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Building on the sequential identification result of Aguirregabiria and Mira (2019),
this paper develops estimation and inference procedures for static games of in-
complete information with payoff-relevant unobserved heterogeneity and multi-
ple equilibria. With payoff-relevant unobserved heterogeneity, sequential estima-
tion and inference face two main challenges: the matching-types problem and a
large number of matchings. We tackle the matching-types problem by construct-
ing a new minimum-distance criterion for the correct matching and the payoff
function with both correct and incorrect “moments.” To handle large numbers of
matchings, we propose a novel and computationally fast multistep moment selec-
tion procedure. We show that asymptotically, it achieves a time complexity that is
linear in the number of “moments” when the occurrence of multiple equilibria
does not depend on the number of “moments.” Based on this procedure, we con-
struct a consistent estimator of the payoff function, an asymptotically uniformly
valid and easy-to-implement test for linear hypotheses on the payoff function,
and a consistent method to group payoff functions according to the unobserved
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heterogeneity. Extensive simulations demonstrate the finite sample efficacy of our
procedures.

Keywords. Matching-types problem, minimum-distance characterization, mul-
tistep moment selection procedure, time complexity.
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1. Introduction

Motivation and main contributions

The sequential approach to identification and estimation of discrete games of incom-
plete information is widely used in the literature; see Aguirregabiria and Mira (2007),
Bajari, Benkard, and Levin (2007), and Pesendorfer and Schmidt-Dengler (2008) for sem-
inal contributions and Bajari, Hong, and Nekipelov (2013) for a survey. In the first step,
the equilibrium conditional choice probabilities (CCPs hereafter) at each observed state
are identified and estimated from the data. In the second step, the payoff function is
identified and estimated using variations in the observed state variable such as exclu-
sion restrictions.1 By avoiding the computation of equilibrium for every given state and
parameter value, the sequential approach is computationally less costly than the all-
solution or the joint method such as the nested fixed-point algorithm. However, the
sequential approach relies critically on the assumption that there is no common knowl-
edge payoff-relevant unobserved heterogeneity (unobserved heterogeneity hereafter) in
the payoff function.2 As discussed extensively in Aguirregabiria and Mira (2019), this
assumption is very restrictive and often violated in the data, motivating them to study
identification of a general class of games of incomplete information with payoff relevant
unobserved heterogeneity and multiple equilibria.

As pointed out in Aguirregabiria and Mira (2019), the presence of payoff relevant
unobserved heterogeneity creates a major challenge in the sequential identification
referred to as the matching-types problem, that is, the difficulty of correctly match-
ing equilibrium CCPs for each unobserved state across different observed states. The
matching-types problem arises because the first-step identification of equilibrium CCPs
at each observed state is equivalent to the identification of a nonparametric finite mix-
ture model, which is known to be identified only up to a label swapping of the mixing
components. Despite this matching-types problem, Aguirregabiria and Mira (2019) es-
tablish a necessary and sufficient condition for the sequential identification of model
primitives in games with unobserved heterogeneity of finite support and multiple equi-
libria. Building on their sequential identification result, this paper develops a sequential
estimation approach for the class of games of incomplete information allowing for both
unobserved heterogeneity of finite support and multiple equilibria.3

1Depending on the contexts/specifications, we will use payoff function, payoff vector, and payoff param-
eter interchangeably throughout this paper.

2In De Paula (2013), such unobserved heterogeneity is also called game-level heterogeneity or game-
level shock.

3Although the joint identification does not suffer from the matching-types problem, estimators based
on it for games with both unobserved heterogeneity and multiple equilibria have not been formally devel-
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To tackle the matching-types problem, we construct a novel characterization of the
correct matching and the true payoff vector via a minimum-distance criterion with both
correct and incorrect “moments.” The set of correct moments corresponds to the cor-
rect matching; and the true payoff vector is uniquely determined through the correct
matching. In the new minimum-distance criterion, the moment functions are linear in
the unknown payoff vector with coefficients depending on the equilibrium CCPs iden-
tified in the first step. Estimation of the equilibrium CCPs is standard and can be done
expeditiously using existing methods such as those in Bonhomme, Jochmans, and Robin
(2016) and Xiao (2018). Using the plug-in estimators of the coefficients, we obtain a vec-
tor of moment functions, based on which of the correct set of moments or the correct
matching will be selected and the payoff vector will be estimated. Although this proce-
dure falls within the general framework of Andrews (1999), the moment selection pro-
cedures in Andrews (1999) are computationally costly, and oftentimes infeasible even in
games with moderately sized state spaces. The reason is that the number of matchings
grows exponentially with the size of the state space. For example, in the Simple Game in-
troduced in Section 2 with medium numbers of players and observed and latent states,
there can be thousands of trillions of matchings.

To overcome this computational challenge, we propose a new and ingenious multi-
step moment selection (MMS) procedure for selecting the correct matching. It is based on
the insight that in the minimum-distance criterion, a correct matching selects the same
latent state across all observed states. As a result, a mismatch on any single observed
state results in a wrong matching that needs not to be considered in the estimation. Ex-
ploiting this feature, in the new MMS procedure, we first eliminate matchings that are
incorrect with high probability in multiple steps, then estimate the correct matching
and the payoff vector using the remaining possible matchings. By carefully designing
the steps involved, the new MMS procedure selects the correct matching with probabil-
ity approaching one and is much faster to implement than the moment selection pro-
cedures in Andrews (1999) for games with large state spaces. Theoretically, we show that
when there is no multiple equilibria or when the number of observed states with multi-
ple equilibria does not increase with the number of moments, the new MMS procedure
achieves a linear time complexity in the number of moments for large sample sizes.4

This is a significant improvement over the exponential time complexity of the moment
selection procedures in Andrews (1999). Practically, the new MMS-based estimator of
the payoff vector can be calculated within a second when there are thousands of trillions
of matchings; while the estimator in Andrews (1999) requires thousands of seconds to
compute even when there are only millions of matchings.

When there are multiple equilibria played in the data, both multiple equilibria and
unobserved heterogeneity contribute to the mixtures of CCPs. To estimate the cardinal-
ity of the support of the unobserved heterogeneity and the payoff vector on each latent
state, we propose a method for grouping the payoff vectors by extending the k-means

oped and are unexplored in practice. Additionally, they would carry the heavy computational burden of the
existing nested fixed-point algorithm.

4The time complexity describes the amount of time it takes to run an algorithm. It is commonly esti-
mated by counting the number of elementary operations performed by the algorithm.
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method to penalize more clusters. The number of clusters estimate the number of la-
tent states, and the payoffs on each latent state are estimated by the centers of each
cluster. We show that our estimators consistently estimate the number of latent states
and the payoff vector on each latent state. This method of separating multiple equilibria
from unobserved heterogeneity is novel and can be used in other contexts such as the
dynamic game with both multiple equilibria and unobserved heterogeneity studied in
Luo, Xiao, and Xiao (2022).

Lastly, we develop a fast-to-compute and asymptotically uniformly valid inference
procedure for linear hypotheses on the payoff vector. Despite the difficulties in general
post-selection inference, our test is asymptotically uniformly valid and is easy to imple-
ment with known critical values from the chi-squared distribution.

Although we focus on the class of games with nonparametric payoff functions in
Aguirregabiria and Mira (2019), we demonstrate that the novel minimum-distance char-
acterization can be easily modified for games with parametric payoff functions com-
monly adopted in empirical work. As a result, the MMS procedure applies to these
games as well. In the simulation section, we report the finite sample performance of
the new MMS procedure, the estimators for the payoffs and the number of unobserved
heterogeneity types, and the test when applied to four games with parametric payoffs.
Based on the simulation results, we provide a rule-of-thumb for choosing the tuning pa-
rameters for implementation of the MMS procedure, and demonstrate its effectiveness
using different designs constructed from the four games. Overall, the simulation results
confirm the finite sample efficacy of both the estimation and inference procedures.

Related literature

Our paper connects with several strands of the literature. First, the paper is closely re-
lated to works on static games of incomplete information with/without unobserved het-
erogeneity. In the analysis of strategic timing incentives among radio stations, Sweeting
(2009) estimates a parametric game of incomplete information that allows for multiple
equilibria but no unobserved heterogeneity. He also states that “estimation of a game
with many possible choices, multiple equilibria, and observed and possibly unobserved
heterogeneity is well beyond the current literature.” Sweeting (2009) has sparked impor-
tant research. De Paula and Tang (2012) propose a formal test for multiple equilibria
when there is no unobserved heterogeneity. Grieco (2014) studies identification and es-
timation in a game with normally distributed private information, allowing both for the
presence of multiple equilibria and for normally distributed unobserved heterogene-
ity. In Grieco (2014), the unobserved heterogeneity is of a nuisance nature; and the pa-
rameter of interest does not depend on unobserved heterogeneity. Xiao (2018) studies
sequential identification and estimation in a game with multiple equilibria and no un-
observed heterogeneity. She develops a new method based on eigendecomposition for
identifying and estimating CCPs that come from multiple equilibria. Aguirregabiria and
Mira (2019) present a general identification framework allowing for both unobserved
heterogeneity and multiple equilibria, which nests the setup in Xiao (2018). In Aguirre-
gabiria and Mira (2019), the payoff parameter of interest is allowed to depend on un-
observed heterogeneity, which differs from the parameter of interest in Grieco (2014).
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Luo, Xiao, and Xiao (2022) show that the matching-types problem in dynamic games
of incomplete information could be resolved by making use of the special structure of
Markov perfect equilibrium and the longitudinal variations of observed states. There is
another strand of literature on the identification and estimation of complete informa-
tion games such as Bajari, Hong, and Ryan (2010), in which all unobservables are com-
mon knowledge among players. A recent paper by Magnolfi and Roncoroni (2023) stud-
ies identification and estimation under the solution concept of the Bayesian correlated
equilibrium, which is proposed by Bergemann and Morris (2013, 2016). Magnolfi and
Roncoroni (2023) allow for all information structures consistent with players knowing
their own payoffs and the distribution of opponents’ payoffs. Their information struc-
ture nests both the complete and incomplete information settings.5

Our paper also contributes to the literature on moment selection and uniform infer-
ence. In a seminal paper, Andrews (1999) proposes several consistent moment selection
procedures for the generalized method of moments estimation with valid and invalid
moments. Andrews and Lu (2001) extend these procedures and apply them to dynamic
panel data models. Two problems remain unsolved regarding the moment selection pro-
cedures. First, it is well known that executing the procedures in Andrews (1999) and
Andrews and Lu (2001) can be computationally costly (see Liao (2013)).6 Second, the
built-in moment selection implies that the inference problem is a post-selection infer-
ence. Constructing an asymptotically uniformly valid inference method is challenging
in this context (see Leeb and Pötscher (2005) and Leeb and Pötscher (2008)). In the pa-
per, we solve both problems by fully exploiting the structure of our setup. First, a correct
matching selects the same latent state for each observed state. As a result, we know the
structure of the set of correct moments. This fact enables us to design a multistep algo-
rithm that is fast to compute. Second, in our setting, the minimum number of correct
moments is known. This allows us to construct an asymptotically uniformly valid and
easy-to-implement inference method.

