
Online Appendix for

Programming FPGAs for Economics:

An Introduction to Electrical Engineering Economics

Bhagath Cheela∗ André DeHon†

Jesús Fernández-Villaverde‡ Alessandro Peri§

October 7, 2024

∗Department of Electrical and Systems Engineering, University of Pennsylvania, cheelabhagath@gmail.com
†Department of Electrical and Systems Engineering, University of Pennsylvania, andre@acm.org
‡Department of Economics, University of Pennsylvania, jesusfv@econ.upenn.edu
§Department of Economics, University of Colorado, Boulder, alessandro.peri@colorado.edu

A.1

mailto:cheelabhagath@gmail.com
mailto:andre@acm.org
mailto:jesusfv@econ.upenn.edu
mailto:alessandro.peri@colorado.edu

Introduction

This online appendix adds further details to the main paper. First, we include a table with all
the abbreviations that we use for easy reference.

Table A.1: List of Abbreviations

ALM Aggregate Law of Motion Algorithm stage
AFI Amazon FPGA Image CL design implemented on AWS FPGAs
AWS Amazon Web Services Cloud service
.AWSXCLBIN FPGA executable Executable to be run on AWS FPGA
BRAM Block RAM Local memory
CL Custom logic FPGA logical units
CPU Central processing unit -
DRAM Dynamic random access memory Global memory
DSP Digital signal processing unit Accumulator unit
FPGA Field-programmable gate array Custom accelerator
GPU Graphics processing unit Graphics accelerator
HLS High level synthesis Compiler-based hardware design
IEEE754 Double-precision floating-point standard Floating-point standard
IHP Individual Household Problem Algorithm stage
II Initiation Interval
LUT Lookup table Logical units available for CL design
OpenCL Open Computing Language https://www.khronos.org/opencl
Open MPI Open message passing interface https://www.open-mpi.org
PCIe Peripheral Component Interconnect Express Bus-connections with host
SLR Super Logic Region FPGA CL regions
URAM Ultra RAM Local memory
Xilinx VU9 FPGA on AWS -

A More on Building Blocks of FPGAs’ Optimizations

Now, we provide additional information on the building blocks of FPGA optimization presented
in Section 4. Subsection A.1 presents the RTL implementation of the accumulator, Subsection
A.2 overviews the arbitrary-precision fixed-point approximation, and Subsection A.3 delves into
the details of implementing an associative reduce tree in hardware.

A.1 A comparison of RTL and HLS

The following listing reports the RTL description of the sequential accumulator in Section 7. For
comparison purposes, we implement it using the VHSIC Hardware Description Language (VHDL),
the same RTL language used in Peri (2020).

A.2

https://www.khronos.org/opencl
https://www.open-mpi.org

Listing 1: VHDL description of the Sequential Accumulator
1 library IEEE;
2 use IEEE.STD_LOGIC_1164.ALL;
3

4 -- Adder module
5 entity single_acc is
6 generic (
7 din_WIDTH : integer := 64; -- Width of input data
8 dout_WIDTH : integer := 64 -- Width of output data
9);

10 port (
11 clk : in std_logic; -- Clock signal
12 reset : in std_logic; -- Reset signal
13 din0 , din1 : in std_logic_vector(din_WIDTH -1 downto 0); -- Input data
14 dout : out std_logic_vector(dout_WIDTH -1 downto 0) -- Accumulation

result
15);
16 end entity single_acc;
17

18 architecture Behavioral of single_acc is
19 -- Registers for storing input and output data
20 signal din0_buf , din1_buf : std_logic_vector(din_WIDTH -1 downto 0);
21 signal dout_buf : std_logic_vector(dout_WIDTH -1 downto 0);
22 begin
23 -- Copy input data from wires to registers
24 process(clk)
25 begin
26 if rising_edge(clk) then
27 if reset = ’1’ then
28 din0_buf <= (others => ’0’);
29 din1_buf <= (others => ’0’);
30 else
31 din0_buf <= din0;
32 din1_buf <= din1;
33 end if;
34 end if;
35 end process;
36

