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Abstract

Economic data are often contaminated by measurement errors and trun-

cated by ranking. This paper shows that the classical measurement error model

with independent and additive measurement errors is identified nonparametri-

cally using only two order statistics of repeated measurements. The identifica-

tion result confirms a hypothesis by Athey and Haile (2002) for a symmetric

ascending auction model with unobserved heterogeneity. Extensions allow for

heterogeneous measurement errors, broadening the applicability to additional

empirical settings, including asymmetric auctions and wage offer models. We

adapt an existing simulated sieve estimator and illustrate its performance in

finite samples.
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1 Introduction

We consider the classical measurement error model with repeated measurements:

Xj = ξ + εj, j ∈ {1, . . . , n},

where the latent variable of interest ξ is measured n times with i.i.d. measurement

errors (εj)j=1,...,n that are independent of ξ. The identification result under such

a model is well-established when at least two repeated measurements are observed,

known as Kotlarski’s lemma. The result has been widely applied in econometrics since

its introduction by Li and Vuong (1998).1 In practice, the researcher may observe only

a subset of order statistics of the measurements, i.e., (X(j))j∈J , where X(j) is the j
th

smallest order statistic from a sample of size n and J ⊂ {1, . . . , n}. This paper shows
the underlying probability distributions of the latent variable and the measurement

errors are identified from the joint distribution of the ordered measurements (X(j))j∈J .

The problem took its shape in Athey and Haile (2002) as a nonparametric iden-

tification problem in ascending auctions, which has particular relevance in auctions

with electronic bidding. They conjecture that the model consists of enough struc-

ture to attain point identification using two order statistics. However, the question

has been long-standing for two decades.2 Importantly, the standard approach using

Kotlarski’s lemma fails because of dependence in the order statistics of measurement

errors. Further, as Athey and Haile (2002) point out, the attempt to difference out

the latent variable and exploit the spacing distribution is shown to be insufficient for

point identification. This is evidenced by Rossberg (1972)’s counterexample.

While the literature has documented the increasing importance of unobserved

heterogeneity in auctions,3 the lack of identification results in the existing literature

has hindered allowance for such heterogeneity in the classical fashion, unless relying

on additional external variations in the data.4 We fill this important gap by showing

1Examples include Bonhomme and Robin (2010), Krasnokutskaya (2011) and Grundl and Zhu
(2019). An outline of uses of Kotlarski’s lemma in econometrics is in Schennach (2016).

2Some positive findings are made recently in the finite mixture context; see Mbakop (2017) using
five order statistics, Luo and Xiao (2023) using two and an instrument and Luo et al. (2021) using
three. However, these papers do not tackle the original conjecture in the spirit of Kotlarski’s lemma.

3For example, see Aradillas-López et al. (2013), Krasnokutskaya (2011), and Li et al. (2000).
4For example, Hernández et al. (2020) use variation in the number of bidders across auctions.

Freyberger and Larsen (2022) circumvent the issue of dependence between order statistics using
observed reserve prices, rendering the identification problem classical.
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that the underlying distributions are identified with only data on two order statistics,

which need not be consecutive or extreme, without relying on extra variations.

We propose a new identification strategy that exploits both features in Kotlarski

(1967) and Rossberg (1972). In particular, we make use of within independence of the

latent variable and the additively separable measurement errors as in Kotlarski (1967)

to derive that the model imposes an additional restriction beyond the spacing of order

statistics.5 More precisely, we find that if two measurement error distributions both

rationalize the observed distribution of the ordered measurements, then the joint

distributions of spacing and cross-sum are identical.6 Exploiting the structure of

order statistics and commonly seen conditions (a support or tail restriction), we show

that the spacing in conjunction with this additional restriction is indeed sufficient to

point identify the underlying distribution using any two order statistics. The latent

variable distribution is subsequently identified by a standard deconvolution argument.

We extend our main result to the setting where measurement errors are indepen-

dent but nonidentically distributed (i.n.i.d.). We show that the underlying distribu-

tions are identified when two order statistics are observed, provided some measure-

ment errors are known to be identically distributed and the data consist of group

identities of high-order statistics. The result applies to asymmetric ascending auc-

tions, where only high-order dropout bids are recorded, and asymmetric first-price

auctions and wage offer settings, where consecutive and extreme order statistics are

observed.

The outline of the paper is as follows. Section 2 introduces two motivating exam-

ples and Section 3 presents the identification results. To complement the identification

result, in Section 4 we adapt Bierens and Song (2012)’s simulated sieve estimator to

consistently estimate the unknown distributions. Section 5 concludes.

2 Motivating Examples

To motivate the identification problem, we introduce two examples: an ascending

auction model with auction-specific unobserved heterogeneity and a model of wage

offers where wage is determined by worker-specific labor productivity. Throughout the

5The term spacing usually refers to the difference between two consecutive order statistics. Here,
we use it more broadly as the difference between any two order statistics.

6The term cross-sum refers to the sum of two order statistics of two independent random samples
from distinct underlying parent distributions.
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paper, we focus only on unobserved heterogeneity since adding exogenous covariates

does not require novel considerations.

Example 2.1 (Ascending auction). Consider an ascending auction with one indivis-

ible good and n bidders. Each bidder’s valuation for the item is determined by a set

of item features—summarized and denoted by ξ ∈ R—and a private value component

εj that is independent of ξ and across bidders. The valuation of bidder j is given by

Xj = ξ + εj. Note that the valuation of each bidder can be cast as a measurement of

the value ξ with measurement error εj. See, e.g., Athey and Haile (2002).

In an ascending auction, the price rises until only one bidder remains. Suppose the

auctioneer records prices P1 ≤ P2 ≤ · · · at which bidders drop out. Assuming that the

bidders play the dominant strategy of remaining in the auction until the price reaches

their valuations, the dropout bids reveal the ordered valuations of the bidders, i.e.,

Pj = X(j). Importantly, the highest valuation X(n) is never observed since the auction

ends when the price reaches Pn−1 = X(n−1), and the bidder with the highest valuation

wins. Therefore, in an ascending auction, we observe only an incomplete set of order

statistics on bidders’ valuations. For example, Kim and Lee (2014) observe at least

the three highest dropout prices in ascending used-car auctions; see also Larsen (2021)

for used-car auctions in the U.S. Data on timber auctions by the U.S. Forest Service—

analyzed in a number of empirical papers, e.g., Haile and Tamer (2003), Athey et al.

(2011), and Aradillas-López et al. (2013) to name a few—records at most top twelve

bids regardless of the number of bidders.

Both the distributions of ξ and εj are of interest in an empirical analysis of auc-

tions. For example, the counterfactual expected revenue to the auctioneer under a

hypothetical auction rule requires the knowledge of both distributions.

Example 2.2 (Wage offer determination). Consider a simple wage offer model Xj =

ξ+wj + εj where Xj is the j
th (log-)wage offer an individual receives. Xj is assumed

to be composed of the worker’s productivity ξ, the wage rate wj, and measurement

error εj (on, e.g., labor productivity) associated with the offer. It is assumed that the

period in consideration is relatively short such that the worker’s productivity remains

unchanged, but the worker may receive multiple offers; see Guo (2021).

Data from the Survey of Consumer Expectations (SCE) Labor Market Survey

records salary-related responses of up to three best job offers received by labor mar-

ket participants within the last four months. In this setting, the researcher observes
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X(n), . . . , X(n−k+1) where k = min{3, n} and n is the number of offers received. The

identification results in the current paper show that the distributions Fξ and Fwj+εj

are nonparametrically identified.

3 The Model and Main Results

In this section, we first formalize the i.i.d. framework considered throughout the paper

and provide sufficient conditions to identify the latent variable and measurement error

distributions. In Section 3.3, we consider i.n.i.d. measurement errors.

3.1 The Setup

We begin by stating the sampling process.

Assumption 3.1 (Sampling process). For each 1 ≤ j ≤ n, Xj := ξ + εj, where the

random variable ξ is independent of the random vector (ε1, . . . , εn).
7

The researcher observes (X(r), X(s)), the r
th and sth order statistics from n obser-

vations, where r, s, and n are known and 1 ≤ r < s ≤ n. That is, while the total

number of measurements is known, one only observes two measurements of known

ranks. In this section, we identify the unknown distributions of ξ and (ε1, . . . , εn)

using FX(r,s)
, the joint distribution of (X(r), X(s)), which is estimable from a random

sample of the two order statistics.

For the benchmark case, we make the following distributional assumptions.

Assumption 3.2 (i.i.d. errors).

(a) ε1, . . . , εn are i.i.d. with a common distribution Fε on R.
(b) Fε is absolutely continuous with a probability density function fε that is light-

tailed, i.e., for some C > 0, fε(ϵ) = O(e−C|ϵ|) as |ϵ| → ∞.

The tail condition in Assumption 3.2(b) is trivially satisfied when the support is

bounded. If the support is unbounded on either side, the assumption restricts the tail

of the density function to decay at an exponential rate.8 The same assumption is found

7The identification results herein also applies to a setting with multiplicatively separable mea-
surement error by taking logs when ξ and εj ’s are positive, as in Example 2.2.

8Throughout the paper, we use the term “light-tailed” to refer to densities with exponentially
decaying tails as stated in the assumption.
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in Evdokimov and White (2012). Alternatively, as in Kotlarski (1967) and Miller

(1970), we may assume Fε has a characteristic function (ch.f.) that is either (a.e.-

)nonvanishing or analytic. Assumption 3.2(b) is a sufficient condition for the ch.f. of

Fε to be analytic. To our knowledge, there exists no result regarding its implication

on the joint ch.f. of order statistics, the property we need for our identification results.

Lemma A.1 in Appendix A shows that the joint ch.f. of the order statistics (ε(r), ε(s))

(and thus its marginals) is also analytic under this assumption.

In addition to Assumption 3.2, we further restrict the support of the measurement

errors as follows. For any distribution F on R, let S(F ) ⊆ R denote its support.9

Assumption 3.3 (Support condition). The measurement errors are bounded from

below, which is normalized to zero, i.e., inf S(Fε) = 0.

Two aspects are worth mentioning regarding the above assumption. First, we

require the measurement error to be bounded at one end; nevertheless, we allow the

support to be possibly unbounded from above.10 We do not assume the upper bound

of the support is known nor assume any additional structure on the support, e.g.,

connectedness. Second, as is typical with measurement error models, the underly-

ing distributions are identified only up to location. Although one may alternatively

normalize the mean and have an unknown but finite lower bound, normalizing the

lower bound turns out to be more convenient for our identification argument. Our

identification strategy heavily utilizes the condition that one boundary of the support

of Fε is finite. On the other hand, the distribution of ξ is left completely unspecified.

The support restriction is nonrestrictive in many applications. The literature on

games with incomplete information typically assumes bounded support of agent types

(Athey (2001)), such as bidder valuation in empirical auctions (Guerre et al. (2000),

Athey and Haile (2007)), private costs of exerting efforts in contest games (Huang and

He (2021)), and private information about variable costs in Cournot games (Aryal and

Zincenko (2021)). Observed wage offers are also bounded below by a positive constant

in job search models (Burdett and Mortensen (1998), Guo (2021)), for example, when

there is a reservation wage or a minimum wage that is nonbinding for the population

of interest.
9The support of F is defined as the smallest closed set K ⊆ R such that PF (K) = 1, where PF

is the Borel probability measure induced by F . Thus, the density f(x) may be zero for some values
x ∈ K, including points on the boundary of K.

10The results herein apply to the case when only the upper bound is finite, e.g., S(Fε) = (−∞, 0],
by considering (X ′

(r′), X
′
(s′)) = (−X(s),−X(r)) where r′ = n− s+ 1 and s′ = n− r + 1.
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3.2 Nonparametric Identification

Throughout the section, we treat the observable joint distribution FX(r,s)
as known

(i.e., as a datum), and show that the distribution Fξ of the latent variable ξ and Fε are

identified under the aforementioned assumptions. The bulk of our identification re-

sult is concerned with showing that there is a unique measurement error distribution

that rationalizes the observed distribution FX(r,s)
. Then the latent variable distri-

bution is identified by a standard deconvolution argument. To focus on identifying

the measurement error distribution, we first isolate the empirical content about the

measurement errors.11 In Lemma 3.1 below, we do so by exploiting the multiplicative

structure of the ch.f. of a sum of independent random variables.

In the following lemmas, let η1, . . . , ηn be n i.i.d. copies of η ∈ R and let (η(r), η(s))

be order statistics. ψη(r,s) and ψη(r) denote the joint and marginal ch.f., respectively.

Lemma 3.1. Suppose the sampling process is as described in Assumption 3.1 and

the measurement errors satisfy Assumption 3.2. If F (on R) is a data-consistent

measurement error distribution,12 then

ψX(r,s)
(tr, ts)

ψX(j)
(tr + ts)

=
ψη(r,s)(tr, ts)

ψη(j)(tr + ts)
, for all (tr, ts) ∈ B0, j ∈ {r, s}, (1)

where η ∼ F and B0 is an open ball in R2 centered at zero. Further, F induces a

unique data-consistent latent variable distribution.

