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Appendix B: Proofs

In this Supplemental Appendix, we provide proofs for the results in Fan, Jiang, and Shi
(2024).

B.1 Proofs of results in Section 2

Proof of Lemma 2.1. Under Assumptions 2.1–2.5, CCPs are identified up to a label
swapping, which enables us to identify expected payoffs (via F−1(·)) and set up the sys-
tem: G(π ) ≡ π − �π. Under Assumption 2.6, the systems corresponding to c �= c0 has
no solution. Note that system corresponding to c0 always has a solution, as π0 generates
the system corresponding to c0. Under the condition that �c0 has full column rank, this
π0 is uniquely determined by πc0 and �c0 .

B.2 Proofs of results in Section 3

Lemma B.1 is used to prove Theorem 3.1. Lemmas B.2 and B.3 are introduced to prove
Theorem 3.2.

Lemma B.1. Let the result of Lemma 2.1 and the following assumptions hold for the
Simple Game. (i) For any π ∈ �, Gn(π ) = G(π ) + Op(n−1/2 ). (ii) For any c ∈ Cn,
Wn(c) = W (c) + op(1) with W (c) being positive definite. (iii) For any c ∈ Cn,

minπ∈� ‖Gn,c(π )‖2
Wn(c)

p→ minπ∈� ‖Gc(π )‖2
W (c). Then it holds that ĉ = c0 wp → 1 and

π̂
p→ π0 for any l1 ∈ {lπ , lπ + 1, � � � , l}, α1 ∈ (0, 1], λ ∈ (−1, 0), and � ∈ {1, � � � , l − l1}.
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Proof of Lemma B.1. For s = 1, � � � , S, let scs0 ∈ S C s denote the subselection vector
whose first 2ls elements are the same as those of c0. We first show that Pr(scs0 ∈ S C s

n ) →
1 for s = 1, � � � , S. This implies that Pr(c0 ∈ Cn ) → 1, because c0 ∈ Cn occurs if and only if
scS0 ∈ S C S

n occurs.
We first prove the result for s = 1. By Lemma 2.1, we have that Gc0 (π0 ) = 0. To-

gether with Assumption (i) in the lemma, we can obtain that ‖Gn,c0 (π0 )‖2 = Op(n−1 )
and ‖Gn,sc1

0
(π0 )‖2 =Op(n−1 ). Therefore, it holds that Jn(sc1

0 ) ≤ ‖Gn,sc1
0
(π0 )‖2 =Op(n−1 ).

For any sc1 ∈ S C 1, if Jn(sc1 ) ≤ nλ, then sc1 ∈ S C 1
n occurs. And for any α1 > 0, S C 1

n can
contain sc1’s such that Jn(sc1 ) > nλ. Thus, we obtain that for any λ > −1,

1 ≥ Pr
(
sc1

0 ∈ S C 1
n

)≥ Pr
(
Jn
(
sc1

0
)≤ nλ

)→ 1.

Hence, we obtain that Pr(sc1
0 ∈ S C 1

n ) → 1.
Pr(sc2

0 ∈ S C 2
n|sc2

0 ∈ S C 2 ) → 1 and Pr(sc2
0 ∈ S C 2 ) → 1 together imply that Pr(sc2

0 ∈
S C 2

n ) → 1. The convergence of Pr(sc2
0 ∈ S C 2

n|sc2
0 ∈ S C 2 ) → 1 follows from the same

argument as Pr(sc1
0 ∈ S C 1

n ) → 1; and sc1
0 ∈ S C 1

n implies that sc2
0 ∈ S C 2. Thus, we have

that Pr(sc2
0 ∈ S C 2

n ) → 1. Applying the same argument sequentially, we can obtain that
Pr(scs0 ∈ S C s

n ) → 1 for s = 1, � � � , S. By the definition of Cn, elements in Cn select all pos-
sible combinations of the last 2(l − lS ) moments allowed by C . The event scS0 ∈ S C S

n

occurs if and only if c0 ∈ Cn occurs. Thus, we have that Pr(c0 ∈ Cn ) → 1.
Next, we show that if c0 ∈ Cn, then Pr(ĉ = c0 ) → 1. For any c ∈ Cn and c �= c0, Assump-

tion (iii) implies that

min
π∈�

∥∥Gn,c(π )
∥∥2
Wn(c)

p→ min
π∈�

∥∥Gc(π )
∥∥2
W (c) > 0, (B.1)

where the inequality follows from Lemma 2.1 and Assumption (ii). Again by Lemma 2.1,
we have that Gc0 (π0 ) = 0. Then by Assumption (i), it holds that Gn,c0 (π0 ) = op(1). There-
fore, we obtain that

min
π∈�

∥∥Gn,c0 (π )
∥∥2
Wn(c) ≤ ∥∥Gn,c0 (π0 )

∥∥2
Wn(c) = op(1). (B.2)

(B.1) and (B.2) together imply that Pr(ĉ = c0|c0 ∈ Cn ) → 1. Combining with Pr(c0 ∈ Cn ) →
1, we conclude that Pr(ĉ = c0 ) → 1.

It remains to show that π̂
p→ π0. Define π̌ ≡ arg minπ∈� ‖Gn,c0 (π )‖2

Wn(c0 ). We have that
π̌ converges in probability to its population counterpart π0 by the standard argument
for consistency of a GMM estimator provided that Lemma 2.1 holds. Thus, for any ε > 0
and δ > 0, we can find N1 such that Pr(‖π̌ − π0‖ > ε

2 ) < δ
2 for n ≥ N1. Because ĉ = c0

implies π̂ = π̌, we have Pr(π̂ = π̌ ) ≥ Pr(ĉ = c0 ) → 1. Thus, for the given ε > 0 and δ > 0,
we can find N2 such that Pr(‖π̂− π̌‖> ε

2 ) < δ
2 for n ≥N2. Combing the above two results,

we have that for any given ε > 0 and δ > 0, there exists N ≡ max{N1, N2} such that for
n >N ,

Pr
(‖π̂ −π0‖> ε

) = Pr
(‖π̂ − π̌ + π̌ −π0‖> ε

)
≤ Pr

(
‖π̂ − π̌‖> ε

2

)
+ Pr

(
‖π̌ −π0‖> ε

2

)
≤ δ.

Therefore, the result π̂
p→ π0 holds.
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Proof of Theorem 3.1. We prove the theorem by verifying the conditions in Lem-
ma B.1. Lemma 2.1 holds by Assumptions 2.1–2.6. Assumption (ii) in Lemma B.1 is
implied by Assumption 3.2. It remains to the show that Assumptions (i) and (iii) in
Lemma B.1 are satisfied.

Let p be the vector that stores the CCPs of all players on all observed and latent states
(z ∈ {z1, � � � , zl} and k ∈ {A, B}) and p̂ be its consistent estimator obtained via the eigen-
decomposition method. Because the estimated coefficient matrix in the Simple Game
is a smooth function of p̂, we write it in the form of �n ≡ e(p̂) for some smooth func-
tion e(·). Similarly, the estimated expected payoff vector can be written in the form of
πn ≡ F−1(p̂), where F−1(p̂) stacks F−1(p1zk ) for any z ∈ {z1, � � � , zl} and k ∈ {A, B}. Thus,
the sample moment functions can be written as Gn(π ) = F−1(p̂) − e(p̂)π. By differen-
tiability of F−1(·) and e(·), given any π, the mean value expansion of Gn(π ) with respect
to p gives

√
n
(
Gn(π ) −G(π )

)= √
nDp∗(π )(p̂ − p),

where Dp∗(π ) = ∂F−1(p∗ )
∂p′ − ∂(e(p∗ )π )

∂p′ and p∗ is a point between p̂ and p. Under Assump-

tions 2.1–2.6, Lemma C.2 in Xiao (2018) implies that that p̂ is consistent and
√
n(p̂ − p)

converges to a normal distribution. Under Assumption 2.1(i) and (ii), we have that

Dp∗(π )
p→ Dp(π ) ≡ ∂F−1(p)

∂p′ − ∂(e(p)π )
∂p′ , where Dp is bounded for any π ∈ �. Therefore,

it holds that
√
n(Gn(π ) −G(π )) =Op(1), which verifies Assumption (i) in Lemma B.1.

For Assumption (iii) in Lemma B.1, it suffices to prove that for any c ∈ Cn

max
π∈�

∣∣Gn,c(π )�Wn(c)Gn,c(π ) −Gc(π )�W (c)Gc(π )
∣∣= op(1),

where max is used rather than sup because � is compact by Assumption 3.1 and both
Gn,c(·) and Gc(·) are continuous in π. The triangular inequality provides that

max
π∈�

∣∣Gn,c(π )�Wn(c)Gn,c(π ) −Gc(π )�W (c)Gc(π )
∣∣

≤ max
π∈�

∣∣Gn,c(π )�Wn(c)Gn,c(π ) −Gnc(π )�W (c)Gnc(π )
∣∣

+ max
π∈�

∣∣Gn,c(π )�W (c)Gn,c(π ) −Gc(π )�W (c)Gc(π )
∣∣.

By the property of the matrix infinity norm,1 the first term on the right-hand side of the
inequality is bounded above by maxπ∈� ‖c‖0‖Gn,c(π )‖2‖Wn(c) −W (c)‖∞. � is bounded.
Moreover, �n and πn are both Op(1) by the continuity of e(·) and F−1(·) and the consis-
tency of p̂. Therefore, we have maxπ∈� ‖Gn,c(π )‖2 = Op(1). By Assumption 3.2, it holds
that ‖Wn(c)−W (c)‖∞ = op(1). Thus, the first term is op(1). For the second term, it holds
that

max
π∈�

∣∣Gn,c(π )�W (c)Gn,c(π ) −Gc(π )�W (c)Gc(π )
∣∣

1For a generic matrix E, ‖E‖∞ denotes the matrix infinity norm that equals the maximum absolute row
sum of matrix E.
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= max
π∈�

∣∣Gn,c(π )�W (c)
(
Gn,c(π ) −Gc(π ) +Gc(π )

)−Gc(π )�W (c)Gc(π )
∣∣

≤ max
π∈�

∣∣Gn,c(π )�W (c)
(
Gn,c(π ) −Gc(π )

)∣∣
+ max

π∈�
∣∣Gn,c(π )�W (c)Gc(π ) −Gc(π )�W (c)Gc(π )

∣∣
≤ max

π∈�
∥∥Gn,c(π )�W (c)

∥∥∞ max
π∈�

∥∥Gn,c(π ) −Gc(π )
∥∥

+ max
π∈�

∥∥Gn,c(π ) −Gc(π )
∥∥max
π∈�

∥∥W (c)Gc(π )
∥∥∞

= op(1),

where the first and second inequality follow from the triangular inequality and applying
matrix norm, and last equality holds by �n and πn being Op(1) and the compactness
of �.

Hence, we have verified all the conditions in Lemma B.1. The claimed theorem holds.

Lemma B.2. Let α�
s ≡ |S C s

n|/|S C s|. Given l1, α1, λ, and �, assume that there exists some
s† ∈ {2, � � � , S} independent of l, such that α�

s = α for all s = s†, � � � , S. Then both the time
complexity and space complexities of the MMS procedure are linear in l.

