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Appendix A: Continuity of λ∗ , λ
∗

Lemma 1. Let 1 <K0 ≤ min{V , D} denote the rank of the V ×D column stochastic matrix
P0. Assume that λ is continuous in B, �. Then λ∗ and λ

∗
are continuous at P0.

Proof. Let ENMF(P ) denote the set of column stochastic matrices (B, �) ∈ �K such
that B� = P . That is, ENMF(P ) is the set of exact nonnegative matrix factorizations of
the matrix P with rank at most K. Note that the set ENMF is only defined for matrices
that admit an exact nonnegative matrix factorization.

Given that λ is continuous in (B, �), by the theorem of the maximum, the continuity
of λ∗ and λ

∗
is obtained if the set ENMF(P ) can be shown to be a continuous correspon-

dence at P = P0. This will involve showing that the correspondence is both upper and
lower hemicontinuous.

Because ENMF(P ) is closed and bounded (i.e., compact valued), it suffices to verify
the following notions of sequential continuity (Ok (2007), pp. 218 and 224).

• ENMF(P ) is upper hemicontinuous at P = P0: for any sequence (Pm ) and (Bm, �m )
with Pm → P0 and (Bm, �m ) ∈ ENMF(Pm ), there exists a subsequence of (Bm, �m )
that converges to a point in ENMF(P0 ).

• ENMF(P ) is lower hemicontinuous at P = P0: for any Pm with Pm → P0, and any
(B0, �0 ) ∈ ENMF(P0 ), there exists a sequence (Bm, �m ) such that (Bm, �m ) →
(B0, �0 ) and (Bm, �m ) ∈ ENMF(Pm ) for each m.

Upper hemicontinuous: As (Bm, �m ) is a sequence in the compact space �K ,
it has a convergent subsequence (Bm, �m ) → (B∗, �∗ ), where (B∗, �∗ ) ∈ �K . Since
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(Bm, �m ) ∈ ENMF(Pm ), we have that Bm�m = Pm. This implies B∗�∗ = P0. Conse-
quently, (B∗, �∗ ) ∈ ENMF(P0 ). Hence, we have shown that ENMF(P ) is upper hemi-
continuous at P = P0.

Lower hemicontinuous: The proof of this property is more laborious. Define
D(X ) as a diagonal matrix where each entry is the inverse of the column sum of X ,
and M(X ) =XD(X ).

Let Pm → P0 be a sequence of matrices that admit an exact nonnegative matrix fac-
torization of rank at most K. By assumption, there exists (B∗

m, �∗
m ) ∈ ENMF(Pm )—that

is, B∗
m�

∗
m = Pm—where B∗

m is a V × K matrix of rank K. Since Pm → P0 and (B∗
m, �∗

m )
belong to the compact set �K , we can assume w.l.o.g that (B∗

m, �∗
m ) converges to some

(B∗
0, �∗

0 ) ∈ ENMF(P0 ).
We will now show that for an arbitrary (B0, �0 ) ∈ ENMF(P0 ) one can use the se-

quence of matrices {B∗
m} above to construct an alternative sequence of column stochas-

tic matrices {(Bm, �m )} that converges to (B0, �0 ). Without loss of generality, we can
assume that none of the entries of either B0 nor �0 equal 1.

We introduce some auxiliary notation. For a matrix A (and in a slight abuse of no-
tation) let Aj denote its jth column. For a vector a let Ra denote the matrix that selects
the components of a that are equal to zero. Let R⊥

a denote the matrix that selects the
components of a that are nonzero. Let da be the number of zero entries in a.

