ − Γ′θ) + E[Γ′θ](Γww − Γ′ww)− 2E[Γ′w]>(Γw − Γ′w) + oP

(
1√
n

)
=

〈
1

n

n∑
i=1

(
2E[Θ′iLiW

>
i J ]E[Γw]− E[Θ′iLi]E[Γ′ww]− E[Θ′iLiW

>
i JWi]E[Γ′θ]

)
, κ̂− κ′

〉

+ oP

(
1√
n

)
By definition of B,

D −D′ =
〈
B, θ̂ − θ′

〉
+ oP

(
1√
n

)
.

This proves the second part of (A.35).

To prove the first part of (A.35), we first recall that

Ỹi = Yi −mi − diag(Wi)νi, Ỹ ′i = Yi −m′i − diag(Wi)ν
′
i.

Similar to (A.36), Assumption A.6 implies

Ỹi − Ỹ ′i = −
〈
Gi, φ̂− φ

〉
−
〈
Hi diag(Wi), ψ̂ −ψ

〉
+O(1) · ‖θ̂ − θ‖2, (A.40)

where the O(1) terms are uniformly bounded across all units. Together with (A.36),

Γwy − Γ′wy

=
1

n

n∑
i=1

Θ′iW
>
i J(Ỹi − Ỹ ′i ) +

1

n

n∑
i=1

(Θi −Θ′i)W
>
i JỸ

′
i + oP

(
1√
n

)
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= −

〈
1

n

n∑
i=1

Θ′iGiJWi, φ̂− φ′
〉
−

〈
1

n

n∑
i=1

Θ′iHi diag(Wi)JWi, ψ̂ −ψ′
〉

−

〈
1

n

n∑
i=1

Θ′iLiW
>
i JỸ

′
i , κ̂− κ′

〉
+ oP

(
1√
n

)
.

Similar to (A.37) - (A.39),

Γwy − Γ′wy = −

〈
1

n

n∑
i=1

E[Θ′iGiJWi], φ̂− φ′
〉
−

〈
1

n

n∑
i=1

E[Θ′iHi diag(Wi)JWi], ψ̂ −ψ′
〉

−

〈
1

n

n∑
i=1

E[Θ′iLiW
>
i JỸ

′
i ], κ̂− κ′

〉
+ oP

(
1√
n

)
. (A.41)

Using the same argument, we can show

Γy − Γ′y = −

〈
1

n

n∑
i=1

E[Θ′iGiJ ], φ̂− φ′
〉
−

〈
1

n

n∑
i=1

E[Θ′iHi diag(Wi)J ], ψ̂ −ψ′
〉

−

〈
1

n

n∑
i=1

E[Θ′iLiỸ
′>
i J ], κ̂− κ′

〉
+ oP

(
1√
n

)
. (A.42)

As a result,

N −N ′

= Γ′wy(Γθ − Γ′θ) + Γ′θ(Γwy − Γ′wy)− Γ
′>
w (Γy − Γ′y)− Γ

′>
y (Γw − Γ′w) + oP

(
1√
n

)
= E[Γ′wy](Γθ − Γ′θ) + E[Γ′θ](Γwy − Γ′wy)− E[Γ′w]>(Γy − Γ′y)− E[Γ′y]

>(Γw − Γ′w) + oP

(
1√
n

)
=

〈
1

n

n∑
i=1

{
− E[Θ′iLi]E[Γ′wy]− E[Θ′iLiW

>
i JỸ

′
i ]E[Γ′θ] + E[Θ′iLiỸ

′>
i J ]E[Γ′w]

+ E[Θ′iLiW
>
i J ]E[Γ′y]

}
, κ̂− κ′

〉

+

〈
1

n

n∑
i=1

{E[Θ′iGiJ ]E[Γ′w]− E[Θ′iGiJWi]E[Γ′θ]} , φ̂− φ′
〉

+

〈
1

n

n∑
i=1

{E[Θ′iHi diag(Wi)J ]E[Γ′w]− E[Θ′iHi diag(Wi)JWi]E[Γ′θ]} , ψ̂ −ψ′
〉
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+ oP

(
1√
n

)
.

By definition of A,

N −N ′ =
〈
A, θ̂ − θ′

〉
+ oP

(
1√
n

)
.

A.6 Proof of Proposition 2.1: induced weights are non-negative

Proof. Let ω = EW∼Π[W ]. Then

EW∼Π[diag(W )J(W − EW∼Π[W ])]

= EW∼Π[diag(W )(W − EW∼Π[W ])]− 1

T
EW∼Π[diag(W )1T1>T (W − EW∼Π[W ])]

= EW∼Π[W ]− EW∼Π[diag(W )]EW∼Π[W ]− EW∼Π

[
W

(
1>TW

T

)]
+ EW∼Π[W ]

1>TEW∼Π[W ]

T

= ω − diag(ω)ω − EW∼Π

[
W

(
1>TW

T

)]
+ ω

(
1>Tω

T

)
.

By (2.18), for any t,

EW∼Π

[∥∥∥W̃ − EW∼Π[W̃ ]
∥∥∥2
2

]
ξt = ωt − ω2

t − EW∼Π

[
Wt

(
1>TW

T

)]
+ ωt

(
1>Tω

T

)
.

(A.43)

Now we consider two scenarios.

1. If ωt ≤ 1>Tω/T ,

EW∼Π

[
Wt

(
1>TW

T

)]
≤ EW∼Π[Wt] = ωt.

Then the right-hand side of (A.43) is lower bounded by

ωt − ω2
t − ωt + ωt

(
1>Tω

T

)
= ωt

(
1>Tω

T
− ωt

)
≥ 0.
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2. If ωt > 1>Tω/T ,

EW∼Π

[
Wt

(
1>TW

T

)]
≤ EW∼Π

[
1>TW

T

]
=

1>Tω

T
.

Then the right-hand side of (A.43) is lower bounded by

ωt − ω2
t −

1>Tω

T
+ ωt

(
1>Tω

T

)
=

(
ωt −

1>Tω

T

)
(1− ωt) ≥ 0.

A.7 Extension to generalized DATE in Remark 2.3

We prove that, under Assumptions A.1 - A.3, τ̂(Π; ζ) = τ ∗(ξ; ζ) + oP(1) if, further, π̂i = πi and

n‖ζ‖∞ = O(1).

To prove consistency, we just need to modify the proofs in Appendix A.3.1 and A.3.2 by

redefining Θi as

Θi =
(nζi)Π(Wi)

πi(Wi)
,

and redefining Γθ,Γw,Γww,Γwy,Γy correspondingly. First, we can apply the same arguments

to show that Lemma A.2, Lemma A.3, and Theorem A.2 continue to hold under the above

assumptions. We are left to prove that

N∗ = 0.

As in the proof of Lemma A.4, we assume without loss of generality that τ ∗(ξ; ζ) = 0; otherwise,

we replace Yit(1) by Yit(1) − τ ∗(ξ; ζ) and the resulting τ̂ becomes τ̂ − τ ∗(ξ; ζ). Note that this

reduction relies on the fact that
∑n

i=1 ζi = 1. Using the same argument, we can show that

(A.11) continues to hold with the new definition of Θi and other related quantities, i.e.,

N∗ =
1

n

n∑
i=1

{E[ΘiJWi]E[Γθ]− E[Θi]E[Γw]}> E[Ỹi(0)]
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+
1

n

n∑
i=1

{
E[ΘiW

>
i J diag(Wi)]E[Γθ]− E[Γw]>E[Θi diag(Wi)]

}
τ̃i.

By (A.12),

E[ΘiJWi] = nζiEW∼Π[JW ], E[Θi] = nζi,

and

E[ΘiW
>
i J diag(Wi)] = nζiEW∼Π[WJ diag(W )], E[Θi diag(Wi)] = nζiEW∼Π[diag(W )].

Thus,

Γθ = 1, Γw = EW∼Π[JW ].

Then,

E[ΘiJWi]E[Γθ]− E[Θi]E[Γw] = nζiEW∼Π[JW ]− nζiEW∼Π[JW ] = 0,

and by DATE equation,

E[ΘiW
>
i J diag(Wi)]E[Γθ]− E[Γw]>E[Θi diag(Wi)]

= nζiEW∼Π[(W − EW∼Π[W ])>J diag(W )]

= nζiEW∼Π[(W − EW∼Π[W ])>JW ]ξ>.

Since we assume τ ∗ = 0,

N∗ =
n∑
i=1

ζiEW∼Π[(W − EW∼Π[W ])>JW ]ξ>τ̃i

= EW∼Π[(W − EW∼Π[W ])>JW ]

(
n∑
i=1

ζiξ
>τ̃i

)
= EW∼Π[(W − EW∼Π[W ])>JW ]τ ∗ = 0.
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A.8 Proof of Theorem 4.1

Let Wi,ex = (Wi,0,Wi,−1, . . . ,Wi,−p) ∈ RT×(p+1), where Wi,0 = Wi, and τ̂ex = (τ̂0, τ̂−1. . . . , τ̂−p)

where the entries are defined in (4.2). To derive the non-stochastic formula of τ̂ex, we can repeat

the steps in the proof of Theorem A.1 by replacing Wi with Wi,ex in Γww,Γw, and Γwy. This

results in

τ̂ex =

{
Γww,ex −

Γ>w,exΓw,ex

Γθ

}−1{
Γwy,ex −

Γ>w,exΓy

Γθ

}
,

where

Γww,ex =
1

n

n∑
i=1

ΘiW
>
i,exJWi,ex ∈ R(p+1)×(p+1), Γw,ex ,

1

n

n∑
i=1

ΘiJWi,ex ∈ RT×(p+1),

and

Γwy,ex =
1

n

n∑
i=1

ΘiW
>
i,exJYi ∈ R(p+1)×T , Γy =

1

n

n∑
i=1

ΘiJYi ∈ RT .

Note that Yi = Ỹi in this case since no regression adjustment is applied.

Following the same steps as in Appendix A.3.1, we can prove that

τ̂ex
p→
{
E[Γww,ex]−

E[Γw,ex]
>E[Γw,ex]

E[Γθ]

}−1{
E[Γwy,ex]−

E[Γw,ex]
>E[Γy]

E[Γθ]

}
. (A.44)

Since π̂i = πi, by (A.12),

E[Γθ] = 1, E[Γww,ex] = EW∼Π[W>
exJWex], E[Γw,ex] = EW∼Π[JWex].

Thus,

E[Γww,ex]−
E[Γw,ex]

>E[Γw,ex]

E[Γθ]
= EW∼Π[(Wex−EW∼Π[Wex])

>J(Wex−EW∼Π[Wex])] (A.45)
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By assumption (4.1),

Yi = Yi(0p+1) +

p∑
`=0

Wi,−`τi,−` = Yi(0p+1) +Wi,exτi,ex,

where

τi,ex = (τi,0, τi,−1, . . . , τi,−p) ∈ Rp+1.

Then

E[Γwy,ex] =
1

n

n∑
i=1

E[ΘiW
>
i,exJYi] =

1

n

n∑
i=1

{
E[ΘiW

>
i,exJYi(0p+1)] + E[ΘiW

>
i,exJWi,ex]τi,ex

}
=

1

n

n∑
i=1

{
E[ΘiW

>
i,exJ ]E[Yi(0p+1)] + E[ΘiW

>
i,exJWi,ex]τi,ex

}
= EW∼Π[W>

exJ ]

{
1

n

n∑
i=1

E[JYi(0p+1)]

}
+ EW∼Π[W>

exJWex]

{
1

n

n∑
i=1

τi,ex

}
,

where the second last line uses the assumption that πi(w) = P(Wi = w | Yi(0p+1)) and the last

line is a result of (A.12) and the fact that J2 = J . Similarly,

E[Γy] =
1

n

n∑
i=1

{E[JYi(0p+1)] + EW∼Π[JWex]τi,ex} .