Organization of the rest of this paper

The rest of this paper is organized as follows. Section 2 uses two games of incomplete
information with unobserved heterogeneity to introduce our novel minimum-distance
criterion of the payoff vector. The first game is a member of the class of games with non-
parametric payoff functions studied in Aguirregabiria and Mira (2019) and is referred to
as the Simple Game; and the second game is the same as the Simple Game except that its
payoff function is parameterized. Section 3 proposes the novel MMS procedure and the
estimator of the payoff vector, proves its consistency, and shows the asymptotic linear
time complexity of the procedure for the Simple Game. Section 4 develops an asymptot-
ically uniformly valid test for linear hypotheses on the payoff vector. Section 5 extends
the methods developed for the Simple Game to a game with a general number of players,

5Haile and Tamer (2003) and Aradillas-López, Gandhi, and Quint (2016) study identification and infer-
ence of auction models under weak assumptions that could allow for multiple equilibria.

6Unlike Liao (2013) or Cheng and Liao (2015), a known set of valid moments that guarantee identification
of the unknown parameter is not available in our setup.
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actions, latent states, and most importantly multiple equilibria referred to as the Gen-
eral Game. We extend the MMS estimation procedure and the asymptotically uniformly
valid test developed for the Simple Game to the General Game. In Section 6, we intro-
duce variants of the Simple Game and General Game and investigate the finite sample
performance of our estimation and inference methods via Monte Carlo simulation. Sec-
tion 7 concludes. Mathematical details of the results for the General Game are provided
in Appendix A. Additional materials are collected in the Supplemental Appendix (Fan,
Jiang, and Shi (2024)). Supplemental Appendix B contains proofs for the results in the
paper. Supplemental Appendix C contains further details on Xiao (2018)’s CCP estima-
tor and the identification in the General Game. Supplemental Appendix D contains ad-
ditional details on the simulation. The codes for implementing the multistep estimation
and inference procedures are available at https://github.com/FanJiangShi/MMSP.

We close this section by introducing some notation used throughout this paper. For
any q × 1 vector E, let ‖E‖ denote its Euclidean norm and ‖E‖0 denote its L0 norm,
that is, the number of nonzero elements in E. For � being some q × q matrix, denote
‖E‖2

� ≡E��E. For any finite set, | · | denotes its cardinality. For any given q-dimensional
vector c of zeros and ones and some q× p matrix A, let Ac denote the submatrix of A
generated by deleting the rows inA corresponding to zeros in c. Let Iq be a q×q identity
matrix. “wp → 1” denotes “with probability approaching one.”

2. A minimum-distance characterization of the payoff vector

In this section, we use two games of incomplete information with unobserved hetero-
geneity to introduce our novel minimum-distance characterization of the payoff vector.
The first game is a member of the class of games with nonparametric payoff functions
studied in Aguirregabiria and Mira (2019) and is referred to as the Simple Game. The
second game is the same as the Simple Game except that its payoff function is parame-
terized. We introduce the Simple Game in Section 2.1 and review its sequential identifi-
cation in Section 2.2. In Section 2.3, we construct a novel characterization of the payoff
function in the Simple Game via a minimum-distance criterion with both correct and
incorrect moments. In Section 2.4, we introduce the payoff function of the second game
and show how the minimum-distance characterization accommodates for the paramet-
ric structure of the payoff function of the second game.

2.1 The simple game

In the Simple Game, there are three players, two actions, one exclusive observed state
variable, and one dichotomous unobserved state variable.7 Each player, denoted as
i = 1, 2, 3, chooses an action di ∈ {0, 1}. Before choosing his action, player i draws his
private information ε̃i(di ) for two actions di = 0 and di = 1 from a bivariate distribu-
tion. For i = 1, 2, 3, denote zi ∈ Zi as an observable exclusive state variable, which does

7It follows from Allman, Matias, and Rhodes (2009) and Aguirregabiria and Mira (2019) that when the
number of mixing components is 2, the minimum number of players required for identifying CCPs up to a
label swapping is 3.

https://github.com/FanJiangShi/MMSP
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not enter the payoffs of other players, where Zi is a finite set with cardinality |Zi|. Let
k ∈ K ≡ {A, B} be a common knowledge state variable that is known by all players but
unobserved by the econometrician.8 Player i’s payoff from choosing action di is given
by π̃i(di, d−i, zi, k, ε̃i(di )), where the vector d−i denotes the joint actions of all the other
players except i.

Following Aguirregabiria and Mira (2019), we assume that player i’s payoff is addi-
tively separable in his private information ε̃i(di ) and can be written as

π̃i
(
di, d−i, zi, k, ε̃i(di )

)= π̃i(di, d−i, zi, k) − ε̃i(di ),

where π̃i(di, d−i, zi, k) captures how player i’s payoff for choosing di changes with re-
spect to his opponents’ actions and state variables.9 Since the optimal action is invariant
under monotonically increasing transformations of payoffs, we normalize the payoffs
using π̃i(0, d−i, zi, k, ε̃i(0)) and define the normalized payoff for di = 1 as

πi(1, d−i, zi, k) ≡ π̃i(1, d−i, zi, k) − π̃i(0, d−i, zi, k)
sd

,

where sd denotes the standard deviation of ε̃i(1) − ε̃i(0). We refer to πi(di, d−i, zi, k) as
the payoff function for player i hereafter. By normalization, πi(0, d−i, zi, k) = 0.

Define the normalized private information for player i as εi ≡ 1
sd (ε̃i(1) − ε̃i(0)). Let

z ≡ (z1, z2, z3 ) ∈ Z ≡ Z1 ×Z2 ×Z3. We adopt the assumption in Aguirregabiria and Mira
(2019) on εi stated below.10

Assumption 2.1. (i) {εi}3
i=1

i.i.d.∼ F(·), where F(·) is an absolutely continuous distribution
function with a probability density function denoted as f (·) and is known to the econo-
metrician. (ii) The support of f (·) is R. (iii) ε1, ε2, and ε3 are independent of the state
variables (z, k).

A (pure) strategy in this game is defined as follows.

Definition 2.1 (Strategy). For given z and k, a (pure) strategy for player i is a mapping
σi(εi, z, k) : R× Z × K → {1, 0}.

For notational compactness, we use σ ≡ (σ1(ε1, z, k), σ2(ε2, z, k), σ3(ε3, z, k)) to de-
note a strategy profile given (z, k). Let 1(·) denote the indicator function. Any given σ is

8The assumption of a fixed and finite support for unobserved heterogeneity is not only used in Aguirre-
gabiria and Mira (2019) (p. 1663), but also in single agent dynamic discrete choice models such as Kasahara
and Shimotsu (2009).

9The additive separability of the private information is commonly assumed in the literature on the
econometrics of games of incomplete information. Examples include Sweeting (2009), De Paula and Tang
(2012), Bajari, Hong, and Nekipelov (2013), and Grieco (2014).

10Other papers that maintain such an assumption on private information include Zhu and Singh (2009),
Li, Liu, and Deininger (2013), and Xiao (2018). Papers that allow for unknown distribution for private infor-
mation include Aradillas-López (2010) and Lewbel and Tang (2015). Papers that allow for correlated private
information among players include Wan and Xu (2014), Xu (2014), and Liu, Vuong, and Xu (2017).
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completely characterized by the following CCPs:

pi ≡
∫

1
(
σi(εi, z, k) = 1

)
f (εi )dεi, for i= 1, 2, 3.

Denote j and q as the two players other than player i. The expected payoff function for
player i with di = 1 for given (z, k) and σ is computed as11

πi(1, z, k, σ ) =
∑

dj ,dq∈{0,1}

p
dj
j (1 −pj )1−djpdqq (1 −pq )1−dqπi

(
1, (dj , dq ), zi, k

)
. (2.1)

Bayesian Nash Equilibrium (BNE) is then defined as follows.

Definition 2.2 (Equilibrium). For any given (z, k), a BNE of the game is a strategy pro-
file σ ∗ such that for any player i and for any εi,

σ∗
i (εi, z, k) = arg max

di∈{0,1}

{
πi
(
di, z, k, σ ∗)− εi}.

In the Simple Game, we assume that the data are rationalized by a single equilibrium.
This assumption will be discarded in Section 5.

Assumption 2.2. A single equilibrium is played in the data for each (z, k) ∈ Z × K .

Denote the equilibrium CCP of choosing action 1 for player i as pi(z, k) ≡ Pr(di =
1|z, k). Then it holds that

pi(z, k) =
∫

1
(
σ∗
i (εi, z, k) = 1

)
f (εi )dεi.

For any (z, k), the BNE of the game is equivalently characterized by the equilibrium
CCP vector

p(z, k) ≡ (p1(z, k), p2(z, k), p3(z, k)
)
, (2.2)

where

pi(z, k) = F(πi(1, z, k, σ ∗)) for i= 1, 2, 3.

Under Assumption 2.2, the equilibrium expected payoff function is unique and only de-
pends on z and k. For brevity, we denote it as πi(1, z, k) ≡ πi(1, z, k, σ ∗ ).

Remark 2.1. For any given (z, k) and strategy profile σ with corresponding CCP vec-
tor (p1, p2, p3 ), the probability that choice 1 is optimal for player i in the Simple Game
is given by F(πi(1, z, k, σ )) for i = 1, 2, 3. This defines the best response mapping for
players i= 1, 2, 3 on (z, k) as follows:

�izk
(
πi(1, z, k, σ )

)= F(πi(1, z, k, σ )
)
. (2.3)

11Because of the normalization, πi(0, z, k, σ ) = 0.
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In the Simple Game, the best response mapping is simply the cumulative distribution
function. Given the values of payoff functions, by (2.1), these best response mappings
only depend on CCPs of other players. Aguirregabiria and Mira (2019) characterize the
BNE as a fixed point of the best response mapping of all players.

The game together with the equilibrium constitute the underlying structure that
generates the data. Following Aguirregabiria and Mira (2019), the form of data available
to the econometrician is specified in the following assumption.

Assumption 2.3. The econometrician observes a random sample on players’ actions and
observable state variables {(d1m, d2m, d3m, z1m, z2m, z3m )}nm=1.

Let pA(z) ≡ Pr(k=A|z) and pB(z) ≡ Pr(k= B|z). We impose the following assump-
tion on the distribution of the latent state.

Assumption 2.4. (i) For any z ∈ Z , 0< pA(z)< 1. (ii) |K | is known to the econometri-
cian.

In the Simple Game, |K | = 2. Assumption 2.4(ii) is made to simplify the exposition.
Section 5 allows for unknown |K |.

2.2 A review of sequential identification of the payoff vector in the Simple Game

Stacking the payoff function evaluated at all combinations of opponents’ actions, we
obtain the following payoff vector for player i at observed state zi and unobserved state
k:

πizik ≡

⎡⎢⎢⎢⎣
πi
(
1, (1, 1), zi, k

)
πi
(
1, (0, 1), zi, k

)
πi
(
1, (1, 0), zi, k

)
πi
(
1, (0, 0), zi, k

)
⎤⎥⎥⎥⎦ . (2.4)

The objective is to identify, estimate, and conduct inference on the payoff vectors πiziA
and πiziB for each player i and observed state zi. Since the identification procedure is
exactly the same for all i and zi, in the following discussion we focus on the payoff vectors
for player 1 with z1 = z1

1, where z1
1 is the first element in Z1.