Construction of the sequence of column stochastic matrices Bm : Define
the matrix Bm with jth column given by a linear combination of the columns of B∗

m:

B
j
m ≡M

(
B∗
mβ

j
m

)
, (S1)

where

β
j
m ≡ arg min

β∈RK

(
B
j
0 −B∗

mβ
)′(

B
j
0 −B∗

mβ
)

s.t. R
B
j
0
B∗
mβ= 0d

B
j
0
×1. (S2)

Problem (S2) is a least-squares projection problem with a linear equality constraint. The
matrix R

B
j
0
B∗
m selects d

B
j
0

rows of B∗
m, with indices that correspond to the zero entries of

B
j
0. Without loss of generality, assume that R

B
j
0
B∗
m has rank d

B
j
0
.1

It is well known that the first-order conditions of (S2) are given by

2B∗
m

′(Bj
0 −B∗

mβ
j
m

) = B∗
m

′R′
B
j
0

μ,

where μ is the vector of Lagrange multipliers on the equality constraints. Since R
B
j
0
B∗
m

has rank d
B
j
0
, the vector of Lagrange multipliers is given by

μ = 2
(
R
B
j
0
B∗
m

(
B∗
m

′B∗
m

)−1
B∗
m

′R′
B
j
0

)−1
R
B
j
0
B∗
m

(
B∗
m

′B∗
m

)−1
B∗
m

′Bj
0,

1If we select two rows that are linearly dependent, one could drop one of these rows.
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and the solution of (S2), βj
m, is given by

β
j
m = (

IK − (
B∗
m

′B∗
m

)−1
B∗
m

′R′
B
j
0

(
R
B
j
0
B∗
m

(
B∗
m

′B∗
m

)−1
B∗
m

′R′
B
j
0

)−1
R
B
j
0
B∗
m

)
× (

B∗
m

′B∗
m

)−1
B∗
m

′Bj
0.

Since B∗
m → B∗

0, then β
j
m converges to β

j
0, which is defined as(

IK − (
B∗

0
′B∗

0

)−1
B∗

0
′R′

B
j
0

(
R
B
j
0
B∗

0

(
B∗

0
′B∗

0

)−1
B∗

0
′R′

B
j
0

)−1
R
B
j
0
B∗

0

)(
B∗

0
′B∗

0

)−1
B∗

0
′Bj

0.

Moreover, because B∗
0�

∗
0 = P0 = B0�0 then both B∗

0 and B0 belong to the span of P0,
which has rank K. This means that there exists an invertible K ×K matrix Q such

B0Q = B∗
0.

We will now show that βj
0 =Q−1ej (where ej is the jth column of the identity matrix)

and, therefore,

B
j
m →M

(
β∗

0Q
−1ej

) =M
(
B
j
0

) = B
j
0.

To this end, it is sufficient to show

R
B
j
0
B∗

0

(
B∗

0
′B∗

0

)−1
B∗

0
′Bj

0 = 0d
B
j
0
×1.

Since B0Q = B∗
0, we have

B∗
0

(
B∗

0
′B∗

0

)−1
B∗

0
′Bj

0 = B
j
0.

By definition R
B
j
0
B
j
0 = 0d

B
j
0
×1, so algebra shows that

β
j
0 = (

B∗
0
′B∗

0
)−1

B∗
0
′Bj

0

=Q−1(B′
0B0

)−1
B0B

j
0

=Q−1B0ej .

We conclude that

B
j
m → M

(
β∗

0Q
−1ej

) =M
(
B
j
0

) = B
j
0,

which implies

Bm → B0.

It only remains to show that Bm is a column stochastic matrices for m large enough.
By construction, the columns of Bm add up to 1. Also, for all the zero entries of the matrix
B0 the corresponding elements of Bm are also 0. Finally, since all the other elements are
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strictly between 0 and 1, the definition of convergence implies that for m large enough
the entries of Bm are strictly between 0 and 1.

Construction of the sequence of column stochastic matrices �m : We con-
struct �m column by column, as we did with Bm. Write

Bm = [
B1
m � � �BK

m

]
,

and define

Baux
m ≡ Bm

(
R⊥
θ
j
0

)′
.

These are the columns of Bm whose limit appears in the linear combination defining P
j
0

(there are K − d
�
j
0

of them). Define also the K − d
�
j
0

vector

�
j
m

aux ≡ M
((
Baux
m

′Baux
m

)−1
Baux
m

′Pj
m

)
.

This construction guarantees that Baux
m �

j
m

aux = P
j
m. Finally, define implicitly the K × 1

vector �j
m to be the vector such that

R⊥
�
j
0

�
j
m =�

j
m

aux
,

with all other entries equal to 0, that is, R
θ
j
0
�

j
m = 0d

�
j
0
×1.