Suppose F andG are two measurement error distributions that are data-consistent.

Lemma 3.1 states that the order statistics (η(r), η(s)) from the parent distribution F

and (η′(r), η
′
(s)) from the parent distribution G must have the same ratio of joint and

marginal ch.f.s.

To obtain identification, it remains to show that such a measurement error dis-

tribution is unique, i.e., F = G. Lemma 3.1 implies that any two data-consistent

11In the existing literature that expands on Kotlarski (1967), the prevalent identification strategy
is to begin with identifying the distribution of the latent variable. Nonetheless, alternative strate-
gies that begin with identifying the measurement error distribution exist in the classical repeated
measurement error setting; see, e.g., Hall and Yao (2003) and Evdokimov and White (2012).

12We say a pair of distribution functions (Gξ, Gε) rationalizes the data, or is data-consistent, if
ξ′ ∼ Gξ and (ε′j)j=1,...,n ∼ ×n

j=1Gε, independent of ξ′, implies (ξ′ + ε′(r), ξ
′ + ε′(s)) =d (X(r), X(s)).

We say Gξ (resp., Gε) is data-consistent if (Gξ, Gε) is data-consistent for some Gε (resp., Gξ).
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measurement error distributions must satisfy

ψη(r,s)(tr, ts)ψη′
(j)
(tr + ts) = ψη′

(r,s)
(tr, ts)ψη(j)(tr + ts), j ∈ {r, s}, (2)

for all (tr, ts) ∈ B0. In fact, the equality extends to all of R2 because all ch.f.s in

(2) are analytic.13 Finally, noticing that the ch.f. of the sum of two independent ran-

dom vectors is multiplicatively separable, the following lemma establishes necessary

conditions for any two data-consistent measurement error distributions.

Lemma 3.2. Let η(r) and η(s) be two order statistics of a random sample of size n

from F , and η′(r) and η
′
(s) be two order statistics of a random sample of size n from G,

where (η(r), η(s)) and (η′(r), η
′
(s)) are independent. Under Assumptions 3.1, if F and G

(on R) are two data-consistent measurement error distributions that admit light-tailed

densities,14 then

Z1j :=

(
η′(j) + η(r)

η′(j) + η(s)

)
d
=

(
η(j) + η′(r)
η(j) + η′(s)

)
=: Z2j, j ∈ {r, s}. (3)

The lemma shows that if F and G are two data-consistent measurement error

distributions, then the two surrogate measurement error models in (3) are observa-

tionally equivalent, where Z1j is order statistics of measurements of η′(j) with errors

ηi’s from parent distribution F and Z2j is order statistics of measurements of η(j) with

errors η′i’s from parent distribution G. As stated below in Corollary 3.1, the lemma

has an important implication: F and G not only have the same spacing distributions

(i.e., η(s) − η(r) =d η
′
(s) − η′(r)) but also have the same distributions for what we call

cross-sums (i.e., η′(s) + η(r) =d η(s) + η′(r)). The latter information is not exploited in

the classical setting; however, it turns out to be relevant information for identification

when only order statistics of measurements are observed.

Because both Z1r and Z2r involve three order statistics from two potentially differ-

ent parent distributions F and G, it appears difficult to show directly from Lemma 3.2

that F and G are the same. A reasonable attempt to tackle the problem would be to

13Lemma A.1 shows that order statistics from light-tailed parent densities have analytic joint
(and thus marginal) ch.f. Since the product of two analytic functions is also analytic, (2) shows that
two analytic functions coincide on an open ball B0 in R2, which implies they coincide everywhere.
Thus Assumption 3.2(b) plays a crucial role in pinning down the entire distribution based only on
the information of the ch.f. about the origin.

14Cf. Assumption 3.2(b) and footnote 8.
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explore features of Z1r and Z2r that depend on the parent distributions in a simple

manner. Under the support condition in Assumption 3.3, we show that the distri-

butions of Z1r and Z2r depend on only one parent distribution upon conditioning

on an extreme event.15 Thus the joint distribution of the cross-sum and spacing to-

gether with Assumption 3.3 provide information that is sufficient to claim any two

data-consistent measurement error distributions are the same, i.e., Fε is identified.

Lemma 3.3. Let η(r), η(s), η
′
(r) and η

′
(s) be as specified in Lemma 3.2. If measurement

error distributions F and G admit light-tailed densities and inf S(F ) = inf S(G) = 0,

we have, for all c ∈ R,

lim
δ↓0

P(η′(r) + η(s) ≤ c | η′(r) + η(r) ≤ δ) = Fs−r:n−r(c), (4)

lim
δ↓0

P(η(r) + η′(s) ≤ c | η(r) + η′(r) ≤ δ) = Gs−r:n−r(c), (5)

where Fs−r:n−r (resp., Gs−r:n−r) denotes the distribution of the (s−r)th order statistic

of a random sample of size n− r from F (resp., G).

For the sake of intuition, consider a simple variant of (4) that conditions on the

event {η′(r) + η(r) = 0}, assuming the conditioning is well-defined.16 This event is

equivalent to that where both η′(r) = 0 and η(r) = 0, which simplifies the conditional

distribution to P(η(s) ≤ c | η(r) = 0). Standard arguments in order statistics (cf. The-

orem 2.4.2 in Arnold et al. (2008)) suggest that this conditional distribution has a

simple form:

P(η(s) ≤ c | η(r) = 0) = Fs−r:n−r(c).

In words, this equality says that the conditional distribution of the sth order statistic

when r observations take the lowest possible value is the same as the distribution of

the (s− r)th order statistic obtained from a sample of size n− r.

Lemmas 3.1–3.3 show that if F and G are both data-consistent, then the condi-

15The identification argument here and below investigates the implications of the condition Z1r =d

Z2r only. Z1s =d Z2s in (3) is the relevant condition to exploit under the assumption, in place of
Assumption 3.3, that the measurement error is bounded from above (cf. footnote 10).

16The event {η′(r) + η(r) = 0} may not be well-defined as it occurs with zero probability. In

particular, the event {η(r) = 0} always has zero density unless r = 1, i.e., the minimum order
statistic. Further, if f(0) = 0 where f is the density of η, even the minimum order statistic has zero
density at η(r) = 0. In Lemma 3.3, we make rigorous the intuitive claim provided here by considering
the limiting argument as in (4) and (5), which is well-defined.
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tional distributions (4) and (5) must be equal, i.e., for all c ∈ R,

Fs−r:n−r(c) = Gs−r:n−r(c).

As the distribution of an order statistic uniquely identifies the parent distribution,

we can conclude that F = G.17 We formally state the main identification result for

the i.i.d. case.

Theorem 3.1. Under Assumption 3.1, if the measurement errors satisfy Assump-

tions 3.2 and 3.3, both Fξ and Fε are identified.

A Discussion on Rossberg (1972)’s Counterexample

Athey and Haile (2002) point out that exploiting the distribution of spacing between

two order statistics is insufficient to point identify their parent distribution. Their

discussion relies on a counterexample by Rossberg (1972). A straightforward corollary

to Lemma 3.2 highlights the model restrictions we exploit in addition to the spacing.

Corollary 3.1. Under the same assumptions as in Lemma 3.2, if F and G are two

data-consistent measurement error distributions that admit light-tailed densities, then(
η(s) − η(r)

η′(r) + η(s)

)
d
=

(
η′(s) − η′(r)
η(r) + η′(s)

)
and

(
η(s) − η(r)

η(r) + η′(s)

)
d
=

(
η′(s) − η′(r)
η′(r) + η(s)

)
.

If F and G are two data-consistent measurement error distributions, then they

have the same spacing and cross-sum distributions. In the classical setting, the dif-

ference (i.e., spacing) between two independent measurement errors identifies the

underlying measurement error distribution (cf. Hall and Yao (2003)). However, in

the current context, the spacing between two order statistics of measurement errors

is insufficient to identify the underlying (parent) distribution as evidenced by Ross-

berg (1972)’s counterexample. The additional information we incorporate in order to

obtain identification lies in the cross-sums, a condition which emerges from exploiting

the within independence between the latent variable and measurement errors when

we take the ratio of ch.f.s. Combining the information contained in spacing as inves-

tigated by Rossberg (1972) and the information contained in within independence as

17The one-to-one mapping between the distribution of an order statistic and the parent distribu-
tion is a standard result, e.g., see David and Nagaraja (2003), p.10, (2.1.5). The mapping in (2.1.5)
is an invertible map of the c.d.f. F because p 7→ Ip(a, b) is strictly monotone.
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investigated by Kotlarski (1967) thus delivers the current identification result. The

difference between Rossberg (1972)’s nonidentification result and our identification

result is explained in more detail in Appendix B.

3.3 Extensions of the Identification Result

We extend our identification result to the case of independent but nonidentically

distributed (i.n.i.d.) measurement errors. To motivate the extension to the problem,

we expand on Example 2.1 by introducing bidder asymmetry and discuss additional

features available in some auction data.

Example 3.1 (Asymmetric auction). In empirical auctions, bidders are said to be

asymmetric if the bidders’ private values ε1, . . . , εn have different marginal (or parent,

in the case of order statistics) distributions. Such asymmetry arises naturally in

procurement auctions, where contractors differ in cost efficiency and productivity (see,

e.g., Flambard and Perrigne (2006)), and in timber auctions, where mills have the

manufacturing capacity and loggers do not (see, e.g., Athey et al. (2011)).18

In order to identify bidder-specific valuation distributions, bidder identities must

be observable. Fortunately, the auctioneer often publishes such identities despite some

bids being missing; see, e.g., Athey et al. (2011). Another common practice in the

asymmetric auction literature is grouping bidders by commonly known bidder types,

such as mills and loggers in Athey et al. (2011) and strong and weak bidders in Luo

et al. (2018), which leads to more tractable theory and empirics. Such grouping uses

additional information about the bidders, typically available as a public record, such

as bidders’ manufacturing capacity in a timber auction and pre-qualified contractors’

experience in Department of Transportation procurement auctions.

In this section, we first show that any two order statistics suffice to point identify

the underlying distributions when there are a relatively small degree of heterogeneity

in measurement errors and some membership information about them. In particular,

as a cost of relaxing the homogeneity assumption, we require observing membership

information about measurement errors that correspond to high-order statistics (for

ranks above r). We then discuss the implication of the result for measurement errors

that are completely heterogeneous.

18In a wage offer setting as in Example 2.2 employers may value the same productivity differently,
which may result in heterogeneous measurement errors.
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Assumption 3.4 (i.n.i.d. errors).

(a) ε1, . . . , εn are independent with distributions Fε1 , . . . , Fεn on R, respectively.
(b) For each j ∈ {1, . . . , n}, Fεj admits a probability density function fεj that is

light-tailed, i.e., fεj(ϵ) = O(e−Cj |ϵ|) as |ϵ| → ∞ for some Cj > 0.

(c) For each j ∈ {1, . . . , n}, inf S(Fεj) = 0.

Assumption 3.4(c) assumes both finite and common support lower bound across

distinct measurement error distributions, the latter of which holds trivially in the

i.i.d. case. Note that apart from the lower boundary, the supports may differ (cf. Corol-

lary 3.2). The following assumption records any prior information on the different

types of measurement errors, including an additional support condition.

Assumption 3.5 (Group structure). There exists a partition g1, . . . , gp of {1, . . . , n}
such that εj =d εk if j, k ∈ gq for some q ∈ {1, . . . , p}. In addition, the measurement

errors ε1, . . . , εn have common support.

Assumption 3.5 posits there are at most p distinct measurement error distribu-

tions. The case p = 1 corresponds to the i.i.d. case in Section 3.2; and p = n

corresponds to the case with no prior information on homogeneity. We do not pre-

clude the possibility that two groups gq and gq′ have the same distribution beyond the

researcher’s knowledge. For example, the extreme case p = n subsumes the i.i.d. set-

ting as a special case. Assumption 3.5 implicitly assumes that the group structure

is held constant across observations. In an application to auctions, the assumption

may be imposed by restricting to auctions with the same composition of bidder types

when all bidder types of participants are available in the dataset. In such a case, the

analysis should be interpreted conditionally on the bidder composition.

The common support assumption is a sufficient condition to guarantee that all

measurement error distributions are identified on the entirety of their support. Oth-

erwise, some distributions may be identified only on a strict subset of their support,

as we highlight in a discussion below. Let R(j) = {q : X(j) = Xk for some k ∈ gq} be

the group identity of the jth order statistic.19

Theorem 3.2. Suppose Assumptions 3.1, 3.4, and 3.5 hold. Further, suppose two or-

der statistics and the group identities of high-order statistics (X(r), X(s), R(r+1), . . . , R(n))

19Under Assumption 3.4(b), R(j) is singleton with probability 1. Thus, we abuse notation and
use R(j) to denote both the set and the a.s. unique element in {1, . . . , p}.
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are observed. If there exists a group gq with at least n − r members, both Fξ and

(Fεj : j = 1, . . . , n) are identified.