Thus,

E[Γwy,ex]−
E[Γw,ex]

>E[Γy]

E[Γθ]
= EW∼Π[(Wex−EW∼Π[Wex])

>J(Wex−EW∼Π[Wex])]

{
1

n

n∑
i=1

τi,ex

}
.

(A.46)

Combining (A.44), (A.45), and (A.46) together, we obtain that

τ̂ex
p→ 1

n

n∑
i=1

τi,ex.
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A.9 Miscellaneous

Proposition A.1. [Petrov [1975], p. 112, Theorem 5] Let X1, X2, . . . , Xn be independent ran-

dom variables such that E[Xj] = 0, for all j. Assume also E[X2
j g(Xj)] < ∞ for some function

g that is non-negative, even, and non-decreasing in the interval x > 0, with x/g(x) being non-

decreasing for x > 0. Write Bn =
∑

j Var[Xj]. Then,

dK

(
L

(
1√
Bn

n∑
j=1

Xj

)
, N(0, 1)

)
≤ A

Bng(
√
Bn)

n∑
j=1

E
[
X2
j g(Xj)

]
,

where A is a universal constant, L(·) denotes the probability law, dK denotes the Kolmogorov-

Smirnov distance (i.e., the `∞-norm of the difference of CDFs)

Proposition A.2 (Theorem 2 of von Bahr and Esseen [1965]). Let {Zi}i=1,...,n be independent

mean-zero random variables. Then for any a ∈ [0, 1),

E
∣∣∣∣ n∑
i=1

Zi

∣∣∣∣1+a ≤ 2
n∑
i=1

E|Zi|1+a.

B Inference with cross-fitted model estimates

B.1 Cross-fitted RIPW estimator and main result

We split the data into K almost equal-sized folds with Ik denoting the index sets of the k-th fold

and |Ik| ∈ {bn/Kc, dn/Ke}. For each i ∈ Ik, we estimate (π̂i, m̂i, ν̂i) using {(Yi(1),Yi(0),Wi) :

i 6∈ Ik}. When {(Yi(1),Yi(0),Wi) : i ∈ [n]} are independent, it is obvious that

{(π̂i, m̂i, ν̂i) : i ∈ Ik} ⊥⊥ {(Yi(1),Yi(0),Wi) : i ∈ Ik}.

We assume that

1

T

T∑
t=1

m̂it =
1

|Ik|
∑
i∈Ik

m̂it = 0, ∀i ∈ Ik, t = 1, . . . , T,
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and

1

|Ik|
∑
i∈Ik

ξ′ν̂i = 0. (B.1)

Otherwise, we apply the transformation (3.1) and (3.2) in each fold to enforce the above.

For valid inference, we need an additional assumption on the stability of the estimates.

Assumption B.1. There exist functions {π′i : i ∈ [n]} which satisfy Assumption A.2 and

vectors {(m′i,ν ′i) : i ∈ [n]} which satisfy Assumption A.3, such that

1

n

n∑
i=1

{
E[(π̂i(Wi)− π′i(Wi))

2] + E[‖m̂i −m′i‖22] + E[‖ν̂i − ν ′i‖22]
}

= O(n−r) (B.2)

for some r > 0. Furthermore,

π′i = πi for all i, or (m′i,ν
′
i) = (mi,νi) for all i. (B.3)

The condition (B.2) states that the estimates need to be asymptotically deterministic given

the covariates. This is a very mild assumption. For example, when π̂i is estimated from a

parametric model {f(Xi;θ) : θ ∈ Rd} as f(Xi; θ̂), under standard regularity conditions, θ̂ con-

verges to a limit θ0 even if the model is misspecified. As a result, π̂i converges to π′i = f(Xi;θ0).

Under certain smoothness assumption, the estimates converge in the standard parametric rate

and thus (B.2) holds with r = 1. On the other hand, in the settings of Section 2, (B.2) is always

satisfied with π′i = πi and m′i = νi = 0T . More generally, if δ̄2π + δ̄2y = O(n−r), it is also satisfied

with π′i = πi and (m′i,ν
′
i) = (mi,νi). A similar assumption was considered for cross-sectional

data by Chernozhukov et al. [2020].

The condition (B.3) allows one of the treatment and outcome models to be inconsistently

estimated. This covers the settings in Section 2 where the outcome model does not need to

be consistently estimated. It also covers the classical model-based inference in which case the

assignment model can be arbitrarily misspecified.

Theorem B.1. Assume that {(Yi(1),Yi(0),Wi) : i ∈ [n]} are independent. Let {(π̂i, m̂i, ν̂i) :

i ∈ [n]} be estimates obtained from K-fold cross-fitting where K = O(1). Under Assumptions

A.1, A.2, A.4, and B.1,
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(i) τ̂(Π)− τ ∗(ξ) = oP(1) if δ̄π δ̄y = o(1);

(ii) Let Ĉ1−α be the same confidence interval as in Theorem 3.3. Then

lim inf
n→∞

P
(
τ ∗(ξ) ∈ Ĉ1−α

)
≥ 1− α

if (a) δ̄π δ̄y = o(1/
√
n), (b) Assumption B.1 holds with r > 1/2, and (c) (2.24) holds if

(Θi,Yi) are replaced by (Π(Wi)/π
′
i(Wi),Yi −m′i − diag(Wi)ν

′
i) in the definition of Vi.

The proof of Theorem B.1 is quite involved because our cross-fitted estimator is non-

standard. The standard cross-fitting [Chernozhukov et al., 2017] would compute τ̂k(Π) on Ik
with {(π̂i, m̂i, ν̂i) : i ∈ Ik} and then take τ̂(Π) as the average of {τ̂k(Π) : k ∈ [K]}. Under

the assumptions of Theorem 3.2, it is straightforward to show each τ̂k(Π) is asymptotically

linear and hence their average τ̂(Π). In contrast, our estimator only cross-fitted the nuisance

parameters {(π̂i, m̂i, ν̂i) : i ∈ [n]} but compute τ̂(Π) using the whole dataset. While it is

theoretically convenient to deal with the standard cross-fitting estimator, the standard version

would fit weighted TWFE regressions on merely n/K units which would cause instability when

n is moderate as in many economic applications. For this reason, we opt for our version to max

out the sample size for computing τ̂(Π), even though the technical proofs are lengthier.

B.2 De-randomization

Cross-fitting involves random data splits which introduce operational variation into the final

estimate. We propose a de-randomization procedure that mitigates this source of unnecessary

uncertainty by averaging over multiple splits. In particular, we consider B independent splits

and add a superscript (b) to denote the quantities involved in the b-th split.

In the proof presented in the next subsection, we will show in (B.14) that, for each given

data split,

D(b) ·
√
n(τ̂ (b) − τ ∗) =

1√
n

n∑
i=1

(V ′i − E[V ′i]) + oP(1),

Note that V ′i does not depend on b. We define the de-randomized cross-fitted RIPW estimate
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as

τ̂ =

∑B
b=1D(b)τ̂ (b)∑B
b=1D(b)

. (B.4)

Then, when B = O(1),

(
1

B

B∑
b=1

D(b)

)
·
√
n(τ̂ − τ ∗) =

1√
n

n∑
i=1

(V ′i − E[V ′i]) + oP(1).

Furthermore, in Section B.3.2 we show that

1

n

n∑
i=1

(V ′i − V̂
(b)
i )2 = oP(1).

Denote by
¯̂Vi the average influence function:

¯̂Vi =
1

B

B∑
b=1

V̂(b)
i .

Then,

1

n

n∑
i=1

(V ′i −
¯̂Vi)2 = oP(1).

Therefore, we can estimate the variance of τ̂ by the sample variance of
¯̂V1, . . . , ¯̂Vn. This justifies

the confidence interval stated in Algorithm 1.

B.3 Proof of Theorem B.1

For convenience, we assume that m = n/K is an integer. All proofs in this subsection can be

easily extended to the general case. Without loss of generality, we can assume that

E[∆̄2
π] = δ̄2π = Ω(n−r), E[∆̄2

y] = δ̄2y = Ω(n−r), (B.5)
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where an = Ω(bn) iff bn = O(an). Otherwise, we can replace (π′i,m
′
i,ν
′
i) by (πi,mi,νi) without

decreasing r.

We use a superscript (k) to denote the corresponding quantity in fold k, i.e.,

Γ
(k)
θ ,

1

m

∑
i∈Ik

Θi, Γ(k)
ww ,

1

m

∑
i∈Ik

ΘiW
>
i JWi, Γ(k)

wy ,
1

m

∑
i∈Ik

ΘiW
>
i JỸi,

Γ(k)
w ,

1

m

∑
i∈Ik

ΘiJWi, Γ(k)
y ,

1

m

∑
i∈Ik

ΘiJỸi.

As in the proof of Theorem A.3, we assume τ ∗ = 0 without loss of generality. Let
(
Γ′wy,Γ

′
θ,Γ

′
w,Γ

′
y

)
and (Θ′i, Ỹ

′
i , τ̃

′
i ) be the counterpart of (Γwy,Γθ,Γw,Γy) and (Θi, Ỹi, τ̃i) with (π̂i, m̂i, ν̂i) replaced

by (π′i,m
′
i,ν
′
i). We first claim that

ΓwyΓθ − Γ>wΓy −
{

Γ′wyΓ
′
θ − Γ

′>
w Γ′y

}
= OP

(
n−min{r,(r′+1)/2} +

√
E[∆̄2

π] ·
√
E[∆̄2

y]

)
, (B.6)

where r′ = rω/(2 + ω). The proof of (B.6) is relegated to the end. Here we prove the rest of

the theorem under (B.6).

Note that Γ′wyΓ
′
θ − Γ′>w Γ′y is the numerator of τ̂ when {(π′i,m′i,ν ′i) : i = 1, . . . , n} are used as

the estimates. Let

δ′πi =
√
E[(π′i(Wi)− πi(Wi))2], δ′yi =

√
E[‖m′i −mi‖22] + E[‖ν ′i − νi‖22], (B.7)

and

δ̄′π =

√√√√ 1

n

n∑
i=1

δ
′2
πi, δ̄′y =

√√√√ 1

n

n∑
i=1

δ
′2
yi. (B.8)

By Assumption B.1 and (B.5),

δ̄
′2
π =

1

n

n∑
i=1

δ
′2
πi
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≤ 2

n

n∑
i=1

{
E[∆2

πi] + E[(π̂i(Wi)− π′i(Wi))
2]
}

= O
(
E[∆̄2

π] + n−r
)

= O
(
E[∆̄2

π]
)
. (B.9)

Similarly,

δ̄
′2
y =

1

n

n∑
i=1

δ
′2
yi = O

(
E[∆̄2

y]
)
. (B.10)

As a result,

δ̄′π δ̄
′
y = O

(√
E[∆̄2

π] ·
√

E[∆̄2
y]

)
.

Note that Assumption A.4 implies Assumption A.3 with q = 1. By Theorem A.2 and Theorem

A.3,

Γ′wyΓ
′
θ − Γ

′>
w Γ′y =

1

n

n∑
i=1

(V ′i − E[V ′i]) +OP

(√
E[∆̄2

π] ·
√
E[∆̄2

y]

)
+ oP(1/

√
n) (B.11)

= OP

(√
E[∆̄2

π] ·
√

E[∆̄2
y]

)
+ oP(1), (B.12)

where

V ′i = Θ′i

{
E[Γ′wy]− E[Γ′y]

>JWi + E[Γ′θ]W
>
i JỸ

′
i − E[Γ′w]>JỸ ′i

}
.