Now, we will show that �j
m → �

j
0 and that �j

m is a stochastic matrix. Algebra shows
that

R⊥
�
j
0

�
j
m →M

((
Baux

0
′Baux

0

)−1
Baux

0
′Pj

0

) =R⊥
�
j
0

�
j
0.

This follows from the fact that only the nonzero entries of �j
0 are used to construct Pj

0.

Moreover, by the definition of convergence, the elements of R⊥
�
j
0

�
j
m are in the interval

(0, 1) for large enough m. Since all the other entries of �j
0 are zero, we conclude

�
j
m →�

j
0.

This means that the matrix �m = [�1
m, � � � , �D

m] converges to �0 and it is a column
stochastic matrix for m large enough.

Conclusion: For an arbitrary (B0, �0 ) ∈ ENMF(P0 ), we have constructed a se-
quence (Bm, �m ), s.t. (Bm, �m ) → (B0, �0 ), and (Bm, �m ) ∈ ENMF(Pm ). Therefore,
ENMF(P ) is lower hemicontinuous at P = P0.

Appendix B: Robust credible sets

In this section, we show that Theorem 2 in the main paper implies that if q∗
1−α is the 1−α

quantile of λ
∗
(P ), then q∗

1−α is a robust 1−α quantile in the sense of (5) in the main body
of the paper. To this purpose, it is sufficient to establish the following claim.
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Claim: For any q ∈R:

inf
π∈
B,�(πP )

π
(
λ(B, �) ≤ q|C

) = πP

(
λ

∗
(P ) ≤ q|C

)
.

Proof. For any q ∈R, define the function

λq(B, �) = 1
{
λ(B, �) ≤ q

}
.

This function satisfies the assumptions of Theorem 2. In analogy to definitions (in the
main paper), (3) and (4) define

λ∗
q(P ) ≡ inf

(B,�)∈�K
λq(B, �) s.t. B�= P .

Thus, our Theorem 2 implies that for any data realization

inf
π∈
B,�(πP )

Eπ
[
λq(B, �)|C

] = EπP

[
λ∗
q(P )|C

]
.

To complete the argument, note that—by definition—λ∗
q(P ) can be rewritten as the in-

dicator function

λ∗
q(P ) =

{
1 if λ∗(P ) ≤ q,

0, otherwise.

This follows from the fact that λ(P ) ≤ q if and only if λ(B, �) ≤ q for all (B, �) such that
B�= P . Consequently, we have shown that

inf
π∈
B,�(πP )

Eπ
[
λq(B, �)|C

] = πP

(
λ

∗
(P ) ≤ q|C

)
.

By the definition of indicator function, we also have

Eπ
[
λq(B, �)|C

] = π
(
λ(B, �) ≤ q|C

)
.

Thus, we have shown that for any q ∈R:

inf
π∈
B,�(πP )

π
(
λ(B, �) ≤ q|C

) = πP

(
λ

∗
(P ) ≤ q|C

)
.

This last equality shows that the robust 1 − α quantile is the 1 − α quantile of λ
∗
(P ).

Appendix C: Posterior draws in algorithm 1

In this section, we show that the draws Pj in Step 2 of Algorithm 1 (in the main paper)
are indeed the posterior draws corresponding to the prior πP .

Following the notation in the paper, let πB,� denote a prior over the structural pa-
rameters (B, �) that belong to the parameter space �K . Our starting point is that the
prior πB,� induces a prior πP over the space SK

V ,D of column-stochastic matrices of rank
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at most K, via the transformation P = B�. Mathematically, πP is typically called the
push-forward measure of πB,� under the function �(B, �) = B�.2

Let C denote the corpus and let π(B,�)|C denote the posterior distribution over (B, �)
corresponding to the prior πB,� and the likelihood P(C|B, �). Recall from the main pa-
per, equation (1),

P(C|B, �) =
D∏

d=1

V∏
t=1

(B�)
nt,d
t,d .