Note that the identification result does not require the researcher to observe the

group identity R(r) of the rth order statistic or those of lower order statistics. A

heuristic explanation is provided in a discussion below. Theorem 3.2 has an important

implication when the measurement errors are left completely heterogeneous, i.e., p =

n. In particular, the theorem implies that the observed order statistics should be

consecutive and extreme because there is no group of a larger size, i.e., n− r = 1.20

Corollary 3.2. Suppose Assumptions 3.1 and 3.4 hold, and (X(n−1), X(n), R(n)) are

observed. Both Fξ and (Fεj : j = 1, . . . , n) are identified.

So as to appreciate the additional conditions assumed in Theorem 3.2, we first

illustrate the identification strategy in the setting of Corollary 3.2, which delivers a

simpler argument. Suppose results similar to Lemmas 3.1–3.3 hold in the i.n.i.d. case,

in the sense that two sets of data-consistent measurement error distributions (Fj :

j = 1, . . . , n) and (Gj : j = 1, . . . , n) must satisfy

P(η(n) ≤ c | η(n−1) = 0) = P(η′(n) ≤ c | η′(n−1) = 0), (6)

for every constant c. Had the measurement errors been i.i.d., (6) corresponds the

equivalence of two parent distributions. In the i.n.i.d. case, the top-order statistic

may arise from any of the parent distributions. Intuition suggests that this should be

a mixture of measurement errors from different parent distributions. Since the mixing

weights depend on (Fj : j = 1, . . . , n), it appears formidable to show its equivalence

with (Gj : j = 1, . . . , n) from (6) without additional assumptions. Alternatively,

suppose—as we formally show in the proof of Theorem 3.2—data-consistency implies

a condition similar to (6) conditional on the member index of the highest order

statistic. Heuristically speaking, because the index is known, say j, the conditional

distribution simplifies to the jth marginal distribution (i.e., a mixture with trivial

weights). Thus Fj = Gj and the jth measurement error distribution is identified.

Under the assumption of a common support lower bound, each measurement error

has a nonzero chance of being the largest, which implies all n measurement error

distributions are identified.
20The support condition in Assumption 3.5 plays no role in this corollary because the observed

order statistics are the largest among all measurement errors.
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Corollary 3.2 does not grant identification of an ascending auction model when the

data on dropout bids is incomplete; e.g., see Freyberger and Larsen (2022). Nonethe-

less, a group structure as in Theorem 3.2 is commonly present in the empirical auction

literature. Since Theorem 3.2 does not rely on observing extreme or consecutive order

statistics, the result may be applicable even if the bid data is incomplete.

To illustrate the identification strategy in the setting of Theorem 3.2, suppose out

of n = 4 measurements, one observes (X(2), X(3), R(3), R(4)) and it is known a priori

that two of the measurement errors have a common distribution (call it group 1 and

the other groups 2 and 3). By conditioning on the event that {R(3) = R(4) = 1}, we
can homogenize the conditional distribution of the 3rd-order statistic of measurement

errors conditional on the 2nd-order statistic taking the smallest possible value, which

allows us to identify the measurement error distribution for group 1. This rests on

(i) being able to observe the group identities and (ii) group 1 being large enough to

condition on such an event. Provided the measurement errors have a common support,

the remaining group distributions can be identified sequentially. For example, the

group-2 distribution can be identified by conditioning on {R(3) = 2, R(4) = 1}.21

Remark 3.1. Corollary 3.2 has natural applications in first-price auctions and wage

offer settings, where consecutive and extreme order statistics are common and identi-

ties are observed. For instance, the Washington State Department of Transportation

archives three apparent low bids and bidder identities of six months or older online.

FDIC auction data contain the winning and second-highest bids and the associated

identities (Allen et al. (2023)). U.S. Forest Service timber auctions only record up

to top twelve bids and bidder identities regardless of the number of bidders. Lastly,

data from the Survey of Consumer Expectations (SCE) Labor Market Survey records

salary-related responses on the three best offers for those who received more than three

offers within the last four months.

Remark 3.2. If all dropout bids are observed, Corollary 3.2 is applicable to ascending

auctions. Specifically, if private values have a common upper bound, i.e., supS(Fεj) =

ε < +∞, the lowest order statistics (X(1), X(2)) identify the underlying distributions.

21If one measurement error has larger support than another, the distribution may not be fully
identified. If group-1 measurement errors have support [0, 1] but group 2 has support [0, 2], regardless
of whether one conditions on {R(3) = 1, R(4) = 2} or {R(3) = 2, R(4) = 1}, the 3rd-order statistic
only has support [0, 1]. Thus group-2 measurement error distribution is not identified on (1, 2].
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4 Nonparametric Estimation

We propose a simulated sieve estimator under the i.i.d. measurement error framework,

which can be easily modified for the i.n.i.d. case, albeit with the curse of dimension-

ality. The procedure, motivated by the sieve estimator in Bierens and Song (2012),

estimates the distribution functions of the latent variable and of the measurement

error simultaneously.22 For a general survey of the method of sieves, see Chen (2007).

4.1 A Simulated Sieve Estimator

We follow closely the development in Bierens (2008) to specify the parameter space

and its sieve space. It has the advantage that we can incorporate prior information

on the support without having to choose different orthogonal bases. This is an attrac-

tive feature for our purpose because, unlike the latent variable ξ, the measurement

errors are restricted to be nonnegative-valued. The sieve space is constructed using

only Legendre polynomials instead of using, e.g., Hermite polynomials for the latent

variable and Laguerre polynomials for the measurement errors.

The construction of the sieve space begins with the observation that any absolutely

continuous c.d.f. F on R can be expressed as F (·) = (H ◦ G)(·) where H is an

absolutely continuous c.d.f. on [0, 1] and G is an absolutely continuous c.d.f. that is

strictly increasing on S(F ). Equivalently,

F (·) =
∫ G(·)

0

h(u) du =

∫ G(·)

0

π2(u) du, (7)

where h = π2 is the density of H and π is a Borel-measurable square-integrable

function on [0, 1]. Thus, e.g., with a fixed G with support S(G) = [0,∞), a large

enough set P of Borel-measurable square-integrable functions maps via (7) to a large

enough set of distribution functions with support contained in [0,∞).

The sieve space is constructed by using orthonormal polynomials to approximate

π. Bierens (2008) considers the following compact set of square-integrable functions

P :=

{
π(·) = 1 +

∑∞
ℓ=1 δℓρℓ(·)√

1 +
∑∞

ℓ=1 δ
2
ℓ

: |δℓ| ≤
c

1 +
√
ℓ ln ℓ

, ℓ = 1, 2, . . .

}
, (8)

22Two-sample approach in Carroll et al. (2010) does not apply to our setting in which one latent
variable is measured with correlated measurement errors.
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for some large constant c > 0, where ρk, defined on [0, 1], is a recentered and rescaled

Legendre polynomial of order k: if ℓk is a Legendre polynomial of order k on [−1, 1],

then ρk(u) :=
√
2k + 1ℓk(2u − 1) for u ∈ [0, 1] (see Section 2.2 in Bierens (2008)).

This implicitly defines a compact parameter space F for the unknown c.d.f. F by (7)

for some fixed G and π ∈ P . The sieve {Fk}k is constructed by truncating the series

in (8) at order k. Since we estimate two distribution functions Fξ and Fε, we consider

a product sieve space {F ξ
k ×F ε

k}k for two choices of G, denoted Gξ and Gε.

As Bierens (2008) notes, the c.d.f. G not only restricts the support but also acts

as an initial guess of the unknown c.d.f.23 With prior information on the shape of the

distribution functions, an educated initial guess helps reduce the approximation error

resulting from low-order sieve spaces. Without any prior information, one clearly

cannot expect any a priori advantage to choosing a particular distribution. In light

of the often-used standard, Hermite, and Laguerre polynomial sieves, it may be rea-

sonable to choose a uniform distribution if the support is known to be contained in a

bounded interval, a normal distribution if one is agnostic about the support, and an

exponential distribution if the support is known to be contained in [0,∞).

We consider a sieve extremum estimator that minimizes the average (squared)

contrast between two empirical ch.f.s: one based on the factual sample and the other

based on simulated draws. The population criterion function is devised as follows.

For any candidate pair of distribution functions F = (Fξ, Fε), let

X(r,s)(F ) = (X(r)(F ), X(s)(F )) := (ξ(Fξ) + ε(r)(Fε), ξ(Fξ) + ε(s)(Fε)),

where ξ(Fξ) is a random draw from Fξ and ε(j)(Fε) is the jth order statistic of n

i.i.d. draws from Fε. For any t = (tr, ts) ∈ R2, let φ(t;F ) := Eeit⊤X(r,s)(F ) denote its

ch.f. where the expectation is induced by the (n+1) uniform draws in the simulation

process described below. We consider the following population criterion function:

Q(F ) :=
1

4κ2

∫
1
{
t ∈ (−κ, κ)2

} ∣∣∣ψX(r,s)
(t)− φ(t;F )

∣∣∣2 dt, (9)

23The flexibility of choosing a base distribution G in Bierens (2008) is more a norm than an
exception in nonparametric methods using orthogonal bases. The standard polynomial sieve on the
unit interval may be seen to have the uniform distribution as an initial guess. The Hermite and
Laguerre polynomial sieves take normal and exponential distributions as initial guesses, respectively.
While these “initial guesses” are determined naturally by the weight function associated with the
orthogonal bases, the construction in Bierens (2008) allows for an explicit choice by the researcher.
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where κ > 0 is a tuning parameter that determines the integration region. In place

of the box weight 1{(tr, ts) ∈ (−κ, κ)2}, one may also consider a smooth weight. We

choose the former because it has a closed-form expression for the empirical criterion

function (see Appendix C).24 We define a simulated sieve extremum estimator:

F̂N := (F̂ξ,N , F̂ε,N) ∈ argmin
F∈Fξ

kN
×Fε

kN

Q̂N(F ), (10)

where {kN} is an arbitrary sequence of positive integers such that kN → ∞ and

Q̂N(F ) is the empirical criterion function with the empirical ch.f. ψ̂N and the sim-

ulated ch.f. φ̂N(·;F ) in place of ψX(r,s:n)
and φ(·;F ), respectively. φ̂N(·;F ) is con-

structed from N repeated draws of (n+ 1) uniform random variables (V, U1, . . . , Un)

and computing the inverse transform X(j)(Fk) = F−1
ξ,k (V ) + F−1

ε,k (U(j)) for j ∈ {r, s}.
We show that the estimator is consistent under the following set of assumptions.

Assumption 4.1 (Consistency).

(a) {(X(r),i, X(s),i)}i=1,...,N are N i.i.d. realizations of (X(r), X(s)), where (X(r), X(s))

has a bounded support.

(b) Gξ and Gε are known absolutely continuous c.d.f.s with support on R and [0,∞),

respectively.

(c) Given Gξ and Gε in part (b), the pair of true underlying distributions (Fξ, Fε)

is in the closure of
⋃

k F
ξ
k ×F ε

k .

(d) {(Vi, U1,i, . . . , Un,i)}i=1,...,N are N i.i.d. draws from U(0, 1)n+1, independent of

the sampling process.

The support restriction in Assumption 4.1(a) is a sufficient condition to ensure

that the measurement errors have light tails. Despite being restrictive, this appears

to be the most straightforward assumption to impose on the observables to guarantee

identification.25 Note that the researcher does not have to know a priori the true

support of the observables, nor the implied bounded supports for Fξ and Fε.

24While a data-driven choice of κ (as well as the polynomial order kN in Theorem 4.1 below)
may be of interest, we do not explore its possibility here.

25Note that as remarked in Section 3, one may consider alternatives to Assumption 3.2(b), e.g.,
(a.e.-)nonvanishing or analytic ch.f.s, and still achieve the same identification result. Thus, one
may also consider estimating the ch.f.s over a space of analytic functions and then estimate the
densities via inverse Fourier transform. Clearly, various other estimation methods can be consid-
ered. For example, one may consider a sequential approach where one estimates the measurement
error distribution via (1) in the first stage and then estimate the latent variable distribution us-
ing nonparametric deconvolution in the second stage. Alternatively, one may consider estimating
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Assumption 4.1(b) restricts the support of the base distribution for Fε to be in

line with the normalization in Assumption 3.2(b). Assumption 4.1(c) is a standard

assumption that the model is correctly specified. Assumption 4.1(d) specifies the

simulation process. Note that the random draws (Vi, Uj,i)j,i are obtained once and

not repeatedly drawn across different candidate parameter values Fξ,k and Fε,k in order

to ensure that the criterion function is continuous with respect to the parameter.