On the other hand, by (B.6),

D(τ̂−τ ∗) = ΓwyΓθ−Γ>wΓy = Γ′wyΓ
′
θ−Γ

′>
w Γ′y+OP

(
n−min{r,(r′+1)/2} +

√
E[∆̄2

π] ·
√

E[∆̄2
y]

)
. (B.13)

When
√

E[∆̄2
π] ·
√
E[∆̄2

y] = o(1), (B.12) and (B.13) imply that

D(τ̂ − τ ∗) = oP(1).

The consistency then follows from Lemma A.3.
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When
√

E[∆̄2
π] ·
√
E[∆̄2

y] = o(1/
√
n) and r > 1/2, (B.12) and (B.13) imply that

D ·
√
n(τ̂ − τ ∗) =

1√
n

n∑
i=1

(V ′i − E[V ′i]) + oP(1). (B.14)

Let V̂ ′i denote the plug-in estimate of V ′i assuming that (π′i,m
′
i,ν
′
i) is known, i.e.,

V̂ ′i = Θ′i

{
Γ′wy − Γ

′>
y JWi + Γ′θW

>
i JỸ

′
i − Γ

′>
w JỸ

′
i

}
. (B.15)

By Lemma A.5, under Assumption A.5 (with (π̂i, m̂i, ν̂i) = (π′i,m
′
i,ν
′
i)),

D ·
√
n(τ̂ − τ ∗)
σ′

d→ N(0, 1) in Kolmogorov-Smirnov distance,

where

σ
′2 =

1

n

n∑
i=1

Var(V ′i) ≥ v0.

Similar to (A.21), define

σ
′2
+ =

1

n

n∑
i=1

E

(
V ′i −

1

n

n∑
i=1

E[V ′i]

)2

=
1

n

n∑
i=1

E[V ′2i ]−

(
1

n

n∑
i=1

E[V ′i]

)2

.

Obviously, σ
′2
+ ≥ σ

′2. Furthermore, define an oracle variance estimate σ̂
′2 as

σ̂
′2 =

1

n− 1

n∑
i=1

(
V̂ ′i −

1

n

n∑
i=1

V̂ ′i

)2

=
n

n− 1

 1

n

n∑
i=1

V̂ ′2i −

(
1

n

n∑
i=1

V̂ ′i

)2
 .

Recalling (A.18) that

σ̂2 =
1

n− 1

n∑
i=1

(
V̂i −

1

n

n∑
i=1

V̂i

)2

=
n

n− 1

 1

n

n∑
i=1

V̂2
i −

(
1

n

n∑
i=1

V̂i

)2
 .
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Similar to (A.22) in Theorem A.5, it remains to prove that

|σ̂2 − σ′2+ | = oP(1).

Using the same arguments as in Theorem A.5, we can prove that

|σ̂′2 − σ′2+ | = oP(1).

Therefore, the proof will be completed if

|σ̂2 − σ̂′2| = oP(1). (B.16)

We present the proof of (B.16) in the end.

B.3.1 Proof of (B.6)

Let
(

Γ
′(k)
wy ,Γ

′(k)
θ ,Γ

′(k)
w ,Γ

′(k)
y

)
be the counterpart of (Γ

(k)
wy ,Γ

(k)
θ ,Γ

(k)
w ,Γ

(k)
y ) with (π̂i, m̂i, ν̂i) replaced

by (π′i,m
′
i,ν
′
i). Since the proof is lengthy, we decompose it into seven steps.

Step 1 By triangle inequality and Cauchy-Schwarz inequality,

|Γwy − Γ′wy|

≤ 1

n

n∑
i=1

|ΘiW
>
i JỸi −Θ′iW

>
i JỸ

′
i |

≤ 1

n

n∑
i=1

∣∣ΘiW
>
i J(m̂i −m′i)

∣∣+
1

n

n∑
i=1

∣∣ΘiW
>
i J diag(Wi)(ν̂i − ν ′i)

∣∣
+

1

n

n∑
i=1

∣∣∣(Θi −Θ′i)W
>
i JỸ

′
i

∣∣∣
≤

√√√√( 1

n

n∑
i=1

‖ΘiW>
i J‖22

)(
1

n

n∑
i=1

‖m̂i −m′i‖22

)

+

√√√√( 1

n

n∑
i=1

‖ΘiW>
i J diag(Wi)‖22

)(
1

n

n∑
i=1

‖ν̂i − ν ′i‖22

)
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+

√√√√( 1

n

n∑
i=1

‖(Θi −Θ′i)W
>
i J‖22

)(
1

n

n∑
i=1

‖Ỹ ′i ‖22

)
.

By Assumption A.5 and Hölder’s inequality,

1

n

n∑
i=1

E[‖Ỹ ′i ‖22] ≤

(
1

n

n∑
i=1

E[‖Ỹ ′i ‖2+ω2 ]

)2/(2+ω)

= O(1).

By Markov’s inequality,

1

n

n∑
i=1

‖Ỹ ′i ‖22 = OP(1). (B.17)

By Assumption A.2 and the boundedness of ‖WiJ‖2 and ‖WiJ diag(Wi)‖2,

1

n

n∑
i=1

‖ΘiW
>
i J‖22 = O(1),

1

n

n∑
i=1

‖ΘiW
>
i J diag(Wi)‖22 = O(1),

and, further, by Markov’s inequality,

1

n

n∑
i=1

‖(Θi −Θ′i)W
>
i J‖22 = OP

(
1

n

n∑
i=1

E[(π̂i(Wi)− π′i(Wi))
2]

)
.

Putting pieces together and using Assumption B.1, we arrive at

|Γwy − Γ′wy| = OP(n−r/2).

Similarly, we can prove that

|Γwy − Γ′wy|+ |Γθ − Γ′θ|+ ‖Γw − Γ′w‖2 + ‖Γy − Γ′y‖2 = OP(n−r/2). (B.18)

As a consequence,

∣∣(Γwy − Γ′wy)(Γθ − Γ′θ)− (Γw − Γ′w)>(Γy − Γ′y)
∣∣ = OP(n−r). (B.19)
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Step 2 Note that Assumption A.4 implies Assumption A.3 with q = 1. By Lemma A.2,

∣∣Γ′θ − E[Γ′θ]
∣∣+
∣∣Γ′wy − E[Γ′wy]

∣∣+
∥∥Γ′w − E[Γ′w]

∥∥
2

+
∥∥Γ′y − E[Γ′y]

∥∥
2

= OP
(
n−1/2

)
.

By (B.18), we have∣∣∣∣(Γwy − Γ′wy)(Γ
′
θ − E[Γ′θ]) + (Γ′wy − E[Γ′wy])(Γθ − Γ′θ)

− (Γw − Γ′w)>(Γ′y − E[Γ′y])− (Γ′w − E[Γ′w])>(Γy − Γ′y)

∣∣∣∣ = OP(n−(r+1)/2). (B.20)

Step 3 Note that

Γwy − Γ′wy =
1

K

K∑
k=1

(
Γ(k)
wy − Γ

′(k)
wy

)
.

For each k,

Γ(k)
wy − Γ

′(k)
wy =

1

m

∑
i∈Ik

(ΘiW
>
i JỸi −Θ′iW

>
i JỸ

′
i ).

Under Assumption A.4, the summands are independent conditional onD−[k] , {(Yi(1),Yi(0),Xi) :

i 6∈ Ik}. Let E(k) and Var(k) denote the expectation and variance conditional on D−[k].
By Chebyshev’s inequality,

(
Γ(k)
wy − Γ

′(k)
wy − E(k)[Γ(k)

wy − Γ
′(k)
wy ]
)2

= OP

(
1

m2

∑
i∈Ik

Var(k)
(

ΘiW
>
i JỸi −Θ′iW

>
i JỸ

′
i

))
(i)
= OP

(
1

n2

n∑
i=1

E(k)
(

ΘiW
>
i JỸi −Θ′iW

>
i JỸ

′
i

)2)
(ii)
= OP

(
1

n2

n∑
i=1

E
(

ΘiW
>
i JỸi −Θ′iW

>
i JỸ

′
i

)2)
, (B.21)

where (i) follows from K = O(1) and (ii) applies Markov’s inequality. By Jensen’s
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inequality and Cauchy-Schwarz inequality,

E
(

ΘiW
>
i JỸi −Θ′iW

>
i JỸ

′
i

)2
≤ 3
{
E
(
ΘiW

>
i J(m̂i −m′i)

)2
+ E

(
ΘiW

>
i J diag(Wi)(ν̂i − ν ′i)

)2
+ E

(
(Θi −Θ′i)W

>
i JỸ

′
i

)2 }
≤ 3
{
E
[
‖ΘiW

>
i J‖22 · ‖m̂i −m′i‖22

]
+ E

[
‖ΘiW

>
i J diag(Wi)‖22 · ‖ν̂i − ν ′i‖22

]
+ E

[
(Θi −Θ′i)

2(W>
i JỸ

′
i )2
]}

≤ C
{
E
[
(m̂i −m′i)2

]
+ E

[
(ν̂i − ν ′i)2

]
+ E

[
(π̂i(Wi)− π′i(Wi))

2(Ỹ ′i )2
]}

,

(B.22)

where C is a constant that only depends on cπ and T . The second term can be bounded

by

1

n

n∑
i=1

E
[
(π̂i(Wi)− π′i(Wi))

2(Ỹ ′i )2
]

= E

[
1

n

n∑
i=1

(π̂i(Wi)− π′i(Wi))
2(Ỹ ′i )2

]
(i)

≤ E

( 1

n

n∑
i=1

(π̂i(Wi)− π′i(Wi))
2(1+2/ω)

)ω/(2+ω)(
1

n

n∑
i=1

(Ỹ ′i )2+ω

)2/(2+ω)


(ii)

≤

(
1

n

n∑
i=1

E
[
(π̂i(Wi)− π′i(Wi))

2(1+2/ω)
])ω/(2+ω)(

1

n

n∑
i=1

E
[
(Ỹ ′i )2+ω

])2/(2+ω)

(iii)

≤

(
1

n

n∑
i=1

E(π̂i(Wi)− π′i(Wi))
2

)ω/(2+ω)(
1

n

n∑
i=1

E
[
(Ỹ ′i )2+ω

])2/(2+ω)

,

where (i) applies the Hölder’s inequality for sums, (ii) applies the Hölder’s inequality

that E[XY ] ≤ E[X(2+ω)/ω]ω/(2+ω)E[Y (2+ω)/2]2/(2+ω), and (iii) uses the fact that |π̂i(Wi)−
π′i(Wi)| ≤ 1. By Assumptions A.5 and B.1,

1

n

n∑
i=1

E
[
(π̂i(Wi)− π′i(Wi))

2(Ỹ ′i )2
]

= O
(
n−rω/(2+ω)

)
= O

(
n−r

′
)

(B.23)
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(B.22) and (B.23) together imply that

1

n

n∑
i=1

E
(

ΘiW
>
i JỸi −Θ′iW

>
i JỸ

′
i

)2
= O

(
n−r

′
)
. (B.24)

By (B.21), for each k,

Γ(k)
wy − Γ

′(k)
wy − E(k)[Γ(k)

wy − Γ
′(k)
wy ] = OP

(
n−(r

′+1)/2
)
.

Since K = O(1), it implies that

∣∣∣∣∣Γwy − Γ
′

wy −
1

K

K∑
k=1

E(k)[Γ(k)
wy − Γ

′(k)
wy ]

∣∣∣∣∣ = OP

(
n−(r

′+1)/2
)
.