2.2.1 Step-1: Identification of the equilibrium CCP vector (up to a label swapping)
The identification of the equilibrium CCP vector, p(z, k) in equation (2.2), and mix-
ing weights, pA(z) and pB(z), makes use of the following system of equations: for
(d1, d2, d3 ) ∈ {0, 1} × {0, 1} × {0, 1} and z ∈ Z ,

p(d1, d2, d3|z) =
∑

k∈{A,B}

[
pk(z)

3∏
i=1

(
pi(z, k)

)di(1 −pi(z, k)
)1−di

]
, (2.5)

where for any (d1, d2, d3 ), p(d1, d2, d3|z) denotes the conditional probability of players’
joint actions identified from the sample information. It is written as a weighted sum of
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the product of individual CCPs on each unobserved state. Equation (2.5) is a nonpara-
metric finite mixture model. Sufficient conditions for identifiability of such models can
be found in Theorem 4 and Corollary 5 in Allman, Matias, and Rhodes (2009). In the
Simple Game, the following assumption guarantees identification in the first step.

Assumption 2.5. Piz has full rank for any z ∈ Z and i= 1, 2, 3, where

Piz ≡
[

pi(z, k) pi
(
z, k′)

1 −pi(z, k) 1 −pi
(
z, k′)

]
for k, k′ ∈ {A, B} and k 
= k′.

Assumption 2.5 is the same as Assumption (d) in Proposition 1 of Aguirregabiria and
Mira (2019) or Condition (2) in Lemma 1 of Xiao (2018). It holds if and only if pi(z, k) 
=
pi(z, k′ ) for any z ∈ Z and i= 1, 2, 3. Constructive identification results for nonparamet-
ric finite mixture models have been established by Bonhomme, Jochmans, and Robin
(2016) and Xiao (2018), among others. The approach in Bonhomme, Jochmans, and
Robin (2016) is based on the simultaneous diagonalization of a set of matrices in the
same non-orthogonal basis and is applicable to a wide range of multivariate latent-
structure models including the finite mixture model and the hidden Markov model. The
procedure in Xiao (2018) is based on eigendecomposition of a set of matrices. It is de-
veloped for identifying CCPs of discrete games of incomplete information when CCPs
could be expressed as a finite mixture model, which is the case in our problem as shown
in equation (2.5).

For each z ∈ Z , Step 1 identifies two equilibrium CCP vectors denoted as p(z, k)
and p(z, k′ ), where k, k′ ∈ {A, B} and k 
= k′. Since k and k′ in the CCP vectors p(z, k)
and p(z, k′ ) are unknown, we say that the equilibrium CCP vectors are identified up to a
label swapping, that is, swapping of labelsA and B.

2.2.2 Step 2: Identification of the payoff vector—the matching-types problem It follows
from Section 2.1 that the equilibrium expected payoff function for player 1 given (z, k)
is

π1(1, z, k) = F−1(p1(z, k)
)
. (2.6)

In the rest of this section, we treat the expected payoff function as known (up to a label
swapping) since F(·) is known and p1(z, k) is identified (up to a label swapping) from
Step 1.

For any z ∈ Z and k ∈ {A, B}, let p−1(z, k) denote the following row vector:[
p2(z, k)p3(z, k),

(
1 −p2(z, k)

)
p3(z, k), p2(z, k)

(
1 −p3(z, k)

)
,(

1 −p2(z, k)
)(

1 −p3(z, k)
)]

.

It consists of joint probabilities of player 1’s opponents’ actions on latent state k. Let
Z 1 ≡ {(z1

1, z2, z3 ) : z2 ∈ Z2, z3 ∈ Z3} be the subset of Z when holding z1 = z1
1. To simplify

the discussion, denote the cardinality of Z 1 as l ≡ |Z2| × |Z3|, and let z1, � � � , zl be the l
elements in Z 1.
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Denote the true payoff vectors asπ0k ≡ π1z1
1k

for k=A, B, whereπ1z1
1k

∈� is defined

in (2.4) and �⊆ R
lπ with lπ = 4 denotes the parameter space of π0k. For z ∈ {z1, � � � , zl},

player 1’s equilibrium expected payoff can be written as

π1(1, z, k) = p−1(z, k)π0k for k=A, B.

As z varies in {z1, � � � , zl}, z1 is held constant at z1 = z1
1. To identify π0k, we need to also

hold k constant at A and B, respectively. This would be trivial if A and B were observ-
able. Collecting equations corresponding to A and B separately delivers two systems of
equations:

π1(1, z,A) = p−1(z,A)πA for all z ∈ {z1, � � � , zl
}

and (2.7)

π1(1, z, B) = p−1(z, B)πB for all z ∈ {z1, � � � , zl
}

, (2.8)

where πk ∈� for k=A, B. As long as [p−1(z1,A)�, � � � , p−1(zl ,A)�]� and [p−1(z1, B)�,
� � � , p−1(zl, B)�]� have full column ranks, systems (2.7) and (2.8) both have unique so-
lutions corresponding to π0A and π0B. However, neitherA nor B is observable. Systems
like (2.7) and (2.8) are not available after Step 1 because the equilibrium CCP vectors
are only identified up to a label swapping. The researcher needs to track the same latent
state across different observed states, that is, solve the matching-types problem.12

2.3 A minimum-distance criterion for the correct matching and the payoff vector for the
Simple Game

Proposition 3 in Aguirregabiria and Mira (2019) presents a necessary and sufficient con-
dition for Step 2 identification of the payoff vector: a correct matching leads to a unique
solution to the system for expected payoffs, and this solution identifies the payoff vector;
while an incorrect matching delivers no solution. Building on this result, we construct a
novel minimum-distance criterion with correct and incorrect moments to characterize
the correct matching and the true payoff vector associated with each latent state.

We first stack the expected payoff functions evaluated at two latent states for z1, and
then repeat the step for the all z2, � � � , zl to obtain the vector π of expected payoffs of
dimension 2l. In the same fashion, we construct the coefficient matrix 	 of dimension
2l× lπ . They are

π ≡ [π1
(
1, z1, k1

)
, π1

(
1, z1, k′

1

)
, � � � , π1

(
1, zl, kl

)
, π1

(
1, zl, k′

l

)]�
and

	≡ [p−1
(
z1, k1

)�
, p−1

(
z1, k′

1

)�
, � � � , p−1

(
zl, kl

)�
, p−1

(
zl, k′

l

)�]�
,

(2.9)

where kt and k′
t are used to denote the pair of latent states on the tth observed state

for t = 1, � � � , l. For any t1 
= t2, kt1 and kt2 (k′
t1

and k′
t2

) do not necessarily correspond
to the same latent state. After we have identified the equilibrium CCP vectors for each

12As noted by Aguirregabiria and Mira (2019), the matching-types problem also exists in the sequential
identification of the single agent discrete choice model.



904 Fan, Jiang, and Shi Quantitative Economics 15 (2024)

observed state up to a label swapping in Step 1, we can construct π and 	, and obtain
the following system of 2l moment functions in π ∈�⊆R

lπ :

G(π ) ≡ π − 	π ∈R
2l. (2.10)

There are l different observed states when holding z1 = z1
1. Each observed state has two

groups of identified CCPs. However, we do not know which group corresponds to latent
state A and which group corresponds to latent state B. The aim is to select all compo-
nents ofG(·) that correspond to the same latent state,A or B. We call such a selection a
correct matching and use it to recover the payoff vector π0k for k=A, B.

Definition 2.3 (Correct matching). A matching for a latent state is said to be correct if
and only if it selects all the components of G(·) with the same underlying latent state;
otherwise it is incorrect.

There are two correct matchings associated with the two latent states, A and B. For
each given latent state, we aim at identifying its correct matching. We adopt the moment
selection framework of Andrews (1999) to associate each matching with a selection vec-
tor, where the true selection vector corresponds to the correct matching.

Definition 2.4 (Selection vector). A selection vector c ∈ R
2l consists of l zeros and l

ones: a “one” indicates that the corresponding element of G(·) is selected and a “zero”
indicates that the corresponding element ofG(·) is not selected.

Let c0 ∈ C denote the true selection vector for a given latent state, where C is the pa-
rameter space of c0 defined below. We identify the correct matching via c0. Since there
are two correct matchings, we define two parameter spaces corresponding to the two
latent states. To identify the true selection vectors for both latent states, we let all selec-
tion vectors in the first parameter space select the first latent state on the first observed
state, and all selection vectors in the second parameter space select the second latent
state on the first observed state. Given a specified latent state (first or second) for the
first observed state z1, we select one latent state from each subsequent observed state,
z2, � � � , zl, to match it, leading to the following definition of the parameter space for the
true selection vector.

Definition 2.5 (Parameter space of the true selection vector). The parameter spaces of
the true selection vectors for the two latent states are defined as

C 1 ≡ {[c1, � � � , cl]
� ∈ R

2l : c1 = [1, 0] and ct ∈
{

[1, 0], [0, 1]
}

for t ∈ {2, � � � , l}
}

and

C 2 ≡ {[c1, � � � , cl]
� ∈ R

2l : c1 = [0, 1] and ct ∈
{

[1, 0], [0, 1]
}

for t ∈ {2, � � � , l}
}

.

Based on Definition 2.5, both C 1 and C 2 have 2l−1 elements. Given C 1 or C 2, we call
the l moments in G(·) selected by the correct matching the correct moments and the
remaining l moments in G(·) incorrect moments. By definition, an incorrect matching
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selects at least one incorrect moment. To simplify our analysis below, we focus on C 1

and remove the superscript 1.
Denote the selected moment functions fromG(·) by a selection vector c ∈ C asGc(·):

Gc(π ) = πc − 	cπ,

where πc ∈ R
l, 	c ∈ R

l×lπ , and Gc(·) is of dimension l. Let π0 ∈� denote the true payoff
vector that correspond to the first latent state on the first observed state. Conditions for
the identification of (c0, π0 ) are specified as the following.

Assumption 2.6. (i) 	c0 has full column rank. (ii) rank([πc , 	c]) > rank(	c ) for any c 
=
c0, where [πc , 	c ] denotes the matrix that combines πc and 	c .

Assumption 2.6 is sufficient for identifying (c0, π0 ), but not necessary. It is stronger
than the necessary and sufficient condition discussed in Proposition 3 in Aguirregabiria
and Mira (2019) because we consider identification for each pair of players and exclusive
state separately for illustrative convenience. The estimation and inference procedures
based on the minimum-distance criterion to be introduced in the next sections can be
directly applied if the condition in Proposition 3 of Aguirregabiria and Mira (2019) is im-
posed. The system would stack moment functions for three players together; and the
correct matching would select the same latent state on all observed states for all play-
ers.