37 -- Perform accumulation
38 dout_buf <= din0_buf + din1_buf;
39

40 -- Output the result
41 dout <= dout_buf;
42

A.3

43 end architecture Behavioral;
44

45 -- Copy the input stream to BRAM
46 entity runOnfpga_st_k_RAM_AUTO_1R1W is
47 generic (
48 DataWidth : integer := 64; -- Width of data
49 AddressWidth : integer := 3; -- Width of address
50 AddressRange : integer := 8 -- Range of address
51);
52 port (
53 address0 : in std_logic_vector(AddressWidth -1 downto 0); -- Address
54 ce0 : in std_logic; -- Chip enable in
55 d0 : in std_logic_vector(DataWidth -1 downto 0); -- Data in
56 we0 : in std_logic; -- Write enable in
57 q0 : out std_logic_vector(DataWidth -1 downto 0); -- Data out
58 reset : in std_logic; -- Reset in
59 clk : in std_logic -- Clock in
60);
61 end entity runOnfpga_st_k_RAM_AUTO_1R1W;
62

63 architecture Behavioral of runOnfpga_st_k_RAM_AUTO_1R1W is
64 begin
65 -- Internal RAM
66 (* ram_style = "auto" *)
67 reg [DataWidth -1:0] ram [0: AddressRange -1];
68

69 -- Read and write operations on RAM
70 process(clk)
71 begin
72 if rising_edge(clk) then
73 if reset = ’1’ then
74 for i in ram ’range loop
75 ram(i) <= (others => ’0’);
76 end loop;
77 else
78 if ce0 = ’1’ then
79 if we0 = ’1’ then
80 ram(conv_integer(address0)) <= d0;
81 end if;
82 q0 <= ram(conv_integer(address0));
83 end if;
84 end if;
85 end if;
86 end process;
87

A.4

88 end architecture Behavioral;
89

90 -- Top -level module
91 entity runOnfpga is
92 generic (
93 AddressRange : integer := 8 -- Number of elements in the array
94);
95 port (
96 ap_clk : in std_logic; -- Clock input
97 ap_rst : in std_logic; -- Reset input
98 ap_start : in std_logic; -- Start input
99 in_preinit : in std_logic_vector (63 downto 0); -- Initialization

input
100 ap_done : out std_logic; -- Done output
101 out_r : out std_logic_vector (63 downto 0); -- Output data
102 out_r_ap_vld : out std_logic -- Output valid signal
103);
104 end entity runOnfpga;
105

106 architecture Behavioral of runOnfpga is
107 -- Local signals
108 signal accumulation_sum , loaded_data : std_logic_vector (63 downto 0); --

Accumulation and loaded data
109 signal adder_result , temp_result : std_logic_vector (63 downto 0); --

Adder and temporary result
110 signal counter : std_logic_vector (3 downto 0) := AddressRange; --

Counter to track elements
111 begin
112 -- Add reset for the counter
113 process(ap_clk , ap_rst)
114 begin
115 if ap_rst = ’1’ then
116 counter <= "0000"; -- Reset counter
117 elsif rising_edge(ap_clk) then
118 if ap_start = ’1’ then
119 if counter < AddressRange then
120 counter <= counter + 1; -- Increment counter
121 end if;
122 end if;
123 end if;
124 end process;
125

126 -- Instantiate an adder module
127 adder_1 : entity work.single_acc
128 generic map (

A.5

129 din_WIDTH => 64,
130 dout_WIDTH => 64
131)
132 port map (
133 clk => ap_clk ,
134 reset => ap_rst ,
135 din0 => accumulation_sum ,
136 din1 => loaded_data ,
137 dout => adder_result
138);
139

140 -- Assign din0 from the previous result
141 process(ap_clk)
142 begin
143 if rising_edge(ap_clk) then
144 if ap_rst = ’1’ then
145 accumulation_sum <= (others => ’0’);
146 else
147 accumulation_sum <= temp_result;
148 end if;
149 end if;
150 end process;
151