Similarly, we have∣∣∣∣∣Γθ − Γ
′

θ −
1

K

K∑
k=1

E(k)[Γ
(k)
θ − Γ

′(k)
θ ]

∣∣∣∣∣+

∥∥∥∥∥Γw − Γ
′

w −
1

K

K∑
k=1

E(k)[Γ(k)
w − Γ

′(k)
w ]

∥∥∥∥∥
2

+

∥∥∥∥∥Γy − Γ
′

y −
1

K

K∑
k=1

E(k)[Γ(k)
y − Γ

′(k)
y ]

∥∥∥∥∥
2

= OP

(
n−(r

′+1)/2
)
.

By Lemma A.2,

|E[Γ′θ]|+ |E[Γ′wy]|+ ‖E[Γ′w]‖2 + ‖E[Γ′y]‖2 = O(1).

Therefore,

∣∣∣∣
(

Γwy − Γ′wy −
1

K

K∑
k=1

E(k)[Γ(k)
wy − Γ

′(k)
wy ]

)
E[Γ′θ]

+ E[Γ′wy]

(
Γθ − Γ′θ −

1

K

K∑
k=1

E(k)[Γ
(k)
θ − Γ

′(k)
θ ]

)

−

(
Γw − Γ′w −

1

K

K∑
k=1

E(k)[Γ(k)
w − Γ

′(k)
w ]

)>
E[Γ′y]
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− E[Γ′w]>

(
Γy − Γ′y −

1

K

K∑
k=1

E(k)[Γ(k)
y − Γ

′(k)
y ]

)∣∣∣∣
= OP(n−(r

′+1)/2). (B.25)

Step 4 Note that E[Γ′wy]E[Γ′θ]−E[Γ′w]>E[Γ′y] is the limit of D ·
√
n(τ̂ − τ ∗) when {(π′i,m′i,ν ′i) :

i = 1, . . . , n} are plugged in as the estimates. Under Assumption B.1, either π′i = πi

for all i ∈ [n] or (m′i,ν
′
i) = (mi,νi) for all i ∈ [n]. Then, by Lemma A.4,

E[Γ′wy]E[Γ′θ]− E[Γ′w]>E[Γ′y] = 0. (B.26)

Step 5 We shall prove that∣∣∣∣∣ 1

K

K∑
k=1

E(k)[Γ(k)
wy ]E[Γ′θ]− E[Γ′w]>E(k)[Γ(k)

y ]

∣∣∣∣∣ = O

(√
E[∆̄2

π] ·
√
E[∆̄2

y]

)
. (B.27)

By definition, we can write

∆πi =
√

E(k)[(π̂i(Wi)− πi(Wi))2], ∆yi =
√
E(k)[‖m̂i −mi‖22] + E(k)[‖ν̂i − νi‖22], ∀i ∈ Ik.

By Assumption A.1 and A.4,

E(k)[Γ(k)
wy ] =

1

m

∑
i∈Ik

E(k)[ΘiW
>
i JỸi]

=
1

m

∑
i∈Ik

E(k)[ΘiW
>
i JỸi(0)] +

1

m

∑
i∈Ik

E(k)[ΘiW
>
i J diag(Wi)τ̃i]

=
1

m

∑
i∈Ik

E(k)[ΘiW
>
i J ]E(k)[Ỹi(0)] +

1

m

∑
i∈Ik

E(k)[ΘiW
>
i J diag(Wi)]E(k)[τ̃i].

Similarly,

E(k)[Γ(k)
y ] =

1

m

∑
i∈Ik

E(k)[ΘiJ ]E(k)[Ỹi(0)] +
1

m

∑
i∈Ik

E(k)[ΘiJ diag(Wi)]E(k)[τ̃i].

Putting the pieces together and using the fact that E[Γ′w]>J = E[Γ′w]>,E(k)[Γw]>J =
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E(k)[Γw]>,

E(k)[Γ(k)
wy ]E[Γ′θ]− E[Γ

′

w]>E(k)[Γ(k)
y ]

=
1

m

∑
i∈Ik

{
E(k)[ΘiW

>
i J diag(Wi)]E[Γ′θ]− E[Γ′w]>E(k)[ΘiJ diag(Wi)]

}
E(k)[τ̃i].

+
1

m

∑
i∈Ik

{
E(k)[ΘiW

>
i J ]E[Γ′θ]− E[Γ′w]>E(k)[Θi]

}
E(k)[Ỹi(0)]

,
1

m

∑
i∈Ik

a>i1E(k)[τ̃i] +
1

m

∑
i∈Ik

a>i2E(k)[Ỹi(0)] (B.28)

As in the proof of Theorem A.3. Let

Θ∗i =
Π(Wi)

πi(Wi)
, Ỹ ∗i = Yi −mi − diag(Wi)νi,

and (Γ∗θ,Γ
∗
w) be the counterpart of (Γθ,Γw) with (Θi, Ỹi) replaced by (Θ∗i , Ỹ

∗
i ). Recalling

(A.13) on page 63, there exists a constant C1 that only depends on cπ and T such that

∣∣E(k)[(Θi −Θ∗i )W
>
i J diag(Wi)]

∣∣+
∥∥E(k)[(Θi −Θ∗i )JWi]

∥∥
2

+
∣∣E(k)[Θi −Θ∗i ]

∣∣
+
∥∥E(k)[(Θi −Θ∗i )J diag(Wi)]

∥∥
op
≤ C1∆πi. (B.29)

where δ′πi and δ̄′π are defined in (B.7) and (B.8), respectively. Then,∣∣∣∣E(k)[ΘiW
>
i J diag(Wi)]E[Γ′θ]−

(
E[Θ∗iW

>
i J diag(Wi)]E[Γ∗θ]

) ∣∣∣∣
≤
∣∣E(k)[ΘiW

>
i J diag(Wi)]− E[Θ∗iW

>
i J diag(Wi)]

∣∣ · E[Γ′θ]

+ E[Θ∗iW
>
i J diag(Wi)] · |(E[Γ′θ]− E[Γ∗θ])|

≤ C1(E[Γ′θ] ·∆πi + E[Θ∗iW
>
i J diag(Wi)] · δ̄′π).

Note that E[Θ∗iW
>
i J diag(Wi)] = EW∼Π[W>J diag(W )] ≤ T is a constant. By As-

sumption A.2, E[Γθ] ≤ 1/cπ. Thus,

∥∥ai1 − (E[Θ∗iW
>
i J diag(Wi)]E[Γ∗θ]− E[Γ∗w]>E[Θ∗iJ diag(Wi)]

)∥∥
2
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≤ C2(∆πi + δ̄′π), (B.30)

for some constant C2 that only depends on cπ and T . Let

a∗i1 = E[Θ∗iW
>
i J diag(Wi)]E[Γ∗θ]− E[Γ∗w]>E[Θ∗iJ diag(Wi)].

Since we assume τ ∗ = 0, ‖E(k)[τ̃i]‖2 = ‖E(k)[ν̂i − νi]‖2 ≤ ∆yi,∣∣∣∣∣ 1

m

∑
i∈Ik

a>i1E(k)[τ̃i]−
1

m

∑
i∈Ik

a∗>i1 E(k)[τ̃i]

∣∣∣∣∣ ≤ C3

m

∑
i∈Ik

(∆πi + ∆̄′π)∆yi. (B.31)

On the other hand, by definition of Θ∗i ,

E[Θ∗iW
>
i J diag(Wi)] = EW∼Π[W>J diag(W )], E[Θ∗iJ diag(Wi)] = EW∼Π[J diag(W )],

and

E[Γ∗θ] =
1

n

n∑
i=1

E[Θ∗i ] = 1, E[Γ∗w] =
1

n

n∑
i=1

E[Θ∗iJWi] = EW∼Π[JW ].

Thus,

a∗>i1 = EW∼Π[W>J diag(W )]− EW∼Π[JW ]>EW∼Π[J diag(Wi)]

= EW∼Π[(W − EW∼Π[W ])>J diag(W )].

By the DATE equation,

a∗>i1 = EW∼Π[(W − EW∼Π[W ])>JW ]ξ>.

As a consequence,

1

m

∑
i∈Ik

a∗>i1 E(k)[τ̃i] = EW∼Π[(W −EW∼Π[W ])>JW ] ·

(
1

m

∑
i∈Ik

ξ>E(k)[τ̃i]

)
. (B.32)
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Now we turn to the second and third terms of (B.28). Similar to (B.30), we can show

that

‖ai2‖2 = ‖ai2 − (E[Γ∗w]>E[Γ∗θ]− E[Γ∗w]>E[Γ∗θ])‖2 ≤ C3(∆πi + δ̄′π),

for some constant C3 that only depends on cπ and T . By (A.3), E(k)[‖Ỹi(0)‖2] ≤ ∆yi.

Therefore,∣∣∣∣∣ 1

m

∑
i∈Ik

a>i2E(k)[Ỹi(0)]

∣∣∣∣∣ ≤ C3

m

∑
i∈Ik

(∆πi + ∆̄′π)∆yi. (B.33)

Putting (B.28), (B.31), (B.32), and (B.33) together, we arrive at∣∣∣∣∣E(k)[Γ(k)
wy ]E[Γ′θ]− E[Γ

′

w]>E[Γ(k)
y ]− EW∼Π[(W − EW∼Π[W ])>JW ] ·

(
1

m

∑
i∈Ik

ξ>E(k)[τ̃i]

)∣∣∣∣∣
≤ C4

m

∑
i∈Ik

(∆πi + δ̄′π)∆yi,

for some constant C4 that only depends on cπ and T . Since τ ∗ = 0,

1

K

K∑
k=1

(
1

m

∑
i∈Ik

ξ>E(k)[τ̃i]

)
=

1

K

K∑
k=1

(
1

m

∑
i∈Ik

ξ>(τi − E(k)[ν̂i])

)

= τ ∗ − 1

K

K∑
k=1

(
1

m

∑
i∈Ik

ξ>E(k)[ν̂i]

)
= 0,

where the last step uses (B.1). Therefore, averaging over k and marginalizing over D−k
yields that∣∣∣∣∣ 1

K

K∑
k=1

E(k)[Γwy]E[Γ′θ]− E[Γ′w]>E(k)[Γ(k)
y ]

∣∣∣∣∣ = OP

(
1

n

n∑
i=1

E
[
(∆πi + δ̄′π)∆yi

])
.

By Cauchy-Schwarz inequality,∣∣∣∣∣ 1

K

K∑
k=1

E(k)[Γwy]E[Γ′θ]− E[Γ′w]>E(k)[Γ(k)
y ]

∣∣∣∣∣
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= OP

(
1

n

n∑
i=1

√
E
[
(∆πi + δ̄′π)2

]√
E
[
∆2
yi

])

= OP

√√√√ 1

n

n∑
i=1

E
[
(∆πi + δ̄′π)2

]√√√√ 1

n

n∑
i=1

E
[
∆2
yi

]
= OP

√√√√ 1

n

n∑
i=1

(
E[∆2

πi] + δ̄′2π
)√√√√ 1

n

n∑
i=1

E[∆2
yi]


= OP

(√
E[∆̄2

π] + δ̄′2π ·
√

E[∆̄2
y]

)
.

Therefore, (B.27) is proved by (B.9) and (B.10) on page 95.

Step 6 Next, we shall prove that∣∣∣∣∣ 1

K

K∑
k=1

E[Γ′wy]E(k)[Γ
(k)
θ − Γ

′(k)
θ ]− E(k)[Γ(k)

w − Γ
′(k)
w ]>E[Γ′y]

∣∣∣∣∣ = O

(√
E[∆̄2

π] ·
√
E[∆̄2

y]

)
.

(B.34)

Using the same argument as (B.29), we can show that

‖E[(Θ′i −Θi)JWi]‖2 + |E[Θ′i −Θi]| ≤ C1(δ
′
πi + ∆πi).