A necessary condition for Assumption 2.6 is that l ≥ lπ . Practically, this requires that
for each player, the number of values for the excluded variables of the other players be
at least as large as the number of different action profiles for the other players. Since
πc0 − 	c0π = 0 has at least one solution, which is the true payoff vector, the assump-
tion on 	c0 having full column rank is sufficient for πc0 − 	c0π to have a unique solu-
tion. For any c 
= c0, the system of linear equations: πc − 	cπ = 0 has no solution if and
only if rank([πc , 	c ])> rank(	c ). Therefore, any system based on an incorrect matching
has no solution under Assumption 2.6(ii). Like the necessary and sufficient condition in
Aguirregabiria and Mira (2019), Assumption 2.6 is a high-level condition. In Section 6.1,
we numerically illustrate that the assumption holds for all payoffs except for a set of
Lebesgue measure zero when l > lπ .

Lemma 2.1. Suppose Assumptions 2.1–2.6 hold. Then (i) the system Gc0 (π ) = 0 has a
unique solution π0; (ii) for any c 
= c0, the system Gc(π ) = 0 has no solution; and (iii)
(c0, π0 ) is identified as the unique minimizer of minc∈C ,π∈� ‖Gc(π )‖2.

We use an example to illustrate Lemma 2.1. Suppose the first latent state on z1 is la-
tent state A. Then c0 selects components of π and 	 defined in (2.9) such that πc0 =
[π1(1, z1,A), � � � , π1(1, zl,A)]� and 	c0 = [p−1(z1,A)�, � � � , p−1(zl,A)�]�. Part (i) re-
quires thatGc0 (π ) ≡ πc0 −	c0π = 0 has a unique solution, which identifies π0A. Part (ii)
of the lemma is about the selection vector c 
= c0. An example of such c could select latent
state A except for the last observed state, that is, πc = [π1(1, z1,A), � � � , π1(1, zl, B)]�
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and 	c = [p−1(z1,A)�, � � � , p−1(zl , B)�]�. Part (ii) requires that Gc(π ) ≡ πc − 	cπ = 0
has no solution.

Note that Lemma 2.1(i) and (ii) imply that the true payoff vector is only defined
for the system under the correct matching. In consequence, the correct matching and
the true payoff vector can be characterized via a minimum-distance criterion as in
Lemma 2.1(iii). This allows us to address the matching-types problem by selecting the
correct moment functions fromG(·) and estimating the true payoff jointly.

2.4 Variants of the Simple Game with parametric payoff functions

In empirical work, payoff functions are often parameterized. Since the identification of
the equilibrium CCP vector (up to a label swapping) in Step 1 does not depend on the
payoff function of the game, sequential identification of parameters in a parameterized
payoff function suffers from the same matching-types problem as the Simple Game. In
this section, we demonstrate via a variant of the Simple Game that with appropriately
redefined π, 	, and π in (2.10), Lemma 2.1 holds for games with parametric payoffs.
Additional variants will be introduced in Section 6.

Consider the following payoff function for player i when choosing di = 1 is parame-
terized as

πi(1, d−i, zi, k) = ziθik + δik
(∑
j 
=i
dj

)
, k=A, B,

where (θik, δik ) are the parameters of interest. In particular, θik measures the effect of
the exclusive state variable zi, and δik measures the strategic effect. Both effects are af-
fected by the realization of the latent variable k.

Assume that the distribution of the latent variable conditioning on the observed
state is

pA(z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

3
4

− 1

10
3∑
i=1

|zi|
for z 
= z†,

1
2

for z = z†,

for some z†. After Step 1 identification of equilibrium CCPs, this game suffers from the
matching-types problem in Step 2 because when z = z†, components A and B have
equal weights and they cannot be separated using their weights.

In contrast to the Simple Game, we can pool all the observed states together to in-
crease the identification power and obtain one system for each player because of the
parametric payoff function. Let l= |Z1|× |Z2|× |Z3|. For example, the system for player
1 is given by

G(θ1, δ1 ) =
⎡⎢⎣π
(
z1)
...

π
(
zl
)
⎤⎥⎦−

⎡⎢⎣	
(
z1)
...

	
(
zl
)
⎤⎥⎦[θ1

δ1

]
,
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where

π
(
zt
)= [π1

(
1, zt , kt

)
π1
(
1, zt , k′

t

)] and 	
(
zt
)= [z1 p2

(
zt , kt

)+p3
(
zt , kt

)
z1 p2

(
zt , k′

t

)+p3
(
zt , k′

t

)] .

The minimum-distance characterization of the payoff vector we constructed for the
Simple Game in Section 2.3 is valid with

π =
⎡⎢⎣π
(
z1)
...

π
(
zl
)
⎤⎥⎦ , 	=

⎡⎢⎣	
(
z1)
...

	
(
zl
)
⎤⎥⎦ , and π =

[
θ1

δ1

]
,

where the vector π is of dimension 2l× 1, 	 is the coefficient matrix of dimension 2l× 2,
and π is the vector with dimension 2 × 1. Given some selected latent state for z1, we
could match this latent state across all observed states under the same conditions to
those for Step 2 identification of the Simple Game in Section 2.3.

3. Multistep moment selection estimation of the payoff vector in the

simple game

As we demonstrate in Section 2.4, the parameters of interest in the variants of the Simple
Game share the same minimum-distance characterization as the Simple Game with re-
defined π, 	, and π in the moment function. Without loss of generality, we focus on de-
veloping estimation and inference procedures for the Simple Game in Sections 3 and 4.

From Lemma 2.1, it follows that the true selection vector c0 and the true parameter
vector π0 satisfy

(c0, π0 ) = arg min
c∈C ,π∈�

∥∥Gc(π )
∥∥2
W (c), (3.1)

where Gc(π ) = πc − 	cπ and W (c) are a positive definite weighting matrix that can de-
pend on c. The matrices π and 	 depend on equilibrium CCPs and can be estimated
by the plug-in approach using equations (2.6) and (2.9) once the equilibrium CCPs on
all the observed and latent states are estimated. Existing methods such as those in Bon-
homme, Jochmans, and Robin (2016) and Xiao (2018) can be used to estimate the equi-
librium CCPs. We focus on the CCP estimator developed by Xiao (2018) in this paper and
present the steps in Appendix C.1. Denote the resulting estimators asπn and 	n. We note
that this step is standard in the literature and can be implemented fast even for large l.
This is because the eigendecomposition procedure is done for each observed state sep-
arately; and each procedure is fast to compute.13 We focus on the second step from now
on.

Let the sample moment functions be

Gn(π ) ≡ πn − 	nπ, for π ∈�.

13Using 1000 simulations, the average time needed to compute the eigendecomposition and obtain
player 1’s CCP on one observed state is less than 10−4 second.
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We use Gn,c(π ) to denote the sample moment functions selected by c. The sample ver-
sion of (3.1) is

(c̃, π̃ ) ≡ arg min
c∈C ,π∈�

∥∥Gn,c(π )
∥∥2
Wn(c), (3.2)

whereWn(c) is the sample weighting matrix. This is equivalent to the moment selection
procedures in Andrews (1999) when applied to the Simple Game. Solving (3.2) requires
performing discrete optimization over C . Since |C | = 2l−1, implementing (c̃, π̃ ) is com-
putationally challenging for large l. For example, when there are seven exclusive states
for each player, l = |Z2| × |Z3| = 49. The size of C becomes 248 ≈ 2.8 × 1014. This mo-
tivates our computationally less costly multistep moment selection (MMS) procedure
proposed in Section 3.1. In Section 3.2, we show consistency of the MMS procedure and
its time complexity result. In contrast to the estimator (c̃, π̃ ), which has an exponen-
tial time complexity in l, the time complexity of the MMS is asymptotically linear in l.
Section 3.3 provides some guidance on the practical implementation of the MMS proce-
dure. Proofs of the theorems in this section are provided in the Supplemental Appendix.

3.1 Multistep moment selection procedure

As the number of exclusive states |Z2| or |Z3| increases, the value of l rises sharply. The
MMS procedure explores an important feature of the game to reduce the computation
time: the true payoff vector π0 is only defined for the system selected by c0, and none of
the other systems selected by c ∈ C and c 
= c0 has a solution. Specifically, in the MMS
procedure, we eliminate the matchings/selection vectors c ∈ C that are certainly incor-
rect in multiple steps instead of one step as in the computation of (c̃, π̃ ). With careful
design of the steps involved, we are able to construct an effective parameter space for
c0 of a much smaller size than C (see the last step in the procedure). The MMS pro-
cedure selects the correct matching and estimates the payoff vector using the effective
parameter space for c0. To succinctly introduce our idea, we present a two-step moment
selection (TMS) procedure first and then extend it to the general MMS procedure.

For any vector sc of dimension 2l consisting of zeros and ones, we use Gn,sc(π ) to
denote the moment functions selected by sc from Gn(π ). Different from the selection
vectors in C , we let sc select fewer than l moments and call it a subselection vector. We
partition sc into l subvectors, where each subvector contains two elements. Denote sct
for t = 1, � � � , l as the tth subvector of sc such that sc ≡ [sc1, � � � , scl]�. Define

Jn(sc) ≡ min
π∈�

∥∥Gn,sc(π )
∥∥2

.

3.1.1 The TMS procedure Let l1 ∈ {lπ , lπ + 1, � � � , l}. Heuristically, if we know that the
first l1 moments selected by some selection vector contains incorrect moments, then all
the 2l−l1 selection vectors in C that select the same first l1 moments can be ignored in
the estimation of (c0, π0 ), because a matching is correct only when all the l moments
are selected correctly. Step 1 below identifies matchings of the first l1 moments that are
incorrect with high probability (wp → 1). In Step 2, we estimate the correct matching
and the true payoff vector by minimizing an objective function over the product space
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of the effective parameter space, which excludes the incorrect matchings identified in
Step 1 and the parameter space �. We present the detailed steps below.

Step 0: Set l1 ∈ {lπ , lπ + 1, � � � , l}, α1 ∈ (0, 1], and λ ∈ (−1, 0).
Step 1: Define the collection of subselection vectors in Step 1 as

S C 1 ≡
{

[sc1, � � � , scl]
� ∈R

2l : sc1 = [1, 0]; sct ∈
{

[1, 0], [0, 1]
}

,
for t ∈ {2, � � � , l1}; and sct = [0, 0] for t ∈ {l1 + 1, � � � , l}

}
.

By definition, sc1 ∈ S C 1 selects none of the last 2(l − l1 ) moments. Sort Jn(sc1 ) for all
sc1 ∈ S C 1, and denote Jα1

n as the value of the 100α1% smallest. Compare Jα1
n with nλ. If

Jα1
n > nλ, then collect all sc1 such that Jn(sc1 ) ≤ Jα1

n ; otherwise, collect all sc1 such that
Jn(sc1 ) ≤ nλ. Denote the collection as S C 1

n:

S C 1
n ≡ {sc1 ∈ S C 1 : Jn

(
sc1)≤ max

{
Jα1
n , nλ

}}
.

The set S C 1
n is the output of Step 1.

Step 2: Define the effective parameter space for c0 as

Cn ≡
{

[c1, � � � , cl]
� ∈R

2l : [c1, � � � , cl1 ] = [sc1
1 , � � � , sc1

l1

]
for some

sc1 ∈ S C 1
n; and ct ∈

{
[1, 0], [0, 1]

}
for t ∈ {l1 + 1, � � � , l}

}
.