152 -- Copy din1 from local BRAM
153 process(ap_clk)
154 begin
155 if rising_edge(ap_clk) then
156 loaded_data <= q0;
157 end if;
158 end process;
159

160 -- Copy the result to the next
161 process(ap_clk)
162 begin
163 if rising_edge(ap_clk) then
164 temp_result <= adder_result;
165 end if;
166 end process;
167

168 -- Output the result
169 process
170 begin
171 if counter = "1000" then
172 out_r <= accumulation_sum; -- Assign the accumulated value
173 ap_done <= ’1’; -- Indicate accumulation done

A.6

174 out_r_ap_vld <= ’1’;
175 else
176 out_r <= (others => ’0’); -- Default value when accumulation is

not done
177 out_r_ap_vld <= ’0’;
178 end if;
179 end process;
180

181 end architecture Behavioral;

A.2 Arbitrary-precision Fixed-point Approximation: An Overview

Computers carry out computation on numbers with finite representations. This raises the ques-
tion of how we adequately approximate the uncountable real numbers. The advent of the IEEE
floating-point standard (IEEE Standards Committee, 1985) and the readily available micropro-
cessors that implemented it drove convergence to the modern floating-point representations.
Most researchers get enough accuracy from the double-precision version of this standard, and
they do not need to think carefully about the impact of finite-precision numeric representations
for many uses.

Nonetheless, double-precision costs hardware and energy. Single-precision floating-point re-
mained of interest for energy-conscious signal processing and the highest throughput computa-
tions, as did fixed-point representations, where the significance of the bits does not change (i.e.,
the decimal point remains in a fixed position –it does not “float”). When custom hardware, both
VLSI and FPGAs, is designed, precision optimization remains a point of leverage. For example,
in modern Xilinx FPGAs, a double-precision floating-point add can take 700 LUTs, while a 32b
fixed-point add only takes 16. A double-precision floating-point multiply takes over 2400 LUTs,
while a 32×32 fixed-point multiply is only 1100, and a 16×16 multiply is around 300 (Xilinx,
Inc., 2020).

A.2.1 Implementation of fixed-point arithmetic in HLS

We refer to Xilinx, Inc. (2021) for a guide to the implementation of arbitrary precision in Vitis.

A.7

Figure A.1: Fixed-point Accumulation Operation

A.3 Associative Reduce Tree

A reduce operation is a computational construct designed to reduce a large set of numbers into a
single value. Common ways to reduce a set of numbers to a single digest include summing them
up, multiplying them together, and identifying the maximum or minimum value of the set. For
example, in Subsection 4.1 we consider an add-reduce tree of an array of N = 8 elements:

sum=0;

for (int i=0;i<8;i++)

sum+=a[i];

This sequential summation performs N − 1 = 7 serial additions operations,

sum = (((((((a[0] + a[1]) + a[2]) + a[3]) + a[4]) + a[5]) + a[6]) + a[7])

exactly as illustrated in Figure A.2(a).

A.8

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

sum

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

sum

(a) Sequential (b) Associative Reduce Tree

Figure A.2: Associative Reduce Tree Transformation for Sequential Accumulation

When the reduce operation is associative—such as in the case of fixed-precision fixed-point
(but not in the case of the IEEE754 double-precision floating-point format, as discussed in
Subsection 4.2)—we can leverage parallelism to execute the N − 1 operations in log2N steps.1

This is achieved by employing a tree structure in which each step (or level in the tree) successively
reduces the number of values by half through pair-wise combinations,

sum = (((a[0] + a[1]) + (a[2] + a[3])) + ((a[4] + a[5]) + (a[6] + a[7])))

as illustrated in Figure A.2(b). Given adequate hardware, an associative reduce tree (Fig-
ure A.2(b)) can perform N − 1 = 7 operations in log2N = 3 sequential steps (also referred to
as the depth of the tree).