Averaging over i ∈ Ik, we obtain that

|E(k)[Γ
(k)
θ ]−E(k)[Γ

′(k)
θ ]|+ ‖E(k)[Γ(k)

w ]−E(k)[Γ
′(k)
w ]‖2 ≤ C1(δ̄

′
π + ∆̄π) = O

(
∆̄π

)
, (B.35)

where the last step uses (B.5). On the other hand,

E[Γ′wy] =
1

n

n∑
i=1

E[Θ′iW
>
i JỸ

′
i ]

=
1

n

n∑
i=1

E[Θ′iW
>
i JỸ

′
i (0)] +

1

n

n∑
i=1

E[Θ′iW
>
i J diag(Wi)τ̃

′
i ]

=
1

n

n∑
i=1

E[Θ′iW
>
i J ]E[Ỹ ′i (0)] +

1

n

n∑
i=1

E[Θ′iW
>
i J diag(Wi)]τ̃

′
i .
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Note that

‖E[Θ′iW
>
i J ]‖2 ≤

√
T

cπ
, ‖E[Θ′iW

>
i J diag(Wi)]‖2 ≤

T

cπ
, ‖E[Ỹ ′i (0)]‖2 +‖τ̃ ′i‖2 ≤ δ′yi.

As a result, there exists a constant C5 that only depends on cπ and T such that

|E[Γ′wy]| ≤
C5

n

n∑
i=1

δ′yi = O
(
E[∆̄2

y]
)
.

Similarly,

‖E[Γ′y]‖2 = O
(
E[∆̄2

y]
)
.

Together with (B.35), we prove (B.34).

Step 7 Consider the following decompositions:

ΓwyΓθ − Γ′wyΓ
′
θ

= (Γwy − Γ′wy)(Γθ − Γ′θ)

+ (Γwy − Γ′wy)(Γ
′
θ − E[Γ′θ]) + (Γ′wy − E[Γ′wy])(Γθ − Γ′θ)

+

(
Γwy − Γ′wy −

1

K

K∑
k=1

E(k)[Γ(k)
wy − Γ

′(k)
wy ]

)
E[Γ′θ]

+ E[Γ′wy]

(
Γθ − Γ′θ −

1

K

K∑
k=1

E(k)[Γ
(k)
θ − Γ

′(k)
θ ]

)

− 1

K

(
K∑
k=1

E(k)[Γ
′(k)
wy ]

)
· E[Γ′θ]

+
1

K

(
K∑
k=1

E(k)[Γ(k)
wy ]

)
· E[Γ′θ]

+ E[Γ′wy] ·
1

K

(
K∑
k=1

E(k)[Γ
(k)
θ − Γ

′(k)
θ ]

)
,
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and

Γ>wΓy − Γ
′>
w Γ′y

= (Γw − Γ′w)>(Γy − Γ′y)

+ (Γw − Γ′w)>(Γ′y − E[Γ′y]) + (Γ′w − E[Γ′w])>(Γy − Γ′y)

+

(
Γw − Γ′w −

1

K

K∑
k=1

E(k)[Γ(k)
w − Γ

′(k)
w ]

)>
E[Γ′y]

+ E[Γ′w]>

(
Γy − Γ′y −

1

K

K∑
k=1

E(k)[Γ(k)
y − Γ

′(k)
y ]

)

− E[Γ′w]>
1

K

(
K∑
k=1

E(k)[Γ
′(k)
y ]

)

+ E[Γ′w]>
1

K

(
K∑
k=1

E(k)[Γ(k)
y ]

)

+
1

K

(
K∑
k=1

E(k)[Γ(k)
w − Γ

′(k)
w ]

)>
E[Γ′y].

Since (π′i,m
′
i, τ
′
i ) are deterministic,

1

K

(
K∑
k=1

E(k)[Γ
′(k)
wy ]

)
· E[Γ′θ] =

1

K

(
K∑
k=1

E[Γ
′(k)
wy ]

)
· E[Γ′θ] = E[Γ′wy]E[Γ′θ],

and

E[Γ′w]>
1

K

(
K∑
k=1

E(k)[Γ
′(k)
y ]

)
= E[Γ′w]>

1

K

(
K∑
k=1

E[Γ
′(k)
y ]

)
= E[Γ′w]>E[Γ′y].

By (B.19), (B.20), (B.25), (B.26), (B.27), (B.34), and triangle inequality,

ΓwyΓθ−Γ>wΓy−
{

Γ′wyΓ
′
θ − Γ

′>
w Γ′y

}
= OP

(
n−r + n−(r+1)/2 + n−(r

′+1)/2 +
√
E[∆̄2

π] ·
√
E[∆̄2

y]

)
.

The proof of (B.6) is then completed.

108



B.3.2 Proof of (B.16)

Let

V̂ ′′i = Θ′i

{
Γwy − Γ>y JWi + ΓθW

>
i JỸ

′
i − Γ>wJỸ

′
i

}
. (B.36)

Recalling the definition of V̂ ′i in (B.15) on page 96,

|V̂ ′i − V̂ ′′i | ≤ |Γwy − Γ′wy| ·Θ′i + ‖Γy − Γ′y‖2 · ‖Θ′iJWi‖2

+ |Γθ − Γ′θ| · |Θ′iW>
i JỸ

′
i |+ ‖Γw − Γ′w‖2 · ‖Θ′iJỸ ′i ‖2

≤
{
|Γwy − Γ′wy|+ ‖Γy − Γ′y‖2 + |Γθ − Γ′θ|+ ‖Γw − Γ′w‖2

}
·
{

Θ′i + ‖Θ′iJWi‖2 + |Θ′iW>
i JỸ

′
i |+ ‖Θ′iJỸ ′i ‖2

}
By Jensen’s inequality and Cauchy-Schwarz inequality,

1

n

n∑
i=1

(V̂ ′i − V̂ ′′i )2

≤ 4
{
|Γwy − Γ′wy|+ ‖Γy − Γ′y‖2 + |Γθ − Γ′θ|+ ‖Γw − Γ′w‖2

}2
· 1

n

n∑
i=1

{
Θ
′2
i + ‖Θ′iJWi‖22 + |Θ′iW>

i JỸ
′
i |2 + ‖Θ′iJỸ ′i ‖22

}
≤ 8T

c2π

{
|Γwy − Γ′wy|2 + ‖Γy − Γ′y‖22 + |Γθ − Γ′θ|2 + ‖Γw − Γ′w‖22

}
· 1

n

n∑
i=1

{
1 + ‖Ỹ ′i ‖22

}
,

where the last inequality uses Assumption A.2. By (B.17) and (B.18) on page 98,

1

n

n∑
i=1

(V̂ ′i − V̂ ′′i )2 = OP(n−r) = oP(1). (B.37)

On the other hand, recalling the definition of V̂i in (A.15) on page 67,

|V̂ ′′i − V̂i| ≤ |Γwy| · |Θ′i −Θi|+ ‖Γy‖2 · ‖(Θ′i −Θi)JWi‖2

+ |Γθ| · |Θ′iW>
i JỸ

′
i −ΘiW

>
i JỸi|+ ‖Γw‖2 · ‖Θ′iJỸ ′i −ΘiJỸi‖2
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+ Θiτ̂
{
|Γww|+ |Γ>wJWi|+ |ΓθW>

i JWi|+ |Γ>wJWi|
}

≤ {|Γwy|+ ‖Γy‖2 + |Γθ|+ ‖Γw‖2} ·
{
|Θ′i −Θi|+ ‖(Θ′i −Θi)JWi‖2

+ |Θ′iW>
i JỸ

′
i −ΘiW

>
i JỸi|+ ‖Θ′iJỸ ′i −ΘiJỸi‖2

}
+ Θi|τ̂ |

{
|Γww|+ |Γ>wJWi|+ |ΓθW>

i JWi|+ |Γ>wJWi|
}
.

Since ‖JWi‖2 ≤
√
T ,

‖(Θ′i −Θi)JWi‖2 ≤
√
T |Θ′i −Θi|.

By triangle inequality,

|Θ′iW>
i JỸ

′
i −ΘiW

>
i JỸi|

≤ |ΘiW
>
i JỸ

′
i −ΘiW

>
i JỸi|+ |Θ′iW>

i JỸ
′
i −ΘiW

>
i JỸ

′
i |

≤
√
T

cπ
‖Ỹ ‘i − Ỹi‖2 +

√
T‖Ỹ ′i ‖2 · |Θ′i −Θi|

=

√
T

cπ
‖m̂i −m′i‖2 +

√
T‖Ỹ ′i ‖2 · |Θ′i −Θi|.

Similarly,

‖Θ′iJỸ ′i −ΘiJỸi‖2

≤ ‖ΘiJỸ
′
i −ΘiJỸi‖2 + ‖Θ′iJỸ ′i −ΘiJỸ

′
i ‖2

≤ 1

cπ
‖Ỹ ′i − Ỹi‖2 + ‖Ỹ ′i ‖2 · |Θ′i −Θi|

=
1

cπ
‖m̂i −m′i‖2 + ‖Ỹ ′i ‖2 · |Θ′i −Θi|

Putting pieces together, we have that

(V̂ ′′i − V̂i)2

≤ C {|Γwy|+ ‖Γy‖2 + |Γθ|+ ‖Γw‖2}2
{
|Θ′i −Θi|2 · (1 + ‖Ỹ ′i ‖22) + ‖m̂i −m′i‖22

}
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+ C|τ̂ |
{
|Γww|+ |Γ>wJWi|+ |ΓθW>

i JWi|+ |Γ>wJWi|
}
,

for some constant C that only depends on cπ and T . By Lemma A.2 and Markov’s inequality,

|Γwy|+‖Γy‖2 + |Γθ|+‖Γw‖2 = OP(1), |Γww|+ |Γ>wJWi|+ |ΓθW>
i JWi|+ |Γ>wJWi| = O(1).

By the first part of the theorem,

|τ̂ | = oP(1).

Therefore,

1

n

n∑
i=1

(V̂ ′′i − V̂i)2 = OP

(
1

n

n∑
i=1

{
|Θ′i −Θi|2 · (1 + ‖Ỹ ′i ‖22) + ‖m̂i −m′i‖22

})
+ oP(1). (B.38)

By Assumption A.2 and B.1,

1

n

n∑
i=1

E[|Θ′i −Θi|2] =
1

n

n∑
i=1

E
[

Π(Wi)
2

π̂i(Wi)2π′i(Wi)2
|π̂i(Wi)− π′i(Wi)|2

]
≤ 1

c2π

n∑
i=1

E[(π̂i(Wi)− π′i(Wi))
2] = O(n−r) = o(1).

By Assumption B.1,

1

n

n∑
i=1

E
[
‖m̂i −m′i‖22

]
= O(n−r) = o(1).

By Markov’s inequality, we obtain that

1

n

n∑
i=1

|Θ′i −Θi|2 +
1

n

n∑
i=1

‖m̂i −m′i‖22 = oP(1). (B.39)
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By Hölder’s inequality,

1

n

n∑
i=1

|Θ′i −Θi|2 · ‖Ỹ ′i ‖22 ≤

(
1

n

n∑
i=1

|Θ′i −Θi|2(1+2/ω)

)ω/(2+ω)(
1

n

n∑
i=1

‖Ỹ ′i ‖2+ω2

)2/(2+ω)

.

By Markov’s inequality and Assumption A.4,

1

n

n∑
i=1

‖Ỹ ′i ‖2+ω2 = OP

(
1

n

n∑
i=1

E[‖Ỹ ′i ‖2+ω2 ]

)
= OP(1).