The TMS estimator is defined by the following minimization problem:14

(ĉ, π̂ ) ≡ arg min
c∈Cn,π∈�

∥∥Gn,c(π )
∥∥2
Wn(c).

For each c ∈ Cn, the first 2l1 components of c are the same as the first 2l1 components
of some sc1 ∈ S C 1

n; and the last 2(l− l1 ) components can select any combination of the
last 2(l − l1 ) moments allowed by C . Since every c ∈ Cn selects l moments out of the l
pairs, Cn ⊆ C . In the special case where S C 1

n = S C 1, we have Cn = C .
Let sc1

0 ∈ S C 1 denote the subselection vector whose first 2l1 elements are the same
as c0. In Step 1, we determine if a subselection vector sc is part of an incorrect matching
by comparing Jn(sc) with nλ, because Jn(sc1

0 )< nλ occurs with high probability when n
is large. At the same time, we keep at least 100α1% elements in S C 1 to prevent sc1

0 from
being eliminated because of finite sample error.

The size of S C 1 is 2l1−1, which is much smaller than the size of C when l1 is smaller
than l. As a result, Step 1 can be implemented very fast. The set S C 1

n has α�12l1−1 el-
ements where α�1 ≡ |S C 1

n|/|S C 1|; and the size of the effective parameter space Cn is
(α�12l1−1 ) × 2(l−l1 ) = α�12l−1. When α�1 is small and l is moderately large, (ĉ, π̂ ) is compu-
tationally much faster than (c̃, π̃ ).

Remark 3.1. Setting α1 = 1 recovers (c̃, π̃ ) in (3.2), and π̂ = π̃ whenever ĉ = c̃.

14The definition of (ĉ, π̂ ) implicitly assumes that the solution to the minimization problem is unique.
This can be shown to hold with probability approaching one.
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3.1.2 The MMS procedure When l is very large, implementing Step 2 above may still
be time consuming, because α�12l−1 can be large. To further reduce the computational
time, we extend the above TMS to MMS with any finite number of steps as needed. For
example, in an MMS with three steps, the first step is the same as the first step in TMS.
Instead of selecting from all the possible combinations of (2l1 + 1)-th to 2l-th moments
in the second step, we select from the (2l1 + 1)-th to 2l2-th moments, where l2 ≡ l1 + �
for some prespecified � ∈ {1, � � � , l− l1}. In the third step, we select from the (2l2 + 1)-th
to 2l-th moments. Below, we present the detailed procedure for implementing the MMS
procedure with (S + 1) steps.

Let �x� denote the smallest integer greater than or equal to x.
Step 0: Set l1 ∈ {lπ , lπ + 1, � � � , l}, α1 ∈ (0, 1], λ ∈ (−1, 0), and � ∈ {1, � � � , l − l1}. Let

S = � l−l1� � and α= 2−�.
Step 1: Apply the same procedure as Step 1 in the TMS procedure. The output is the

set S C 1
n.

Steps 2, 3, . . . S: For s = 2, � � � , S, define ls ≡ ls−1 +�. The input of Step s is the collec-
tion of subselection vectors defined as

S C s ≡

⎧⎪⎨⎪⎩
[sc1, � � � , scl]

� ∈R
2l : [sc1, � � � , scls−1 ] = [scs−1

1 , � � � , scs−1
ls−1

]
for some

scs−1 ∈ S C s−1
n ; sct ∈

{
[1, 0], [0, 1]

}
for t ∈ {ls−1 + 1, � � � , ls};

and sct = [0, 0] for t ∈ {ls + 1, � � � , l}

⎫⎪⎬⎪⎭ .

By definition, each scs ∈ S C s
n consists of three parts: the first 2ls−1 components of scs

are the same as the first 2ls−1 components of some scs−1 ∈ S C s−1
n ; the (2ls−1 + 1)-th to

2ls-th components of scs select any combinations allowed by C ; and scs selects none of
the last 2(l − ls ) moments. Sort Jn(scs ) for all scs ∈ S C s, and denote Jαn as the value of
the 100α% smallest. Construct the output of Step s, S C s

n, as

S C s
n ≡ {scs ∈ S C s : Jn

(
scs
)≤ max

{
Jαn , nλ

}}
.

Step (S + 1): Define the effective parameter space for c0 as

Cn ≡
{

[c1, � � � , cl]
� ∈R

2l : [c1, � � � , clS ] = [scS1 , � � � , scSlS
]

for some

scS ∈ S C S
n; and ct ∈

{
[1, 0], [0, 1]

}
for t ∈ {lS + 1, � � � , l}

}
.

The MMS estimator is defined by the following minimization problem:

(ĉ, π̂ ) ≡ arg min
c∈Cn,π∈�

∥∥Gn,c(π )
∥∥2
Wn(c). (3.3)

For each c ∈ Cn, the first 2lS components of c are the same as the first 2lS components
of some scS ∈ S C S

n; and the last 2(l− lS ) components can select any combination of the
last 2(l− lS ) moments allowed by C .

Let α�s ≡ |S C s
n|/|S C s|. In Step s for s = 1, � � � , S, the input set S C s has the cardinal-

ity 2ls−1∏s−1
i=1 α

�
i , and the output set S C s

n has the cardinality 2ls−1∏s
i=1 α

�
i . In Step (S+1),

|Cn| = 2l−1∏S
i=1 α

�
i . For large l, we usually have large S and small α�s for s = 1, � � � , S. The

number of optimizations from Step 1 to Step (S + 1) is much fewer than the number of
optimizations required for computing (c̃, π̃ ).
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Remark 3.2. The choice of the tuning parameters l1, α1, λ, and � are independent of l
and n. See Section 3.3 for more discussion.

Remark 3.3. By replacing the zeros with ones and the ones with zeros in ĉ, we obtain
an estimator for the true selection vector in C 2. Based on it, we can estimate the payoff
vector. Alternatively, we can apply the above MMS procedure to C 2 to obtain the esti-
mators.

3.2 Asymptotic properties of the MMS procedure

The consistency of (ĉ, π̂ ) is proved under the following assumptions.

Assumption 3.1. The space � is compact.

Assumption 3.2. For ∀ c ∈ Cn,Wn(c)
p→W (c) for some positive definite matrixW (c).

Assumption 3.2 imposes a standard assumption on the weighting matrix. Note that
the weighting matrix Wn(c) is only used in the last step of the MMS procedure. The fol-
lowing theorem states consistency of the estimators ĉ and π̂.

Theorem 3.1. Under Assumptions 2.1–2.6 and 3.1–3.2, it holds that ĉ = c0 wp → 1 and

π̂
p→ π0 for any l1 ∈ {lπ , lπ + 1, � � � , l}, α1 ∈ (0, 1], λ ∈ (−1, 0), and � ∈ {1, � � � , l− l1}.

Theorem 3.1 shows that the MMS procedure is consistent for any l1, α1, λ, and � that
satisfy the requirements in the theorem. The values of the tuning parameters only affect
the finite sample performance of the estimator.

The theorem below shows that asymptotically the time and space complexities of
the MMS are linear in l.15

Theorem 3.2. Let Assumptions 2.1–2.6 and 3.1 hold. Then with probability approaching
one as n→ ∞, for all payoffs except for a set of Lebesgue measure zero, both the time and
space complexities of the MMS procedure are linear in l.

Consider the space of payoffs for all three players such that the assumptions in the
theorem are satisfied. Theorem 3.2 shows that, except for a subset of Lebesgue measure
zero in this space, both the computation time and memory storage required for per-
forming the MMS procedure are linear in l with probability approaching one as n→ ∞.
In other words, except for certain “exceptional” payoffs, the linear time and space com-
plexities hold with high probability when n is large.

Although Theorem 3.2 is an asymptotic result, the simulation results in Section 6
show that the MMS is extremely fast to compute for all DGPs and sample sizes
considered. To guarantee the consistency, the MMS cannot eliminate c ∈ C if

15The space complexity measures the amount of memory space required for performing an algorithm.
It is another important factor when evaluating the efficiency of an algorithm.
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minπ∈� ‖Gn,c(π )‖2 < nλ. However, for a small sample size, there might be some c 
= c0

such that the inequality holds.16 When n becomes larger, fewer selection vectors would
satisfy the inequality, because minπ∈� ‖Gn,c(π )‖2 < nλ holds for λ < 0 only if c = c0 when
n→ ∞. As a result, S C s in each step contains fewer elements for larger n. The compu-
tation time of the MMS decreases and becomes linear in l in the limit.

3.3 Practical implementation

We summarize the computation of the MMS estimator (ĉ, π̂ ) in Algorithm 1 and pro-
vide guidance on the choice of tuning parameters l1, α1, λ, and � in finite samples. We
discuss the roles of the tuning parameters based on the ascending order of their relative
importance to the computational time. For s = 1, � � � , S, let scs0 denote the subselection

Algorithm 1: The MMS procedure.

16Even if in rare cases where minπ∈� ‖Gn,c(π )‖2 is small for all c 
= c0, by setting an aggressive λ, the MMS
procedure can still improve upon (3.2) in running time.
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vector whose first 2ls elements are the same as c0 and the remaining elements are zeros.
Namely, scs0 selects the correct first ls moments.

We first discuss the role of λ. In each step, nλ serves as a threshold to identify scs ∈
S C s that is surely (wp → 1) different from scs0. The threshold is conservative for larger λ
and aggressive for smaller λ. By the property of scs0 andGn,scs0

(π ), minπ∈� ‖Gn,scs0
(π )‖2 =

Op(n−1 ). Thus, if minπ∈� ‖Gn,scs (π )‖2 does not converge to zero at rate nλ for λ > −1
as n→ ∞, then Pr(scs 
= scs0 ) → 1. Excluding such scs from the output of Step s, S C s

n,
reduces the number of elements in the input of Step (s + 1), S C s+1, and the inputs of
all the next steps. We recommend λ= −0.01 based on the simulation study.