A.3.1 Memory-access bottleneck in absence of array partitioning

Figure A.3 shows the data flow of an accumulator with loop unroll and no array partitioning.
This is a circuit that tries to unroll by a factor of 8 the addition of the fixed-point elements
of an array st_k of size J = 8. The vertical dimension illustrates in which clock cycles these
operations are performed (scheduling). The circuit fails to execute the prescribed unrolling
because of a memory reading conflict that prevents reading more than two elements from the

1The logarithmic base 2 comes from the fact that we use a binary addition operation to digest pairs of numbers
at a time. At each stage, we divide the number of partial sums in half, such that it takes us log2 N steps to
reduce to a single, final sum. Had we used a k-input operator to reduce k numbers to one at each stage, we
would need logk N steps.

A.9

same BRAM.

Figure A.3: Data Flow of Accumulator with Loop Unroll (No Array Partitioning)

B AWS Instances Technical Specs

M5N Instances. (a) CPU: Intel Xeon Scalable Processors (Cascade Lake, 2nd generation),
with sustained all-core Turbo CPU frequency of 3.1 GHz, maximum single-core Turbo CPU
frequency of 3.5 GHz; (b) Network Bandwidth: up to 25 Gbps; (c) Storage EBS.

Remark. We select M5N instances for three reasons. First, their architecture roughly belongs
to the same vintage as our FPGAs –with the Xilinx VU9P being released a little bit earlier
(2016) than the Intel Xeon Scalable Processor (Cascade Lake, second generation, 2019) featured
in M5N instances– thus, allowing us to control for technological improvements. Second, these
CPUs compare favorably with respect to CPUs available in state-of-the-art supercomputers, for
instance, the Intel Xeon E5-2680 v3 @2.50GHz (2 CPUs/node, 24 cores/node) provided by the
CU Boulder RMACC Summit supercomputer. As a result, they provide a good benchmark of
the expected performance. Third, they are the Amazon AWS general-purpose instances with

A.10

Table A.2: Technical Specifications

AWS Instance Cores FPGAs Pricing ($/hour) Memory (GiB)

m5n.large 1 - 0.119 8
m5n.4xlarge 8 - 0.952 64
m5n.24xlarge 48 - 5.712 384
f1.2xlarge 4 1 1.650 122
f1.4xlarge 8 2 3.300 244
f1.16xlarge 32 8 13.200 976

Note: Hardware architecture and AWS cloud pricing (Columns 2-5) for deployed AWS instances (Col-
umn 1). The column marked Cores reports the number of physical cores. The column marked FPGAs
reports the number of connected FPGA chips (f1 instances only). The column marked Pricing denotes
the AWS On Demand Pricing per instance per hour as of September 2021. Memory is measured in
Gigabytes. Source: AWS instances, AWS specs.

the largest number of cores (as of 2022); hence, they enable meaningful multi-core parallelism
while preserving comparability.
F1 Instances. (a) CPU: Intel Xeon E5-2686 v4 Processor, with a base CPU frequency of
2.3 GHz and Turbo CPU frequency of 2.7 GHz. (b) Network Bandwidth: up to 10 Gbps for
f1.2xlarge and f1.4xlarge, and 25 Gbps for f1.16xlarge. (c) Storage f1.2xlarge: 470 GiB NVMe
SSD f1.4xlarge: 940 GiB NVMe SSD f1.16xlarge: 3760 GiB (4 940 GiB NVMe SSD).
Source: For further information, visit https://aws.amazon.com/ec2/instance-types/.

C Hardware Designs: Resources and Performance

We now report resource utilization and performance measures associated with the hardware
designs discussed in the main paper.

C.1 FPGA Designs Performance and Resource Utilization

First, Table A.3 reports time performance and resource utilization by hardware design.

C.2 Efficiency Gains of Benchmark Economy

Next, Table A.4 reports the performance of different FPGA hardware designs and CPU-core
platforms that yield the efficiency gains reported in the paper in terms of execution speedup,
AWS costs, and energy savings.