By Assumption A.2,

1

n

n∑
i=1

E
[
|Θ′i −Θi|2(1+2/ω)

]
=

1

n

n∑
i=1

E
[

Π(Wi)
2(1+2/ω)

π̂i(Wi)2(1+2/ω)π′i(Wi)2(1+2/ω)
|π̂i(Wi)− π′i(Wi)|2(1+2/ω)

]
≤ 1

c
4(1+2/ω)
π

1

n

n∑
i=1

E
[
(π̂i(Wi)− π′i(Wi))

2(1+2/ω)
]

(i)

≤ 1

c
4(1+2/ω)
π

1

n

n∑
i=1

E
[
(π̂i(Wi)− π′i(Wi))

2
]

= O
(
n−r
)

= o(1),

where (i) uses the fact that |π̂i(Wi)− π′i(Wi)| ≤ 1. Thus, by Markov’s inequality,

1

n

n∑
i=1

|Θ′i −Θi|2 · ‖Ỹ ′i ‖22 = oP(1). (B.40)

Putting (B.38), (B.39), and (B.40) together, we conclude that

1

n

n∑
i=1

(V̂ ′′i − V̂i)2 = oP(1). (B.41)
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By Jensen’s inequality, (B.37), and (B.41),

1

n

n∑
i=1

(V̂ ′i − V̂i)2 ≤
2

n

n∑
i=1

(V̂ ′i − V̂ ′′i )2 +
2

n

n∑
i=1

(V̂ ′′i − V̂i)2 = oP(1). (B.42)

By Lemma A.2, it is easy to see that

∣∣∣∣∣ 1n
n∑
i=1

V̂i

∣∣∣∣∣
2

≤ 1

n

n∑
i=1

V̂2
i = OP(1). (B.43)

As a result,

∣∣∣∣∣ 1n
n∑
i=1

V̂ ′i −
1

n

n∑
i=1

V̂i

∣∣∣∣∣ ≤ 1

n

n∑
i=1

|V̂ ′i − V̂i| ≤

√√√√ 1

n

n∑
i=1

(V̂ ′i − V̂i)2 = oP(1).

Together with (B.43), it implies that∣∣∣∣∣∣
(

1

n

n∑
i=1

V̂ ′i

)2

−

(
1

n

n∑
i=1

V̂i

)2
∣∣∣∣∣∣ = oP(1).

On the other hand, by triangle inequality, Cauchy-Schwarz inequality, and (B.43),∣∣∣∣∣ 1n
n∑
i=1

V̂ ′2i −
1

n

n∑
i=1

V̂2
i

∣∣∣∣∣ ≤ 2

n

n∑
i=1

V̂i(V̂ ′i − V̂i) +
1

n

n∑
i=1

(V̂ ′i − V̂i)2

≤ 2

√√√√ 1

n

n∑
i=1

V̂2
i

√√√√ 1

n

n∑
i=1

(V̂ ′i − V̂i)2 +
1

n

n∑
i=1

(V̂ ′i − V̂i)2 = oP(1).

Therefore,

|σ̂2 − σ̂′2| ≤

∣∣∣∣∣ 1n
n∑
i=1

V̂2
i −

1

n

n∑
i=1

V̂ ′2i

∣∣∣∣∣+

∣∣∣∣∣∣
(

1

n

n∑
i=1

V̂i

)2

−

(
1

n

n∑
i=1

V̂ ′i

)2
∣∣∣∣∣∣ = oP(1).
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C Solutions of the DATE equation

C.1 The case of two periods

When there are two periods, the DATE equation only involves four variables Π(0, 0),Π(0, 1),

Π(1, 0),Π(1, 1). Through some tedious algebra presented in Appendix C.4.1, we can show that

the DATE equation can be simplified into the following equation:

{Π(1, 1)−Π(0, 0)}{Π(1, 0)−Π(0, 1)} = (ξ1−ξ2)
{

(Π(1, 0)−Π(0, 1))2 − (Π(1, 0) + Π(0, 1))
}
.

(C.1)

C.1.1 Difference-in-difference designs

In the setting of difference-in-difference (DiD), (0, 0) and (0, 1) are the only two possible treat-

ment assignments. As a result, we should set the support of the reshaped distribution to be

S∗ = {(0, 0), (0, 1)}. Then (C.1) reduces to

Π(0, 0)Π(0, 1) = (ξ1 − ξ2)(Π(0, 1)2 −Π(0, 1)) = (ξ2 − ξ1)Π(0, 0)Π(0, 1).

It has a solution only when ξ2 − ξ1 = 1, i.e. (ξ1, ξ2) = (0, 1) and hence τ ∗(ξ) = τ2, in which

case any reshaped distribution Π with Π(0, 0),Π(0, 1) > 0 is a solution. This is not surprising

because for DiD, no unit is treated in the first period and thus τ1 is unidentifiable. Nonetheless,

τ2 is an informative causal estimand in the literature of DiD. This implies that the RIPW

estimator with any Π with Π(0, 0),Π(0, 1) > 0 and Π(0, 0)+Π(0, 1) = 1 yields a doubly robust

DiD estimator.

C.1.2 Cross-over designs

For a two-period cross-over design, (0, 1) and (1, 0) are the only two possible treatment as-

signments. Since the support of Π must contain at least two elements, it has to be S∗ =

{(1, 0), (0, 1)}. Then DATE equation reduces to

0 = (ξ1 − ξ2)
{

(Π(1, 0)−Π(0, 1))2 − (Π(1, 0) + Π(0, 1))
}
.
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When ξ1 6= ξ2, it implies that

0 = (Π(1, 0)−Π(0, 1))2 − (Π(1, 0) + Π(0, 1)) = (Π(1, 0)−Π(0, 1))2 − 1.

It never holds since Π(1, 0),Π(0, 1) > 0. By contrast, when ξ1 = ξ2 = 1/2, any Π with support

(1, 0) and (0, 1) is a solution.

C.1.3 Estimating equally-weighted DATE for general designs

When ξ1 = ξ2 = 1/2, the DATE equation reduces to

{Π(1, 1)−Π(0, 0)}{Π(1, 0)−Π(0, 1)} = 0⇐⇒ Π(1, 1) = Π(0, 0) or Π(1, 0) = Π(0, 1).

If S∗ = {(1, 1), (0, 0), (1, 0), (0, 1)} in Assumption 3.2, that is, when all combinations of treat-

ments are possible, the solutions are

(Π(1, 1),Π(0, 0),Π(0, 1),Π(1, 0)) = (a, a, b, 1− 2a− b), a > 0, 2a+ b < 1

or (Π(1, 1),Π(0, 0),Π(0, 1),Π(1, 0)) = (a, 1− a− 2b, b, b), b > 0, a+ 2b < 1.

The uniform distribution on S∗ is a solution, implying that the IPW weights deliver the average

effect in this case. If S∗ = {(1, 1), (0, 0), (0, 1)} (staggered adoption), we cannot make Π(1, 0)

and Π(0, 1) equal since the former must be zero while the latter must be positive. Therefore,

the solutions can be characterized as

(Π(1, 1),Π(0, 0),Π(0, 1)) = (a, a, 1− 2a), a ∈ (0, 1/2). (C.2)

Again, the uniform distribution on S∗ is a solution. However, we will show in the next section

that the uniform distribution is not a solution for staggered adoption designs with T ≥ 3.
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C.2 Staggered adoption with multiple periods

For staggered adoption designs, πi is supported on

Wsta
T , {w : w1 = . . . = wi = 0,wi+1 = . . . = wT = 1 for some i = 0, 1, . . . , T}.

For notational convenience, we denote by w(j) the vector in Wsta
T with j entries equal to 1 for

j = 0, 1, . . . , T . Thus, the support S∗ of Π must be a subset of Wsta
T . For general weights,

the DATE equation is a quadratic system with complicated structures. Nonetheless, when

ξ1 = . . . = ξT = 1/T , the solution set is an union of segments on the T -dimensional simplex

with closed-form expressions. We focus on the equally-weighted DATE in this section.

Theorem C.1. Let S∗ = {w(0),w(j1), . . . ,w(jr),w(T )} with 1 ≤ j1 < . . . < jr ≤ T −1. Then the

set of solutions of the DATE equation with support S∗ is characterized by the following linear

system:

Π(w(T )) = T−jr
T
−Π(w(jr)) + 1

T

∑r
k=1 jkΠ(w(jk))

Π(w(jk+1)) + Π(w(jk)) = jk+1−jk
T

, k = 1, . . . , r − 1

Π(w(0)) = 1−Π(w(T ))−
∑r

k=1 Π(w(jk))

Π(w) > 0 iff w ∈ S∗

(C.3)

Furthermore, the solution set of (C.3) is either an empty set or a 1-dimensional segment in the

form of {λΠ(1) + (1− λ)Π(2) : λ ∈ (0, 1)} for some distributions Π(1) and Π(2).

The proof of Theorem C.1 is presented in Appendix C.4.2. In the following corollary, we

show that the solution set with S∗ =Wsta
T is always non-empty with nice explicit expressions.

Corollary C.1. When S∗ =Wsta
T , the solution set of (C.3) is {λΠ(1) + (1−λ)Π(2) : λ ∈ (0, 1)}

where

• if T is odd,

Π(1)(w(T )) =
(T + 1)2

4T 2
, Π(1)(w(0)) =

T 2 − 1

4T 2
, Π(1)(wj) =

I(j is odd)

T
, j = 1, . . . , T−1,

and Π(2)(w(j)) = Π(1)(w(T−j)), j = 0, . . . , T ;
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• if T is even,

Π(1)(w(T )) = Π(1)(w(0)) =
1

4
, Π(1)(wj) =

I(j is odd)

T
, j = 1, . . . , T − 1,

and Π(2)(w(T )) = Π(2)(w(0)) =
T + 2

4T
, Π(2)(wj) =

I(j is even)

T
, j = 1, . . . , T − 1.

In particular, when T = 3 and S∗ =Wsta
T , the solution set is

{
(Π(w(0)),Π(w(1)),Π(w(2)),Π(w(3)) = λ

(
2

9
,
1

3
, 0,

4

9

)
+ (1− λ)

(
4

9
, 0,

1

3
,
2

9

)
: λ ∈ (0, 1)

}
.

(C.4)

Clearly, the uniform distribution on S∗ is excluded. Thus, although the RIPW estimator with a

uniform reshaped distribution is inconsistent, the non-uniform distribution (1/3, 1/6, 1/6, 1/3),

namely the midpoint of the solution set, induces a consistent RIPW estimator. For general T ,

it is easy to see that the midpoint is

Π(w(T )) = Π(w(0)) =
T + 1

4T
, Π(w(j)) =

1

2T
, j = 1, . . . , T − 1. (C.5)

This distribution uniformly assigns probabilities on the subset {w(1), . . . ,w(T−1)} while puts a

large mass on {w(0),w(T )}. Intuitively, the asymmetry is driven by the special roles of w(0) and

w(T ): the former provides the only control group for period T while the latter provides the only

treated group for period 1.

Corollary C.1 offers a unified recipe for the reshaped distribution when the positivity As-

sumption 3.2 holds for all possible assignments. In some applications, certain assignment never

or rarely occurs and we are forced to restrict the support of Π into a smaller subset S∗. To start

with, we provide a detailed account of the case T = 3. When j1 = 1, j2 = 2, (C.4) shows that

Π(w(0)),Π(w(3)) > 0, and thus S∗ must be Wsta
3 and cannot be {w(1),w(2)}, {w(0),w(1),w(2)},

or {w(1),w(2),w(3)}. When j1 = 1, r = 1, via some tedious algebra, the solution set of (C.3) is

{
(Π(w(0)),Π(w(1)),Π(w(2)),Π(w(3)) = λ (0, 1, 0, 0) + (1− λ)

(
1

3
, 0, 0,

2

3

)
: λ ∈ (0, 1)

}
. (C.6)

Thus, {w(0),w(1),w(3)} is the only support with j1 = 1, r = 1 that induces a non-empty solution
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set of (C.3). Similarly, we can show that the only support with j2 = 1, r = 1 that induces a

non-empty solution set as{
(Π(w(0)),Π(w(1)),Π(w(2)),Π(w(3)) = λ (0, 0, 1, 0) + (1− λ)

(
2

3
, 0, 0,

1

3

)
: λ ∈ (0, 1)

}
. (C.7)

In sum, Wsta
T ,Wsta

T \ {w(1)},Wsta
T \ {w(2)} are the only three supports with non-empty solution

sets, characterized by (C.4), (C.6), and (C.7), respectively.