The likelihood depends on (B, �) only through B�, and hence, P(C|B, �) = P(C|B�).
Claim: The posterior distribution based on the prior πP and the likelihood P(C|B�)

equals the push-forward distribution of π(B,�)|C under �.

Proof. The posterior distribution of P based on the prior πP and the likelihood
P(C|B�) assigns the following probability to any measurable set S ⊆ SK

V ,D:

πP|C(S) =

∫
S
P(C|P )dπP∫

SK
V ,D

P(C|P )dπP

, (S3)

(see equation (1.1) of Ghosal and Van der Vaart (2017) for the definition of posterior
distribution above).

Because πP is, by definition, the push-forward of πB,� under �, the change of vari-
ables formula in Lemma 5.0.1 in Stroock (1999) applied to the numerator and denomi-
nator of (S3) above implies

πP|C(S) =

∫
{B,�|B�∈S}

P(C|B�)dπB,�∫
�K

P(C|B�)dπB,�

.

Using the fact that P(C|B, �) = P(C|B�) we conclude that—for any measurable S ⊆
SK
V ,D, the posterior πP|C(S) equals∫

{B,�|B�∈S}
P(C|B, �)dπB,�∫

�K

P(C|B, �)dπB,�

. (S4)

2Let (E1, B1 ) and (E2, B2 ) be a pair of measurable spaces. Given a measure μ and a measurable map �

on (E1, B1 ) into (E2, B2 ), the push-forward measure of μ under � is defined for any � ∈ B2 by

�∗μ(�) = μ
(
�−1(�)

)
.

See Section 5.0, page 80 of Stroock (1999).
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Using again the definition of posterior distribution in Ghosal and Van der Vaart (2017),
(S4) equals

πB,�|C
({

(B, �)|B� ∈ S
})

. (S5)

But (S5) is exactly the definition of the push-forward of π(B,�)|C under � since

πB,�|C
(
�−1(S)

) = πB,�|C
(
{B, �|B� ∈ S}

)
.

Thus, we have shown that the posterior with respect to the prior over P (in turn im-
plied by the prior over (B, �),) is the same as the distribution over P = B�, implied by
the posterior of (B, �) (given the prior over (B, �)).

Lastly, note that Theorem 2 uses posterior expectations w.r.t πP|C . In particular,

EπP

[
λ∗(P )|C

]
, EπP

[
λ

∗
(P )|C

]
.

We have shown above that πP|C is the push-forward of π(B,�)|C under �(B, �) = B�.
Consequently, we can use Theorem 4.1.11 in Dudley (2002) to show∫

SK
V ,D

λ∗(P )dπP|C =
∫
�K

λ∗(B�)dπ(B,�)|C ,

and analogously for λ
∗
(P ). This justifies our algorithm: take draws from the posterior of

(B, �); for each draw compute the implied P (which equals B�); proceed to evaluate the
functions λ∗(P ) and λ

∗
(P ) and average over the draws of (B, �).

Appendix D: Large D need not imply tighter identified sets

Assume there are only two words, two documents, and two topics (which is also the
example used in Section 6.1). Suppose that the parameter of interest is the Herfindahl
index for document 1, which is given by θ2

1,1 + (1 − θ1,1 )2 ∈ [1/2, 1]. For the sake of this
example, assume that the population frequencies for the two words in document 1 are
given P1 = (1/3, 2/3)
 and that the frequencies in document two are P2 = (2/3, 1/3)
.
The identified set for the Herfindahl index, given P = [P1, P2], is its whole range; the
whole interval [1/2, 1]. This can be illustrated graphically by noting that the following
two configuration of parameters are compatible with P . Either

B =
[

0 2/3
1 1/3

]
, �=

[
1/2 0
1/2 1

]
, (S6)

or

B =
[

1/3 2/3
2/3 1/3

]
, �=

[
1 0
0 1

]
. (S7)

(S6) has a corresponding Herfindahl index for the first document equal to 1/2. (S7) has
a corresponding Herfindahl index for the first document equal to 1. Figure D.1 depicts
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Figure D.1. Identified set for (β1, β2 ) given P1 = (1/3, 2, 3)
, P2 = (2/3, 1/3)
.

the identified set for (β1, β2 ) in red, and the specific values of (β1, β2 ) considered in

(S6)–(S7) in blue.