Theorem 4.1. Let κ > 0 and let {kN}N be any sequence of positive integers such

that kN → ∞. Under Assumptions 3.1–3.3 and 4.1, the estimator in (10) is strongly

uniformly consistent, i.e.,

max
{
∥F̂ξ,N − Fξ∥∞, ∥F̂ε,N − Fε∥∞

}
a.s.−→ 0.

Steps for implementing the estimator is described in Appendix C and its finite

sample performance is illustrated below. As is standard in nonparametric estima-

tion, the choice of the sieve order kN affects the approximation bias and variance of

the estimator. An information-criterion-based approach analogous to that found in

Bierens and Song (2012) may be used to choose the sieve order kN , although the pro-

cedure may be computationally intensive. With larger κ, the estimator is expected

to perform better as it accounts for more discrepancy between the two ch.f.s. There

appears to be no theoretical reason to restrict κ except to ensure that the criterion

function is well-defined, but limited simulation suggests the aggregation may come

with larger variance. We do not have a useful criterion, but in light of the discussion,

one may consider minimizing Q̂N over κ as well as F with a large upper bound on

the parameter space for κ. From simulation studies, we find that the estimator is less

sensitive to the choice of κ as long as κ is not too small. So we set κ = 1 as its baseline

value in this paper, as is done in Bierens and Song (2012), and explore its properties

in a separate paper. We also leave inference procedures for future research.26

the densities via a sieve maximum likelihood. We consider the proposed simulated sieve extremum
estimator as it both allows to estimate the underlying distributions simultaneously and admits a
closed-form objective function.

26Valid inference procedures exist in similar settings, for example, with independent measurement
errors (Kato et al., 2021) or order statistics without unobserved heterogeneity (Menzel and Morganti,
2013). A common feature they tackle is a certain lack of continuity in the inverse problems. Similar
irregularity concerns may have to be addressed here.

18



4.2 Monte Carlo Evidence

To illustrate the performance of the proposed estimator, we conduct a simple Monte

Carlo experiment. We begin by describing the data generating process (DGP). For

observation i, the variable of interest ξi is measured n = 3 times with i.i.d. measure-

ment errors ε1,i, . . . , ε3,i. The measurement is constructed as Xj,i = ξi + εj,i. We

assume that only two order statistics of ranks r = 1 and s = 2 remain. That is, only

X(1),i and X(2),i are recorded. We repeat the process to obtain N pairs of observa-

tions. The experiment is replicated R = 500 times to obtain 500 random samples of

size N of the form {x(r)(1),i, x
(r)
(2),i}i=1,...,N .

For the distributions of ξi and εj,i, we set up a design that resembles Hernández

et al. (2020)’s application on eBay Motors auctions. Specifically, we use their esti-

mated distributions of unobserved heterogeneity (Fξ in our set-up) and private values

(Fε in our set-up) to calibrate the DGP for our simulation exercise. To construct

these two distributions, we approximate the estimates in Figure 4 of Hernández et al.

(2020) with a sieve of order 6, which resulted in almost identical distributions to those

in the original article.

We then simulate data from the DGP and investigate finite-sample performance

of our estimator. We consider sample sizes N = 1000, 2000, and 4000 with k = 4, 5,

and 6, respectively. Note that by construction, there is no sieve approximation error

when N = 4000, i.e., any estimation error is associated only with sampling error.

Furthermore, we set the bandwidth κ = 1, 3.14, and 5, and the base distribution

Gξ = N (0, 1/4) for ξ and Gε = N (2, 1)+ for ε, where N (2, 1)+ denotes the truncated

normal between 0 and ∞.

We present the estimation results for Fξ and Fε with κ = 1 in Figure 1. Simulation

results with κ = 3.14 and 5 are similar and are presented in Figures 4 and 5 in

Appendix C. The true distribution functions are shown in black. We also plot some

randomly selected estimates along with some box plots that illustrate the pointwise

sampling error of F̂ξ and F̂ε at various evaluation points. The figure suggests that the

estimator performs reasonably well under all three sample sizes, and the performance

improves with larger sample size. Although the choice of κ does not seem to affect

the behavior of the estimator in any ill-behaved manner, there appear to be larger

pointwise variance when κ = 3.14 and 5 relative to the case when κ = 1.
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Figure 1: Monte Carlo simulation results (κ = 1). Panel 1 displays results for Fξ and Panel 2 for
Fε. Subpanels (a), (b), and (c) correspond to sample sizes N = 1000, 2000, and 4000, respectively.

5 Conclusion

This paper shows that distributions of the latent variable and measurement errors are

identified nonparametrically under mild assumptions when two or more order statis-

tics are recorded from repeated measurements with independent errors, providing a

positive answer to the hypothesis in Athey and Haile (2002) for an ascending auction

with unobserved heterogeneity. Our results are also applicable to other applications

with unobserved heterogeneity when order statistics are observed, survey data on wage

offers being a notable example. More examples include repeated experiments with

type II censoring, such as in reliability testing, where consecutive low-order failure

times are recorded, and estimating the effects and damages of collusion in auctions,

a setting in which Asker (2010) emphasizes the importance of accounting for unob-

served heterogeneity. Relatedly, the identification result may be applied to extend

the framework in Marmer et al. (2017) for testing collusion in ascending auctions.
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Appendix A Proofs

A.1 Supplementary Results

Lemma A.1. Let (ε(r), ε(s)) be rth and sth order statistics from ε1, . . . , εn which are

independent with distributions Fε1 , . . . , Fεn. If every Fεj has a density function fεj
that is light-tailed (i.e., for some Cj > 0, fεj(ϵ) = O(e−Cj |ϵ|) as |ϵ| → ∞), then the

ch.f. of order statistics ψε(r,s) : R2 → C is (jointly) analytic.

Proof of Lemma A.1. Let C0 < min1≤j≤nCj be a positive constant and define Ω =

{z = (zr, zs) ∈ C2 : |ℑzj| < C0, j ∈ {r, s}}, an open set in C2, where ℑzj denotes the
imaginary part of zj. Consider

ψ∗
ε(r,s)

: z ∈ Ω 7→
∫
R2

eiz
⊤ϵ dFε(r,s)(ϵ).

To show that ψε(r,s) is analytic on R2, it suffices to show that ψ∗
ε(r,s)

is analytic

on the open set Ω (since R2 ⊂ Ω). By Hartogs’ theorem on separate analyticity

(cf. Hörmander (1973), Theorem 2.2.8), it suffices to show that ψ∗
ε(r,s)

is separately

analytic on a strip {zr ∈ C : |ℑzr| < C0} for any fixed value of zs, and vice versa on a

strip for zs for any fixed value of zr. The remainder of the proof shows that ψ∗
ε(r,s)

is

(1) indeed well-defined on Ω and (2) separately analytic with respect to each variable.

For any complex vector z ∈ Cd, let ℜz ∈ Rd denote the real part of the vector

and ℑz ∈ Rd the imaginary part. To show that ψ∗
ε(r,s)

is well-defined on Ω, it suffices

to show that
∫
R2 e

−ℑz⊤ϵfε(r,s)(ϵ) dϵ <∞ for any z ∈ Ω since

ψ∗
ε(r,s)

(z) =

∫
R2

e−ℑz⊤ϵeiℜz⊤ϵfε(r,s)(ϵ) dϵ.

From the definition of the joint density fε(r,s) (see, e.g., (5.2.8) in David and Nagaraja

(2003)), there exists a positive constant Kn,r,s such that for every ϵ = (ϵr, ϵs) ∈ R2,

fε(r,s)(ϵ) ≤ Kn,r,s

∑
1≤k,ℓ≤n

fεk(ϵr)fεℓ(ϵs).

where by assumption, fεk(ϵ) = O(e−Ck|ϵ|) as |ϵ| → ∞ for every k. Hence, it follows
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from the fact |ℑzr| < C0 and |ℑzs| < C0 in Ω that∫
R2

e−ℑz⊤ϵfε(r,s)(ϵ) dϵ ≤ Kn,r,s

∑
1≤k,ℓ≤n

∫
R2

e−ℑzrϵrfεk(ϵr)e
−ℑzsϵsfεℓ(ϵs) dϵ <∞,

which concludes that ψ∗
ε(r,s)

is well-defined on Ω.

Now we show that ψ∗
ε(r,s)

(·, zs) is analytic on Ωr = {zr ∈ C : |ℑzr| < C0} for

every zs in the domain. By Theorem 5.2 in Stein and Shakarchi (2010), it suffices

to construct a sequence of analytic functions {ψ∗
m}m that converges uniformly to

ψ∗
ε(r,s)

(·, zs) in every compact subset of Ωr. We show that the sequence

ψ∗
m(zr) =

∫
[−m,m]2

ei(zrϵr+zsϵs) dFε(r,s)(ϵ)

satisfies the criteria above. Since the region of integration is bounded, it follows from

the dominated convergence theorem that for every m,

ψ∗
m(zr) =

∫
[−m,m]2

∞∑
ℓ=0

(iz⊤ϵ)ℓ

ℓ!
dFε(r,s)(ϵ) =

∞∑
ℓ=0

∫
[−m,m]2

(iz⊤ϵ)ℓ

ℓ!
dFε(r,s)(ϵ)

is entire on the complex plane and thus analytic on Ωr ⊂ C. Further,∣∣∣ψ∗
ε(r,s)

(zr, zs)− ψ∗
m(zr)

∣∣∣ ≤ ∫
R2\[−m,m]2

∣∣∣eiz⊤ϵ
∣∣∣ dFε(r,s)(ϵ)

=

∫
R2\[−m,m]2

e−ℑz⊤ϵ dFε(r,s)(ϵ)

≤ Kn,r,s

∑
1≤k,ℓ≤n

∫
R2\[−m,m]2

e−ℑz⊤ϵfεk(ϵr)fεℓ(ϵs) dϵ

≤ Kn,r,s

∑
1≤k,ℓ≤n

∫
R×(R\[−m,m])

e−ℑz⊤ϵfεk(ϵr)fεℓ(ϵs) dϵ

+Kn,r,s

∑
1≤k,ℓ≤n

∫
(R\[−m,m])×R

e−ℑz⊤ϵfεk(ϵr)fεℓ(ϵs) dϵ.

Since fεk(ϵr) = O(e−Ck|ϵr|) for every k by assumption and |ℑzr| < C0, for any compact

subset D ⊂ Ωr, we have

sup
zr∈D

Kk(zr) := sup
zr∈D

∫
R
e−ℑzrϵrfεk(ϵr) dϵr ≤

∫
R
esupzr∈D|ℑzr|ϵrfεk(ϵr) dϵr <∞.
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In addition, for m sufficiently large (independent of zr), there exists a constant Kℓ,0

such that∫
R×(R\[−m,m])

e−ℑz⊤ϵfεk(ϵr)fεℓ(ϵs) dϵ

≤ Kk(zr)K0

∫
R\[−m,m]

e−C0|ϵs|−ℑzsϵs dϵs.

= Kk(zr)K0

(∫ −m

−∞
e−(C0−ℑzs)|ϵs| dϵs +

∫ ∞

m

e−(C0+ℑzs)|ϵs| dϵs

)
−→ 0,

as m→ ∞. Similarly, we have∫
(R\[−m,m])×R

e−ℑz⊤ϵfεk(ϵr)fεℓ(ϵs) dϵ ≤ Kℓ(zr)Kk,0

∫
R\[−m,m]

e−C0|ϵr|−ℑzrϵr dϵr,

where, as m→ ∞,

sup
zr∈D

∫
R\[−m,m]

e−C0|ϵr|−ℑzrϵr dϵr −→ 0.

Therefore, we conclude that {ψ∗
m}m converges uniformly to ψ∗

ε(r,s)
(·, zs) on any com-

pact subset of Ωr for any fixed zs in the domain. Therefore, ψ∗
ε(r,s)

(·, zs) is analytic on
Ωr. An analogous proof shows that ψ∗

ε(r,s)
(zr, ·) is analytic on Ωs = {zs ∈ C : |ℑzs| <

C0} for any fixed zr in the domain.

This concludes the proof that ψε(r,s) is (jointly) analytic on Ω = {z = (zr, zs) ∈
C2 : zr ∈ Ωr, zs ∈ Ωs}.

Lemma A.2. Suppose the measurement errors satisfy Assumption 3.2(a) and 3.3.

Define, for every ϵs ∈ R and ϵr > 0,

Fε(s|r)(ϵs; ϵr) =
Fε(r,s)(ϵr, ϵs)

Fε(r)(ϵr)
.

Then limϵr↓0 Fε(s|r)(·; ϵr) = Fεs−r:n−r(·), where the latter denotes the distribution of the

(s− r)th order statistic of a random sample of size n− r from Fε.