For T = 3, {j1, . . . , jr} can be any non-empty subset of {1, 2}. Via some tedious algebra, we

can show that this continues to be true for T = 4. However, this no longer holds for T ≥ 5. For

instance, if {j1, . . . , jr} = {1, 2, 4, 5}, the second equation of (C.3) implies that

Π(w(1)) + Π(w(2)) = Π(w(4)) + Π(w(5)) =
1

T
, Π(w(2)) + Π(w(4)) =

2

T
.

Under the support constraint, the first two equations imply that Π(w(2)),Π(w(4)) < 1/T ,

contradicting with the third equation. Nonetheless, the contradiction can be resolved if any of

these four elements is discarded. If this is the case in practice, we can discard the element that

is believed to be the least likely assignment.

C.3 Other designs

In many applications, the treatment can be switched on and off at different periods for a single

unit. In general, a design is characterized by a collection of possible assignments Sdesign. If

any subset S∗ ⊂ Sdesign yields a non-empty solution set of the DATE equation, we can derive

a doubly robust estimator of the DATE. In this section, we consider several designs with more

than two periods which are not staggered adoption designs.

First we consider transient designs with zero or one period being treated and with each

period being treated with a non-zero chance, i.e.,

Wtra
T,1 =

{
w ∈ {0, 1}T :

T∑
t=1

wt ≤ 1

}
.

For notational convenience, we denote by w̃(0) the never-treated assignment and w̃(j) the as-

signment with only j-th period treated. The above design can be encountered, for example,
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when the treatment is a natural disaster. The following theorem characterizes all solutions of

the DATE equation for any ξ.

Theorem C.2. When S∗ = Wtra
T,1, Π is a solution of the DATE equation iff there exists b > 0

such that

Π(w̃(t))

{
1−Π(w̃(t))−

Π(w̃(0))

T

}
= ξtb, ∀t ∈ [T ].

In particular, when ξt = 1/T for every t, Theorem C.2 implies that Π ∼ Unif(Wtra
T,1) is a

solution. In fact, for any given Π(w̃0) ∈ (0, 1), Π is a solution if

Π(· |W 6= w̃(0)) ∼ Unif({w̃(1), . . . , w̃(T )}),

where W denotes a generic random vector drawn from Π. The above decomposition can be

used to construct solutions for more general transient designs:

Wtra
T,k =

{
w ∈ {0, 1}T :

T∑
t=1

wt ≤ k

}
.

This design is common in marketing experiments where, for example, k is the maximal number

of coupons given to a user and each user can receive coupons in any combination of up to k time

periods.

Theorem C.3. When S∗ = Wtra
T , Π is a solution of the DATE equation with ξt = 1/T (t =

1, . . . , T ), if

Π

(
· |

T∑
t=1

Wt = k′

)
∼ Unif(Wtra

T,k′ \Wtra
T,k′−1), k′ = 1, . . . , k,

C.4 Proofs

For notational convenience, denote by h(Π) = (h1(Π), . . . , hT (Π)) the left-hand side of the

DATE equation. We start by a simple but useful observation that, for any Π,

1>T h(Π) = EW∼Π

[
(1>T diag(W )− 1>T ξW

>)J(W − EW∼Π[W ])
]
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= EW∼Π

[
(W> −W>)J(W − EW∼Π[W ])

]
= 0. (C.8)

Thus, there is at least one redundant equation and for any matrix V ∈ RT×(T−1) with V >1T = 0,

h(Π) = 0⇐⇒ V >h(Π) = 0. (C.9)

C.4.1 Proof of equation (C.1)

Set V = (1,−1)> in (C.9). Then

V >h(Π) = 0⇐⇒ h1(Π)− h2(Π) = 0.

As a result,

0 = EW∼Π

((W1,−W2)− (ξ1 − ξ2)(W1,W2))

 1 −1

−1 1

W1 − EW∼Π[W1]

W2 − EW∼Π[W2]


= EW∼Π[(W1 +W2 − (ξ1 − ξ2)(W1 −W2))(W1 −W2 − EW∼Π(W1 −W2))]

= EW∼Π[W 2
1 −W 2

2 − (ξ1 − ξ2)(W1 −W2)
2]

− EW∼Π[W1 +W2 − (ξ1 − ξ2)(W1 −W2)]EW∼Π(W1 −W2)

= EW∼Π[W1 −W2 − (ξ1 − ξ2)(W1 −W2)
2]

− EW∼Π[W1 +W2 − (ξ1 − ξ2)(W1 −W2)]EW∼Π(W1 −W2)

= (Π(1, 0)−Π(0, 1))− (ξ1 − ξ2)(Π(1, 0) + Π(0, 1))

− {Π(1, 0) + Π(0, 1) + 2Π(1, 1)− (ξ1 − ξ2)(Π(1, 0)−Π(0, 1))} {Π(1, 0)−Π(0, 1)}

= (Π(1, 0)−Π(0, 1))− (ξ1 − ξ2)(Π(1, 0) + Π(0, 1))

− {1 + Π(1, 1)−Π(0, 0)− (ξ1 − ξ2)(Π(1, 0)−Π(0, 1))} {Π(1, 0)−Π(0, 1)} .

Rearranging the terms yields

{Π(1, 1)−Π(0, 0)}{Π(1, 0)−Π(0, 1)} = (ξ1−ξ2)
{

(Π(1, 0)−Π(0, 1))2 − (Π(1, 0) + Π(0, 1))
}
.
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(C.10)

C.4.2 Proof of Theorem C.1

Let ej denote the j-th canonical basis in RT . Then

hj(Π) = e>j EW∼Π

[
(diag(W )− ξW>)J(W − EW∼Π[W ])

]
.

We can decompose hj(Π) into hj1(Π)− ξjh2(Π) where

hj1(Π) = e>j EW∼Π [diag(W )J(W − EW∼Π[W ])] , h2(Π) = EW∼Π

[
W>J(W − EW∼Π[W ])

]
.

Then

hj1(Π) = EW∼Π

[
Wje

>
j J(W − EW∼Π[W ])

]
= EW∼Π

[
Wje

>
j JW

]
− EW∼Π

[
Wje

>
j J
]
EW∼Π[W ]

= EW∼Π

[
Wj

(
Wj −

1>TW

T

)]
− EW∼Π [Wj] e

>
j JEW∼Π[W ]

= EW∼Π

[
Wj

(
Wj −

1>TW

T

)]
− EW∼Π [Wj]EW∼Π

[
Wj −

1>TW

T

]
= EW∼Π[Wj]− (EW∼Π[Wj])

2 +
EW∼Π[Wj]EW∼Π[1>TW ]

T
− EW∼Π[Wj(1

>
TW )]

T
,

where the last equality follows from the fact that W 2
j = Wj. By (C.9), it is equivalent to find

Π satisfying

∆hj(Π) = hj+1(Π)− hj(Π) = 0, j = 1, 2, . . . , T − 1.

In this case, ξj+1 = ξj for any j, and thus,

h(j+1)1(Π)− hj1(Π) = 0, j = 1, 2, . . . , T − 1. (C.11)
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By definition,

Wj+1 −Wj = I(W = w(T−j)). (C.12)

As a consequence, we have

EW∼Π[Wj+1]− EW∼Π[Wj] = Π(w(T−j)),

(EW∼Π[Wj+1])
2 − (EW∼Π[Wj])

2 = Π(w(T−j))
2 + 2Π(w(T−j))EW∼Π[Wj],

and

EW∼Π[Wj+1(1
>
TW )]− EW∼Π[Wj(1

>
TW )]

= EW∼Π[I(W = w(T−j))(1
>
Tw(T−j))] = (T − j)Π(w(T−j)).

As a result,

h(j+1)1(Π)− hj1(Π)

= Π(w(T−j))

{
1−Π(w(T−j))− 2EW∼Π[Wj] +

EW∼Π[1>TW ]

T
− T − j

T

}
= Π(w(T−j))

{
j

T
−Π(w(T−j))− 2EW∼Π[Wj] +

EW∼Π[1>TW ]

T

}
. (C.13)

Let

gj(Π) =
T − j
T
−Π(w(j))− 2EW∼Π[WT−j] +

EW∼Π[1>TW ]

T
. (C.14)

Thus, (C.11) can be reformulated as

Π(w(j)) = 0 or gj(Π) = 0, j = 1, 2, . . . , T − 1. (C.15)
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Since S∗ = {w(0),w(j1), . . . ,w(jr),w(T )}, Π(w(jk)) > 0 for each k = 1, . . . , r. As a result, (C.15)

is equivalent to

gjr(Π) = 0, gjk(Π)− gjk+1
(Π) = 0, k = 1, . . . , r − 1. (C.16)

Note that

WT−jk = 1⇐⇒W ∈ {w(jk+1), . . . ,w(T )}.

The first equation is equivalent to

T − jr
T

−Π(w(jr))− 2Π(w(T )) +
1

T

(
r∑

k=1

jkΠ(w(jk)) + TΠ(w(T ))

)
= 0

⇐⇒ Π(w(T )) =
T − jr
T

−Π(w(jr)) +
1

T

r∑
k=1

jkΠ(w(jk)). (C.17)

By (C.12),

EW∼Π[WT−jk ]− EW∼Π[WT−jk+1
] = PW∼Π

(
W ∈ {w(jk+1),w(jk+2), . . . ,w(jk+1)}

)
= PW∼Π

(
W = w(jk+1)

)
= Π(w(jk+1)).

Therefore, the second equation of (C.15) can be simplified to

Π(w(jk+1)) + Π(w(jk)) =
jk+1 − jk

T
, k = 1, . . . , r − 1. (C.18)

Finally the simplex constraint determines Π(w̃(0)) as

Π(w(0)) = 1−Π(w(T ))−
r∑

k=1

Π(w(jk)). (C.19)

Clearly, Π(w(j1)) determines all other Π(W(jk))’s. Therefore, the solution set of (C.17) - (C.19)

is a one-dimensional linear subspace. The solution set of the DATE equation is empty if it has

no intersection with the set {Π : Π(w(jk)) > 0, r = 1, . . . , r}; otherwise, it must be a segment

which can be characterized as {λΠ(1) + (1− λ)Π(2) : λ ∈ (0, 1)}.
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C.4.3 Proof of Theorem C.2

Let η = (Π(w̃(1)), . . . ,Π(w̃(T ))) ∈ RT . Then the DATE equation can be equivalently formulated

as

T∑
j=1

(
diag(w̃(j))− ξw̃>(j)

)
J(w̃(j) − η)ηj = 0.

Since w̃(j) = ej, diag(w̃(j)) = eje
>
j and we can reformulate the above equation as

T∑
j=1

(ej − ξ) e>j J(ej − η)ηj = 0⇐⇒
T∑
j=1

fj(η)ej =

{
T∑
j=1

fj(η)

}
ξ.

where fj(η) = e>j J(ej − η)ηj. It can be equivalently formulated as an equation on η and a

scalar b:

T∑
j=1

fj(η)ej = bξ. (C.20)

This is because for any η that satisfies (C.20), multiplying 1>T on both sides implies that

b = b(ξ>1T ) =
T∑
j=1

fj(η).