Consider now the case in which there are more than two documents, but assume

they all lie in the convex hull of P1 and P2. Figure D.2 depicts this situation.

Note that even though there more documents, the identified set for β1, β2 given P in

Figure D.2 is exactly the same as in Figure D.1. Thus, the identified set for the Herfind-

ahl index can still be shown to equal [0, 1/2]. Thus, the example shows that having a

large number of documents need not “shrink” the identified set of parameters of inter-

est, such as B or the Herfindahl index.

Figure D.2. Identified set for (β1, β2 ) with more than two documents.
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Appendix E: Numerical illustration of our main results: Supplementary

results

E.1 Posterior mean of HHI

In this section, we that the posterior, in the example in Section 6.1 in the main paper,
admits a simple closed-form solution that depends only on the number of times term 1
appears in document 1 (n1,1 ) and the document size (N ).

The posterior mean of the HHI under π2 is

Eπ2

[
λ(B, �)|C

] = 1 + 2Eπ2

[
θ2

1,1|C
] − 2Eπ2[θ1,1|C],

= 1 + 2Vπ2 (θ1,1|C ) − 2Eπ2[θ1,1|C]
(
1 −Eπ2[θ1,1|C]

)
. (S8)

To evaluate (S8), we need the posterior distribution of θ1,1 under π2. Recall that

p1 ≡ β1,1θ1,1 +β1,2(1 − θ1,1 ), and p2 ≡ β1,1(1 − θ2,2 ) +β1,2θ2,2,

and the prior π2 is a point mass on β1,1 = 1 and β1,2 = 0. This implies that the posterior
of θ1,1 has the same distribution as the posterior of p1.

The likelihood is

P(C|p1, p2 ) = p
n1,1
1 (1 −p1 )N−n1,1p

N−n2,2
2 (1 −p2 )n2,2 ,

and given that p1, p2 have uniform prior, implies the joint posterior of p1, p2 is Dirichlet
with parameters [α1, α2]′ ≡ [n1,1 + 1, n2,2 + 1]′.

The marginal distribution of a ith element of a Dirichlet is a Beta(αi,
∑k

j=1 αj − αi),
hence the posterior for p1 and, therefore, θ1,1 is Beta(n1,1 + 1, N + 2 − (n1,1 + 1)).

The moments of a Beta distribution are

E[pi] = αi

α0
, V[pi] =

αi

α0

(
1 − αi

α0

)
α0 + 1

,

where α0 = ∑k
i=1 αi. Substituting these into equation (S8) and rearranging yield

Eπ2

[
λ(B, �)|C

] = 1 − 2
(

1 − 1
α0 + 1

)(
α1

α0

)(
1 − α1

α0

)
.

Substituting α1 = n1,1 + 1 and α0 = (n1,1 + 1) + (n2,2 + 1) = N + 2 verifies yields our
simple closed-form posterior mean

Eπ2

[
λ(B, �)|C

] = 1 − 2
(
n1,1 + 1
N + 2

)(
1 − n1,1 + 1

N + 2

)(
1 − 1

N + 3

)
.

E.2 Closed-form lower bound

In this section, we will provide an intuitive description of how to obtain the closed-form
solutions for the range of posterior means for the example in Section 6.1 in the main
paper.
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It is helpful to consider first the case in which the prior over (p1, p2 ) is dogmatic. In
this case, the lower end of the range of posterior means will simply by given by the value
function:

λ∗(p1, p2 ) ≡ min
B,�

θ2
1,1 + (1 − θ1,1 )2 s.t. (B, �) satisfy equation (11). (S9)

The upper end of the range is defined analogously, and denoted by λ
∗
(p1, p2 ). The lower

end of the range is

λ∗(p1, p2 ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
p1 −p2

1 −p2

)2

+
(

1 − p1 −p2

1 −p2

)2

if
1 +p2

2
≤ p1 ≤ 1, 0 ≤ p2 < 1,(

p1

p2

)2

+
(

1 − p1

p2

)2

if 0 ≤ p1 ≤ p2

2
, 0 <p2 ≤ 1,

1
2

, otherwise

(S10)

and λ
∗
(p1, p2 ) = 1. When the priors (p1, p2 ) are not dogmatic, Theorem 2 in Section 4

shows that the lower/upper end of the range of posterior means for any prior over
(p1, p2 ) can be obtained succinctly by reporting the posterior mean of λ∗(p1, p2 ) and
λ

∗
(p1, p2 ).