Proof of Lemma B.2. We show the time complexity result by counting the elementary
operations (EOs). Note that the values of l1, α1, λ, and � are independent of l. In Step s,
the algorithm computes Jn(scs ) for every scs ∈ S C s ; and for each scs , computing Jn(scs )
is a quadratic programming problem with a fixed number of unknowns and constraint
(from �). By definition, ‖Gn,scs (·)‖2 = ‖Gn,scs−1 (·)‖2 + ‖Gn,scs\(s−1) (·)‖2, where scs\(s−1) is
a subselection vector that selects the moments selected by scs but not scs−1. Because
the function ‖Gn,scs−1 (·)‖2 is stored in Step (s − 1), the number of EOs in computing
‖Gn,scs (·)‖2 only depends on that in computing ‖Gn,scs\(s−1) (·)‖2, which depends solely
on �. Therefore, the number of EOs for computing Jn(scs ) for every scs ∈ S C s is β|S C s|,
where β< ∞ is a constant independent of l. Next, the algorithm sorts Jn(scs ). The sort-
ing process involves |S C s|2 number of EOs. The comparison between Jn(scs ) and nλ in
each step takes place |S C s| times at most. Thus, there are (β+ 1)|S C s| + |S C s|2 num-
ber of EOs in Step s for s = 1, � � � , S. The number of EOs in Step (S + 1) can be computed
in the same way, except that the algorithm only searches for the minimum of |Cn| values
rather than sorts them. Thus, (β + 1)|Cn| number of EOs are needed. In total, there are∑S

s=1(γ|S C s| + |S C s|2 ) + γ|Cn| number of EOs, with γ ≡ β+ 1.
In Step s for s = 1, � � � , S, the input set S C s has cardinality 2ls−1∏s−1

i=1 α
�
i . For

s = 1, � � � , S, ls = l1 + (s − 1)�. We have |S C 1| = 2l1−1 and |S C s| = 2ls−1∏s−1
i=1 α

�
i ≤

2l1+(s−1)�−1 for s = 2, � � � , s†. Therefore,

s†∑
s=1

(
γ
∣∣S C s

∣∣+ ∣∣S C s
∣∣2)≤

s†∑
s=1

(
γ2l1+(s−1)�−1 + 4l1+(s−1)�−1)≡ T1.
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For s = s†, � � � , S, α�
s = α = 2−�. Thus, for s = s† + 1, � � � , S, it holds that |S C s| ≤

2ls−1∏s−1
i=s† α

�
i = 2l1+(s−1)�−1(2−� )(s−s† ) = 2l1+(s†−1)�−1. As a result, we have that

S∑
s=s†+1

(
γ
∣∣S C s

∣∣+ ∣∣S C s
∣∣2)≤

S∑
s=s†+1

(
γ2l1+(s†−1)�−1 + 4l1+(s†−1)�−1)

≤ (S − s†)(γ2l1+(s†−1)�−1 + 4l1+(s†−1)�−1)≡ T2,

where the second inequality holds because the summands are independent of s. The
input set Cn in Step (S + 1) has cardinality 2l−1∏S

i=1 α
�
i . Let �f ≡ l − [l1 + (S − 1)�].

Because α�
s = α= 2−� for s = s†, � � � , S, 2l−1∏S

i=1 α
�
i ≤ 2l1+(s†−2)�+�f−1. We obtain that

γ|Cn| ≤ γ2l1+(s†−2)�+�f−1 ≤ γ2l1+(s†−1)�−1 ≡ T3,

where the inequality holds because �f ≤ �. The number of EOs is no more than T1 +T2 +
T3. Since lπ , l1 < l, and � are fixed, T1 and T3 are constants of l. In fact, only S depends
on l. Because S < l−l1

� + 1 by definition, we obtain that

T2 <

(
l − l1

�
+ 1 − s†

)(
γ2l1+(s†−1)�−1 + 4l1+(s†−1)�−1).

Since s† is a constant by assumption, T2 grows at most linearly in l. Hence, we have
shown that the number of EOs needed to perform the MMS procedure is linear in l. The
first claim of the lemma follows.

Since in each step, the algorithm stores |S C s| number of values, the space complex-
ity is

∑S
s=1 |S C s|. Following from the similar calculation as above, we obtain that the

space complexity of the MMS procedure is also linear in l.

Lemma B.3. Define Q ≡ [0, 1]6l as the set of CCPs constituting the moment functions G(·).
Let Assumptions 2.1–2.6 and 3.1 hold. With probability approaching one as n → ∞, for
all possible CCPs in Q except for a set of Lebesgue measure zero, both the time complexity
and space complexity of the MMS procedure are linear in l.

Proof of Lemma B.3. We prove the lemma by showing that the assumption in Lem-
ma B.2 holds with probability approaching one as n → ∞. The assumption holds if
Jαn > nλ at Step s for every s = s†, � � � , S, because α�

s = α whenever Jαn > nλ. Since λ < 0,
nλ → 0 as n → ∞. For any sc ∈ R

2l consisting of zeros and ones, let Gsc(·) denote the
moment functions selected by sc. The proof for Theorem 3.1 shows that under Assump-
tions 2.1–2.6 and 3.1, Assumption (iii) in Lemma B.1 holds. Following the similar ar-

gument, it holds that Jn(sc) = minπ∈� ‖Gn,sc(π )‖2 p→ minπ∈� ‖Gsc(π )‖2. Therefore, if
minπ∈� ‖Gsc(π )‖2 �= 0, then Pr(Jn(sc) > nλ ) → 1 as n → ∞.

For any scs ∈ S C s , Gscs (π ) contains ls number of moments. By (2.10) in Fan,
Jiang, and Shi (2024), Gscs (π ) ≡ πscs − �scsπ, where πscs ∈ R

ls , �scs ∈ R
ls×lπ , and lπ = 4.

minπ∈� ‖Gscs (π )‖2 �= 0 if and only if rank([πscs , �scs ]) > rank(�scs ). Define P ≡ {p : p ∈
[0, 1]2ls } as the set of CCPs constituting �scs defined in (2.9). Elements in �scs can be
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presented as a map M : P → [0, 1]ls×lπ . Define another map R(p) ≡ rank(M(p)) for ev-
ery p ∈ P . We aim to show that at any Step s such that ls > lπ , the set P\Pr , where
Pr ≡ {p ∈ P : R(p) = lπ }, has Lebesgue measure zero in P .

Partition ��
scs as [�1

scs , �2
scs ], where �1

scs ∈ R
lπ×lπ and �2

scs ∈ R
lπ×(ls−lπ ). Define a set

P1 ≡ {p1 : p1 ∈ [0, 1]2lπ }. Similar to �scs , �1
scs can be presented as a map: M1 : P1 →

[0, 1]lπ×lπ . Let det†(p1 ) ≡ det(M1(p1 )) for every p1 ∈ P1. For P1
r ≡ {p1 ∈ P1 : det†(p1 ) �= 0},

we first to show that the set P1\P1
r has Lebesgue measure zero in P1. By the Leibniz for-

mula, det†(p1 ) defines a polynomial function on [0, 1]2lπ . We have that det†(p1∗ ) �= 0 for
some

p
1∗ ≡ [p2

(
z1, k1

)
, p3

(
z1, k1

)
, � � � , p2

(
zlπ , klπ

)
, p3

(
zlπ , klπ

)]�
,

where k1, � � � , klπ are the latent states selected by scs . In algebraic geometry, the set
P1\P1

r is defined as a proper subvariety, and must be of Lebesgue measure zero in P1.
For more discussion on the algebraic geometry, especially the algebraic variety, see Cox,
Little, and O’Shea (2013). In fact, P1

r is generic in P1. We explore the genericity result for
the rest of the proof.

By the property of generic sets, it holds that

P1
r × [0, 1]2(ls−lπ ) ≡ {(p1, p2) : p1 ∈ P1

r , p2 ∈ [0, 1]2(ls−lπ )}
is generic in P . As a result, Pt ≡ {(p1, p2 ) ∈ [0, 1]2ls : det†(p1 ) �= 0} is generic in P . Since
det(�1

scs ) �= 0 is equivalent to rank(�1
scs ) = lπ , rank(�scs ) = lπ holds if det(�1

scs ) �= 0. We
have that Pt ⊂ Pr . Hence, Pr is generic in P , which implies that P\Pr has Lebesgue mea-
sure zero in P .

Next, we show that the set of CCPs constituting Gscs (·) such that rank([πscs , �scs ]) =
lπ + 1 is generic in Qs ≡ {q : q ∈ [0, 1]3ls }. Assumption 2.1 assumes that F : R → [0, 1] is
absolutely continuous, where F(·) is the distribution function. A function is said to have
the Luzin’s property if the image of any Lebesgue null set has again Lebesgue measure
zero. By Chapter 7 in Saks (1937), for functions with bounded variation, absolute conti-
nuity is equivalent to Luzin’s property. In consequence, it suffices to show that the set

PE r ≡ {(π, p) : π ∈R
ls , p ∈ [0, 1]2ls , rank

([
π, M(p)

])= lπ + 1
}

is generic in PE ≡ {(π, p) : π ∈ R
ls , p ∈ [0, 1]2ls }. The proof follows the same argument

as proving that Pr is generic in P . Thus, we obtain that the set of CCPs such that
rank([πscs , �scs ]) > rank(�scs ) is generic in Qs . Because rank([πscs , �scs ]) > rank(�scs ) is
equivalent to minπ∈� ‖Gscs (π )‖2 �= 0, and Pr(Jn(scs ) > nλ ) → 1 as n → ∞ if
minπ∈� ‖Gscs (π )‖2 �= 0 for any scs ∈ S C s and scs �= scs0, we conclude that the set of CCPs
such that α�

s �= α wp → 1 as n → ∞ for any Step s with s = s†, � � � , S has Lebesgue measure
zero in Q, the set of all possible CCPs constituting G(·).

Proof of Theorem 3.2. Define �I as the parameter space of player 1’s payoffs on z1
1

and some latent state such that Assumptions 2.1–2.6 hold. Since the space of payoffs for
all three players is a Cartesian product of spaces for each player on each observed and
latent states, it suffices to show that player 1’s “exceptional” payoffs have zero Lebesgue
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measure in �I . Recall the definition of Q in Lemma B.3. Define QI ⊆ Q such that ele-
ments in QI are CCPs in the Simple Game for all three players holding z1 = z1

1 and that
Assumptions 2.1–2.6 are satisfied. By definition, elements in QI can identify the true
payoffs of player 1 under the correct matching. Lemma B.3 implies that for any s with
ls > lπ and scs �= scs0, the set of CCPs such that rank([πscs , �scs ]) > rank(�scs ) does not
hold has measure zero in Q. Since QI ⊆ Q has nonzero Lebesgue measure, the set of
such CCPs also has measure zero in QI .

Define a map G : QI → �I that maps the CCPs to the true payoff. The map exists be-
cause elements in QI identify the true payoff. By Lemma 7.25 in Walter (1987), Luzin’s
property holds if the mapping G(p) is differentiable in p. Therefore, it suffices to prove
that G(p) is differentiable in p. The map G is the solution to πc0 −�c0π = 0 by Lemma 2.1,
where both πc0 and �c0 are functions of p. In consequence, G(p) = �+

c0
πc0 , where �+

c0
is

the Moore–Penrose pseudo-inverse of �c0 . We show that �+
c0

and πc0 are both differen-
tiable in pi(z, k) for each i, z ∈ Z , and k ∈ K . Without loss of generality, we can just
focus on p1(z1, A). Because F(·) is continuously differentiable and f (·) is positive ev-
erywhere in R, the inverse function theorem provides that F−1(·) is continuously differ-
entiable in p1(z1, A) on [0, 1]. Thus, πc0 is differentiable in p1(z1, A). Since �c0 has full
column rank, �+

c0
= (��

c0
�c0 )−1��

c0
. By the definition of � in (2.9) in Fan, Jiang, and Shi

(2024), �c0 is differentiable in p1(z1, A). Hence, G(p) is differentiable in p. The claimed
result in the theorem holds.

B.3 Proofs of results in Section 4

Theorem 4.1 is proved based upon Lemmas B.4–B.7.

Lemma B.4. Let Assumptions 2.1–2.6 and the following assumptions hold for the Sim-
ple Game. For any parameter sequence ξn ∈ �R(ξ) with any ξ ∈ �R: (i)

√
n(Gn(π ) −

G(π ))
d→ N(0, �(π )) with some positive definite covariance matrix �(π ) for any π ∈ �;

(ii) for any c ∈ Cn, Wn(c) = W (c) + op(1) with W (c) being positive definite; and (iii)
W (c0 ) = �−1

0 for �0 being the asymptotic variance of
√
n(Gn,c0 (π0 ) − Gc0 (π0 )). Then

lim supn→∞ supξ∈�R
Prξ(Tn > χ2

[l−lπ+lR],1−α ) = α.