Taking the j-th entry of both sides, (C.20) yields that

fj(η) = ξjb. (C.21)

By definition,

fj(η) = ηj
(
e>j Jej − e>j Jη

)
= ηj

(
1− 1

T
− ηj +

1

T

T∑
j=1

ηj

)
.
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Since Π should be supported on {w̃(0), w̃(1), . . . , w̃(T )},

T∑
j=1

ηj =
T∑
j=1

Π(w̃(j)) = 1−Π(w̃(0)).

Therefore, (C.21) is equivalent to

Π(w̃(j))

(
1−Π(w̃(j))−

Π(w̃(0))

T

)
= ξjb.

C.4.4 Proof of Theorem C.3

Let ‖w‖1 be the L1 norm of w, i.e., ‖w‖1 =
∑n

i=1wi. For given Π such that

Π (· | ‖w‖1 = k′) ∼ Unif(Wtra
T,k′ \Wtra

T,k′−1), k′ = 1, . . . , k,

By symmetry,

EW∼Π[W | ‖W ‖1] =
‖W ‖1
T

1T .

By the iterated law of expectation,

EW∼Π[W ] = E‖W ‖1 [EW∼Π[W | ‖W ‖1]] =
EW∼Π[‖W ‖1]

T
1T .

Since J1T = 0, the DATE equation with ξ = 1T/T reduces to

EW∼Π

[(
diag(W )− 1T

T
W>

)
JW

]
= 0.

We will prove the following stronger claim:

EW∼Π

[(
diag(W )− 1T

T
W>

)
JW | ‖W ‖1 = k′

]
= 0, ∀k′ = 1, . . . , k.

Conditional on ‖W ‖1 = k′,

JW = W − k′

T
1T , diag(W )W = W , W>W = W>1T = k′
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Thus,

EW∼Π

[(
diag(W )− 1T

T
W>

)
JW | ‖W ‖1 = k′

]
= EW∼Π

[(
diag(W )− 1T

T
W>

)(
W − k′

T
1T

)
| ‖W ‖1 = k′

]
= EW∼Π

[
W − k′

T
W − k′1T

T
+
k
′21T
T 2

| ‖W ‖1 = k′
]

= 0.

C.5 A general solver via nonlinear programming

For a general design Sdesign = {w̌(1), . . . , w̌(K)}, the DATE equation can be formulated as a

quadratic system. The j-th equation of DATE equation is

EW∼Π

[
(ejWj −W ξj)

TJ(W − EW∼Π[W ])
]

= 0, (C.22)

Let p = (Π(w̌(1)), . . . ,Π(w̌(K))) ∈ RT , A = (w̌(1), . . . , w̌(K)) ∈ RT×K , B(j) = (B
(j)
1 , . . . , B

(j)
K ) ∈

RT×K , and b(j) = (b
(j)
1 , . . . , b

(j)
K )> ∈ RK , where

B
(j)
k = J(ejw̌(k),j − w̌(k)ξj) ∈ RT , b

(j)
k = w̌>(k)B

(j)
k ∈ R.

It is easy to see that B(j) = J(eje
>
j − ξjI)A and b(j) = diag(A>B(j)). Then (C.22) can be

reformulated as

p>b(j) − p>(A>B(j))p = 0.

As a result, the DATE equation has a solution iff the minimal value of the following optimization

problem is 0:

min
T∑
j=1

{p>b(j) − p>(A>B(j))p}2, s.t., p>1 = 1,p ≥ 0. (C.23)
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We can optimize (C.23) via the standard BFGS algorithm, with the uniform distribution being

the initial value. When the minimal value with a given initial value is bounded away from

zero, we will try other randomly generated initial values to ensure a thorough search. If none

of the initial values yields a zero objective, we claim that the DATE equation has no solution.

Note that (C.23) is a nonconvex problem, the BFGS algorithm is not guaranteed to find the

global minimum. Therefore, it should be viewed as an attempt to find a solution of the DATE

equation instead of a trustable solver.

On the other hand, when the DATE equation has multiple solutions, it is unclear which

solution can be found. In principle, we can add different constraints or regularizers to (C.23)

in order to obtain a ”well-behaved” solution. For instance, it is reasonable to find the most

dispersed reshaped function to maximize the sample efficiency. For this purpose, we can find

the solution that maximizes mink Π(w̌(k)). This can be achieved by replacing the constraint

p ≥ 0 in (C.23) by p ≥ c1 and find the largest c for which the minimal value is zero by a binary

search.

D Aggregated AIPW estimator is not doubly robust

in the presence of fixed effects

We are not aware of other doubly robust estimators for DATE when the treatment and outcome

models are defined as in our paper. In the absence of dynamic treatment effects, it is tempting

to treat each period as a cross-sectional data, estimate the time-specific ATE τt by an aggregated

AIPW estimator, and aggregate these estimates. To the best of our knowledge, this estimator

has not been proposed in the literature. However, perhaps surprisingly, we show in this section

that the aggregated AIPW estimator is not doubly robust because of the fixed effect terms in

the outcome model.

Specifically, for time period t, the AIPW estimator for τt is defined as

τ̂t =
1

n

n∑
i=1

(
(Yit − Ê[Yit(1) |Xi])Wit

P̂(Wit = 1 |Xi)
− (Yit − Ê[Yit(0) |Xi])(1−Wit)

P̂(Wit = 0 |Xi)
+ Ê[Yit(1) |Xi]− Ê[Yit(0) |Xi]

)
.
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Then the aggregated AIPW estimator is defined as

τ̂AIPW =
1

T

T∑
t=1

τ̂t.

It is known that τ̂t is doubly robust in the sense that τ̂t is consistent if either P̂(Wit = 1) or

(Ê[Yit(1) | Xi], Ê[Yit(0) | Xi]) is consistent for all i and t. Importantly, the requirement on the

outcome model for the AIPW estimator is strictly stronger than that for the RIPW estimator;

the former requires both mit and the fixed effects to be consistently estimated while the latter

only requires mit to be consistent. It turns out that the extra requirement leads to tricky

problems of the AIPW estimator.

To demonstrate the failure of the AIPW estimator, we only consider the case with sample

size n = 1000 and a constant treatment effect to highlight that the failure is not driven by small

samples or effect heterogeneity. In particular, we consider a standard TWFE model

Yit(0) = αi + λt +mit + εit, mit = Xiβt, τit = τ,

where
∑n

i=1 αi =
∑T

t=1 λt = 0. The other details are the same as Section 5.1.

Both the RIPW and the aggregated AIPW estimators require estimates of the treatment

and outcome models. First, we consider a wrong and a correct treatment model:

• (Wrong treatment model): set π̂i(w) = |{j : Wj = w}|/n, i.e., the empirical distribution

of Wi’s that ignores the covariate;

• (Correct treatment model): set π̂i(w) = |{j : Wj = w, Xj = Xi}|/|{j : Xj = Xi}|, i.e.,

the empirical distribution of Wi’s stratified by the covariate.

With a large sample, π̂i in the second setting is a consistent estimator of πi. For the aggregated

AIPW estimator, we use the marginal distributions of π̂i as the estimates of marginal propensity

scores. Similarly, we consider a wrong and a correct outcome model:

• (Wrong outcome model): m̂it = 0 for every i and t;

• (Correct outcome model): run unweighted TWFE regression adjusting for interaction

between Xi and time fixed effects, i.e., XiI(t = t′) for each t′ = 1, . . . , t, and set m̂it = Xiβ̂t.
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With a large sample, the standard theory implies the consistency of β̂t, and hence m̂it ≈ mit.

Unlike the RIPW estimator, the aggregated AIPW estimator requires the estimate of full con-

ditional expectations of potential outcomes, instead of merely m̂it. In this case, a reasonble

estimate of the outcome model can be formulated as

Ê[Yit(0) | Xi] = α̂i + λ̂t +Xiβ̂t, Ê[Yit(1) | Xi] = Ê[Yit(0) | Xi] + τ̂ .

For short panels with T = O(1), the time fixed effects λt’s can be estimated via the standard

TWFE regression, which are known to be consistent. However, there is no way to consistently

estimate the unit fixed effect αi since only T samples Yi1, . . . , YiT can be used for estimation.

The central question is how to estimate αi for the aggregated AIPW estimator. Here we consider

three strategies:

(1) using the plug-in estimate of αi’s, even if they are inconsistent;

(2) pretending that αi does not exist and setting α̂i = 0;

Note that the first strategy cannot be used with cross-fitting because it is impossible to estimate

αi without using the i-th sample.

We then consider all four combinations of outcome and treatment modelling. Figure 6

presents the boxplots of τ̂ − τ for the three versions of AIPW, RIPW, and unweighted TWFE

estimator.

First, we can see that all estimators are unbiased when both models are correct and biased

when both models are wrong. As expected, the RIPW estimator is also unbiased when one

of the model is correct, and the unweighted estimator is unbiased when the outcome model

is correct. However, none of AIPW estimators are doubly robust: the AIPW estimator with

estimated fixed effects is biased when the treatment model is correct, and the AIPW estimator

that zeros out fixed effects with or without cross-fitting are biased when the outcome model is

correct.

The bias of AIPW estimator that zeros out the fixed effects can be attributed to biased

estimates of the outcome model despite including the covariates. The bias of the in-sample

AIPW estimator can be attributed to the dependence between the outcome model estimates

and the treatment assignment. In fact, when T is small, this dependence is nonvanishing no

matter how fixed effects are estimated. On the other hand, the AIPW estimator is valid under
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Figure 6: Boxplots of τ̂ − τ for the RIPW estimator, unweighted TWFE estimator, and the
three versions of AIPW: ”AIPW (w/ FE)” for the one fit on the entire data with estimated
fixed effects, ”AIPW (w/o FE)” for the one fit on the entire data with fixed effects zeroed out,
and ”AIPW+CF (w/o FE)” for the cross-fitted one with fixed effects zeroed out.

a correct treatment model but a wrong outcome model only when the outcome model estimate

is asymptotically independent of the assignments. In sum, there is no simple way to estimate

fixed effects to make the resulting aggregated AIPW estimator doubly robust.

E More details of the OpenTable dataset

We collect the variables from different sources.

• Daily state-level year-over-year percentage change in seated diners provided by OpenTable

[OpenTable] (outcome variable): https://www.opentable.com/state-of-industry.

• Indicator of whether the state of emergency has been declared [Perper et al.] (treatment

variable): https://www.businessinsider.com/

california-washington-state-of-emergency-coronavirus-what-it-means-2020-3.

• Daily state-level accumulated confirmed cases [Dong et al., 2020] (covariate): https:

//coronavirus.jhu.edu/.
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Variable Mean SD 1st quartile 3rd quartile

Reservation Diff. (in %) -8.89 14.94 -17.00 -1.00
Confirmed Cases 14.55 50.10 0.00 7.00
Vote Share 49.40 9.72 40.11 57.18
log(#Hospital Beds) 9.83 0.81 9.37 10.24

Table 4: Summary statistics.
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Figure 7: (Left) daily average of the reservation difference and confirmed cases. (Right)
histograms of number of hospital beds and vote share.

• Vote share of Democrats based on the 2016 presidential election data [MIT Election Data

and Science Lab, 2018](covariate): https://dataverse.harvard.edu/dataset.xhtml?

persistentId=doi:10.7910/DVN/VOQCHQ.

• Number of hospital beds [Zemel et al.](covariate): https://github.com/rbracco/covidcompare.

The summary statistics are reported in Table 4. We also plot the daily average of the

reservation difference and confirmed cases as well as the histograms of the other two variables

in Figure 7.

131

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/VOQCHQ
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/VOQCHQ
https://github.com/rbracco/covidcompare