Proof. When ϵs ≤ 0, clearly limϵr↓0 Fε(s|r)(ϵs; ϵr) = Fεs−r:n−r(ϵs) = 0 by Assump-

tion 3.3. Thus, fix any ϵs > 0 and consider small enough ϵr such that ϵs > ϵr ↓ 0.

It follows from standard results (e.g., see (2.1.3) and (2.2.4) in David and Nagaraja
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(2003)) that the joint and marginal distribution functions may be expressed as

Fε(s|r)(ϵs; ϵr) =

∑n
k=s

∑k
j=r C

n
j,k−j,n−kFε(ϵr)

j(Fε(ϵs)− Fε(ϵr))
k−j(1− Fε(ϵs))

n−k∑n
ℓ=r C

n
ℓ Fε(ϵr)ℓ(1− Fε(ϵr))n−ℓ

,

where Cn
j,k−j,n−k and Cn

ℓ are multinomial and binomial coefficients, respectively. Ob-

serve that

Fε(s|r)(ϵs; ϵr) =

∑n
j=r

∑n
k=max(s,j)C

n
j,k−j,n−kFε(ϵr)

j(Fε(ϵs)− Fε(ϵr))
k−j(1− Fε(ϵs))

n−k∑n
ℓ=r C

n
ℓ Fε(ϵr)ℓ(1− Fε(ϵr))n−ℓ

=
n∑

j=r

Cn
j Fε(ϵr)

j(1− Fε(ϵr))
n−j∑n

ℓ=r C
n
ℓ Fε(ϵr)ℓ(1− Fε(ϵr))n−ℓ

×

n∑
k=max(s,j)

Cn−j
k−j

(
Fε(ϵs)− Fε(ϵr)

1− Fε(ϵr)

)k−j (
1− Fε(ϵs)

1− Fε(ϵr)

)n−k

=
n∑

j=r

Cn
j Fε(ϵr)

j(1− Fε(ϵr))
n−j∑n

ℓ=r C
n
ℓ Fε(ϵr)ℓ(1− Fε(ϵr))n−ℓ

×

n−j∑
k=max(s−j,0)

Cn−j
k

(
Fε(ϵs)− Fε(ϵr)

1− Fε(ϵr)

)k (
1− Fε(ϵs)

1− Fε(ϵr)

)n−j−k

.

As ϵr ↓ 0, the weight component vanishes for all but j = r, i.e.,

Cn
j Fε(ϵr)

j(1− Fε(ϵr))
n−j∑n

ℓ=r C
n
ℓ Fε(ϵr)ℓ(1− Fε(ϵr))n−ℓ

=

(
n∑

ℓ=r

Cn
ℓ

Cn
j

(
Fε(ϵr)

1− Fε(ϵr)

)ℓ−j
)−1

=

(
n−j∑

ℓ=r−j

Cn
ℓ+j

Cn
j

(
Fε(ϵr)

1− Fε(ϵr)

)ℓ
)−1

−→

1 if j = r,

0 if j ̸= r.

This implies that for any ϵs > 0,

lim
ϵr↓0

Fε(s|r)(ϵs; ϵr) =
n−r∑

k=s−r

Cn−r
k Fε(ϵs)

k(1− Fε(ϵs))
n−r−k = Fεs−r:n−r(ϵs).

Therefore, we conclude that limϵr↓0 Fε(s|r)(·; ϵr) = Fεs−r:n−r(·) on R.

Remark A.1. The conditional distribution Fε(s|r)(ϵs; ϵr) is well-defined for any ϵr > 0

since Fε(r)(ϵr) > 0 under the support normalization in Assumption 3.3, but Fε(r)(0) =

0. Lemma A.2 allows one to define Fε(s|r)(·; 0) by a continuous extension from above.
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Suppose there exists a known group structure for the measurement errors as in

Assumption 3.5 and let nq denote the size of group q. Without loss of generality,

let (ε1, . . . , εn) be ordered such that the first n1 random variables are from group

1, next n2 random variables from group 2, etc. Further without loss of generality,

let g1 be a group with at least (n − r) members, i.e., n1 ≥ n − r. Let R(j) = {q :

X(j) = Xk for some k ∈ gq} be the group identity of the jth order statistic. We abuse

notation and use R(j) to denote both the set and the a.s. unique element in {1, . . . , p}.
Further, let Eq denote the event where the top (n − r) order statistics are all from

group 1 except for the sth order statistic, which belongs to group q (where it may be

that q = 1), i.e.,

Eq = {R(r+1) = 1, . . . , R(s−1) = 1, R(s) = q, R(s+1) = 1, . . . , R(n) = 1}.

In the following two lemmas, we derive the distribution of order statistics conditional

on the event E1 and Eq (q ̸= 1), respectively.

Lemma A.3. Let (ε(r), ε(s)) be order statistics from an independent but nonidentically

distributed sample (ε1, . . . , εn) ∼ ×n
j=1Fεj . Let ζ be the maximum of {εn−r+1, . . . , εn}.

Then

P(ε(r) ≤ ϵr, ε(s) ≤ ϵs |E1)

∝
n∑

k=s

k∑
j=r

Cn1
j−r,k−j,n−kEζ

(
1{ζ ≤ ϵr}(Fε1(ϵr)− Fε1(ζ))

j−r
)
×

(Fε1(ϵs)− Fε1(ϵr))
k−j(1− Fε1(ϵs))

n−k,

and

P(ε(r) ≤ ϵr |E1) ∝
n∑

j=r

Cn1
j−r,n−jEζ

(
1{ζ ≤ ϵr}(Fε1(ϵr)− Fε1(ζ))

j−r
)
(1− Fε1(ϵr))

n−j.

Proof. Note that

{ε(r) ≤ ϵr, ε(s) ≤ ϵs, E1} =
n⋃

k=s

k⋃
j=r

{ε(j) ≤ ϵr, ε(j+1) > ϵr, ε(k) ≤ ϵs, ε(k+1) > ϵs, E1}.

Let Sj,k be a collection of reordered vectors of (1, . . . , n) where σ = (σ1, . . . , σn) ∈ Sj,k
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uniquely partitions {1, . . . , n} in the sense that

{1, . . . , n} = {σ1, . . . , σr} ∪ {σr+1, . . . , σj} ∪ {σj+1, . . . , σk} ∪ {σk+1, . . . , σn},

and σℓ ∈ g1 for all ℓ ≥ r + 1. In words, σ divides group 1 into four, where three

of them consist solely of group 1, and the first r coordinates of σ collect remaining

members of group 1, if any, along with all other groups. We will use this partition to

assign group-1 measurement errors in a way that (1) all top (n − r) order statistics

belong to group 1, and (2) the three sets of these order statistics divide the group-1

measurement errors into the ranges (−∞, ϵr], (ϵr, ϵs], and (ϵs,∞), respectively. The

remaining members of group 1 and all other groups are then associated with the

lowest r order statistics. More precisely, we have

{ε(r) ≤ ϵr, ε(s) ≤ ϵs, E1}

=
n⋃

k=s

k⋃
j=r

⋃
σ∈Sj,k

{εσ(r)
≤ ϵr, εσ(r)

< εjr+1 ≤ ϵr, ϵr < εkj+1 ≤ ϵs, ϵs < εnk+1},

where εσ(r)
= max1≤j≤r εσj

and εmℓ is a shorthand for εσℓ
, . . . , εσm . Denote by Eσ(r)

the expectation with respect to εσ(r)
. It follows that

P(ε(r) ≤ ϵr, ε(s) ≤ ϵs, E1)

=
n∑

k=s

k∑
j=r

∑
σ∈Sj,k

Eσ(r)
P(εσ(r)

≤ ϵr, εσ(r)
< εjr+1 ≤ ϵr, ϵr < εkj+1 ≤ ϵs, ϵs < εnk+1 | εσ(r)

)

=
n∑

k=s

k∑
j=r

∑
σ∈Sj,k

Eσ(r)

(
1{εσ(r)

≤ ϵr}(Fε1(ϵr)− Fε1(εσ(r)
))j−r×

(Fε1(ϵs)− Fε1(ϵr))
k−j(1− Fε1(ϵs))

n−k
)

=
n∑

k=s

k∑
j=r

Cn1
j−r,k−j,n−kEσ(r)

(
1{εσ(r)

≤ ϵr}(Fε1(ϵr)− Fε1(εσ(r)
))j−r

)
×

(Fε1(ϵs)− Fε1(ϵr))
k−j(1− Fε1(ϵs))

n−k,

where Cn1
j−r,k−j,n−k = n1!/[(n1 − (n − r))!(j − r)!(k − j)!(n − k)!] is the multinomial

coefficient equal to the size of Sj,k (the number of ways to classify members of group 1

to four sets that partition {1, . . . , n}). The last equality holds because the distribution
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of εσ(r)
is invariant with respect to σ. This proves the original statement for the joint

distribution in the lemma since ζ =d εσ(r)
. This is because {εn−r+1, . . . , εn} consists

of all measurement errors except (n − r) members from group 1, as is the definition

of εσ(r)
for any σ ∈ Sj,k.

An analogous derivation shows that

P(ε(r) ≤ ϵr, E1) =
n∑

j=r

Cn1
j−r,n−jEσ(r)

(
1{εσ(r)

≤ ϵr}(Fε1(ϵr)− Fε1(εσ(r)
))j−r

)
×

(1− Fε1(ϵr))
n−j.

Lemma A.4. Let (ε(r), ε(s)) be order statistics from an independent but nonidentically

distributed sample (ε1, . . . , εn) ∼ ×n
j=1Fεj . If q ̸= 1, for m ∈ gq and ζ = (ζr, ζs) where

ζr is the maximum of {εn−r, . . . , εn}\{εm} and ζs = εm,

P(ε(r) ≤ ϵr, ε(s) ≤ ϵs |Eq)

∝
n∑

k=s

s−1∑
j=r

nqC
n1
j−r,s−j−1,k−s,n−kEζ

(
1{ζr ≤ ϵr < ζs ≤ ϵs}(Fε1(ϵr)− Fε1(ζr))

j−r×

(Fε1(ζs)− Fε1(ϵr))
s−j−1(Fε1(ϵs)− Fε1(ζs))

k−s
)
(1− Fε1(ϵs))

n−k

+
n∑

k=s

k∑
j=s

nqC
n1
s−r−1,j−s,k−j,n−kEζ

(
1{ζr ≤ ζs ≤ ϵr}(Fε1(ζs)− Fε1(ζr))

s−r−1×

(Fε1(ϵr)− Fε1(ζs))
j−s
)
(Fε1(ϵs)− Fε1(ϵr))

k−j(1− Fε1(ϵs))
n−k,

and

P(ε(r) ≤ ϵr |Eq)

∝
s−1∑
j=r

nqC
n1
j−r,s−j−1,n−sEζ

(
1{ζr ≤ ϵr < ζs}(Fε1(ϵr)− Fε1(ζr))

j−r

(Fε1(ζs)− Fε1(ϵr))
s−j−1(1− Fε1(ζs))

n−s
)

+
n∑

j=s

nqC
n1
s−r−1,j−s,n−jEζ

(
1{ζr ≤ ζs ≤ ϵr}(Fε1(ζs)− Fε1(ζr))

s−r−1

(Fε1(ϵr)− Fε1(ζs))
j−s
)
(1− Fε1(ϵr))

n−j.
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Proof. Note that

{ε(r) ≤ ϵr, ε(s) ≤ ϵs, Eq} =
n⋃

k=s

k⋃
j=r

{ε(j) ≤ ϵr, ε(j+1) > ϵr, ε(k) ≤ ϵs, ε(k+1) > ϵs, Eq}

=

(
n⋃

k=s

s−1⋃
j=r

{ε(j) ≤ ϵr, ε(j+1) > ϵr, ε(k) ≤ ϵs, ε(k+1) > ϵs, Eq}

)
⋃(

n⋃
k=s

k⋃
j=s

{ε(j) ≤ ϵr, ε(j+1) > ϵr, ε(k) ≤ ϵs, ε(k+1) > ϵs, Eq}

)
.

The set is partitioned into two parts where ε(s) > ϵr (in the first part of the partition)

and where ε(s) ≤ ϵr (in the second part of the partition). We partition the event

into two different events because, as will be evident in the derivations below, the

functional form for the probability of these events differs depending on the location

of ε(s) relative to ϵr.

For j < s, let S1
j,k be a collection of reordered vectors of (1, . . . , n) where each

vector σ ∈ S1
j,k uniquely partition {1, . . . , n} in the sense that

{1, . . . , n} = {σℓ}rℓ=1 ∪ {σℓ}jℓ=r+1 ∪ {σℓ}s−1
ℓ=j+1 ∪ {σs} ∪ {σℓ}kℓ=s+1 ∪ {σℓ}nℓ=k+1,

where σs ∈ gq and σℓ ∈ g1 for all ℓ ≥ r+1 such that ℓ ̸= s. We use σ ∈ S1
j,k to divide

group 1 such that all top (n − r) order statistics except for the sth belong to group

1 and are in the ranges (−∞, ϵr], (ϵr, εσs ] (εσs , ϵs], and (ϵs,∞), respectively; the sth

order statistic εσs is in (ϵr, ϵs] (because j < s ≤ k); and the remaining members are

associated with the lowest r order statistics.