Proof of Lemma B.4. First, we show that lim supn→∞ supξ∈�R
Prξ(c0 ∈ Cn ) → 1. Sec-

ond, we prove that lim supn→∞ supξ∈�R
Prξ(Tn > χ2

[l−lπ+lR],1−α ) = α if c0 ∈ Cn.
For s = 1, � � � , S, let scs0 ∈ S C s denote the subselection vector whose first 2ls ele-

ments are the same as c0. We first show that lim supn→∞ supξ∈�R
Prξ(sc1

0 ∈ S C 1
n ) → 1.

By Assumptions 2.1–2.6, Lemma 2.1 holds, and we have that Gc0 (π0 ) = 0. Together
with Assumption (i), we can obtain that for any ξ ∈ �R and the parameter sequence
{ξn} ∈ �R(ξ), ‖Gn,c0 (π0 )‖2 = Op(n−1 ) and ‖Gn,sc1

0
(π0 )‖2 = Op(n−1 ). Therefore, it holds

that Jn(sc1
0 ) ≤ ‖Gn,sc1

0
(π0 )‖2 = Op(n−1 ) for any ξ ∈ �R and the parameter sequence

{ξn} ∈�R(ξ). We can further obtain that for any λ > −1,

1 ≥ lim sup
n→∞

sup
ξ∈�R

Prξ
(
sc1

0 ∈ S C 1
n

)≥ lim sup
n→∞

sup
ξ∈�R

Prξ
(
Jn
(
sc1

0
)≤ nλ

)→ 1,
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where the second inequality holds for any α1 > 0, because S C 1
n can contain sc1’s such

that Jn(sc) > nλ. Thus, we obtain that lim supn→∞ supξ∈�R
Prξ(sc1

0 ∈ S C 1
n ) → 1.

The convergence lim supn→∞ supξ∈�R
Prξ(sc2

0 ∈ S C 2
n ) → 1 holds if

lim sup
n→∞

sup
ξ∈�R

Prξ
(
sc2

0 ∈ S C 2
n|sc2

0 ∈ S C 2)→ 1

and lim supn→∞ supξ∈�R
Prξ(sc2

0 ∈ S C 2 ) → 1. The former holds by the same proof as
above and the latter holds because sc2

0 ∈ S C 2 occurs if and only if sc1
0 ∈ S C 1

n occurs. We
can obtain that lim supn→∞ supξ∈�R

Prξ(scS0 ∈ S C S
n ) → 1 by sequentially applying this ar-

gument. Because the event scS0 ∈ S C S
n occurs if and only if c0 ∈ Cn occurs, it holds that

lim supn→∞ supξ∈�R
Prξ(c0 ∈ Cn ) → 1.

In the next step, we show that lim supn→∞ supξ∈�R
Prξ(Tn > χ2

[l−lπ+lR],1−α ) = α if the
event c0 ∈ Cn occurs,. We prove the result in two cases: lR < lπ and lR = lπ . When lR < lπ ,
the null space of R has dimension lπ − lR. Let � be a lπ × (lπ − lR ) matrix storing a basis
of the null space. Then there exists πf ∈ Rlπ−lR and μ such that any π satisfying H0 can
be written as π = �πf +μ. By imposing H0 on the sample moment functions, we obtain
that

Gn,c(π ) = Gn,c(�πf +μ) = πn,c − �n,cμ− �n,c�πf .

Define π̂f (c) ≡ arg minπf
‖Gn,c(�πf + μ)‖2

Wn(c) for any c ∈ Cn, where Wn(c) = W (c) +
op(1) by Assumption (ii). Define π∗

f (c) ≡ plimn→∞π̂f (c). For each given c ∈ Cn, we have
the solution π̂f (c) to the minimum-distance problem with a corresponding “pseudo-
true” value π∗

f (c) defined as its probability limit. The “pseudo-true” value at c0 deliv-
ers the true value as π0 = �π∗

f (c0 ) + μ for any parameter sequence ξn ∈ �R(ξ). Our

test statistic Tn is equivalent to minc∈Cn n‖Gn,c(�π̂f (c) + μ)‖2
Wn(c). We aim to show that

the test based upon the test statistic Tn and the critical value χ2
[l−lπ+lR],1−α controls the

asymptotic size when c0 ∈ Cn. For this purpose, we derive its asymptotic distribution
under drifting model parameter sequences. To simplify the discussion, we omit “under
any ξ ∈ �R and the parameter sequence {ξn} ∈ �R(ξ)” with the understanding that all
the derivations are for any ξ ∈ �R and the parameter sequence {ξn} ∈ �R(ξ).

Apply mean value expansion of Gn,c0 (�π̂f (c0 ) +μ) at π∗
f (c0 ). We can obtain that

Gn,c0

(
�π̂f (c0 ) +μ

)=Gn,c0

(
�π∗

f (c0 ) +μ
)− �n,c0�

(
π̂f (c0 ) −π∗

f (c0 )
)
. (B.3)

Let an,c0 ≡ �n,c0�. By construction, π̂f (c0 ) satisfies the following first-order condition:

a�
n,c0

Wn(c0 )Gn,c0

(
�π̂f (c0 ) +μ

)= 0.

Multiply both sides of (B.3) by a�
n,c0

Wn(c0 ). We obtain that

a�
n,c0

Wn(c0 )Gn,c0

(
�π̂f (c0 ) +μ

)
= a�

n,c0
Wn(c0 )Gn,c0

(
�π∗

f (c0 ) +μ
)− a�

n,c0
Wn(c0 )an,c0

(
π̂f (c0 ) −π∗

f (c0 )
)
.

By Assumption 2.6, �c0 has full row rank. Together with Assumption (i), we obtain that
�n,c0 has full row rank with probability approaching one for any parameter sequence.
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Thus, a�
n,c0

Wn(c0 )an,c0 is invertible with probability approaching one. After rearrange-
ment, we have that(

π̂f (c0 ) −π∗
f (c0 )

) = (
a�
n,c0

Wn(c0 )an,c0

)−1
a�
n,c0

Wn(c0 )Gn,c0

(
�π∗

f (c0 ) +μ
)

− (a�
n,c0

Wn(c0 )an,c0

)−1
a�
n,c0

Wn(c0 )Gn,c0

(
�π̂f (c0 ) +μ

)
= (

a�
n,c0

Wn(c0 )an,c0

)−1
a�
n,c0

Wn(c0 )Gn,c0 (π0 ), (B.4)

where the last equality follows from the first-order condition. Multiply both sides of (B.4)
with an,c0 , we get that

an,c0

(
π̂f (c0 ) −π∗

f (c0 )
)

= an,c0

(
a�
n,c0

Wn(c0 )an,c0

)−1
a�
n,c0

Wn(c0 )Gn,c0 (π0 ). (B.5)

Combining (B.3) with (B.5), we have that

√
n
(
Gn,c0

(
�π̂f (c0 ) +μ

)−Gn,c0 (π0 )
)

= −an,c0

√
n
(
π̂f (c0 ) −π∗

f (c0 )
)

= −an,c0

(
a�
n,c0

Wn(c0 )an,c0

)−1
a�
n,c0

Wn(c0 )
√
nGn,c0 (π0 ).

Let Il be the identify matrix of dimension l. It then holds that

√
nGn,c0

(
�π̂f (c0 ) +μ

)
= (Il − an,c0�

(
a�
n,c0

Wn(c0 )an,c0

)−1
a�
n,c0

Wn(c0 )
)√

nGn,c0 (π0 ).

Because �n,c0 = �c0 + op(1) by Assumption (i), we have an,c0 = �c0� + op(1) ≡ ac0 +
op(1). Together with Wn(c0 ) = W (c0 ) +op(1) = �−1

0 +op(1) by Assumptions (i) and (iii),
we have that(

Il − an,c0

(
a�
n,c0

Wn(c0 )an,c0

)−1
a�
n,c0

Wn(c0 )
)= (Il − ac0

(
a�
c0
�−1

0 ac0

)−1
a�
c0
�−1

0

)+ op(1).

Since π0 =�π∗
f (c0 )+μ under the null hypothesis and

√
nGn,c0 (π0 ) = Op(1) by Assump-

tion (i), we obtain that

√
nGn,c0

(
�π̂f (c0 ) +μ

)
= (Il − ac0

(
a�
c0
�−1

0 ac0

)−1
a�
c0
�−1

0

)√
nGn,c0 (π0 ) + op(1). (B.6)

By Assumptions (ii) and (iii), �−1
0 is symmetric and positive definite. As a result, it

admits a Cholesky decomposition: �−1
0 =A�A. Thus, it holds that

nGn,c0

(
�π̂f (c0 ) +μ

)�
Wn(c0 )Gnc0

(
�π̂f (c0 ) +μ

)
= nGn,c0

(
�π̂f (c0 ) +μ

)�
�−1

0 Gn,c0

(
�π̂f (c0 ) +μ

)+ op(1)

= (A√
nGn,c0

(
�π̂f (c0 ) +μ

))�(
A

√
nGn,c0

(
�π̂f (c0 ) +μ

))+ op(1).
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Since �0 =A−1(A� )−1, Assumption (i) and Lemma 2.1 imply that

√
nGn,c0 (π0 )

d→N(0, �0 )
d=A−1Z,

where Z ∼N(0, Il ). Together with (B.6), we obtain that

A
√
nGn,c0

(
�π̂f (c0 ) +μ

) d→ A
(
Il − ac0

(
a�
c0
�−1

0 ac0

)−1
a�
c0
�−1

0

)
A−1Z

= (
Il −Aac0

(
a�
c0
�−1

0 ac0

)−1
a�
c0
A�)Z.

It is easy to verify that the matrix in front of Z in the above expression is symmetric and
idempotent. It has the rank l − lπ + lR verified by the following derivation:

rank
[(
Il −Aac0

(
a�
c0
�−1

0 ac0

)−1
a�
c0
A�)]

= trace
[(
Il −Aac0

(
a�
c0
�−1

0 ac0

)−1
a�
c0
A�)]

= trace(Il ) − trace
(
Aac0

(
a�
c0
�−1

0 ac0

)−1
a�
c0
A�)

= trace(Il ) − trace
(
a�
c0
A�Aac0

(
a�
c0
�−1

0 ac0

)−1)
= l − lπ + lR,

where the first equality follows from the property of idempotent matrix and third equal-
ity follows from the invariance property of trace under cyclic permutations. Thus, we
obtain that for any ξ ∈�R and the parameter sequence {ξn} ∈�R(ξ),

min
Rπ=r

∥∥√nGn,c0 (π )
∥∥2
Wn(c0 ) = n

∥∥Gn,c0

(
�π̂f (c0 ) +μ

)∥∥2
Wn(c0 )

d→ χ2
[l−lπ+lR].

By the definition of test statistic in (4.2) in Fan, Jiang, and Shi (2024), it holds that
Tn ≤ minRπ=r ‖√nGn,c0 (π )‖2

Wn(c0 ). Therefore, Tn is asymptotically stochastically domi-

nated by χ2
[l−lπ+lR]. Moreover, for some ξ ∈�R and the parameter sequence {ξn} ∈�R(ξ)

such that each element in limn→∞
√
nGn,c(π ) is infinite for every c �= c0, Tn

d→ χ2
[l−lπ+lR].

Thus, if c0 ∈ Cn, using the (1 − α)th quantile of χ2
[l−(lπ−lR )] denoted as χ2

[l−(lπ−lR )],1−α,
achieves asymptotic size control:

lim sup
n→∞

sup
ξ∈�R

Prξ
(
Tn > χ2

[l−lπ+lR],1−α|c0 ∈ Cn
)= α.

The proof for the case where lR = lπ is the same with π = R−1r. Therefore, combining
with lim supn→∞ supξ∈�R

Prξ(c0 ∈ Cn ) → 1, the lemma holds.