E.3 Approximation to the range of posterior means

In this section, we display a figure of the approximation of the range of posterior means
of HHI, in the example in Section 6.1 in the main paper, and the closed-form solution
from Appendix E.2. See Figure E.1.

E.4 Monte Carlo supplement

In this section, we provide supplementary results and details for the Monte Carlo exer-
cise in the example in Section 6.1 in the main paper.

Figure E.1. Approximation of the range of posterior means of HHI, compared with a closed–
form solution.
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The lower bound to the frequentist estimator, the set of λ over all possible nonnega-
tive matrix factorizations of the maximum likelihood estimator of P is

λ∗(p1, p2 ) ≡ min
B,�

θ2
1,1 + (1 − θ1,1 )2 s.t. (B, �) satisfy equation (11). (S11)

To show that robust Bayes estimator of the range of posterior means and the fre-
quentist estimator both converge to same thing, we will take M Monte Carlo draws. The
number of times term 1 appears in document nm1,1 ∼ Binomial(N , p1 ), and the number
of times term 1 appears in document 2 nm1,2 ∼ N − Binomial(N , p2 ), and use the natural
estimators p̂m

1 = nm1,1/N and p̂m
2 = 1 − nm1,2/N .

To compute the robust Bayes estimator for the mth Monte Carlo draw, take L =
1000 draws from the posterior distribution of pm,l

1 ∼ Beta(nm1,1 + 1, N − nm1,1 + 1) and

pm,l
2 ∼ Beta(N − nm1,2 + 1, nm1,2 + 1).3 The robust Bayes estimator is the posterior mean of

λ∗(p1, p2 ), computed using (S10).
Our frequentist estimator is just the plug-in estimator λ̂

m = λ∗(p̂m
1 , p̂m

2 ) using (S10).
The difference between the frequentist and robust Bayes estimators is presented in

Figure E.2.

E.5 Standard Bayes analysis in the presence of anchor words

This section shows that if no additional restrictions are imposed on the model’s param-
eter space, standard Bayesian methods need not converge to the “true” parameter even
if there’s an anchor word structure. Assume that in the true DGP, the true B matrix is

Figure E.2. Difference between frequentist and robust Bayes estimators.

3We show the derivation of these distributions in Appendix E.1.
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Figure E.3. Posterior distribution of β1,1 estimates when there’s an anchor word structure in
the true DGP.

diagonal, that is, B = [ 1 0
0 1

]
. This clearly satisfies the anchor word assumption, that is,

word 1 only appears in topic 1, and word 2 only appears in topic 2. We fix � = [ 0.8 0.2
0.2 0.8

]
and let P = B�. We then generate 2 documents, each with N = 1000 words according to
P , and consider the posterior distributions of β1,1 under uniform prior using the Gibbs
sampler.

Figure E.3 reports the posterior distribution of β1,1 (blue histogram) and also plots
the true value of β1,1 (red, vertical, dashed line). This simple simulation shows that stan-
dard Bayesian methods need not converge to the true parameter.

To make the point that this is not simply a consequence of having a small sample,
we also report the posterior distribution of P1,1 in Figure E.4.

E.6 Robust Bayes analysis under additional identifying assumptions

In the previous section, we presented numerical evidence showing that there is no sense
in which standard Bayesian analysis should be expected to concentrate around the true
parameter, even when the anchor words assumption is satisfied.

In this section, we provide a simple example of a set-identified model in which iden-
tification can be achieved by making restrictions on the parameter space that are akin to
the existence of anchor words. We present simple algebraic expressions that show that
neither Bayesian nor robust Bayesian methods concentrate around the true parameter,
even when the true parameter satisfies the restrictions that yield point identification.