Similarly, for j ≥ s, let S2
j,k be a collection of reordered vectors of (1, . . . , n) where

each vector σ ∈ S2
j,k uniquely partition {1, . . . , n} in the sense that

{1, . . . , n} = {σℓ}rℓ=1 ∪ {σℓ}s−1
ℓ=r+1 ∪ {σs} ∪ {σℓ}jℓ=s+1 ∪ {σℓ}kℓ=j+1 ∪ {σℓ}nℓ=k+1,

where σs ∈ gq and σℓ ∈ g1 for all ℓ ≥ r+1 such that ℓ ̸= s. We use σ ∈ S2
j,k to divide

group 1 such that all top (n − r) order statistics except for the sth belong to group

1 and are in the ranges (−∞, εσs ], (εσs , ϵr] (ϵr, ϵs], and (ϵs,∞), respectively; the sth

order statistic εσs is in (−∞, ϵr] (because s ≤ j); and the remaining members are

associated with the lowest r order statistics.
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It follows that

{ε(r) ≤ ϵr, ε(s) ≤ ϵs, Eq}

=

(
n⋃

k=s

s−1⋃
j=r

⋃
σ∈S1j,k

{εσ(r)
≤ ϵr, εσ(r)

< εjr+1 ≤ ϵr, ϵr < εs−1
j+1 ≤ εσs ,

ϵr < εσs ≤ ϵs, εσs ≤ εks+1 ≤ ϵs, ϵs < εnk+1}

)
⋃( n⋃

k=s

k⋃
j=s

⋃
σ∈S2j,k

{εσ(r)
≤ εσs , εσ(r)

< εs−1
r+1 ≤ εσs , εσs ≤ ϵr,

εσs < εjs+1 ≤ ϵr, ϵr < εkj+1 ≤ ϵs, ϵs < εnk+1}

)
,

where εσ(r)
= max1≤j≤r εσj

and εmℓ is a shorthand for εσℓ
, . . . , εσm . Denote by Eσ(r),s

the expectation with respect to (εσ(r)
, εσs). Then, we have

P(ε(r) ≤ ϵr, ε(s) ≤ ϵs, Eq)

=
n∑

k=s

s−1∑
j=r

∑
σ∈S1j,k

Eσ(r),s

(
1{εσ(r)

≤ ϵr < εσs ≤ ϵs}(Fε1(ϵr)− Fε1(εσ(r)
))j−r×

(Fε1(εσs)− Fε1(ϵr))
s−j−1(Fε1(ϵs)− Fε1(εσs))

k−s(1− Fε1(ϵs))
n−k
)

+
n∑

k=s

k∑
j=s

∑
σ∈S2j,k

Eσ(r),s

(
1{εσ(r)

≤ εσs ≤ ϵr}(Fε1(εσs)− Fε1(εσ(r)
))s−r−1×

(Fε1(ϵr)− Fε1(εσs))
j−s(Fε1(ϵs)− Fε1(ϵr))

k−j(1− Fε1(ϵs))
n−k
)

=
n∑

k=s

s−1∑
j=r

nqC
n1
j−r,s−j−1,k−s,n−kEσ(r),s

(
1{εσ(r)

≤ ϵr < εσs ≤ ϵs}(Fε1(ϵr)− Fε1(εσ(r)
))j−r×

(Fε1(εσs)− Fε1(ϵr))
s−j−1(Fε1(ϵs)− Fε1(εσs))

k−s
)
(1− Fε1(ϵs))

n−k

+
n∑

k=s

k∑
j=s

nqC
n1
s−r−1,j−s,k−j,n−kEσ(r),s

(
1{εσ(r)

≤ εσs ≤ ϵr}(Fε1(εσs)− Fε1(εσ(r)
))s−r−1×

(Fε1(ϵr)− Fε1(εσs))
j−s
)
(Fε1(ϵs)− Fε1(ϵr))

k−j(1− Fε1(ϵs))
n−k.

The last equality holds because the distribution of (εσ(r)
, εσs) is invariant with respect
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to σ. This proves the original statement for the joint distribution in the lemma since

ζr =d εσ(r)
because {εn−r, . . . , εn}\{εm} consists of all measurement errors except r

members from group 1 and 1 member from group q—as is the definition of εσ(r)
—and

ζs =d εm ∼ Fq.

An analogous derivation shows that

P(ε(r) ≤ ϵr, Eq)

=
s−1∑
j=r

nqC
n1
j−r,s−j−1,n−sEσ(r),s

(
1{εσ(r)

≤ ϵr < εσs}(Fε1(ϵr)− Fε1(εσ(r)
))j−r×

(Fε1(εσs)− Fε1(ϵr))
s−j−1(1− Fε1(εσs))

n−s
)

+
n∑

j=s

nqC
n1
s−r−1,j−s,n−jEσ(r),s

(
1{εσ(r)

≤ εσs ≤ ϵr}(Fε1(εσs)− Fε1(εσ(r)
))s−r−1×

(Fε1(ϵr)− Fε1(εσs))
j−s
)
(1− Fε1(ϵr))

n−j.

A.2 Proofs of Main Results

Proof of Lemma 3.1. Let F be a data-consistent measurement error distribution sat-

isfying Assumption 3.2 and η ∼ F . We first prove the second part of the lemma.

Note that the distribution of jth order statistic η(j) is uniquely determined by F and,

by independence,

ψξ(t;F ) = ψX(j)
(t)/ψη(j)(t), for all t ∈ R,

for any j ∈ {r, s}, where ψξ(t;F ) is the induced latent variable distribution implied

by F . Since ψη(j) is analytic (Lemma A.1), it has isolated real zeros. Thus, by

the continuity of ψξ(·;F ), the equality is defined by the continuous extension at t0

whenever ψη(j)(t0) = 0.

Now consider the first part of the lemma and note that because ξ is independent

of the measurement errors, we have

ψX(r,s)
(tr, ts) = ψξ(tr + ts;F )ψη(r,s)(tr, ts),
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and likewise for the marginal ch.f. Since ψξ(·;F ) is a ch.f., there exists tξ > 0 such that

ψξ(t;F ) ̸= 0 for all t ∈ (−tξ, tξ). Similarly, there exists tη > 0 such that ψη(j)(t) ̸= 0

for all t ∈ (−tη, tη). Pick any positive t0 ≤ min(tξ, tη) and let B0 be an open ball

around zero contained in {(tr, ts) ∈ R2 : |tr + ts| < t0}. Thus, ψξ(tr + ts;F ) ̸= 0 and

ψη(j)(tr + ts) ̸= 0 for all (tr, ts) ∈ B0. Then, on B0, we have

ψX(r,s)
(tr, ts)

ψX(j)
(tr + ts)

=
ψξ(tr + ts;F )ψη(r,s)(tr, ts)

ψξ(tr + ts;F )ψη(j)(tr + ts)
=

ψη(r,s)(tr, ts)

ψη(j)(tr + ts)
.

This concludes the proof.

Proof of Lemma 3.2. By Lemma 3.1, if the distribution functions F and G are data-

consistent, then

ψη(r,s)(tr, ts)ψη′
(j)
(tr + ts) = ψη′

(r,s)
(tr, ts)ψη(j)(tr + ts), (A1)

for j ∈ {r, s} and for all (tr, ts) ∈ B0. Observe that the two products in (A1) are

ch.f.s of Z1j and Z2j, respectively. By Lemma A.1, all ch.f.s in (A1) are analytic.

Since the product of two analytic functions is also analytic, the equality of ch.f.s on

B0 implies their equality on all of R2. Hence, if F and G are both data-consistent,

then the condition in (3) holds for j ∈ {r, s}.

Proof of Lemma 3.3. We only prove the equality in (4) as the proof for (5) is anal-

ogous. Let F(j) and f(j) (resp., G(j) and g(j)) denote the marginal distribution and

density function of the jth order statistic of a random sample of size n from F (resp.

G), respectively. Also, we denote the joint distribution and density functions of order

statistics from F by F(r,s) and f(r,s). Further, for any yr ≥ 0, define F(s|r)(·; yr) to be

the distribution of the sth order statistic conditional on the cumulative event that the

rth order statistic η(r) ≤ yr as in Lemma A.2.

For c ≤ 0, the equality in (4) is an obvious consequence of the normalization in

Assumption 3.3. Fix any c > 0 and consider a small enough δ such that c > δ ↓ 0.

The conditional probability in (4) is a weighted average of the conditional distribution

F(s|r):

P(η′(r) + η(s) ≤ c | η(r) + η′(r) ≤ δ) =
P(η(r) + η′(r) ≤ δ , η(s) + η′(r) ≤ c)

P(η(r) + η′(r) ≤ δ)
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=

∫ δ

0
F(r,s)(δ − x, c− x)g(r)(x) dx∫ δ

0
F(r)(δ − x)g(r)(x) dx

=

∫ δ

0

F(r)(δ − x)g(r)(x)∫ δ

0
F(r)(δ − x)g(r)(x) dx

F(s|r)(c− x; δ − x) dx.

Note that since F is absolutely continuous by Assumption 3.2, F(s|r)(ys; ·) is con-

tinuous on (0,∞) for every ys ∈ R. Further, by the definition of F(s|r)(ys; 0) as in

Lemma A.2, we conclude that F(s|r)(ys; ·) is continuous on [0,∞) for every ys ∈ R.
Likewise, for every yr ∈ [0,∞), F(s|r)(·; yr) is continuous. Finally, it follows from

the monotonicity of F(s|r)(·; yr) for every yr ∈ [0,∞) that the function F(s|r)(·; ·) is

(jointly) continuous on R× [0,∞) (see, e.g., Kruse and Deely (1969)).

Therefore, it follows that as δ ↓ 0,∫ δ

0

F(r)(δ − x)g(r)(x)∫ δ

0
F(r)(δ − x)g(r)(x) dx

F(s|r)(c− x; δ − x) dx

≤ F(s|r)(c; δ) +

∫ δ

0

F(r)(δ − x)g(r)(x)∫ δ

0
F(r)(δ − x)g(r)(x) dx

∣∣F(s|r)(c− x; δ − x)− F(s|r)(c; δ)
∣∣ dx

≤ F(s|r)(c; δ) +

∫ δ

0

F(r)(δ − x)g(r)(x)∫ δ

0
F(r)(δ − x)g(r)(x) dx

sup
0≤x≤δ

∣∣F(s|r)(c− x; δ − x)− F(s|r)(c; δ)
∣∣ dx

= F(s|r)(c; δ) + sup
0≤x≤δ

∣∣F(s|r)(c− x; δ − x)− F(s|r)(c; δ)
∣∣

−→ F(s|r)(c; 0),

The convergence of the upper bound is due to the (joint) continuity of F(s|r)(·; ·).
A similar derivation for the lower bound shows that the lower bound approaches

the same limit. By the squeeze theorem and Lemma A.2, we conclude that for any

c > 0,

P(η′(r) + η(s) ≤ c | η(r) + η′(r) ≤ δ) −→ F(s|r)(c; 0) = Fs−r:n−r(c).

Thus, we conclude that the statement of the lemma holds for all c ∈ R.

Proof of Theorem 3.1. Lemmas 3.2 and 3.3 imply that any two data-consistent mea-

surement errors satisfying Assumptions 3.2 and 3.3 must have the same distribution

of order statistics:

Fs−r:n−r = Gs−r:n−r.
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It then follows from the one-to-one mapping between the distribution of an order

statistic and the parent distribution (see, e.g., David and Nagaraja (2003), p.10,

(2.1.5)) that F = G, i.e., the measurement error distribution Fε = F = G is identified.

Therefore, by Lemma 3.1, the latent variable distribution Fξ is also identified.

Proof of Corollary 3.1. The result follows directly from (3) in Lemma 3.2. Applying

linear transformations Tr : (z1, z2) 7→ (z2 − z1, z2) and Ts : (z1, z2) 7→ (z2 − z1, z1) to

(3) for j ∈ {r, s}, respectively, shows that(
η(s) − η(r)

η′(r) + η(s)

)
d
=

(
η′(s) − η′(r)
η(r) + η′(s)

)
and

(
η(s) − η(r)

η(r) + η′(s)

)
d
=

(
η′(s) − η′(r)
η′(r) + η(s)

)
.