Lemma B.5. Let Lemma 2.1 and the following assumptions hold for the Simple Game:
(i) for any π ∈ �, Gn(π ) = G(π ) + Op(n−1/2 ); (ii) for any c ∈ Cn, Wn(c) = W (c) + op(1)

with W (c) being positive definite; and (iii) for any c ∈ Cn, minπ∈� ‖Gn,c(π )‖2
Wn(c)

p→
minπ∈� ‖Gc(π )‖2

W (c). Then it holds that for any ξ /∈�R, limn→∞ Prξ(Tn > χ2
[l−lπ+lR],1−α ) =

1.
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Proof of Lemma B.5. When ξ /∈ �R, it is straightforward to see that for all c ∈ C ,
minRπ=r ‖√nGn,c(π )‖2

Wn(c) diverges to infinity under Lemma 2.1 and Assumption (i)–

(iii). Since χ2
[l−lπ+lR],1−α is finite, it holds that limn→∞ Prξ(Tn > χ2

[l−lπ+lR],1−α ) = 1. Thus,
the lemma follows.

Proof of Theorem 4.1. We prove the theorem by verifying the conditions in Lemmas
B.4 and B.5. Lemma 2.1 holds by Assumptions 2.1–2.6. It suffices to show that Assump-
tions (i)–(iii) in Lemma B.4 hold for the first part of the theorem and Assumptions (i)–(iii)
in Lemma B.5 hold for the second part of the theorem.

First, we show that the moment functions for the Simple Game admits an asymp-
totic linear representation under drifting sequences. Without loss of generality, we prove
it for player 1. The proof of asymptotic linear representation builds on two lemmas pro-
vided after this proof. We first focus on finding the asymptotic linear representation for
the first observed state z = z1, denoted as Gnz1 (π ), and then stack the asymptotic linear
representations of Gnz(π ) for z = z1, � � � , zl in the end to obtain the asymptotic linear
representation for Gn(π ). Because we have fixed the player and the observed state vari-
able, from now on we will suppress the subscript i, zi, and z when there is no confusion.
With slight abuse of notation, define the 6 × 1 vector of equilibrium CCPs and its esti-
mator as

pz1 ≡ [p1
(
z1, k

)
, p1

(
z1, k′), � � � , p3

(
z1, k

)
, p3

(
z1, k′)]� ≡ [p1, � � � , p6]� and

p̂z1 ≡ [p̂1, � � � , p̂6]�.
(B.7)

Let πz1 ≡ [F−1(p1(z1, k)), F−1(p1(z1, k′ ))]� be the 2 × 1 equilibrium expected payoff
vector, and define πnz1 as the estimated expected payoff vector. The matrix storing

the true joint probabilities of opponents’ actions is �z1 =
[

p−1(z1, k)�, p−1(z1, k′ )�
]�

.

The estimated matrix for opponents’ actions is denoted as �nz1 . Then Gnz1 (π ) = πnz1 −
�nz1π. Let the 8 × 1 vector az1 denote the free joint probabilities in the contingency table
(conditional on z = z1), and let the 9 × 1 vector qz1 denote the free unconditional joint
probabilities that generate the contingency table on z1:2

az1 ≡ [a1, � � � , a8]� and qz1 ≡ [q1, � � � , q9]�, where (B.8)

a1 ≡ Pr
(
[d1, d2, d3] = [1, 1, 1]|z1), a2 ≡ Pr

(
[d1, d2, d3] = [0, 1, 1]|z1),

a3 ≡ Pr
(
[d1, d2, d3] = [1, 0, 1]|z1), a4 ≡ Pr

(
[d1, d2] = [1, 1]|z1),

a5 ≡ Pr
(
[d1, d2] = [0, 1]|z1), a6 ≡ Pr

(
[d1, d3] = [1, 1]|z1),

a7 ≡ Pr
(
[d1, d3] = [0, 1]|z1), a8 ≡ Pr

(
d1 = 1|z1) and (B.9)

q1 ≡ Pr
(
[d1, d2, d3] = [1, 1, 1], z = z1), � � � ,

q8 ≡ Pr
(
d1 = 1, z = z1), q9 ≡ Pr

(
z = z1). (B.10)

2Note that in Supplemental Appendix C.1 although there are in total 14 probabilities in the contingency
tables that generate CCPs via eigendecomposition, only 8 of them are free (not linear combinations of other
probabilities): a1, � � � , a8.
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For i = 1, � � � , 8, it holds that ai = qi/q9. Note that qz1 includes three probabilities for the
joint actions of three players on z1, two probabilities for the joint actions of player 1 and
player 2 on z1, and two probabilities for the joint actions of player 1 and player 3 on
z1, one probability for the action of player 1 on z1, and the probability of z = z1. The
estimators q̂z1 and âz1 are calculated as

q̂z1 = 1
n

n∑
m=1

ηmz1 ≡ [q̂1, � � � , q̂9]� and âz1 =
[
q̂1

q̂9
, � � � ,

q̂8

q̂9

]�
≡ [̂a1, � � � , â8]�, (B.11)

where ηmz1 is defined as

ηmz1 ≡ [
1
(
[d1m, d2m, d3m] = [1, 1, 1], zm = z1), � � � ,

1
(
d1m = 1, zm = z1), 1

(
zm = z1)]�. (B.12)

By Lemmas B.6 and B.7 below, the second-order Taylor expansion of Gnz1 (π ) at pz1

gives

√
n
(
Gnz1 (π ) −Gz1 (π )

) = √
nDpz1 (π )(p̂z1 −pz1 )

+
∑
j

∑
k

Hp∗−j,k(π )

2

√
n(p̂j −pj )(p̂k −pk ),

where

Dpz1 (π ) ≡
[
dp11, � � � , dp16

dp21, � � � , dp26

]
2×6

,

in which

dp11 = 1

F ′(F−1(p1
(
z1, k

))) , dp22 = 1

F ′(F−1(p1
(
z1, k′))) ,

dp12 = dp14 = dp16 = dp21 = dp23 = dp25 = 0,

dp13 = (p3
(
z1, k

)
,
(
1 −p3

(
z1, k

))
, −p3

(
z1, k

)
, −(1 −p3

(
z1, k

)))
π,

dp15 = (p2
(
z1, k

)
, −p2

(
z1, k

)
, 1 −p2

(
z1, k

)
, −(1 −p2

(
z1, k

)))
π,

dp24 = (p3
(
z1, k′), (1 −p3

(
z1, k′)), −p3

(
z1, k′), −(1 −p3

(
z1, k′)))π,

dp26 = (p2
(
z1, k′), −p2

(
z1, k′), 1 −p2

(
z1, k′), −(1 −p2

(
z1, k′)))π.

First, Dpz1 (π ) is of full row rank. Second, by Assumption 4.1(i), the denominators in
dp11 and dp22 are bounded away from 0, and all other elements in Dpz1 (π ) are bounded
for any π ∈ �. By Assumption 3.1, Dpz1 (π ) is bounded uniformly over �. There are
only two types of nonzero elements in all Hessian vectors: payoff parameters and

− F ′′(F−1(p1(z1,k)))
[F ′(F−1(p1(z1,k)))]3 or − F ′′(F−1(p1(z1,k′ )))

[F ′(F−1(p1(z1,k′ )))]3 . Thus, by Assumption 3.1 and 4.1(i), all ele-

ments in the Hessian vectors are bounded, that is, there exists a absolute constant M∗
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such that for any j and k, it holds that
∑

j

∑
k ‖Hp∗−j,k(π )

2 ‖ <M∗. For large enough n, the
following inequality holds:∥∥∥∥∑

j

∑
k

Hp∗−j,k(π )

2

√
n(p̂j −pj )(p̂k −pk )

∥∥∥∥
≤ √

n
∑
j

∑
k

∥∥∥∥Hp∗−j,k(π )

2

∥∥∥∥‖p̂z1 −pz1‖2 ≤M∗√n‖p̂z1 −pz1‖2 = op(1).

This implies that

√
n
(
Gnz1 (π ) −Gz1 (π )

)
=Dpz1 (π )

√
n(p̂qz1 −pqz1 ) + op(1)

=Dpz1 (π )Daz1
(√

n(âqz1 − aqz1 ) + op(1)
)

=Dpz1 (π )Daz1
(
Dqz1

√
n(q̂qz1 − qqz1 ) + op(1)

)
= 1√

n

n∑
m=1

Dpz1 (π )Daz1Dqz1 (ηmz1 − qz1 ) + op(1) and

Gnz1 (π ) = 1
n

n∑
m=1

[
Dpz1 (π )Daz1Dqz1 (ηmz1 − qz1 ) +Gz1 (π )

]+ op
(
n−1/2),

where definitions of Daz1 and Dqz1 can be found in Lemmas B.6 and B.7.
Without loss of generality, Lemmas B.6 and B.7 prove the result for z = z1. The same

result holds for z = z2, � � � , zl, and such asymptotic linear representation of Gnz(π ) is
available for every observed state z. Stacking the asymptotic linear representation for z =
z1, � � � , zl, we obtain the asymptotic linear representation for player 1’s moment function
when holding his exclusive observed state at z1 = z1

1. Note that on zl, 1(z = zl ) = 1 −
(
∑l−1

s=1 1(z = zs )) and Pr(z = zl ) = 1 −∑l−1
s=1 Pr(z = zs ). We drop these two elements when

defining ηmzl and qzl and delete the corresponding last column of Dqzl , so that elements
in vector ηm−q are free of each other, where ηm and q are obtained by stacking ηmzs and
qzs together for s = 1, � � � , l. For m= 1, � � � , n, denote Qm ≡ (d1m, d2m, d3m, z1m, z2m, z3m ).
The asymptotic linear representation is expressed as

Gn(π ) = 1
n

n∑
m=1

φ(Qm, θ, π ) + op
(
n−1/2), (B.13)

where φ(Qm, θ, π ) = Dp(π )DaDq(ηm − q) + G(π ). The θ in φ(Qm, θ, π ) includes ele-
ments in Dp(π ), Da, Dq, �, and q, which are obtained by stacking Dpz(π ), Daz, Dqz, �z,
and qz for z = z1, � � � , zl.

The CCPs, contingency tables, and indicator functions are different across z. This
implies that the coefficient matrix in front of [[ηmz1 − qz1 ]�, � � � , [ηmzl − qzl ]

�]� is block
diagonal. Moreover, since Dpzs (π )DazsDqzs is of rank 2 for s = 1, � � � , l and any π ∈ �,
each block has full row rank. Therefore, we obtain that Dp(π )DaDq has full row rank and
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E(φ(Qm, θ, π )φ�(Qm, θ, π )) is nonsingular. Thus, by the Lindeberg central limit theo-
rem, the scaled and demeaned moment function converges in distribution to a normal
distribution with a positive definite variance covariance matrix for any parameter se-
quence ξn ∈ �R(ξ) with any ξ ∈ �R. Assumption (i) in Lemma B.4 is verified. This result
also implies that �0 in Assumption 4.1(iv) is nonsingular. Under Assumption 4.1(iii) and
(iv), Assumptions (ii) and (iii) in Lemma B.4 are satisfied. By Lemma B.4, the first part of
the theorem follows.

Assumptions (i)–(iii) in Lemma B.5 are the same as Assumptions (i)–(iii) in Lem-
ma B.1. The proof of Theorem 3.1 shows that Assumptions (i)–(iii) in Lemma B.1 are
implied by Assumptions 2.1–2.6, 3.1, and 3.2. Thus, the second part of the theorem
holds.

Lemma B.6. Under Assumptions 2.3 and 4.1, it holds that for any ξ ∈�R and the param-
eter sequence {ξn} ∈ �R(ξ),

√
n(q̂z1 − qz1 ) = Op(1) and (B.14)

√
n(âz1 − az1 ) = √

nDqz1 (q̂z1 − qz1 ) + op(1), where (B.15)

Dqz1 ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
q9

0 � � � 0 −q1

q2
9

0
1
q9

� � � 0 −q2

q2
9

...
...

. . .
...

...

0 0 � � �
1
q9

−q8

q2
9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
8×9

in which q̂z1 , qz1 , âz1 , and az1 are defined in (B.8)–(B.11).