Consider the following statistical model for the scalar random variable X :

X|(θ1, θ2 ) ∼ N (θ1 + θ2, σn ), σn = σ/n, (θ1, θ2 ) ∈R
2. (S12)
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Figure E.4. Posterior distribution of p1,1 estimates when there’s an anchor word structure in
the true DGP.

This model is clearly not identified without further restrictions on the parameter space.
However, if one considers the restricted parameter space

�∗ ≡ {
(θ1, θ2 ) ∈R

2|θ1 = 0
}

,

the model in (S12) is point identified. Consider a prior:

(θ1, θ2 )′ ∼ N2

((
0
0

)
,

(
1 0
0 1

))
. (S13)

Algebra shows that the posterior distribution on (θ1, θ2 )′ is

(θ1, θ2 )′|X = x∼ N2

⎛⎜⎝
⎛⎜⎝

x

2 + σnx

2 + σn

⎞⎟⎠ ,

⎛⎜⎝
1 + σn

2 + σn
− 1

2 + σn

− 1
2 + σn

1 + σn

2 + σn

⎞⎟⎠
⎞⎟⎠ . (S14)

Suppose that the data was generated by the parameter (0, θ0
2 )′. Direct computation

shows that the posterior mean of (θ1, θ2 )′ converges in probability (as n→ ∞) to(
θ0

2

2
,
θ0

2

2

)
, (S15)

which is clearly different to the true data generating process (0, θ0
2 )′.

Now, consider the robust Bayes analysis of the scalar parameter θ2. This means that
we are interested in the function λ(θ1, θ2 ) = θ2. The robust Bayes algorithm suggested in
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the paper requires us to compute, for each posterior draw of (θ1, θ2 )′, the value function:

λ
∗
(θ1, θ2 ) ≡ sup

(θ̃1, θ̃2 )∈R2

λ(θ̃1, θ̃2 ) s.t. θ̃1 + θ̃2 = θ1 + θ2.

The function λ∗(θ1, θ2 ) is defined analogously with “inf” instead of “sup.” Note that
both of these functions are equal to infinity for every posterior draw. This means that the
robust range of posterior means equals [−∞, ∞]. This shows that there is no sense in
which the robust Bayes procedure converges to the parameter that generated the data.

E.7 The problem of using incorrect identifying assumptions

Consider again the set-identified model in (S12). Suppose we are interested in an esti-
mator of the parameter θ. If one assumes that the parameter space is �∗ (so that θ1 is
known to be zero), the best unbiased estimator for θ can be shown to be θ̂ML = (0, X )′;
see Gorman and Hero (1990). Suppose that the identifying assumption is incorrect, in
the sense that the true data generating process is a vector (θ0

1, θ0
2 ) where θ0

1 = 0. Direct
calculations show that θ̂ML converges in probability (as n → ∞) to (0, θ0

1 + θ0
2 )′. This

means that the estimator that uses incorrect identifying assumptions is not consistent.
We note that the limiting vector makes the statistical distance between the true data
generating process and the statistical model equal to zero (under any metric over prob-
ability distributions and also over any statistical divergence). In this sense, the limit pro-
vides the “best” approximation of the true data generating process under the identifying
assumption θ1 = 0.

Appendix F: Empirical application: Additional figures

F.1 Other functionals λ(B, �)

In this section, we report the range of posterior means for the functional λ in (14). Be-
cause Ht is a function of �, then the coefficient λ in (14) is a function of � itself. The
posterior mean of λ can then be computed as follows. Each posterior draw of � has
an associated time series H ≡ {Ht }148

t=1 (H is then the time series collecting the value of
the Herfindahl index in each of the 148 meetings). Estimating (14) using ordinary least
squares for each posterior draw of H, and then computing the average value of the co-
efficient gives the posterior mean of λ.

Figure F.1 below reports the posterior mean of the functional λ in (14) using the pri-
ors in (15), which have concentration parameters α = 1.25 and η = 0.025. The poste-
rior mean of this functional is 0.0098 and the standard 95% posterior credible set ex-
cludes negative values. The range of posterior means for this functional is depicted in
Figure F.1b using stars on the horizontal axis, which also excludes negative values. The
range of posterior means include only positive values, suggesting that the transparency
change leads to increase in topic concentration that is robust.
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Figure F.1. Prior and posterior mean for λ(B, �) and range of posterior means.