Differences in the execution time of initialization and printing operations between FPGA
and CPU experiments are attributed to their parallel execution via Open MPI on the CPU

A.11

https://aws.amazon.com/ec2/instance-types/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/cpu-options-supported-instances-values.html
https://aws.amazon.com/ec2/instance-types/

Table A.3: FPGA Designs Performance and Resource Utilization by Grid Size

Three-Kernel Single-Kernel

Aggr. Capital 4 4 8

Indiv. Capital 100 100 200 300 100 200 300

Time (s) 415.14 1002.62 1482.11 2245.56 2579.66 4627.80 7147.36
Cost ($) 0.19 0.46 0.68 1.03 1.18 2.12 3.28
Energy (J) 13699.54 17044.46 25195.90 38174.60 43854.19 78672.63 121505.20
BRAM(%) 44.29 21.31 27.32 33.10 27.32 37.92 47.26
DSP(%) 55.32 31.13 31.13 31.13 31.31 31.31 31.31
Registers(%) 25.71 12.00 12.00 12.12 12.06 12.17 12.26
LUT(%) 57.03 25.21 25.97 26.56 25.43 26.18 26.74
URAM(%) 16.50 5.38 5.38 5.38 5.38 5.38 5.38

Note: Solution time (in seconds), cost (in USD), energy (in joules) and FPGA resources (rows) across
hardware designs (three- and single-kernel) and grid sizes on individual capital Nk = {100, 200, 300}
and aggregate capital NM = {4, 8} (columns). Time performance is measured in seconds required to
solve 1,200 baseline economies on a single FPGA (f1.2xlarge) across the different hardware designs
and grid sizes (columns). Resources are measured (using Xilinx Vivado) as a percentage of Xilinx
VU9P FPGA’s resources utilized by AWS images associated with the different hardware designs and
grid sizes (columns). Available Resources: BRAM (1,680), DSP (5,640), Registers (1,790,400), LUTs
(895 thousand), URAM (800). Available resources are lower than total resources because they exclude
resources utilized by the AWS shell that are not available for CL design.

Table A.4: Performance Comparison

CPU cores FPGA devices

N. 1 8 48 1 2 8

Exec Time (s) 28464.55 3656.52 613.81 431.60 223.40 69.51
Init Time (s) 0.36 0.04 0.01 0.81 0.67 0.84
Print Time (s) 11.70 1.58 0.28 15.10 14.50 14.81
Sol. Time (s) 28452.5 3654.74 613.37 415.14 207.55 51.87
Cost ($) 0.94 0.97 0.97 0.19 0.19 0.19
Energy (J) 227619.90 233903.34 235535.59 13699.54 13698.26 13693.02

AWS Instance m5n.large m5n.4xlarge m5n.24xlarge f1.2xlarge f1.4xlarge f1.16xlarge

Note: Execution, initialization, printing and solution time (in seconds), cost (in USD) and energy
(in joules) to solve 1,200 baseline economies using Open MPI CPU multi-core acceleration on Amazon
M5N multi-core instances (with 1, 8, 48 physical cores, Columns 1-3) and using FPGA acceleration on
Amazon F1 instances (connected to 1, 2, 8 FPGA devices, Columns 4-6).

experiments and sequential execution on the CPU (host side) of the FPGA accelerated exper-
iments. These differences can be eliminated by using Open MPI on the host side of the FPGA
experiments. The FPGA has extra time allocation costs due to the OpenCL initialization of

A.12

host/device communications. Crucially, the relative magnitude of the non-kernel operations
time washes out as the number of economies increases. Not surprisingly, the relative time spent
on non-kernel operations disproportionately affects the experiment with 8 FPGAs, where non-
kernel tasks account for roughly 25% of the total execution time. These results suggest that
the use of 8 FPGAs may be more cost-effective when executing a large amount of economies in
parallel.

C.2.1 Energy consumption

The FPGA power consumption is measured using the AFI management tool command
sudo fpga-describe-local-image -S 0 -M. To make our energy performance comparison as mean-
ingful as possible, we select the FPGA average power consumption (across all our experiments,
including different capital grids), which amounted to 33 watts per FPGA device.

The CPU power consumption can be determined using the Turbostat application.2 However,
Turbostat does not work on Amazon M5N instances. As a workaround:

• We use Turbostat to measure the power consumption of our application on the Amazon
AWS metal instance.