Proof of Lemma B.6. Since each element in ηmz1 (defined in (B.12)) is less than or
equal to 1, the Lindeberg condition is satisfied. Under Assumption 2.3, by Lindeberg
central limit theorem, (B.14) holds. To obtain (B.15), apply the Taylor expansion of√
n(âz1 − az1 ) around q:

√
n(âz1 − az1 ) = √

nDqz1 (q̂z1 − qz1 ) + √
n
∑
j

∑
k

Hq∗−j,k

2
(q̂j − qj )(q̂k − qk ),

where Dqz1 is defined in the lemma, and Hq∗−j,k is the Hessian vector that stores the
second-order derivatives with respect to qj and qk evaluated at q∗

z1 , which is a point

lying between qz1 and q̂z1 . Each element in Hq∗−j,k is either − 1
q∗2

9
,

2q∗
j

q∗3
9

, or 0. Note that∥∥∥∥√n
∑
j

∑
k

Hq∗−j,k

2
(q̂j − qj )(q̂k − qk )

∥∥∥∥≤ √
n
∑
j

∑
k

∥∥∥∥Hq∗−j,k

2

∥∥∥∥‖q̂z1 − qz1‖2.

For any ε > 0, there exists Nε,q > 0 such that Pr(‖q̂z1 − qz1‖ < δ1
2 ) ≥ 1 − ε for n ≥ Nε,q by

triangular array Weak Law of Large Numbers (WLLN); and since q9 = Pr(z = z1 ) ≥ δ1 > 0,
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we obtain that Pr(q∗
9 ≥ δ1

2 ) ≥ 1 − ε for n ≥ Nε,q. For q∗
9 ≥ δ1

2 , there exists M1 such that∑
j

∑
k ‖Hq∗−j,k

2 ‖ ≤M1 <∞. Therefore, by (B.14) and triangular array WLLN, we have

√
n
∑
j

∑
k

∥∥∥∥Hq∗−j,k

2

∥∥∥∥‖q̂z1 − qz1‖2 ≤M1
√
n‖q̂z1 − qz1‖2

holds with probability at least 1 − ε for n sufficiently large, where ε > 0 is arbitrary. Be-
cause ‖q̂z1 − qz1‖ =Op(n−1/2 ), (B.15) holds.

Lemma B.7. Under Assumption 2.1–2.5 and 4.1, it holds that

√
n(p̂z1 −pz1 ) = √

nDaz1 (âz1 − az1 ) + op(1) (B.16)

for any ξ ∈�R and the parameter sequence {ξn} ∈ �R(ξ), where Daz1 ≡ ∂pz1

∂a�
z1

, and p̂z1 and

pz1 are defined in equation (B.7).

Proof of Lemma B.7. Second-order Taylor expansion of p̂z1 at a provides that

√
n(p̂z1 −pz1 ) = √

nDaz1 (âz1 − az1 ) + √
n
∑
j

∑
k

Ha∗−j,k

2
(âj − aj )(âk − ak ),

where Ha∗−j,k is the Hessian vector that stores second-order derivatives with respect to
aj and ak evaluated at a∗

z1 , which is a point between az1 and âz1 . Under Assumption 2.5,
the eigenvalues in the eigendecomposition are simple, and consequently there exists
a neighborhood around the true value of a such that in this neighborhood the eigen-
vector function of A12

1z1 (A12
z1 )−1 (a matrix whose elements are continuous functions of

a) is analytic. CCPs for player 1 are delivered by the eigenvector function, and CCPs for
other players are a continuously differentiable transformation of player 1’s CCPs. Be-

cause âz1
p→ az1 , for large enough n, H∗

a−j,k is bounded with probability close to 1. By a
similar reasoning as in the previous lemma, the claim in the lemma holds.

Proof of Proposition 4.1. It suffices to show that W b
n (c)

p→ W b(c), where W b(c)
is positive definite for any c ∈ Cn and W b(c0 ) = �−1

0 . Under Assumption 4.1, �c0

is of full column rank and rank(�c0�) = lπ − lR. For n sufficiently large, we have
rank(�n,c0�) = lπ − lR and arg minπf

‖Gn,c0 (�πf + μ)‖2 is unique. Therefore, W b
n (c0 ) =

(�b
n(c0, π̂f (c0 )))−1 for large enough n.

Latent states are matched across bootstrap draws with probability approaching one
based on pi(z, k) and pi(z, k′ ). Under Assumptions 2.1–2.6, 3.1, and 4.1(i) and (ii) the
moment functions for the Simple Game admits an asymptotic linear representation by
the proof of Theorem 4.1. For the vector of functions φ defined in (B.13), let φc0 denotes
its elements selected by c0. Thus, it holds that

G(b)
n,c0

(
�π̂f (c0 ) +μ

)= 1
n

n∑
m=1

φc0

(
Q(b)

m , θ, �π̂f (c0 ) +μ
)+ op(1).
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Since π̂f (c0 )
p→ π∗

f (c0 ) and π0 = �π∗
f (c0 ) +μ under the null hypothesis, where π∗

f (c0 ) =
arg minπ∈� ‖Gc0 (�πf + μ)‖2, we have �π̂f (c0 ) + μ

p→ π0. Under Assumptions 2.1–2.6,
3.1, and 4.1(i) and (ii), it holds that

√
n
(
Gn,c0

(
�π∗

f (c0 ) +μ
)−Gc0

(
�π∗

f (c0 ) +μ
)) d−→N(0, �0 )

and

√
n
(
G(b)

n,c0

(
�π̂f (c0 ) +μ

)−Gn,c0

(
�π̂f (c0 ) +μ

))
= √

n

(
1
n

n∑
m=1

φc0

(
Q(b)

m , θ, �π̂f (c0 ) +μ
)− 1

n

n∑
m=1

φc0

(
Qm, θ, �π̂f (c0 ) +μ

))+ o∗
p(1)

= √
n

(
1
n

n∑
m=1

φc0

(
Q(b)

m , θ, π0
)− 1

n

n∑
m=1

φc0 (Qm, θ, π0 )

)
+ o∗

p(1)
d∗−→ N(0, �0 ),

where the definitions of o∗
p(1) and

d∗→ can be found in Chapter 10 of Hansen (2021). The

first equality holds because conditional on data, the difference between G(b)
n,c0 (�π̂f (c0 )+

μ) and its linear representation is op(1), and the difference between Gn,c0 (�π̂f (c0 ) +μ)
and its linear representation is op(1). Conditional on data, convergence in distribution
holds by Theorem 10.8 in Hansen (2021) as ‖φc0 (Ql, θ, π0 )‖2 is uniformly square inte-
grable by the proof of Theorem 4.1. By Theorem 10.13 in Hansen (2021), �b

n(c0, π̂f (c0 )) =
�0 + op(1) holds if y(b)

n is uniformly square integrable, where

y(b)
n ≡ √

n

(
1
n

n∑
m=1

φc0

(
Q(b)

m , θ, π0
)− 1

n

n∑
m=1

φc0 (Qm, θ, π0 )

)
.

Because the uniform square integrability of a vector is implied by each element of the
vector being uniformly square integrable, let y(b)

n (i) be its ith element. It holds that

E
∗|y(b)

n (i)|4 = μ̂4(i)−3σ̂4(i)
n + 3σ̂4(i), where

μ̂4(i) = 1
n

n∑
m=1

∣∣∣∣∣φ(i)
c0

(
Q(b)

m , θ, π0
)− 1

n

n∑
m=1

φ(i)
c0

(Qm, θ, π0 )

∣∣∣∣∣
4

and

σ̂2(i) = 1
n

n∑
m=1

∣∣∣∣∣φ(i)
c0

(
Q(b)

m , θ, π0
)− 1

n

n∑
m=1

φ(i)
c0

(Qm, θ, π0 )

∣∣∣∣∣
2

,

with φ(i)
c0 (Q(b)

m , θ, π0 ) and φ(i)
c0 (Qm, θ, π0 ) being the ith element in φc0 (Q(b)

m , θ, π0 ) and
φc0 (Qm, θ, π0 ), respectively. Uniform square integrability of |φ(i)

c0 (Qm, θ, π0 )|2 implies
that μ̂4(i)

n = op(1) and σ̂2(i) = Op(1), which imply that E∗|y(b)
n (i)|4 = Op(1). Therefore,

y(b)
n is uniformly square integrable and �b

n(c0, π̂f (c0 )) = �0 + op(1) holds. �0 is positive
definite, because the asymptotic variance matrix of

√
n
(
Gn
(
�π∗

f (c0 ) +μ
)−G

(
�π∗

f (c0 ) +μ
))
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is positive definite and �0 is its submatrix with the corresponding rows and columns
selected by c0.

It remains to prove that for c �= c0, W b
n (c) converges in probability to some posi-

tive definite matrix. If rank(�n,c�) < lπ − lR, then W b
n (c) = WP , which is positive defi-

nite. If rank(�c�) = lπ − lR, then rank(�n,c�) = lπ − lR and arg minπf
‖Gn,c(�πf + μ)‖2

is unique for sufficiently large n. By a similar argument as the one for W b
n (c0 ), it holds

that W b
n (c) = (�b

n(c, π̂f (c)))−1 = �−1(c) + op(1), where �(c) is the asymptotic variance
of

√
n(Gn,c(�π∗

f (c) +μ) −Gc(�π∗
f (c) +μ)) with π∗

f (c) = plimπ̂f (c). �(c) is positive def-

inite, because the asymptotic variance matrix of
√
n(Gn(�π∗

f (c) +μ) −G(�π∗
f (c) +μ))

is positive definite and �(c) is its submatrix with the corresponding rows and columns
selected by c. The proposition holds.

B.4 Proofs of results in Section 5

Proof of Lemma 5.1. To prove (i), note that under Assumptions 5.1–5.2, Step 1 identi-
fication is achieved, G(π ) and C h are constructed for h ∈ {1, � � � , |�z1 |}. In each C h, as
rank([πc , �c ]) > rank(�c ) for any c that selects different latent states Assumption 5.3(ii),
C I h only contains select vectors that select the same latent state. Furthermore, ch0 is
defined as the vector in C I h that selects the most moments, which happens only when
all equilibria corresponding to a latent state is selected. Thus, ch0 is unique. �ch0

has full

column rank implies that the system selected by ch0 uniquely determines πh
0 . To prove

(ii), it remains to identify |K | and the corresponding |K | distinct payoff vectors. This
could be done by a pairwise comparison of the payoff vectors. Specifically, if the payoff
vectors ‖πh1

0 −πh2
0 ‖ = 0 for h1 �= h2, then they correspond to the same latent state (or the

same group). The total number of groups gives |K |; the distinct payoff vectors are the
|K | true payoff vectors denoted by tπk

0 for k= 1, � � � , |K |.

B.5 Proofs of results in Appendix A

Lemma B.8. Let the result of Lemma 5.1 and the following assumptions hold for the
General Game. (i) For any π ∈ �, Gn(π ) = G(π ) + Op(n−1/2 ). (ii) For any c ∈ Cn,
Wn(c) = W (c) + op(1) with W (c) being positive definite. (iii) For any c ∈ Cn,

minπ∈� ‖Gn,c(π )‖2
Wn(c)

p→ minπ∈� ‖Gc(π )‖2
W (c). (iv) ρ1(·) > 0 is a known strictly increas-

ing function and κ1,n → ∞ with κ1,n = o(n). Then it holds that for h = 1, � � � , |�z1 |,
ĉh = ch0 with probability approaching one and π̂h p→ πh

0 for any l1 ∈ {lπ , lπ + 1, � � � , l},
α1 ∈ (0, 1], λ ∈ (−1, 0), and � ∈ {1, � � � , l − l1}.

Proof of Lemma B.8. We prove the result for (ĉ1, π̂1 ). The superscript 1 in C 1, C I 1,
(c1

0 , π1
0 ), C 1

n , and (ĉ1, π̂1 ) are omitted. Other notation that appeared in the proof are the
same as the ones used in Section 5.2.1 and Appendix A.2. For s = 1, � � � , S, let scs0 ∈ S C s

denote the subselection vector whose first J
∑ls

t=1 |�zt | elements are the same as those
of c0. First, we show that Pr(scs0 ∈ S C s

n ) → 1 for s = 1, � � � , S. This implies that Pr(c0 ∈
Cn ) → 1, because c0 ∈ Cn occurs if and only if scS0 ∈ S C S

n occurs.
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Lemma 5.1 implies that Gc0 (π0 ) = 0. Combined with Assumption (i) in the lemma,
we obtain that ‖Gn,c0 (π0 )‖2 =Op(n−1 ) and ‖Gn,sc1

0
(π0 )‖2 =Op(n−1 ). Therefore, it holds

that

Jn
(
sc1

0
)= min

π∈�
∥∥Gn,sc1

0
(π )

∥∥2 ≤ ∥∥Gn,sc1
0
(π0 )

∥∥2 = Op
(
n−1).