F.2 Other prior πP

As we have already discussed in the main body of the paper, in any set-identified para-
metric model (not only the LDA), Bayesian estimation and inference is sensitive to (i) the
prior over unidentified parameters, (ii) the prior over identified parameters, and (iii) the
parametric assumptions embedded in the likelihood function. Thus, fully assessing the
robustness of the Bayesian inference requires separating and understanding the relative
contributions of changes in (i)–(ii)–(iii) to the sensitivity of the reported results.

While our theoretical analysis has focused on understanding the sensitivity to (i) fix-
ing (ii) and (iii) (see our Theorem 2), to the best of our knowledge, there is no general
approach to theoretically decompose the sensitivity of Bayesian inference to (i)–(ii)–(iii).
However, it is possible to informally analyze (ii) by considering a different prior πP . In
this section, we report figures analogous to Figure 9 in the main body of the paper and
to Figure F.1 in the Supplemental Appendix under the prior

βk
i.i.d.∼ Dirichlet(1) and θd

i.i.d.∼ Dirichlet(1). (S16)

Under this prior, the columns of B and � are independent and identically uniformly
distributed on their respective simplices.

Figure F.2 below reports the prior and posterior mean (along with the range of poste-
rior means) for the percent change in the Herfindahl index under the prior in (S16). This
figure is analogous to Figure 9 in the main body of the paper, with the only difference
being the different choice of πP .

The posterior mean of the percent change in the Herfindahl index (blue, dashed line)
in Figure F.2b is 33% and the standard 95% credible set is [30%, 35%]. For comparison,
the same posterior mean under the prior in (15) was 31% and the 95% credible set is
[29%, 34%].

The range of posterior means obtained after applying Algorithm 1 is [26%, 34%] and
the 95% robust credible set is [22%, 36%]. For comparison, the same posterior mean
under the prior in (15) was [25%, 34%] and the 95% credible set is [21%, 37%].
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Figure F.2. Prior and posterior mean for λ(B, �) and range of posterior means under the prior
in (S16).

To summarize, these results suggest that using both priors lead to quantitatively sim-
ilar conclusions on the change in the Herfindahl index due to transparency change, in
the sense that the sign from the results obtained from the off-the-shelf LDA remain the
same.

Figure F.3 reports the prior and posterior mean (along with the range of posterior
means) for the regression coefficient on the “transparency” dummy, which corresponds
to the functional introduced in equation (14). This is analogous to Figure F.1 with a dif-
ferent prior distribution.

F.3 Results for FOMC2

In this section, we report results for monetary policy strategy discussion part of the
FOMC meetings (FOMC2). We focus on the prior in (15). Figure F.4 reports the result

Figure F.3. Prior and posterior mean for regression coefficient on “transparency” and range of
posterior means.
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Figure F.4. Prior and posterior mean for λ(B, �) and range of posterior means for FOMC2.

analogous to Figure 9 in the main text for FOMC2 meetings. The solid blue line in Fig-
ure F.4b shows the posterior mean of difference in average topic HHI in FOMC2 meet-
ings before and after the transparency change, which is 20%. The 95% credible interval
based on the quantiles of the posterior distribution is [18%, 23%]. Thus, the standard
implementation of the LDA suggests there was an increase in the topic concentration in
the monetary policy strategy discussion section. The stars in Figure F.4b report the 95%
robust credible set, which is [11%, 22%]. Thus, we conclude that the increasing Herfind-
ahl index found using standard LDA implementation is robust.

Figure F.5 reports the results for regression coefficient on “transparency” in FOMC2.
The 95% credible set based on posterior distribution and the 95% robust credible set
both contains only negative values, suggesting that the effect of transparency on topic
concentration in monetary policy strategy discussions is in fact robustly negative, after
controlling for other potential variables that might drive topic concentration.

Figure F.5. Prior and posterior mean for regression coefficient on “transparency” and range of
posterior means for FOMC2.
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