• We then compare this number with the Thermal Design Power (TDP).3 The comparison
between the Turbostat application and the TDP establishes that our application requires
approximately the maximum CPU power.

We map this estimate into our M5N instances with 1, 8, and 48 cores using the formula:

Power M5N(cores) =
cores

coresMetal
∗ Power Turbostat, cores ∈ {1, 8, 48}.

We estimate a power consumption of 8 watts per CPU core. To get the energy, we compute:

Energy M5N(cores) = Power M5N(cores) · Time(cores), cores ∈ {1, 8, 48}.

C.3 CPU Performance Across Grid Sizes

Finally, Table A.5 reports the CPU performance across different sizes of the grid.

C.4 Precision Accuracy Analysis

This section reports the accuracy analysis associated with FPGA and CPU implementation of
the Krusell and Smith (1998) algorithm.

2Source: https://www.linux.org/docs/man8/turbostat.html.
3Source: https://www.intel.com/content/www/us/en/support/articles/000055611/processors.html.

A.13

https://www.linux.org/docs/man8/turbostat.html
https://www.intel.com/content/www/us/en/support/articles/000055611/processors.html

Table A.5: CPU Performance by Grid Size

Aggregate Capital, NM 4 8

Individual Capital, Nk 100 200 300 100 200 300

Exec. Time (s) 28464.55 51007.22 77061.15 71762.40 143718.80 229127.68
Init. Time (s) 0.36 0.38 0.39 0.37 0.40 0.41
Print Time (s) 11.70 12.72 14.94 14.38 15.94 18.38
Sol. Time (s) 28452.5 50994.12 77045.81 71747.64 143702.46 229108.89
Cost ($) 0.94 1.69 2.55 2.37 4.75 7.57
Energy (J) 227619.90 407952.96 616366.51 573981.11 1149619.67 1832871.10

Note: Execution, initialization, printing and solution time (in seconds), cost (in USD) and energy
(in joules) to solve 1,200 baseline economies on a single core CPU (m5n.large) for different grid sizes
(columns) on individual capital Nk = {100, 200, 300} and aggregate capital NM = {4, 8}.

Table A.6: Precision Accuracy Analysis

Panel A: ALM Coefficients

β1(ab) β2(ab) β1(ag) β2(ag)

Floating-Point 0.1460 0.9599 0.1554 0.9587
Fixed Point 0.1460 0.9599 0.1554 0.9587

Panel B: Policy Function, k′

Mean
(
|Fixed−Float|

Float

)
% 4.0e-10 Max

(
|Fixed−Float|

Float

)
% 2.6e-08

Panel C: Individual Capital Holdings Distribution, T = 1, 100

Mean Std 0.25 0.5 0.75

Floating-Point 40.49 133.44 12.23 16.00 19.78
Fixed Point 40.49 133.44 12.23 16.00 19.78

Mean
(
|Fixed−Float|

Float

)
% 2.4e-09 Max

(
|Fixed−Float|

Float

)
% 3.0e-08

Panel D: Euler Equation Errors (EEE)

EEE FPGA CPU |∆FPGA−CPU/CPU|%

Nk = 100
Mean (%) 0.12 0.12 1.35e-07
Max (%) 1.03 1.03 4.85e-07

Nk = 300
Mean (%) 0.14 0.14 3.29e-07
Max (%) 0.21 0.21 1.83e-07

Panel A of Table A.6 reports the equilibrium ALM coefficients b̂(a) = (b̂1(a), b̂2(a)) with

A.14

a ∈ {ab, ag} under floating- and fixed-point in the FPGA and CPU, respectively. Panel B reports
the mean and max relative difference (in percent) between the policy functions computed under
floating- and fixed-point. Panel C reports moments of the distribution of individual capital
holdings at T = 1, 100 (mean, standard deviation, and quartiles) under floating- and fixed-
point. The last row reports their mean and max relative difference in percent. Panel D reports
the mean/max Euler equation errors expressed in percent, associated with policy functions
estimated in fixed-point using the FPGA (column 2), in floating-point on the CPU (column 3),
and relative absolute difference, all in percent, for different individual capital holdings grid sizes,
Nk ∈ {100, 300} (rows), with NM = 4.