For any sc1 ∈ S C 1, if Jn(sc1 ) ≤ nλ, then sc1 ∈ S C 1
n occurs. Therefore, we have that for

any λ > −1,

1 ≥ Pr
(
sc1

0 ∈ S C 1
n

)≥ Pr
(
Jn
(
sc1

0

)≤ nλ
)→ 1,

which implies that Pr(sc1
0 ∈ S C 1

n ) → 1. The proof for Pr(scs0 ∈ S C s
n ) → 1 for s = 2, � � � , S

follows the same argument as the one in the proof of Lemma B.1. Hence, we obtain that
Pr(c0 ∈ Cn ) → 1.

Second, we show that if c0 ∈ Cn, then Pr(ĉ = c0 ) → 1. For any c ∈ Cn and c /∈ C I ,
Assumption (iii) in the lemma implies that

min
π∈�

∥∥Gn,c(π )
∥∥2
Wn(c)

p→ min
π∈�

∥∥Gc(π )
∥∥2
W (c) > 0,

where the inequality follows from Lemma 5.1 and Assumption (ii). For any c ∈ C , define

J†
n(c) ≡ min

π∈�
∥∥Gn,c(π )

∥∥2
Wn(c) − ρ1

(‖c‖0
)
κ1,n/n.

By Assumption (iv), κ1,n = o(n). Thus, for any c /∈ C I ,

J†
n(c) = min

π∈�
∥∥Gn,c(π )

∥∥2
Wn(c) − ρ1

(‖c‖0
)
κ1,n/n > 0. (B.17)

On the other hand, we have that Gc0 (π0 ) = 0 by Lemma 5.1. Then by Assumption (i), it
holds that Gn,c0 (π0 ) = op(1). Therefore, we obtain that

min
π∈�

∥∥Gn,c0 (π )
∥∥2
Wn(c0 ) ≤ ∥∥Gn,c0 (π0 )

∥∥2
Wn(c0 ) =Op

(
n−1).

Together with Assumption (iv), it holds that

J†
n(c0 ) = min

π∈�
∥∥Gn,c0 (π )

∥∥2
Wn(c0 ) − ρ1

(‖c0‖0
)
κ1,n/n = op(1). (B.18)

(B.17) and (B.18) imply that for any c /∈ C I , Pr(J†
n(c0 ) < J†

n(c)) → 1.
At the same time, for any c ∈ C I , we have minπ∈� ‖Gn,c(π )‖2

Wn(c) = Op(n−1 ). As-
sumption (iv) implies that

min
π∈�

n
∥∥Gn,c(π )

∥∥2
Wn(c)/κ1,n = op(1), (B.19)

for any c ∈ C I . For any c ∈ C I and c �= c0, Lemma 5.1 implies that ‖c‖0 < ‖c0‖0. Then,
by (B.19), we have that

n
[
J†
n(c0 ) − J†

n(c)
]= [ρ1

(‖c‖0
)− ρ1

(‖c0‖0
)]
κ1,n + op(κ1,n ) → −∞.
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Therefore, for any c ∈ C I and c �= c0, Pr(J†
n(c0 ) < J†

n(c)) → 1. Combined with the pre-
vious result, we have that for any c �= c0, Pr(J†

n(c0 ) < J†
n(c)) → 1. Thus, if c0 ∈ Cn, then

Pr(ĉ = c0 ) → 1.
Hence, we have shown that Pr(c0 ∈ Cn ) → 1 and Pr(ĉ = c0 ) → 1 if c0 ∈ Cn. We

can conclude that Pr(ĉ = c0 ) → 1. The proof for π̂
p→ π0 follows the same proof for

Lemma B.1.

Proof of Theorem A.1. The proof is similar to the proof of Theorem 3.1 with Lem-
ma B.1 replaced by Lemma B.8. Assumption (iv) in Lemma B.8 is imposed by Assump-
tion A.3.

Proof of Theorem A.2. We have that the numbers of mixing components are in an
ascending order for z1, � � � , zl . Let le denote the number of observed states where mul-
tiple equilibria exist. We have that there is no multiple equilibria on z1, � � � , zl−le ; and
there are multiple equilibria on zl−le+1, � � � , zl. Let s‡ be the smallest value such that
l1 + s‡� ≤ l − le. Because le is not a function of l by Assumption A.4, the numbers of
elementary operations from Step (s‡ + 1) to Step S is not a function of l either. There-
fore, we only need to show that the time complexity of Step 1 to Step s‡ is linear in l

with probability approaching one as n → ∞ for all payoffs except for a set of Lebesgue
measure zero.

Because no multiple equilibria exists on z1, � � � , zl−le , all selection vector c ∈ C I

share the same first (l − le )|�z1 | components. As a result, from Step 1 to Step s‡, there is
only one subselection vector scs in each step that shares the same first [l1 + (s−1)�]|�z1 |
components as selection vectors in C I . Then, from Step 1 to Step s‡, the MMS proce-
dure works almost the same the MMS procedure for the Simple Game. The only dif-
ference is that in step s = 1, � � � , s‡, the input set S C s has cardinality 2|�z1 |−1(2|�z1 | −
1)ls−1∏s−1

i=1 α
�
i , where α�

s ≡ |S C s
n|/|S C s|. Since we set α = (2|�z1 | − 1)−�, following the

same proof as Lemma B.2, we have that the time complexity of the MMS procedure is lin-
ear in l for the first s‡ steps, assuming that the condition α�

s = α for all s = s†, � � � , s‡ holds
for some s† independent of l. Applying the same argument in the proofs of Lemma B.3
and of Theorem 3.2, it can be shown that the required condition holds for with probabil-
ity approaching one as n → ∞ for all payoffs except for a set of Lebesgue measure zero.
The result of the space complexity of the MMS procedure follows from the exact same
argument.

Lemma B.9. Let le denote the number of observed states with multiple equilibria and
|�| ≡ max(|�z1 |, � � � , |�zl |). Assume that le grows with l at a rate slower than log2|�|[he(l)]
for some polynomial function he(·). Then with probability approaching one as n → ∞,
for all payoffs except for a set of Lebesgue measure zero, the time complexity of the MMS
procedure for the General Game is at most a polynomial function of l.

Proof of Lemma B.9. The same applies to the proof of Theorem A.2, since the num-
bers of mixing components are in an ascending order for z1, � � � , zl ; there is no multiple
equilibria on z1, � � � , zl−le , and there are multiple equilibria on zl−le+1, � � � , zl. Following
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the proof of Theorem A.2, the time complexity of the MMS procedure when applying
to z1, � � � , zl−le is upper bounded by a linear function of l − le. Denote the function as
h(l − le ). The time complexity of the MMS procedure when applying to zl−le+1, � � � , zl

is less than the number of possible combinations of selecting mixing components on
zl−le+1, � � � , zl:

∏le
s=1(2|�zl−le+s |−1). The total time complexity is therefore upper bounded

by

h(l − le ) ×
le∏
s=1

(
2|�zl−le+s | − 1

)≤ h(l)2|�|le ≤ h(l)he(l),

where the first equality holds because h(·) is an increasing function and by the definition
of |�|, and the second inequality holds by the requirement on le stated in the lemma.
Because h(l)he(l) is a polynomial function of l, the claimed lemma holds.

Proof of Theorem A.3. Define JJn(K, SK ) as

JJn(K, SK ) =
K∑
j=1

∑
π̂s∈SK,j

∥∥π̂s −μK,j
∥∥2 + ρ2(K)κ2,n/n.

Then (K̂, ŜK̂ ) = arg minK≤|�z1 |,SK∈SK
JJn(K, SK ). Denote S∗

|K | as the correct partition.

First, we show that Pr(Ŝ|K | = S∗
|K | ) → 1, where

Ŝ|K | = arg min
S|K |∈S|K |

JJn
(|K |, S|K |

)
.

Then we prove that Pr(K̂ = |K |) → 1. At last, we show that t̂πk with k = 1, � � � , K̂ are
consistent estimators.

Given the cardinality of partition |K |, the term ρ2(|K |)κ2,n/n is the same for all
possible partitions and converges to zero by Assumption A.5. Theorem A.1 shows that

for h = 1, � � � , |�z1 |, we have π̂h p→ πh
0 . As a result, given the correct partition S∗

|K |, all

π̂h within the same set have the same probability limit. Therefore, JJn(|K |, S∗
|K | )

p→ 0.

On the other hand, if a partition is incorrect, then ‖π̂s − μ|K |,j‖2 does not converge in
probability to zero for at least one j. Thus, we conclude that Pr(Ŝ|K | = S∗

|K | ) → 1.
Based on the above discussion and the properties of ρ2(·) and κ2,n by Assump-

tion A.5, we have that given Ŝ|K |, JJn(|K |, Ŝ|K | )
p→ 0. For any K, define ŜK as

arg minSK∈SK
JJn(K, SK ). By the definition of tπk

0 for k = 1, � � � , |K |, tπk1
0 �= tπk2

0 for
k1 �= k2. In consequence, if K < |K |, then there must exist some j such that π̂s ∈ ŜK,j

have different probability limits. Because ρ2(K)κ2,n/n → 0 for any K, we have that

JJn(K, ŜK )
p→ δ > 0 for any K < |K |. Thus, Pr(K̂ < |K |) → 0. On the other hand, if

K > |K |,
n
[
JJn

(|K |, Ŝ|K |
)− JJn(K, ŜK )

]= [ρ2
(|K |)− ρ2(K)

]
κ2,n + op(κ2,n ) → −∞,

where the first equality holds because π̂h − πh
0 = Op(n−1/2 ). Therefore, Pr(K̂ > |K |) →

0. Hence, we have Pr(K̂ = |K |) → 1. Together with the previous result that Pr(Ŝ|K | =
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S∗
|K | ) → 1, we conclude that

Pr
(̂
SK̂ = S∗

|K |
)= Pr

(
K̂ = |K |, ŜK̂ = S∗

|K |
)→ 1.

By definition, t̂πj = 1
|ŜK̂,j |

∑
π̂h∈ŜK̂,j

π̂h for j = 1, � � � , K̂. Since π̂h p→ πh
0 for h =

1, � � � , |�z1 | by Theorem A.1, there exist one permutation of tπk
0 for k = 1, � � � , |K |, de-

noted as tπ(k)
0 , such that

Pr

(|K |∑
k=1

∥∥t̂πk − tπ(k)
0

∥∥< δ|̂SK̂ = S∗
|K |

)
→ 1

for any δ > 0. Because Pr(ŜK̂ = S∗
|K | ) → 1, it holds that

Pr

(|K |∑
k=1

∥∥t̂πk − tπ(k)
0

∥∥< δ

)
≥ Pr

(|K |∑
k=1

∥∥t̂πk − tπ(k)
0

∥∥< δ, ŜK̂ = S∗
|K |

)

= Pr

(|K |∑
k=1

∥∥t̂πk − tπ(k)
0

∥∥< δ|̂SK̂ = S∗
|K |

)
Pr
(̂
SK̂ = S∗

|K |
)

→ 1.

Thus, t̂π1, � � � , t̂πK̂ are consistent estimators for tπk
0 with k= 1, � � � , |K |.