Proof of Theorem 3.2. Without loss of generality, let g1 be a group with at least n−r
members. For any q ∈ {1, . . . , p} (see Assumption 3.5), let Eq denote the event where

the top n − r order statistics are all from group 1 except for the sth order statistic,

which belong to group q (where it may be that q = 1), i.e.,

Eq = {R(r+1) = 1, . . . , R(s−1) = 1, R(s) = q, R(s+1) = 1, . . . , R(n) = 1}. (A2)

The identification proof proceeds in three steps. First, we claim that the distribution

Fϵj for j ∈ g1—the distribution of a group with many members—is identified. Then

we show that Fϵj for j ∈ gq is identified for each q ̸= 1. Finally, Fξ is identified by a

standard deconvolution argument.

Step 1. For notational simplicity, suppose 1 ∈ g1. A close inspection of the

proof of Lemmas 3.1 and 3.2 reveals that the necessary condition (3) does not rely

on the hypothesis that the measurement errors are identically distributed. Therefore,

we can make use of a similar argument as in the proof of Lemmas 3.1 and 3.2,

provided the ch.f. of (ε(r), ε(s)) is analytic in the i.n.i.d. setting. Indeed, Lemma A.1

confirms f(r,s)(·, ·;E1) is analytic. Therefore, analogous to the proof of Lemmas 3.1

and 3.2 but conditional on the event E1, two data-consistent measurement errors

η = (η1, . . . , ηn) ∼ ×n
j=1Fj and η

′ = (η′1, . . . , η
′
n) ∼ ×n

j=1Gj satisfying Assumption 3.4
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must have the same joint distribution of sums:(
η′(j) + η(r)

η′(j) + η(s)

)
d
=

(
η(j) + η′(r)
η(j) + η′(s)

) ∣∣∣Eη
1 ∩ E

η′

1 , j ∈ {r, s},

where Eη
1 , as in (A2), denotes the event that identifies the group association of order

statistics that originate from the random vector η; and likewise for Eη′

1 . Consider the

left-hand side with j = r. Following a similar derivation as in the proof of Lemma 3.3,

for any c ∈ R, we have

P(η′(r) + η(s) ≤ c | η(r) + η′(r) ≤ δ, Eη
1 ∩ E

η′

1 )

≤ Fs−r:n−r(c) + sup
0≤x≤δ

∣∣F(s|r)(c− x; δ − x,Eη
1 )− Fs−r:n−r(c)

∣∣ ,
where Fs−r:n−r is the distribution of the (s− r)th order statistic of a random sample

of size n− r from the parent distribution F1. To show that the limit of the left-hand

side as δ ↓ 0 is indeed Fs−r:n−r(c), it suffices to show, in combination with a similar

lower bound, that F(s|r)(·; ·, Eη
1 ) is continuous and limδ↓0 F(s|r)(c; δ, E

η
1 ) = Fs−r:n−r(c).

Following the same proof as in Lemma A.2 using the expressions in Lemma A.3, we

show that

lim
δ↓0

F(s|r)(c; δ, E
η
1 ) =

n∑
k=s

Cn−r
k−rF1(c)

k−r(1− F1(c))
n−k,

for every c ∈ R. The right-hand side equals Fs−r:n−r(c). As in the proof of Lemma 3.3,

the continuity of F(s|r)(·; ·, Eη
1 ) on R × [0,∞) follows by elementwise continuity of

F(s|r)(·; ·, Eη
1 ) and monotonicity of F(s|r)(·; ϵr, Eη

1 ) for every ϵr ∈ [0,∞) (cf. Kruse and

Deely (1969)). Therefore, we conclude that for any c ∈ R,

lim
δ↓0

P(η′(r) + η(s) ≤ c | η(r) + η′(r) ≤ δ, Eη
1 ∩ E

η′

1 ) = Fs−r:n−r(c).

A similar derivation for the right-hand side shows that

lim
δ↓0

P(η(r) + η′(s) ≤ c | η(r) + η′(r) ≤ δ, Eη
1 ∩ E

η′

1 ) =
n∑

k=s

Cn−r
k−rG1(c)

k−r(1−G1(c))
n−k

=: Gs−r:n−r(c),

38



for every c. Therefore, we conclude that Fs−r:n−r = Gs−r:n−r and thus F1 = G1, i.e.,

the distribution for group 1 (a group with large size) is identified.

Step 2. For notational simplicity, suppose q ∈ gq. A sequence of arguments

analogous to Step 1 remains to hold conditional on the event Eq for any q ̸= 1.

Therefore, it suffices to show that the equality

lim
δ↓0

F(s|r)(c; δ, E
η
q ) = lim

δ↓0
G(s|r)(c; δ, E

η′

q ), for all c ∈ R, (A3)

implies that Fq = Gq, where

F(s|r)(c; δ, E
η
q ) = P(η(s) ≤ c | η(r) ≤ δ, Eη

q ),

and G(s|r)(·; ·, Eη′
q ) is defined similarly. Following the same proof as in Lemma A.2

using the expression in Lemma A.4, one can show that

F(s|r)(c; 0, E
η
q ) := lim

δ↓0
F(s|r)(c; δ, E

η
q )

=
n∑

k=s

Cn−s
k−s

Eζs 1{ζs ≤ c}F1(ζs)
s−r−1(F1(c)− F1(ζs))

k−s(1− F1(c))
n−k

EζsF1(ζs)s−r−1(1− F1(ζs))n−s
,

(A4)

where ζs ∼ Fq, the group-q distribution. Differentiating (A4) with respect to c, the

density function is given by

f(s|r)(c; 0, E
η
q ) =

n− s

EζsF1(ζs)s−r−1(1− F1(ζs))n−s
F1(c)

s−r−1(1− F1(c))
n−sfq(c)

∝ F1(c)
s−r−1(1− F1(c))

n−sfq(c),

for almost all c ∈ R. Similarly, the density g(s|r)(·; 0, Eη′
q ) is given by

g(s|r)(c; 0, E
η
q ) =

n− s

Eζ′sF1(ζ ′s)
s−r−1(1− F1(ζ ′s))

n−s
F1(c)

s−r−1(1− F1(c))
n−sgq(c)

∝ F1(c)
s−r−1(1− F1(c))

n−sgq(c),

for almost all c ∈ R, where ζ ′s ∼ Gq. Since (A3) implies f(s|r)(·; 0, Eη
q ) = g(s|r)(·; 0, Eη

q )

a.e. and F1(c)
s−r−1(1 − F1(c))

n−s > 0 for all c in the interior of the support of Fq

(common support assumption in Assumption 3.5), we conclude from the above ex-
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pression of the densities that fq = gq a.e., and thus Fq = Gq for all q ̸= 1. Therefore,

the distributions for all measurement error groups are identified.

Step 3. Since Fε1 , . . . , Fεn are identified, so is the ch.f. ψε(j) . It follows that the

ch.f. ψξ = ψX(j)
/ψε(j) is identified, where ψξ(t) is defined by the continuous extension

whenever ψε(j)(t) = 0. It is well-defined since ψε(j) is analytic and hence has isolated

zeros. Thus, Fξ is identified.

Proof of Corollary 3.2. When s = n and r = n− 1, the proof of Theorem 3.2 reveals

that

f(s|r)(c; 0, E
η
q ) ∝ fq(c), g(s|r)(c; 0, E

η
q ) ∝ gq(c).

Above implies fq = gq a.e. in the absence of a common support assumption.

Proof of Theorem 4.1. It follows from Theorem 3 in Bierens (2008) that the sieve

{Hk}k is dense in H = {h ∈ π2 : π ∈ P}. This implies that {Fk}k := {F ξ
k × F ε

k}k is

dense in F := F ξ ×F ε where

F ξ = {F (·) =
∫ Gξ(·)

0

h(u) du : h ∈ H}, F ε = {F (·) =
∫ Gε(·)

0

h(u) du : h ∈ H},

F ξ
k = {F (·) =

∫ Gξ(·)

0

h(u) du : h ∈ Hk}, F ε
k = {F (·) =

∫ Gε(·)

0

h(u) du : h ∈ Hk}.

We endow F with the supremum norm ∥ · ∥∞. Further, because F is compact, it

suffices to show that (1) Q(·) is continuous on F , (2) Q(·) has a unique minimizer on

F , and (3) the following uniform a.s. convergence holds:

sup
F∈F

∣∣∣Q̂N(F )−Q(F )
∣∣∣ a.s.−→ 0.

See Gallant (1987) or Gallant and Nychka (1987). A proof of each of (1)–(3) follows.

(1) Given a complex number z ∈ C, let ℜ(z) and ℑ(z) denote the real and

imaginary part, respectively. Let Fk = (Fξ,k, Fε,k) ∈ F such that Fk → F ∈ F .

Consider:

|Q(F )−Q(Fk)|

=
1

4κ2

∣∣∣∣∣
∫
(−κ,κ)2

ℜ{ψX(r,s)
(t)− φ(t;F )}2 + ℑ{ψX(r,s)

(t)− φ(t;F )}2 dt
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−
∫
(−κ,κ)2

ℜ{ψX(r,s)
(t)− φ(t;Fk)}2 + ℑ{ψX(r,s)

(t)− φ(t;Fk)}2 dt

∣∣∣∣∣
=

1

4κ2

∣∣∣∣∣
∫
(−κ,κ)2

ℜ{2ψX(r,s)
(t)− φ(t;F )− φ(t;Fk)}ℜ{φ(t;F )− φ(t;Fk)}

+ ℑ{2ψX(r,s)
(t)− φ(t;F )− φ(t;Fk)}ℑ{φ(t;F )− φ(t;Fk)} dt

∣∣∣∣∣
≤ 1

4κ2

∫
(−κ,κ)2

∣∣∣ℜ{2ψX(r,s)
(t)− φ(t;F )− φ(t;Fk)}

∣∣∣∣∣∣ℜ{φ(t;F )− φ(t;Fk)}
∣∣∣

+
∣∣∣ℑ{2ψX(r,s)

(t)− φ(t;F )− φ(t;Fk)}
∣∣∣∣∣∣ℑ{φ(t;F )− φ(t;Fk)}

∣∣∣ dt
≤ 1

κ2

∫
(−κ,κ)2

∣∣∣ℜ{φ(t;F )− φ(t;Fk)}
∣∣∣+ ∣∣∣ℑ{φ(t;F )− φ(t;Fk)}

∣∣∣ dt
≤

√
2

κ2

∫
(−κ,κ)2

∣∣∣φ(t;F )− φ(t;Fk)
∣∣∣ dt

≤ 4
√
2 sup
t∈(−κ,κ)2

∣∣∣φ(t;F )− φ(t;Fk)
∣∣∣.

Therefore, to show |Q(F )−Q(Fk)| → 0, it suffices to show that

(ξ(Fξ,k), ε1(Fε,k), . . . , εn(Fε,k))
a.s.−→ (ξ(Fξ), ε1(Fε), . . . , εn(Fε)),

as this implies a.s. convergence of (ξ(Fξ,k), ε(r)(Fε,k), ε(s)(Fε,k)) to (ξ(Fξ), ε(r)(Fε), ε(s)(Fε))

and thus uniform convergence of φ(t;Fk) to φ(t;F ) on any compact set. For each k,

let Hk denote the c.d.f. such that Fξ,k(·) = Hk(Gξ(·)). Fξ,k → Fξ implies Hk → H

where Fξ(·) = H(Gξ(·)). Therefore, since G−1
ξ and H−1 are monotone and hence have

at most countable discontinuity points, we conclude that V –a.s.,

lim
k→∞

ξ(Fξ,k) = lim
k→∞

F−1
ξ,k (V ) = lim

k→∞
G−1

ξ (H−1
k (V )) = G−1

ξ (H−1(V )) = F−1
ξ (V ) = ξ(Fξ).

Similarly, we have limk→∞ εj(Fε,k) = εj(Fε), Uj–a.s. We thus conclude that Q(·) is

continuous on F .

(2) Existence of F = (Fξ, Fε) ∈ F satisfying Q(F ) = 0 is obvious from Assump-

tion 3.4(b). Uniqueness of the minimizer follows from Theorem 3.1.