The parameter α1 acts as a safety net for keeping sc1
0 in S C 1

n in finite samples. It also
indirectly prevents scs0 from being excluded from S C s

n in finite samples for s = 2, � � � , S.
Because minπ∈� ‖Gn,scs0

(π )‖2 may not be small due to the finite sample error, enough
subselection vectors need to be included in S C s

n so that scs0 is not eliminated in each
step. We deliberately set α= 2−�, so that the number of elements in the output set does
not decrease as the algorithm proceeds. There are at least α12l1−1 elements in S C s

n after
each step. When α1 is larger, S C s

n tends to have more elements, which increases the
chance that scs0 ∈ S C s

n. Extensive simulation suggests setting α1 = 0.5%.
The tuning parameter l1 affects the computational time of (ĉ, π̂ ), because the set

S C 1
n directly affects S C 2 in Step 2 and S C s in all the following steps. There are α�12l1−1

elements in S C 1
n, where α�1 ≡ |S C 1

n|/|S C 1|, and the same order of elements in S C s
n

for s = 2, � � � , S. The value of α�1 ∈ [α1, 1] is determined by the percentage of sc1’s in S C 1

such that minπ∈� ‖Gn,sc1 (π )‖2 is small. If Jα1
n > nλ, then α�1 = α1, while if Jα1

n ≤ nλ, then
100α�1% of sc1’s in S C 1 satisfy that Jn(sc1 ) ≤ nλ. In consequence, when only a small
portion of elements in S C 1

n make minπ∈� ‖Gn,sc1 (π )‖2 small, α�1 is small. Intuitively,
minπ∈� ‖Gn,sc1 (π )‖2 tends to be small if no or a few incorrect moments are selected by
sc1. Because the percentage of such sc1’s in S C 1 decreases with l1, α�1 is smaller for
larger l1, and vice versa. For example, the percentage of subselection vectors in S C 1

that select only one incorrect moment is (l1 − 1)/2l1−1, which decreases dramatically as
l1 increases. At the same time, enough moments relative to lπ shall be included in Step 1.
Since the number of elements in S C 1

n is a product of 2l1−1 and α�1, we need to balance
the two effects of l1 to achieve faster running time. Based on extensive simulations, we
suggest setting l1 = 5lπ .17

The value of � affects the total number of steps and the number of optimizations
in each step. Larger � leads to fewer steps, because S = � l−l1� �. On the other hand, low-
ering � decreases the computation time of each step. Given the number of elements in
the output set of Step (s − 1), the input set S C s of Step s has 2� times more elements.
Decreasing � would then reduce the cardinality of S C s and the number of operations
in each step. We recommend setting � = 2 based on extensive simulations. Once � is
chosen, the value of α is determined accordingly as 2−� so that more moments we add
in each step, more aggressive we are in the elimination of incorrect matchings.

In summary, we recommend setting λ= −0.01, α1 = 0.5%, l1 = 5lπ , and �= 2 in the
MMS procedure. We call such a choice the rule-of-thumb. See more discussion on the
roles of the tuning parameters and the rule-of-thumb in Section 6.1.

17Since lπ is small, for cases where l < 5lπ , (c̃, π̃ ) can be employed directly.
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4. Inference on the payoff vector in the Simple Game

This section develops a test for the following linear hypothesis:

H0 :Rπ0 = r against H1 :Rπ0 
= r, (4.1)

where R is of dimension lR × lπ with rank(R) = lR and r is of dimension lR × 1. A simple
test statistic would be

min
c∈C ,Rπ=r

∥∥√nGn,c(π )
∥∥2
Wn(c),

which is expected to be large if the null is incorrect. However, this test statistic can be
computationally challenging when the parameter space C is large. Similar to the multi-
step estimator proposed in Section 3.1, we propose the multistep test statistic:

Tn ≡ min
c∈Cn,Rπ=r

∥∥√nGn,c(π )
∥∥2
Wn(c), (4.2)

where Cn is the effective parameter space for c0 in the last step of the MMS.18 See Sec-
tion 3.1.

4.1 Asymptotic validity and consistency

Note that we are dealing with a post-selection inference problem because of the built-
in moment selection in our test statistic. Albeit the many challenges faced with gen-
eral post-selection inference documented in Leeb and Pötscher (2005) and Leeb and
Pötscher (2008), we are able to construct an asymptotically uniformly valid and compu-
tationally simple test based on Tn.

Assume that the model is fully characterized by ξ ∈�, where� is some compact pa-
rameter space and is possibly infinite-dimensional. For the Simple Game, ξ includes the
distribution of private information, conditional probability of latent state on observed
state, and payoff vectors for each individual. Denote �R as the parameter space con-
sistent with the null hypothesis and Prξ(·) as the probability calculated under ξ. The
objective is to find a critical value CV that controls the asymptotic size defined as

AsySize ≡ lim sup
n→∞

sup
ξ∈�R

Prξ(Tn > CV ). (4.3)

We consider the drifting model parameter sequence ξn and the set of drifting model
parameter sequences underH0 with limit ξ as

�R(ξ) = {{ξn ∈�R : n≥ 1} : ξn → ξ ∈�R
}

. (4.4)

The important role of the analysis under drifting (sub)sequences has been emphasized
in Andrews and Cheng (2012), Cheng (2015), and Andrews, Cheng, and Guggenberger

18A test analogous to the J-test can be applied to testing the joint validity of the model assumptions
including the parametric form of the payoff function such as that in Game 1. Details are omitted due to
space considerations.
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(2020). Its introduction is not intended as a literal description of real-world data, but
merely a device that helps us study the asymptotic property of the test statistic that mim-
ics its finite-sample behavior. For the system of moment functions G(π ), a selection is
correct if Gc(π ) = 0 for some π, and is incorrect if Gc(π ) 
= 0 for any π. By Lemma 2.1,
the only true selection is c0. However, under drifting sequence of model parameters, it
is possible that Gξnc (π ) 
= 0 but Gξnc (π ) → 0 for some c 
= c0 and π ∈� as n→ ∞, where
G
ξn
c (π ) denotes the moment functions selected by c under the drifting model parameter

sequence ξn. We call such selection a nearly true selection. When nearly true selections
exist, the probability that c0 is the solution to the minimization problem (4.2) does not
approach one, so that incorrect moment functions may be selected even when n→ ∞.
Such phenomenon occurs in the post-selection inference problem and often compli-
cates the inference procedure. However, since the number of correct moments in the
Simple Game is known to be l, the null asymptotic distribution of Tn under drifting se-
quence is stochastically dominated by the chi-squared distribution with (l − lπ + lR )-
degrees of freedom. This allows us to construct an asymptotically uniformly valid test
using critical value from the chi-squared distribution with (l− lπ + lR )-degrees of free-
dom even in the presence of nearly true selections. Moreover, by Assumption 2.6, for any
c 
= c0, the systemGc(π ) = 0 does not have a solution. The test statistic diverges to infin-
ity under the alternative hypothesis because limn→∞ minRπ=r ‖Gn,c(π )‖2

Wn(c) > 0 for all
c ∈ C if Rπ0 
= r.

Assumption 4.1. (i) The derivative of f (·) is bounded. (ii) For any ξ ∈ �R, z takes
each value in Z with probability bounded below by ε > 0. (iii) For any ξ ∈ �R and
the parameter sequence {ξn} ∈ �R(ξ), given each c ∈ Cn, Wn(c) = W (c) + op(1) with
W (c) being positive definite. (iv) W (c0 ) = �−1

0 for �0 being the asymptotic variance of√
n(Gn,c0 (π0 ) −Gc0 (π0 )).

Assumption 4.1(i) is satisfied by commonly used distributions and is needed for the
uniform linear representation of the moment function given a uniform linear represen-
tation of the CCP estimator. Assumption 4.1(ii) assumes that the support of z is the same
for all ξ ∈�R and is one of the sufficient conditions needed for the uniform linear rep-
resentation of Xiao (2018)’s CCP estimator. Assumption 4.1(iii) and (iv) require that the
probability limit of Wn(c) be positive definite and that the optimal weighting matrix be
used for c0. The asymptotic variance matrix �0 being nonsingular is satisfied automati-
cally by the setting of the Simple Game and is verified in the proof of Theorem 4.1.

Denote χ2
[df ],1−α as the (1 − α)-th quantile of the chi-squared distribution with df -

degrees of freedom. The following theorem states the asymptotic validity and consis-
tency of the test based upon the test statistic Tn and critical value χ2

[l−lπ+lR],1−α. The
proof is provided in the Supplemental Appendix.

Theorem 4.1. Let Assumptions 2.1–2.6 hold. For any l1 ∈ {lπ , lπ + 1, � � � , l}, α1 ∈ (0, 1],
λ ∈ (−1, 0), and � ∈ {1, � � � , l− l1}, (i) if in addition Assumptions 3.1 and 4.1 hold, then

lim sup
n→∞

sup
ξ∈�R

Prξ
(
Tn > χ

2
[l−lπ+lR],1−α

)= α;
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(ii) if in addition Assumptions 3.1–3.2 hold, then for any ξ /∈�R,

lim
n→∞ Prξ

(
Tn > χ

2
[l−lπ+lR],1−α

)= 1.

Remark 4.1. We can also test hypotheses involving cross-player restrictions on some la-
tent state or cross-latent state linear restrictions for some players. Both can be achieved
by stacking the moment functions and adjusting the parameter space of the true selec-
tion vector. For example, let the null hypothesis be that the payoffs for players 1 and 2 are
equal on some latent state. For i= 1, 2, we can construct the sample moment functions
Gni(πi ) = πni − 	niπi for player i. Define

Gn(π1, π2 ) ≡
[
Gn1(π1 )
Gn2(π2 )

]
=
[
πn1

πn2

]
−
[
	n1 0

0 	n2

][
π1

π2

]
and

C ≡ {[c1, � � � , c2l]
� ∈R

4l : ct = ct+l ∈
{

[1, 0], [0, 1]
}

for t ∈ {1, � � � , l}
}

.

In the construction of C , we keep the ordering of mixing components the same across
players because the CCPs for different players are identifiable up to the same label swap-
ping. The test can be carried out by the test statistic

min
c∈Cn,π1=π2

∥∥√nGn,c(π1, π2 )
∥∥2
Wn(c)

and the critical value χ2
[2l−lπ ],1−α, where Cn is the effective parameter space constructed

from a similar MMS procedure.

4.2 Bootstrap estimation of the weighting matrix

To implement the proposed test for the Simple Game, the weighing matrix needs to sat-
isfy Assumption 4.1(iii) and (iv), which involves estimating the asymptotic covariance
matrix of

√
n(Gnc0 (π0 ) −Gc0 (π0 )). Since πn and 	n are obtained from plugging in esti-

mators of the equilibrium CCPs via the eigendecomposition procedure, estimating �0

from its analytical expression can be difficult. We propose a nonparametric bootstrap
estimator of �0 in this section.

Any π ∈ � satisfying the system of linear equations Rπ = r can be expressed as
�πf + μ, where � is a known lπ × (lπ − lR ) matrix, πf is the free parameter vector of
dimension lπ − lR, and μ is a known lπ × 1 vector. Computation of bootstrap weighting
matrixW b

n (c) includes the following steps.
Step 1: For any given c ∈ Cn, if arg minπf ‖Gn,c(�πf + μ)‖2 is not unique, then set

W b
n (c) as some known positive definite matrixWP such as the identify matrix. Otherwise,

let π̂f (c) = arg minπf ‖Gn,c(�πf +μ)‖2 and continue to Step 2.
Step 2: Compute the bootstrap variance

�bn
(
c, π̂f (c)

)= n

B

B∑
b=1

(
G(b)
n,c
(
�π̂f (c) +μ)−Gn,c

)(
G(b)
n,c
(
�π̂f (c) +μ)−Gn,c

)�
,
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where G(b)
n,c(·) is calculated using the bth nonparametric bootstrap sample and Gn,c =

1
B

∑B
b=1G

(b)
n,c(�π̂f (c) +μ). SetW b

n (c) as (�bn(c, π̂f (c)))−1.
Step 3: Repeat Step 1 and Step 2 for every c ∈ Cn.
By Assumption 2.6, rank(	n,c0�) = lπ − lR for n sufficiently large. However, for c 
= c0,

it is possible that rank(	c�)< lπ − lR and arg minπf ‖Gn,c(�πf +μ)‖2 is not unique. For-
tunately, for such c, Assumption 4.1(iii) only requires the weighing matrix to be positive
definite in the limit, which is satisfied by matrixWP .