Proof of Theorem A.4. The proof is similar to the proof of Theorem 4.1. Assumption
A.6(i) serves the same role as Assumption 4.1(i) for Theorem 4.1. We omit the superscript
s when there is no confusion. Without loss of generality, suppose C I has (q + 1) ele-
ments: C I = {c0, c1, � � � , cq}. Following similar arguments in the proof of Lemma B.4, we

have that any ξ ∈ �R and the parameter sequence {ξn} ∈ �R(ξ), ‖√nGn,c(π0 )‖2
Wn(c)

d→
χ2

[‖c‖0−lπ+lR] for any c ∈ C I . As a result,

min
Rπ=r

∥∥√nGn,c(π )
∥∥2
Wn(c)

d→ Fc
d≤ χ2

[‖c‖0−lπ+lR],

where Fc is some tight limiting distribution and
d≤ denotes stochastic dominance. It

holds that for any ξ ∈�R and the parameter sequence {ξn} ∈�R(ξ),

Tn
d→ T

d≤ min
{
χ2

[‖c0‖0−(lπ−lR )], � � � , χ2
[‖cq‖0−(lπ−lR )]

} d≤ χ2
[Jl−(lπ−lR )],

where the last inequality holds because minc∈CI ‖c‖0 = Jl. Thus, using χ2
[Jl−(lπ−lR )],1−α

as the critical value achieves asymptotic size control.

Lemma B.10. Under Assumptions 5.3 and A.7, the unique solution to Gc(π ) = 0 for any
c ∈ C I s is the true payoff vector πs

0.
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Proof of Lemma B.10. By Assumption 5.3(ii), Gc(π ) = 0 has no solution for any c ∈ C s

that selects different latent states. As a result, any c ∈ C I s must select the same latent
state. The payoff vector corresponding to the selected latent state is the solution to the
system of linear equations: Gc(πs

0 ) = 0 for any c ∈ C I s. Because Gc(π ) = 0 for any c ∈
C I s has a unique solution by Assumption A.7, the result in the lemma holds.

Proof of Theorem A.5. The asymptotic properties of Gn,c(π ) for some given c and π

are the same as that of Gn,c(π ) in Theorem 4.1 given the assumptions in Theorem A.4.
We omit the superscript s when there is no confusion.

Firstly, by Lemma 5.1 and Assumption A.2, for any c /∈ C I , minπ ‖√nGn,c(π )‖2
Wn(c)

diverges to infinity. Second, by Lemma B.10, Gc(π ) = 0 has the unique solution π0 for
any c ∈ C I . When ξ /∈ �R, for all c ∈ C I , minRπ=r ‖√nGn,c(π )‖2

Wn(c) diverges to infin-

ity. Since χ2
[Jl−lπ+lR],1−α is finite, it holds that limn→∞ Prξ(Tn > χ2

[Jl−lπ+lR],1−α ) = 1. We
conclude the result in the theorem.

Appendix C: Xiao (2018)’s CCP estimator and identification in the General

Game

In this section, we first present the method developed by Xiao (2018) for Step 1 iden-
tification and estimation for both the Simple Game and the General Game. Then we
discuss the equivalence between Step 2 identification conditions in the General Game
and Aguirregabiria and Mira (2019)’s necessary and sufficient condition.

C.1 Identification of the CCPs in the Simple Game

Recall some notation from Section 2 of the paper. For i = 1, 2, 3, pi(z, A) ≡ Pr(di =
1|z, A), pi(z, B) ≡ Pr(di = 1|z, B), pA(z) ≡ Pr(k = A|z), and pB(z) ≡ Pr(k = B|z). For
k, k′ ∈ {A, B} and k �= k′, let

Piz =
[

pi(z, k) pi

(
z, k′)

1 −pi(z, k) 1 −pi

(
z, k′)

]
for i = 1, 2, 3.

Define the vector of mixing weights as Wk|z = (pk(z), pk′
(z))�. Its diagonal form is writ-

ten as Dk|z = diag(W �
k|z ). Let the diagonal matrix containing player i’s CCPs of choosing

action di = 0, 1 on two latent states be

Di
1z ≡ diag

(
pi(z, k), pi

(
z, k′)) and Di

0z ≡ diag
(
1 −pi(z, k), 1 −pi

(
z, k′)).

Consider identifying CCPs for player 1 on observed state z. Define the following pop-
ulation contingency tables:

A12
1z ≡

[
Pr
(
(d1, d2, d3 ) = (1, 1, 1)|z

)
, Pr

(
(d1, d2, d3 ) ≡ (1, 0, 1)|z

)
Pr
(
(d1, d2, d3 ) = (0, 1, 1)|z

)
, Pr

(
(d1, d2, d3 ) = (0, 0, 1)|z

)] ,

A12
z ≡

[
Pr
(
(d1, d2 ) = (1, 1)|z

)
, Pr

(
(d1, d2 ) = (1, 0)|z

)
Pr
(
(d1, d2 ) = (0, 1)|z

)
, Pr

(
(d1, d2 ) = (0, 0)|z

)] ,
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A13
z ≡

[
Pr
(
(d1, d3 ) = (1, 1)|z

)
, Pr

(
(d1, d3 ) = (1, 0)|z

)
Pr
(
(d1, d3 ) = (0, 1)|z

)
, Pr

(
(d1, d3 ) = (0, 0)|z

)] ,

and A1
z ≡ [Pr(d1 = 1|z), Pr(d1 = 0|z)]�. The matrices A12

1z , A12
z , A13

z , and A1
z are iden-

tified from data. By construction, the population contingency tables can be written as
products of CCPs and mixing weights:

A12
1z = P1zD

3
1zDk|zP�

2z, A12
z = P1zDk|zP�

2z,

A13
z = P1zDk|zP�

3z, and A1
z = P1zWk|z.

The CCPs are identified using the eigendecomposition method. First, CCPs for
player 1 are identified as the eigenvectors (of the left-hand side observable matrix) with
column sum being 1: A12

1z(A12
z )−1 = P1zD

3
1zP−1

1z and the vector of mixing weights is iden-
tified as Wk|z = (P1z )−1A1

z . Second, given the recovered P1z, Wk|z (and Dk|z), CCPs for
players 2 and 3 are identified as P2z = (A12

z )�(D�
k|zP�

1z )−1 and P3z = (A13
z )�(D�

k|zP�
1z )−1.

Note that if we change the order of the two columns of the eigenvector matrix
P1z and eigenvalue matrix D3

1z at the same time, equation A12
1z(A12

z )−1 = P1zD
3
1zP−1

1z
still holds and equations Wk|z = (P1z )−1A1

z , P2z = (A12
z )�(D�

k|zP�
1z )−1, and P3z =

(A13
z )�(D�

k|zP�
1z )−1 inherit the order of the unobserved states adopted in equation

A12
1z(A12

z )−1 = P1zD
3
1zP−1

1z . Thus, the CCPs for three players are identified up to a com-
mon label swapping.

C.2 Identification of the CCPs in the General Game

The General Game could have more than three players and more than two mixing com-
ponents. In such cases, the identification method developed in Xiao (2018) employs the
eigendecomposition using group actions. Following Xiao (2018), we divide the N play-
ers into three groups, such that the third group has exactly one player for odd N and two
players for even N , and each of the first two groups has Ñ players. Thus, N = 2Ñ + 1
when N is odd, and N = 2Ñ + 2 when N is even. Player group i is denoted as gi for
i = 1, 2, 3. By definition,

⋃3
i=1 gi = {1, � � � , N }. For each group, we create a group ac-

tion variable, denoted by dg1 , dg2 , and dg3 . We have dg1 , dg2 ∈ {0, � � � , (J + 1)Ñ − 1}, and
dg3 ∈ {0, � � � , J} if there is one player in group 3 and dg3 ∈ {0, � � � , (J + 1)2 − 1} if there are
two players in group 3.

Denote the matrix composed of CCPs for group action dgi for i = 1, 2 on each latent
state as

Pgiz ≡ (Pr(dgi = j|z, k)
)(J+1)Ñ−1, |K |
j=0,k=1 .

The assumption needed for identifying CCPs up to a label swapping is stated in the fol-
lowing.

Assumption C.1. (i) N ≥ 3. (ii) (J + 1)Ñ > |�z| for any z. (iii) For each z, there exists a
partition (dg1 , dg2 , dg3 ) of joint actions (d1, � � � , dN ) such that Pg1z and Pg2z both have full
column rank.
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Assumption C.1 guarantees the identification of |�z| and the equilibrium CCPs (up
to a label swapping). Define A

g1g2
dz as the joint contingency table for player groups g1

and g2 fixing player group g3’s action at dg3 = d. Let Agi
z and A

ig
z be the joint contin-

gency tables of some generic player group g and individual player i. For each z, CCPs
are identified following Xiao (2018). First, under (ii), Lemma 1 in Xiao (2018) applies to
identify |�z| as rank(A

g1g2
z ) for each observed z. Given |�z|, by summing up rows and

columns of Ag1g2
z (thus collapsing the actions of player group 1 and player group 2), we

can create A
g̃1g̃2
z with rank(A

g̃1g̃2
z ) = |�z|, where g̃1 and g̃2 denote player group 1 and

player group 2 with collapsed actions. Let Pg̃i denote the matrix storing CCPs for player
group gi with collapsed actions (each column corresponds to a different ω). Second,
we use eigendecomposition to identify Pg̃1z as Ag̃1g̃2

dz (A
g̃1g̃2
z )−1 = Pg̃1zD

g3
dz(Pg̃1z )−1, where

D
g3
dz is the diagonal matrix storing the conditional choice probabilities of dg3 = d for all

ω on the diagonal. The vector of mixing weights is identified as Wz = (Pg̃1z )−1A
g̃1
z . De-

fine Dz = diag(W �
z ), the equilibrium CCPs for player group 2 with collapsed actions are

then identified as Pg̃2z = (A
g̃1g̃2
z )�(D�

z P�̃
g1z )−1. For equilibrium CCPs of individual player

i ∈ g2
⋃

g3, we obtain P�
iz = (Pg̃1zDz )−1A

g̃1i
z . For equilibrium CCPs of individual player

i ∈ g1, we have P�
iz = A

ig̃2
z (DzP�̃

g2z )−1. In estimation, model implied restrictions can be
incorporated to this procedure to improve accuracy.

C.3
√
n-consistency and asymptotic normality of the CCP estimator

Both the root-n consistency and the asymptotic normality require the eigenvalues in the
eigendecomposition be simple. In the Simple Game, such a condition holds automati-
cally under Assumption 2.5, which implies that all players have different CCPs of choos-
ing each action in different latent states. In the General Game, an additional assumption
is needed for the consistency and the asymptotic normality.

Assumption C.2. There exists a known group action for player group g3 such that the
corresponding equilibrium CCPs of choosing this group action is different across different
values of ω.

Under Assumptions 5.1–5.3 and Assumption C.2, the argument in Xiao (2018) deliv-
ers root-n consistency and asymptotic normality of the CCP estimator.

C.4 Further discussions on Step 2 identification in the General Game

We mentioned that Assumption 5.3 is equivalent to the necessary and sufficient condi-
tion proposed in Proposition 3 of Aguirregabiria and Mira (2019) except that we consider
identification for each pair of player and exclusive state separately. In particular, As-
sumption 5.3(i) holds if and only if for each h = 1, � � � , |�z1 |, there exists some c∗ ∈ C I h

such that �c∗ has full column rank (the condition in Proposition 3 of Aguirregabiria and
Mira (2019)). This is due to the following reasoning. On the one hand, if there exists
c∗ ∈ C I h such that �c∗ has full column rank, then �ch0

certainly has full column rank.

This is because if c∗ does not select the most number of rows, adding more rows does not
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decreases the column rank of a matrix; while if c∗ selects the most number of rows, then
c∗

0 = ch0 . On the other hand, if �ch0
has full column rank, then there exists c∗ = ch0 ∈ C I

such that �c∗ has full column rank.

Appendix D: Additional details on the games in the simulations

In this section, we provide more details on the games used in the simulations.

D.1 Identification of games in the simulation

For the system of moment functions of Game 1, there are two parameters on each latent
state, while the number of correct moments are 18, 27, 64, 100, and 288, respectively
from Design 1 to Design 5. Assumption 2.6 for Step 2 identification is verified for the
parameter values listed in Section D.2.