D Carbon Footprint of Scientific Computing

This appendix proposes a back-of-the-envelope calculation in order to estimate the carbon foot-
print of the Summit and Blanca Supercomputers. Calculations have been provided by indepen-
dent research at the CU Boulder Research Computing Center and updated to 2020 data.4

The RC analysis assumes that each CURC HPC core consumes 13W, that is, 0.013 kilowatts
per CURC HPC core hour (13W/core · 1hour/1000 = 0.013kWh). It then uses the Xcel Energy
power generation breakdown in the state of Colorado in 20205 –37% Natural Gas, 26% Coal,
37% Renewables– and US EPA information on the emissions of CO2 per kWh by source6 –0.91
Natural Gas, 2.21 Coal, 0.1 Renewables7– to determine the average pounds of CO2 per Xcel
Colorado kWh:

0.37 ∗ 0.91 + 0.26 ∗ 2.21 + 0.37 ∗ .1 = 0.9483
lbs CO2

kWh
Putting this information together, it estimates 0.0123 pounds CO2 per CURC HPC core per
hour:

0.9483
lbs CO2

kWh
∗ 0.013

kWh
core hour

= 0.0123
lbs CO2

core hour
,

On average the Summit and Blanca supercomputers (CU Boulder) serve 150 million core hours
per year and therefore produce on average

150 · 106 core hour
year

· 0.0123
lbs CO2

core hour
= 1, 849, 185

lbs CO2

year
,

which corresponds to 838.78 metric tons of CO2 per year. To put this number in context, a
typical US car emits about five metric tons per year. So, the annual Summit and Blanca carbon
footprint is roughly the same as that of 838.78/5 ≈ 168 cars per year.

4Andrew Monaghan, Andrew.Monaghan-1@Colorado.EDU.
5Source: Xcel Stats, https://co.my.xcelenergy.com/s/energy-portfolio/power-generation.
6Source: US EPA https://www.eia.gov/tools/faqs/faq.php?id=74&t=11.
7This estimate is not given. The original analysis assumes it to be 0.1 for externalized carbon.

A.15

mailto: Andrew.Monaghan-1@Colorado.EDU
https://co.my.xcelenergy.com/s/energy-portfolio/power-generation
https://www.eia.gov/tools/faqs/faq.php?id=74&t=11

To explore the carbon footprint impact of moving all of these CPU-intensive computations
to FPGA devices, let us assume an FPGA power consumption similar to the one measured on
the Xilinx VU9P of 0.033 kWh per FPGA per hour. Accordingly,

0.9483
lbs CO2

kWh
∗ 0.033

kWh
FPGA hour

= 0.031
lbs CO2

FPGA hour
.

If (a big if) we assume an acceleration similar to the one measured in our application (68.54x),
the 150 million core hours per year would map into 2, 188, 583 FPGA hours per year. In this
scenario, the carbon footprint would total:

2, 188, 583
FPGA hour

year
· 0.031

lbs CO2

FPGA hour
= 68, 489

lbs CO2

year

or approximately 31.07 metric tons of CO2 per year. This is equivalent to a reduction in the
carbon footprint from 168 cars to 6 cars per year.

References

IEEE Standards Committee (1985). IEEE Standard for Binary Floating-Point Arithmetic.
IEEE.

Krusell, P. and A. A. Smith (1998). Income and wealth heterogeneity in the macroeconomy.
Journal of Political Economy 106 (5), 867–896.

Peri, A. (2020). A hardware approach to value function iteration. Journal of Economic Dynamics
and Control 114, 1–18.

Xilinx, Inc. (2020). Performance and Resource Utilization for Floating Point. Xilinx, Inc.

Xilinx, Inc. (2021). Overview of Arbitrary Precision Fixed-Point Data Types. Xilinx. Accessed
on 2023/11/02.

A.16