(3) Note that we have

sup
F∈F

∣∣∣Q̂N(F )−Q(F )
∣∣∣
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= sup
F∈F

1

4κ2

∣∣∣∣∣
∫
(−κ,κ)2

ℜ{ψ̂N(t)− φ̂N(t;F )}2 + ℑ{ψ̂N(t)− φ̂N(t;F )}2 dt

−
∫
(−κ,κ)2

ℜ{ψX(r,s)
(t)− φ(t;F )}2 + ℑ{ψX(r,s)

(t)− φ(t;F )}2 dt

∣∣∣∣∣
= sup

F∈F

1

4κ2

∣∣∣∣∣
∫
(−κ,κ)2

ℜ{ψ̂N(t)− φ̂N(t;F ) + ψX(r,s)
(t)− φ(t;F )}

ℜ{(ψ̂N(t)− ψX(r,s)
(t))− (φ̂N(t;F )− φ(t;F ))}

+ ℑ{ψ̂N(t)− φ̂N(t;F ) + ψX(r,s)
(t)− φ(t;F )}

ℑ{(ψ̂N(t)− ψX(r,s)
(t))− (φ̂N(t;F )− φ(t;F ))} dt

∣∣∣∣∣
≤ sup

F∈F

1

κ2

∫
(−κ,κ)2

∣∣∣ℜ{(ψ̂N(t)− ψX(r,s)
(t))−ℜ(φ̂N(t;F )− φ(t;F ))}

∣∣∣
+
∣∣∣ℑ{(ψ̂N(t)− ψX(r,s)

(t))−ℑ(φ̂N(t;F )− φ(t;F ))}
∣∣∣ dt

≤ sup
F∈F

2

κ2

∫
(−κ,κ)2

∣∣∣ψ̂N(t)− ψX(r,s)
(t)
∣∣∣+ ∣∣∣φ̂N(t;F )− φ(t;F )

∣∣∣ dt
≤ 2

κ2

∫
(−κ,κ)2

∣∣∣ψ̂N(t)− ψX(r,s)
(t)
∣∣∣ dt+ 2

κ2

∫
(−κ,κ)2

sup
F∈F

∣∣∣φ̂N(t;F )− φ(t;F )
∣∣∣ dt.

Recall ch.f.s are bounded uniformly by 1. Since ψ̂N →a.s. ψX(r,s)
pointwise on R2, the

first integral on the right-hand side a.s. vanishes asymptotically. It remains to be

shown that φ̂N(t; ·) →a.s. φ(t; ·) uniformly in F . the supremum in the last integral

vanishes pointwise on (−κ, κ)2. Since, by definition∣∣∣φ̂N(t;F )− φ(t;F )
∣∣∣

=
∣∣∣ENe

it⊤X(F ) − Eeit⊤X(F )
∣∣∣

≤
∣∣∣EN cos(t⊤X(F ))− E cos(t⊤X(F ))

∣∣∣+ ∣∣∣EN sin(t⊤X(F ))− E sin(t⊤X(F ))
∣∣∣,

where both terms are bounded, we conclude from the Borel–Cantelli lemma and

Hoeffding’s inequality that∣∣∣φ̂N(t;F )− φ(t;F )
∣∣∣ a.s.−→ 0, for all F ∈ F . (A5)

We complete the proof by establishing its strong stochastic equicontinuity. Note that
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a.s. continuity of (ξ(F ), ε1(F ), . . . , εn(F )) in part (1) of the proof implies a.s. conti-

nuity of X(F ). Thus, for any η > 0, there exists δ > 0 such that

d(F, F ′) = max
{
∥Fξ − F ′

ξ∥∞, ∥Fε − F ′
ε∥∞

}
< δ

implies, a.s.,

∣∣cos(t⊤X(F ))− cos(t⊤X(F ′))
∣∣ < η/4,

∣∣sin(t⊤X(F ))− sin(t⊤X(F ′))
∣∣ < η/4.

Therefore,

sup
d(F,F ′)<δ

∣∣∣(φ̂N(t;F )− φ(t;F )
)
−
(
φ̂N(t;F

′)− φ(t;F ′)
)∣∣∣

= sup
d(F,F ′)<δ

∣∣∣(ENe
it⊤X(F ) − Eeit⊤X(F )

)
−
(
ENe

it⊤X(F ′) − Eeit⊤X(F ′)
)∣∣∣

≤ sup
d(F,F ′)<δ

∣∣∣(ENe
it⊤X(F ) − ENe

it⊤X(F ′)
)
−
(
Eeit⊤X(F ) − Eeit⊤X(F ′)

)∣∣∣
≤ EN sup

d(F,F ′)<δ

(∣∣∣cos(t⊤X(F ))− cos(t⊤X(F ′))
∣∣∣+ ∣∣∣sin(t⊤X(F ))− sin(t⊤X(F ′))

∣∣∣)
+ E sup

d(F,F ′)<δ

(∣∣∣cos(t⊤X(F ))− cos(t⊤X(F ′))
∣∣∣+ ∣∣∣sin(t⊤X(F ))− sin(t⊤X(F ′))

∣∣∣)
< η.

Since the inequality holds for all N , we conclude by strong stochastic equicontinuity

that the a.s. convergence in (A5) holds uniformly on F .

Appendix B Rossberg’s Counterexample

One natural approach towards investigating the identification problem of the mea-

surement error distribution is to exploit the spacing between two order statistics:

X(s) −X(r) = ε(s) − ε(r). However, without additional restrictions, knowledge of the

spacing distribution is not sufficient to identify Fε. A constructive example is provided

by Rossberg (1972). Specifically, suppose ε1 and ε2 are i.i.d. standard exponential

random variables. Then the spacing ε(2) − ε(1) is a standard exponential random

variable. Rossberg (1972) shows there are infinitely many parent distributions that
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(b) Imaginary part of the ratios of ch.f.s.

Figure 2: An illustration of the departure of the ratio of ch.f.s of second and first Rossberg order
statistics (red dotted line) from that of the measurement (observed) order statistics (black line). The
ratio of ch.f.s of true measurement error (exponential) order statistics (blue dashed line) aligns with
that of the measurement order statistics.

deliver a standard exponential spacing distribution, one of them being

G(x) = 1− e−x
[
1 + π−2(1− cos 2πx)

]
,

with support S(G) = [0,∞).

However, our Corollary 3.1 requires that, for Rossberg’s distribution G to be

observationally equivalent to the true exponential distribution, the distributions of

cross-sums of order statistics must be the same in addition to their spacing distri-

butions. This additional constraint on the distribution of cross-sum that is absent

in Rossberg (1972) arises from our model setup, in particular, from the within in-

dependence between the latent variable of interest, ξ, and the measurement errors.

Whereas the empirical content comes from the random vector (X(1), X(2)) in our con-

text, the spacing is the only—and complete—empirical content available in the setting

of Rossberg (1972). As discussed in Section 3.2, the independence assumption allows

us to exploit the ratio of ch.f.s in a tractable manner despite the dependence between

measurement errors of the observed order statistics.

Figure 2 compares the ratios of ch.f.s of order statistics.27 In order to make

27Due to the lack of analytical tractability of the ratio for Rossberg’s distribution, all functions
are approximated by Monte Carlo integration with N = 108 pairs of random draws. To pin down
the specification of Xj = ξ+ εj , random quantity ξ is drawn from the standard normal distribution.
The same draws are used to plot the distribution functions in Figure 3.
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(blue dashed line: exponential first order statistic;
red dotted line: Rossberg first order statistic)

Figure 3: An illustration of the dissimilarity between the probability distributions of cross-sums of
two exponential and Rossberg order statistics (Figure 3b). Consistent with Rossberg (1972), the
probability distributions of exponential and Rossberg spacings are aligned (Figure 3a).

the minor departures clear, we forfeit the three-dimensional display of the ratios of

ch.f.s in (1). The ratios are evaluated at ψX(1,2)
(0, t)/ψX(1)

(t) = ψX(2)
(t)/ψX(1)

(t), and

the real and imaginary parts are displayed separately. The ratios for the observations

(X(1), X(2)) and the true measurement errors (ε(1), ε(2)) from the standard exponential

distribution coincide. However, the ratio for G begins to depart substantially when

|t| > 1, indicating that G cannot rationalize the observed data. Consequently, in

Figure 3, while the spacing distributions for the exponential and Rossberg’s random

variables overlap, the cross-sum distributions differ over nontrivial regions. This

connection between ratios of ch.f.s and probability distributions of spacings and cross-

sums is established in Corollary 3.1.

Appendix C Implementation of the Estimator

This section provides a closed form for the empirical criterion function and describes

how the estimation procedure is implemented in practice to calculate the estimator

proposed in Section 4. Additional simulation results are also reported. While it is

left implicit in the main text whether the vectorized form of an element is a column

or row vector, it is made clear here. For instance, x = (x1, . . . , xn) is a row vector of

length n and x⊤ a column vector.
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C.1 Closed form for the Criterion Function

The simulated sieve estimator minimizes the empirical analogue of (9). By simulating

the model-implied ch.f. φ, we avoid having to numerically integrate the criterion func-

tion over (−κ, κ)2. Precisely, the empirical criterion function Q̂N(·) has the following
closed-form:

Q̂N(FkN ;κ) =
2

N
+

2

N2

N∑
i>j

q(Xi −Xj) +
2

N2

N∑
i>j

q(Xi(FkN )−Xj(FkN ))

− 2

N2

N∑
i,j

q(Xi −Xj(FkN )), (C1)

where Xi = (X(r),i, X(s),i)
⊤ is the ith observation, Xi(FkN ) is the ith simulated col-

umn vector given c.d.f.s Fξ,kN and Fε,kN , to be made precise below (see also As-

sumption 3.4(d)), and q(x, y) = sin(κx) sin(κy)/(κ2xy), defined everywhere by the

continuous extension. The above closed form is straightforward to derive using

the identity eix = cos(x) + i sin(x) and two trigonometric identities, cos(x − y) =

cos(x) cos(y) + sin(x) sin(y) and 2 sin(x) sin(y) = cos(x− y)− cos(x+ y).

C.2 Estimation Procedure

Note that the sieve space {Fk}k := {F ξ
k ×F ε

k}k introduced in Section 4 is constructed

by {Pk}k, a sequence of spaces of truncated series based on the series representation

P in (8). That is, the infinite-dimensional spaces {Pk}k are determined by a sequence

of finite-dimensional sieves {Dk}k, where

Dk :=

{
δ ∈ Rk : |δℓ| ≤

c

1 +
√
ℓ ln ℓ

, ℓ = 1, . . . , k

}
.

Thus, so as to minimize Q̂N in (C1) with respect to FkN , one can minimize

Q̂N(FkN ) = Q̂N

(
Hk(Gξ(·); δξ), Hk(Gε(·); δε)

)
with respect to (δξ, δε) ∈ D2

kN
, where

Hk(v; δ) =

∫ v

0

(
1 +

∑k
ℓ=1 δℓρℓ(v)

)2
dv

1 +
∑k

ℓ=1 δ
2
ℓ

.
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To alleviate computational concerns associated with solving the above finite-

dimensional optimization problem with the parameterization in (8), Bierens (2008)

suggests a reparametrization under which the c.d.f. Hk(·; δ) on [0, 1] can be expressed

as (see Sections 3 and 7 in Bierens (2008)):

Hk(v; θ) =
(1− π⊤

k θ, θ
⊤)Πk+1(v)(1− π⊤

k θ, θ
⊤)⊤

(1− π⊤
k θ, θ

⊤)Πk+1(1)(1− π⊤
k θ, θ

⊤)⊤
, v ∈ [0, 1],

where Πk+1(v) is a (k + 1)-square matrix and πk a k-dimensional vector defined as

Πk+1(v) =

(
vi+j+1

i+ j + 1

)
i,j=0,1,...,k

and πk =

(
1

i+ 1

)
i=1,...,k

.

The compactifying restrictions on δ ∈ Dk in the definition of Dk translates to the

following constraints on the space Θk for θ:

Θk =

{
θ ∈ Rk :

∣∣∣∣∣
k−ℓ∑
m=0

θℓ+mµℓ(m)

∣∣∣∣∣ ≤ c

1 +
√
ℓ ln ℓ

, ℓ = 1, . . . , k

}
,

where µℓ(m) :=
∫ 1

0
uℓ+mρℓ(u) du.

We use the finite-dimensional sieves {Θ2
k}k for (θξ, θε) to estimate the distribution

functions in the Monte Carlo study in Section 4.2. For further details regarding the

sieve space, we refer the readers to the original article by Bierens (2008).

C.3 Additional Simulation Results

In this section, we report additional results from the simulation exercise described

in Section 4.2. Figures 4 and 5 display pointwise box plots that summarizes the

simulated coverage of the estimator for Fξ and Fε. Sample sizes N = 1000, 2000, and

4000 with k = 4, 5, and 6, respectively, are considered with κ = 1, 3.14, and 5 for each

sample size.28 For each κ, the result shows that the estimator improves with larger N .

The pointwise variance, as indicated by more values outside the interquartile range,

appears to be higher when κ is set to a larger value.

28Panel 1 of Figures 4 and 5 are reproduced in Figure 1.
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Figure 4: Monte Carlo simulation results for Fξ. Panels 1, 2, and 3 correspond to the tuning
parameter κ = 1, 3.14, and 5, respectively; Subpanels (a), (b), and (c) correspond to sample sizes
N = 1000, 2000, and 4000, respectively.
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Figure 5: Monte Carlo simulation results for Fε. Panels 1, 2, and 3 correspond to the tuning
parameter κ = 1, 3.14, and 5, respectively; Subpanels (a), (b), and (c) correspond to sample sizes
N = 1000, 2000, and 4000, respectively.
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