For Game 2, let the equilibrium CCP vector be

p(z, x, k) ≡ (p1(z, x, k), p2(z, x, k), p3(z, x, k)
)

for z ∈ Z and x ∈ X , where for i = 1, 2, 3, pi(z, x, k) ≡ Pr(di = 1|z, x, k). Step 1 identi-
fication of equilibrium CCPs and mixing weights makes use of the following system of
equations: for (d1, d2, d3 ) ∈ {0, 1} × {0, 1} × {0, 1},

p(d1, d2, d3|z, x) =
∑

k∈{A,B}

[
pk(z, x)

3∏
i=1

(
pi(z, x, k)

)di(1 −pi(z, x, k)
)1−di

]

and can proceed in exactly the same way as Step 1 for the Simple Game.
Step 2 identification is similar to that of the Simple Game. Let lz ≡ ∏3

i=1 |Zi| and
{z1, � � � , zlz } with zt ≡ (zt1, zt2, zt3 ) be the lz different values in Z1 × Z2 × Z3. Denote lx ≡
|X | and X ≡ {x1, � � � , xlx }. We can obtain the following system for player 1 via stacking
two latent states on each (z, x) for z ∈ {z1, � � � , zlz } and x ∈ X :

G(π ) = [
π�

1
(
x1), � � � , π�

1
(
xlx
)]� − [��

1
(
x1), � � � , ��

1
(
xlx
)]�

π, where

π1(x) ≡ [
π1
(
1, z1, x, k1

)
, π1

(
1, z1, x, k′

1

)
, � � � , π1

(
1, zlz , x, klz

)
, π1

(
1, zlz , x, k′

lz

)]�
and

�1(x) ≡
⎡⎢⎣
[
x z1

1
(
p2
(
z1, k1

)+p3
(
z1, k1

))]�
,
[
x z1

1
(
p2
(
z1, k′

1
)+p3

(
z1, k′

1
))]�

, � � � ,[
x zlz1

(
p2
(
zlz , klz

)+p3
(
zlz , klz

))]�
,
[
x zlz1

(
p2
(
zlz , k′

lz

)+p3
(
zlz , k′

lz

))]�
⎤⎥⎦

�

.

The dimensions for π and � are 2lzlx × 1 and 2lzlx × 2, respectively.
Given some selected latent state for (z1, x1 ), we could match this latent state across

all exclusive and common observed states with the parameter spaces of the true selec-
tion vectors given by

C 1 = {[c1, � � � , clzlx ]� : c1 = [1, 0] and ct ∈ {[1, 0], [0, 1]
}

for t ∈ {2, � � � , lzlx}
}

and

C 2 = {[c1, � � � , clzlx ]� : c1 = [0, 1] and ct ∈ {[1, 0], [0, 1]
}

for t ∈ {2, � � � , lzlx}
}

.
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For c belonging to C 1 or C 2, we have ‖c‖0 = lzlx. Given a parameter space of the true
selection vector with the first selected latent state being k, the unique solution to the
system Gc0 (π ) = 0 gives us (β1k, δ1k )�.

In simulation, lzlx = 24, 36, 54, 81, 162, respectively, for each design specified in Sec-
tion D.2. The number of unknowns in the system is strictly less than the number of cor-
rect moments. The parameter values used in the simulation satisfy Assumption 2.6 for
Step 2 identification.

For Games 3–4, let the equilibrium CCP vector be

p(x, ω) ≡ (p1(x, ω), p2(x, ω), p3(x, ω), p4(x, ω), p5(x, ω)
)

for x ∈ X , where for i = 1, � � � , 5, pi(x, ω) ≡ Pr(di = 1|, x, ω). Step 1 identification of
equilibrium CCPs and mixing weights makes use of the following system of equations:
for (d1, d2, d3, d4, d5 ) ∈ {0, 1} × {0, 1} × {0, 1} × {0, 1} × {0, 1},

p(d1, d2, d3, d4, d5|x) =
∑
ω∈�x

[
p(ω|x)

5∏
i=1

(
pi(x, ω)

)di(1 −pi(x, ω)
)1−di

]

and can proceed in a similar way as Step 1 for the Simple Game. Overidentifying restric-
tions are used to improve estimation accuracy.

Step 2 identification is similar to that of the Simple Game. Denote lx ≡ |X | and
X ≡ {x1, � � � , xlx }. We can obtain the following system for player 1 via stacking compos-
ite latent variables on each x for x ∈ X :

G(π ) = [π�
1

(
x1), � � � , π�

1

(
xlx
)]� − [��

1

(
x1), � � � , ��

1

(
xlx
)]�

π, where

π1(x) ≡ [π1
(
1, x, ω(1, x)

)
, � � � , π1

(
1, x, ω

(|�x|, x
))]�

and

�1(x) is
[[
x p

(
x, ω(1, x)

)]�
, � � � ,

[
x p

(
x, ω

(|�x|, x
))]�]�

in Game 3 and[[
x

(
1 + x2)(2p(x, ω(1, x)

)− 1
)]�

, � � � ,
[
x

(
1 + x2)(2p(x, ω

(|�x|, x
))− 1

)]�]�

in Game 4.

The dimensions for π and � are (2(lx − 1) + 3) × 1 and (2(lx − 1) + 3) × 2 when only
observed state 8 has multiple equilibria. The dimensions for π and � are (2(lx −2)+6)×
1 and (2(lx − 2) + 6) × 2 when both observed state 8 and observed state 16 have multiple
equilibria.

In the simulations, lx = 18. The number of unknowns in the system is strictly less
than the number of correct moments. The parameter values used in the simulation sat-
isfy Assumption 5.3 for Step 2 identification. Given some selected value of the composite
latent variable for x1, we could try to match its underlying latent state k across all com-
mon observed states with the parameter spaces of the true selection vectors specified as
follows:
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Design 1: 3 mixing components on the 8th observed state:

C 1 =
{

[c1, � � � , clx ]� : c1 ∈ {[1, 0], [1, 1]
}

and ct ∈ {[1, 0], [0, 1], [1, 1]
}

for t �= 8 and
c8 ∈ {[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 1, 1], [1, 0, 1], [1, 1, 0], [1, 1, 1]

} }
,

C 2 =
{

[c1, � � � , clx ]� : c1 ∈ {[0, 1], [1, 1]
}

and ct ∈ {[1, 0], [0, 1], [1, 1]
}

for t �= 8 and
c8 ∈ {[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 1, 1], [1, 0, 1], [1, 1, 0], [1, 1, 1]

} }
.

Design 2: 3 mixing components on both the 8th and the 16th observed state:

C 1 =
{

[c1, � � � , clx ]� : c1 ∈ {[1, 0], [1, 1]
}

and ct ∈ {[1, 0], [0, 1], [1, 1]
}

for t /∈ {8, 16} and
ct ∈ {[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 1, 1], [1, 0, 1], [1, 1, 0], [1, 1, 1]

}
for t ∈ {8, 16}

}
,

C 2 =
{

[c1, � � � , clx ]� : c1 ∈ {[0, 1], [1, 1]
}

and ct ∈ {[1, 0], [0, 1], [1, 1]
}

for t /∈ {8, 16} and
ct ∈ {[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 1, 1], [1, 0, 1], [1, 1, 0], [1, 1, 1]

}
for t ∈ {8, 16}

}
.

Given a parameter space of the true selection vector with the first selected underly-
ing latent state being k, the unique solution to the system Gc0 (π ) = 0 gives us (θk, δk )�.

D.2 Parameter values in the simulation

For Table I and Table II in Section 6 of the main paper, the parameter values in the payoff
functions and the values for the observed state variables are set according to Design 1 of
Game 1 below. For Table III, the parameter values in the payoff functions and the values
for the observed state variables are set according to Designs 1–5 for both games below.
Note that for all designs, the parameter values in the payoff functions stay the same for
both games while the support of the observed state z changes.

Game 1 For Design 1, Z1 = {0.1, 0.8}, Z2 = {0.1, 0.8, 1.5}, and Z3 = {0.1, 0.8, 1.5}. For
Design 2, Z1 = {0.1, 0.8, 1.5}, Z2 = {0.1, 0.8, 1.5}, and Z3 = {0.1, 0.8, 1.5}. For Design 3,
Z1 = {0.1, 0.8, 1.3, 1.5}, Z2 = {0.1, 0.8, 1.3, 1.5}, and Z3 = {0.1, 0.8, 1.3, 1.5}. For Design
4, Z1 = {0.1, 0.8, 1.3, 1.5}, Z2 = {0.1, 0.8, 1.1, 1.3, 1.5}, and Z3 = {0.1, 0.8, 1.1, 1.3, 1.5}.
And for Design 5, Z1 = {0.1, 0.7, 0.8, 1.2, 1.3, 1.4, 1.5}, Z2 = {0.1, 0.7, 0.8, 1.1, 1.3, 1.5},
and Z3 = {0.1, 0.7, 0.8, 1.1, 1.3, 1.5}. The parameter values in the payoff functions are
set according to Table D.1 below and are the same across Design 1–Design 5.

Game 2 For Design 1, X = {0.4, 0.7, 0.8}, Z1 = {0.5, 1.2}, Z2 = {0.5, 1.2}, and Z3 =
{0.5, 1.2}. For Design 2, X = {0.4, 0.7, 0.8}, Z1 = {0.5, 0.9, 1.2}, Z2 = {0.5, 1.2}, and Z3 =
{0.5, 1.2}. For Design 3, X = {0.4, 0.7, 0.8}, Z1 = {0.5, 0.9, 1.2}, Z2 = {0.5, 0.9, 1.2}, and
Z3 = {0.5, 1.2}. For Design 4, X = {0.4, 0.7, 0.8}, Z1 = {0.5, 0.9, 1.2}, Z2 = {0.5, 0.9, 1.2},

Table D.1. Parameter values in Game 1.

δ1A δ1B δ2A δ2B δ3A δ3B θ1A θ1B θ2A θ2B θ3A θ3B

−0.01 −5 −0.02 −5.5 −0.02 −5.5 2.2 0.4 2.5 0.4 2.5 0.4
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Table D.2. Parameter values in Game 2.

δ1A δ1B δ2A δ2B δ3A δ3B β1A β1B β2A β2B β3A β3B

−0.1 −2 −0.2 −1.9 −0.3 −1.8 3 0.1 2.6 0.2 2.7 0.1

and Z3 = {0.5, 0.9, 1.2}. And for Design 5, X = {0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, Z1 = {0.5, 0.9,
1.2}, Z2 = {0.5, 0.9, 1.2}, and Z3 = {0.5, 0.9, 1.2}. The parameter values in the payoff
functions are set according to Table D.2 below and are the same across Design 1–
Design 5.

For Table VI, the parameter values in the payoff functions and the values for the
observed state variable are set according to Design 1–2 for Game 3 and Game 4 below.

Game 3 For Design 1, x ∈ X = {−1.6, −1.5, −1.4, −1.3, −1.2, −0.8, −0.55, −0.45,
−0.35, −0.3, −0.25, −0.2, −0.15, −0.1, −0.05, 0.05, 0.1, 0.15}, there are multiple equilib-
ria on latent state A for x= −1.5 (in the simulation this is designated as the 8th observed
state). For Design 2, x ∈ X = {−1.6, −1.5, −1.4, −1.3, −1.2, −0.8, −0.55, −0.45, −0.35,
−0.3, −0.25, −0.2, −0.15, −0.1, −0.05, 0.05, 0.1, 0.15} there are multiple equilibria on la-
tent state A for x = −1.5 and x= −1.4 (in the simulation these are designated as the 8th
and 16th observed states, respectively); θB = 0.1, δB = −0.2, θA = 1.1, δA = 3.2 for both
designs.

Game 4 For Design 1, x ∈ X = {−1.25, −1.2, −1.15, −1.1, −1.05, −1, −0.95, −0.9,
−0.8, −0.75, −0.7, −0.65, −0.6, −0.5, 0.4, 0.45, 0.55, 0.85}, there are multiple equilibria
on latent state A for x = 0.85 (in the simulation this is designated as the 8th observed
state). For Design 2, x ∈ X = {−1.2, −1.15, −1.1, −1.05, −1, −0.95, −0.9, −0.8, −0.75,
−0.7, −0.65, −0.6, −0.5, 0.4, 0.45, 0.5, 0.55, 0.85}, there are multiple equilibria on latent
state A for x = 0.85 and x = 0.5 (in the simulation these are designated as the 8th and
16th observed states, respectively); θB = 2.4, δB = −0.6, θA = 2, δA = 4 for both designs.
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