For �bn(c0, π̂f (c0 )) to be a consistent estimator of �0, we need to match the labels
of latent states across different bootstrap draws. By Assumption 2.5, pi(z, k) 
= pi(z, k′ )
for any z ∈ Z and i= 1, 2, 3. In consequence, the labels of latent states can be matched
through pi(z, k) and pi(z, k′ ) across bootstrap draws with probability approaching 1 as
n goes to infinity. The property ofW b

n (c) is summarized in the following proposition. The
Supplemental Appendix contains the proof of the proposition.

Proposition 4.1. Suppose Assumptions 2.1–2.6, 3.1, and 4.1(i) and (ii) hold. Then
W b
n (c) satisfies Assumption 4.1(iii) and (iv) when B→ ∞.

5. The General Game

In this section, we extend the methods of estimation and inference for the Simple Game
developed in Sections 3 and 4 to the General Game studied in Aguirregabiria and Mira
(2019). The General Game allows for a general number of players, a general number of
actions for each player, and more importantly both unobserved heterogeneity and mul-
tiple equilibria. In Section 5.1, we review the sequential identification of the General
Game. Sections 5.2 and 5.3 introduce the estimation and inference procedures. Asymp-
totic results including assumptions and theorems are relegated to Appendix A.

5.1 The General Game and sequential identification

In the General Game, there are N players; player i has J + 1 available actions denoted
as di ∈ {0, � � � , J}; there is an exclusive observed state variable zi ∈ Zi and one payoff-
relevant state variable denoted as k ∈ K that is common knowledge for players but
unobserved by the econometrician. The objective is to identify, estimate, and conduct
inference on the payoff vector on each observed and latent state.

Let z ≡ (z1, � � � , zN ) ∈ Z ≡∏N
i=1 Zi and pk(z) be the conditional probability mass

function of k given z with support K . To account for potential multiple equilibria in
the data, we introduce a bivariate injective function denoted as b(·, ·) and define ω ≡
b(k, τ) as the scalar composite latent variable for the combination of latent state k and
equilibrium indicator τ. Let p(ω|z) be the conditional probability mass function of ω
given z with support �z. For any given z, |�z| is unknown but can be identified using
existing methods such as Lemma 1 in Xiao (2018) under Assumption C.1 provided in
the Supplemental Appendix of this paper. Without loss of generality, we assume that
ω ∈ {1, � � � , |�z|} for any z ∈ Z . In the presence of multiple equilibria, the support of
the composite latent variable ω depends on z, because the number of active equilibria
might change with z.
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Let εi ≡ (εi(1), � � � , εi(J ))�, where εi(j) is the normalized (with respect to action 0)
private information for player i taking action j. We impose the following assumptions
on the private information, data, and latent states that are analogous to Assumptions
2.1–2.4(i).

Assumption 5.1. (i) {εi}Ni=1
i.i.d.∼ F(·), where F(·) is known to the econometrician and is

absolutely continuous with a probability density function denoted as f (·). (ii) The support
of f (·) is RJ . (iii) {εi}Ni=1 are independent of the state variables (z, k). (iv) The econometri-
cian observes a random sample {(d1m, � � � , dNm, z1m, � � � , zNm )}nm=1. (v) pk(z)> 0 for any
k ∈ K and z ∈ Z .

Different from the Simple Game, neither the number of multiple equilibria nor the
number of latent states |K | is known in the General Game. Like for the Simple Game,
we focus our discussion on sequential identification and estimation of the payoff vectors
for player 1 with z1 = z1

1 fixed, where z1
1 is the first element in Z1. Holding z1 = z1

1, define
l ≡∏N

i=2 |Zi| as the total number of different observed states. When |Zi| is the same for
all i= 2, � � � ,N , l is an exponential function of the number of players. Let {z1, � � � , zl} be
the collection of all the observed states.

Sequential identification of the payoff vectors consists of two steps. Because of mul-
tiple equilibria, the composite latent variable ω plays the same role as the unobserved
heterogeneity k in the Simple Game. So, in the first step, we identify |�z| and the CCPs
up to a label swapping inω. In the second step, we identify |K | and the payoff vector on
the latent variable k by first extending Step 2 for the Simple Game to identify the payoff
vector on ω and then identifying the payoff vectors on the latent variable k from those
on ω.

5.1.1 Step 1: Identification of the equilibrium CCP vector (up to a label swapping in the
composite latent variable) For a given z, identification of equilibrium CCPs for the Gen-
eral Game is equivalent to the identification of the following nonparametric mixture
model with |�z| number of mixing components: for (d1, � � � , dN ) ∈ {0, � � � , J}N ,

p(d1, � � � , dN |z) =
∑
ω∈�z

[
p(ω|z)

N∏
i=1

p(di|z,ω)

]
. (5.1)

One can apply the approach in either Bonhomme, Jochmans, and Robin (2016) or Xiao
(2018). Instead of restating these conditions here, we simply assume Step 1 identifica-
tion. In Supplemental Appendix C.2, we provide a detailed analysis of the approach in
Xiao (2018).

Assumption 5.2. (i) For any z ∈ {z1, � � � , zl}, |�z| is identified. (ii) Equilibrium CCPs are
identified up to a label swapping in ω.

Since |�z| ≥ |K | and the inequality is strict when there are multiple equilibria, Step 1
does not identify |K |, which will be done in Step 2.
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5.1.2 Step 2: Identification of the payoff vector Denote the expected payoffs and the
identified CCPs for all actions on some (z,ω) as

π1(z,ω) ≡ [π1(1, z,ω), � � � , π1(J, z,ω)
]�

and

p1(z,ω) ≡ [Pr(d1 = 1|z,ω), � � � , Pr(d1 = J|z,ω)
]�

.

Further, let the mapping from equilibrium expected payoffs to CCPs be

�1zω
(
π1(z,ω)

)=
⎡⎢⎣Pr

(
π1(1, z,ω) + ε1(1) ≥ π1(j, z,ω) + ε1(j) for every j

)
...

Pr
(
π1(J, z,ω) + ε1(J ) ≥ π1(j, z,ω) + ε1(j) for every j

)
⎤⎥⎦= p1(z,ω).

The inverse of this mapping �−1
1zω(p1(z,ω)) identifies π1(z,ω) from CCPs (see Hotz and

Miller (1993) and Aguirregabiria and Mira (2019)). Given the identification of expected
payoffs for all (z,ω), we construct player 1’s expected payoff vector π and coefficient
matrix 	 for z1 = z1

1 by stacking the corresponding expected payoffs and CCPs for all
actions, z and ω. See Appendix A.1 for their expressions.

Givenπ and 	, we construct the system of moment functions:G(π ) = π−	π, which
will be used to identify the true payoff vectors denoted as tπk0 for k= 1, � � � , |K |, whereπ
has dimension lπ ≡ J(J + 1)N−1. Identification of tπk0 for k= 1, � � � , |K | is complicated
by the presence of multiple equilibria. In contrast to the Simple Game, Step 1 in the
General Game only identifies equilibrium CCPs on the composite latent variable ω up
to a label swapping instead of equilibrium CCPs on the latent variable k in the Simple
Game. Step 2 identification for the Simple Game is therefore adapted to first identify the
payoff vector πh0 on the composite latent variable for h= 1, � � � , |�z1 | in Step 2(i) below
and then to include an additional step to identify tπk0 for k = 1, � � � , |K | based on the
identified πh0 for h= 1, � � � , |�z1 | in Step 2(ii).

Step 2(i). Similar to Step 2 for the Simple Game, we first select all the equilibrium
CCPs corresponding to the same latent state across observed states. Extending Defini-
tion 2.3 for the Simple Game, a correct matching should select all components of G(·)
that correspond to the same latent state. Each matching can be represented by a selec-
tion vector of zeros and ones, where the true selection vector corresponds to the correct
matching. We construct |�z1 | number of parameter spaces, which is the number of sup-
port points of ω conditioning on z1. Let e1 = [1, � � � , 1]� ∈ R

J and e0 = [0, � � � , 0]� ∈ R
J .

The parameter spaces of true selection vectors are defined in the following.

Definition 5.1. For h = 1, � � � , |�z1 |, the parameter space of true selection vectors is
defined as

C h ≡

⎧⎪⎨⎪⎩
[c1, � � � , cl]

� : c1 = [c1,1, � � � , c1, |�z1 |] with c1,h = e1 and c1,j ∈ {e1, e0}
for j 
= h; for t = 2, � � � , l, ct = [ct,1, � � � , ct, |�zt |] with ct,w ∈ {e1, e0},

where w ∈ {1, � � � , |�zt |
}

, ct 
= [e0, � � � , e0]

⎫⎪⎬⎪⎭ .

For each h = 1, � � � , |�z1 |, C h contains 2|�z1 |−1∏l
t=2(2|�zt | − 1) number of elements,

where each element has dimension J
∑l
t=1 |�zt |. Every selection vector in C h selects the
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hth mixing component on z1. Because the hth mixing component corresponds to just
one latent state, C h contains only one true selection vector denoted as ch0 . The param-
eter spaces of true selection vectors in the General Game differ from those in the Sim-
ple Game in several ways. First, a selection vector in C h is able to select more than one
mixing component per observed state to accommodate the possible presence of mul-
tiple equilibria. Second, there might be more than one selection vector in C h for any
h = 1, � � � , |�z1 | that generates a system with a solution (not necessarily unique). The
reason is that as long as the components of G(·) selected by c correspond to the same
latent state, Gc(π ) = 0 has at least the true payoff vector as its solution. Third, because
the h1-th and h2-th mixing components on z1 can correspond to the same latent state,
we can have ch1

0 = ch2
0 even if h1 
= h2.

Define a set

C I h ≡ {c ∈ C h :Gc(π ) = 0 has a solution
}

.

The true selection vector ch0 differs from other elements in C I h by selecting all the equi-
libria per observed state that correspond to the same latent state. As a result, ch0 is the
unique element in C I h that selects the maximum number of components of G(·) and
πh0 is the unique solution toGch0

(π ) = 0.

Step 2(ii). Based on π1
0 , � � � , π

|�z1 |
0 , we can identify |K | and tπk0 for k= 1, � � � , |K | as

the distinct elements among π1
0 , � � � , π

|�z1 |
0 .

Similar to Assumption 2.6 for the Simple Game, we adopt the following assumption
for Step 2 identification.

Assumption 5.3. For each h = 1, � � � , |�z1 |, (i) 	ch0
has full column rank and (ii)

rank([πc , 	c])> rank(	c ) for any c ∈ C h that selects different latent states.

Assumption 5.3 is equivalent to the necessary and sufficient condition proposed in
Proposition 3 of Aguirregabiria and Mira (2019) except that we consider identification
for each pair of players and exclusive state separately. See Supplemental Appendix C.4
for more discussion on the equivalence result.

We summarize the identification results in Step 2 in the following lemma.

Lemma 5.1. Let Assumptions 5.1–5.3 hold. (i) For h = 1, � � � , |�z1 |, (ch0 , πh0 ) is identified:
‖ch0 ‖0 > ‖c‖0 for any c ∈ C I h and c 
= ch0 ; and Gch0

(π ) = 0 has a unique solution πh0 . (ii)

|K | is identified as the number of distinct payoff vectors among π1
0 , � � � , π

|�z1 |
0 and tπk0 for

k= 1, � � � , |K | are identified as the |K | distinct payoff vectors.

5.2 Estimation

It follows from Lemma 5.1(ii) that estimation of |K | and tπk0 for k= 1, � � � , |K | requires
an initial estimator of πh0 for h = 1, � � � , |�z1 |. In the following, we first introduce an es-
timation procedure for πh0 that extends the MMS procedure for the Simple Game. Then
we propose an estimator for |K | and tπk0 . In Supplemental Appendix A.3, we show that
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our estimators are consistent. Additionally, we prove that when the number of the ob-
served states where multiple equilibria exist is not a function of l, the time and space
complexities of our estimation procedure achieve linearity in l.

5.2.1 Multistep moment selection estimation of πh0 To construct an estimator of (ch0 ,
πh0 ) based on the identification strategy in Lemma 5.1(i), we can follow the idea in An-
drews (1999) and define the estimator as(̃

ch, π̃h
)= arg min

c∈C h,π∈�
[∥∥Gn,c(π )

∥∥2
Wn(c) − ρ1

(‖c‖0
)
κ1,n/n

]
,

whereWn(c) is the sample weighting matrix, ρ1(·)> 0 is a known strictly increasing func-
tion, and κ1,n → ∞ with κ1,n = o(n). The additional term, −ρ1(‖c‖0 )κ1,n/n, rewards
selecting more moments. By the same logic as in Andrews (1999), we expect c̃h to be
equal to ch0 with probability approaching one and π̃h to consistently estimate πh0 for
h= 1, � � � , |�z1 |.

Similar to the Simple Game, calculating (c̃h, π̃h ) is computationally challenging for
large l. In Appendix A.2, we extend the MMS procedure developed in Section 3.1 to over-
come such a challenge. Denote the resulting estimators as (ĉh, π̂h ) for h= 1, 2, � � � , |�z1 |.
5.2.2 Estimation of |K | and tπk0 By Lemma 5.1(ii), we identify |K | as the number of
groups of πh0 for h= 1, � � � , |�z1 |, such that πh0 ’s are the same within a group but different
across groups. Although π̂h obtained from the previous section is a consistent estimator,
estimation error in finite sample will cause π̂h1 to differ from π̂h2 even if πh1

0 = πh2
0 .

To obtain a grouping of the estimated payoffs by their underlying latent states in finite
sample, we extend the idea in k-means clustering allowing for an unknown number of
clusters.

Given some integer K ≤ |�z1 |, denote SK ≡ {SK,1, � � � , SK,K } ∈ SK as a partition of
{π̂1, � � � , π̂|�z1 |} with cardinalityK, where SK denotes the collection of all partitions with
cardinalityK. Let μK ≡ {μK,1, � � � , μK,K }, where for j = 1, � � � ,K,μK,j ≡ 1

|SK,j |
∑
π̂h∈SK,j

π̂h

is the average of π̂h’s within the jth group in the partition. Let ρ2(·) > 0 be an increas-
ing function and κ2,n → ∞ with κ2,n = o(n). We estimate |K | and tπk0 by solving the
following minimization problem:

(K̂, ŜK̂ ) = arg min
K≤|�z1 |,SK∈SK

[
K∑
j=1

∑
π̂h∈SK,j

∥∥π̂h −μK,j
∥∥2 + ρ2(K)κ2,n/n

]
. (5.2)

The solution K̂ is the estimator for |K |. Let t̂π1, � � � , t̂πK̂ be the within-group averages

of π̂h that correspond to partition ŜK̂ . Then t̂π1, � � � , t̂πK̂ are the estimators for the true
payoff vectors.

Comparing (5.2) with the objective function in the classical k-means clustering, (5.2)
includes an additional term ρ2(K)κ2,n/n that penalizes large K. To see the intuition be-
hind this objective function, first note that if K < |K |, the correct partition is not fea-
sible; and the first term

∑K
j=1
∑
π̂h∈SK,j

‖π̂h − μK,j‖2 does not converge in probability
to zero under any partition. When K ≥ |K |, the correct partition is feasible. The first
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term converges in probability to zero under the correct partition or its refinements.19

The penalty term ρ2(K)κ2,n/n makes the objective function to favor partitions that use
smaller K. As a result, both events K̂ = |K | and ŜK̂ equals to the correct partition oc-
cur with probability approaching one as n goes to infinity. Given the correct partition,

the group centers t̂π1, � � � , t̂πK̂ deliver consistent estimate for the true payoff vectors on
each latent state.

The value of |�z1 | is usually small (no more than 10, see Igami and Yang (2016) and
Bonhomme, Lamadon, and Manresa (2022)). As a result, applying the k-means to clas-
sify {π̂1, � � � , π̂|�z1 |} is fast; and the estimators (K̂, ŜK̂ ) can be solved within a millisec-
ond.20 In addition, the running time does not depend on the sample size or the number
of moments l.

5.3 Inference

Researchers may want to test linear restrictions on the payoff vector that associates with
the hth mixing component on z1. Such hypotheses can be expressed as

H0 :Rπh0 = r against H1 :Rπh0 
= r,

whereR is a known matrix of dimension lR× lπ with rank(R) = lR and r is a known vector
of dimension lR × 1. Similar to the Simple Game, the test statistic

min
c∈C h,Rπ=r

∥∥√nGn,c(π )
∥∥2
Wn(c) (5.3)

can be used. However, because (5.3) is difficult to compute for large l, we exploit the
MMS procedure developed in Appendix A.2. By replacing C h with the effective parame-
ter space C h

n , we propose the following test statistic:

Tn ≡ min
c∈C h

n ,Rπ=r
∥∥√nGn,c(π )

∥∥2
Wn(c). (5.4)

The size of C h
n is much smaller than that of C h, making Tn fast to compute. In Ap-

pendix A.4, we prove that the proposed test has the correct asymptotically size and is
consistent.

In some cases, we may wish to test if any of the true payoff vectors satisfies a linear
restriction:

H0 :R
(
tπk0

)= r for some k= 1, � � � , |K | against

H1 :R
(
tπk0

) 
= r for all k= 1, � � � , |K |.
19A partition S′ is a refinement of a partition S if every element of S′ is a subset of some element of S.
20In rare cases where numbers of mixing components are large among all the observed states, existing

algorithms such as Lloyd’s algorithm (Lloyd (1982)) can be applied to improve the computational time.
Unfortunately, these algorithms are not exact and are subject to multiple optima issues.
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A computationally feasible test statistic defined as

min
c∈C 1

n ∪···∪C
|�

z1 |
n ,Rπ=r

∥∥√nGn,c(π )
∥∥2
Wn(c)

can be applied and it behaves similar to Tn defined in (5.4).

6. Monte Carlo simulation

In this section, we conduct a Monte Carlo simulation study to examine the perfor-
mance of our estimation and inference methods in finite samples. We use two vari-
ants of the Simple Game and two variants of the General Game in this study to il-
lustrate the applicability of the proposed methods beyond the Simple Game and the
General Game. The two variants of the Simple Game are called Game 1 and Game
2; and the two variants of the General Game are called Game 3 and Game 4, respec-
tively. In all four games, we fully parametrize the payoff functions. Game 1 and Game
2 are games with only unobserved heterogeneity but no multiple equilibria. Game 3
and Game 4 are games with both unobserved heterogeneity and multiple equilibria.
Game 1 has been introduced in Section 2.4. We use it to study the effect of the tuning
parameters on running time and correct selection rate (CSR) of the MMS procedure,
where the CSR is computed as the number of times that ĉ = c0 divided by the num-
ber of repetitions. Based on the simulation result, we recommend a rule-of-thumb for
choosing the tuning parameters. Game 2 adds a common observed state to the Sim-
ple Game and a strategic effect that varies with state variables. It is used as a robust-
ness check for the effectiveness of the rule-of-thumb. We investigate the finite sam-
ple performance of the estimator and test. Game 3 and Game 4 are used to evaluate
the performance of the MMS procedure together with the consistent grouping method
that separate multiple equilibria from unobserved heterogeneity. All the results on the
running time in this section are obtained from a computer of 2.4GHz CPU and 1TB
RAM.

In Game 1, we let the normalized private information εi follow a logistic distribution.
The structures of Games 2–4 are presented below.21 The parameter values are provided
in Supplemental Appendix D.2.

Game 2 We consider a game with a common observed state variable x ∈ X that takes
discrete values. Let the payoff function for player i choosing di = 1 be

πi(1, d−i, zi, x, k) = βikx+ δikzi
(∑
j 
=i
dj

)
,

where (βik, δik ) are the parameters of interest, βik characterizes the effect of x, and δikzi
captures the strategic effect that varies with zi. Both effects change with k. The normal-

21Other models with similar parameters of interest include Example 1 in Kasahara and Shimotsu (2009),
in which a single agent dynamic discrete choice model has two parameters that depend on a common
latent state with finite support.
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ized private information εi follows the standard normal distribution. The conditional
distribution of the latent state is specified as

Pr(k=A|z, x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
3
4

− 1

10

(
|x| +

3∑
i=1

|zi|
) for (z, x) 
= (z†, x†),

0.45 for (z, x) = (z†, x†),
for some z† ∈ Z and x† ∈ X . The values of (z, x) are chosen so that Pr(k = A|z, x) >
Pr(k = B|z, x) for all (z, x) 
= (z†, x† ). The ranking independence assumption does not
hold, because the mixing weight for latent state A is not always strictly larger than that
for latent state B.

Game 3 The game has 5 players, 18 observed states, and 2 latent states. The payoff
function for player i when choosing di = 1 is given by

πi(1, d−i, zi, k) = xθk + δk 1
N − 1

(∑
j 
=i
dj

)
,

where (θk, δk ) are the parameters of interest. The normalized private information εi fol-
lows the standard normal distribution.

Game 4 The number of players, observed states, and latent states are the same as
Game 3. We let the payoff function for player i choosing di = 1 be

πi(1, d−i, zi, k) = xθk + (1 + x2)δk 1
N − 1

(∑
j 
=i

(2dj − 1)

)
,

where (θk, δk ) are the parameters of interest. This (normalized) payoff function is a re-
sult of the following two payoff functions for di = 1 and di = 0, respectively:

π̃i(1, d−i, zi, k) = xθk + (1 + x2)δk 1
N − 1

(∑
j 
=i

(dj = 1)

)
and

π̃i(0, d−i, zi, k) = (1 + x2)δk 1
N − 1

(∑
j 
=i

(dj = 0)

)
.

The normalized private information εi follows the logistic distribution.
The identification strategies for Games 2–4 are similar to the one for Game 1 in Sec-

tion 2.4. We discuss the identification and minimum-distance criterion of Games 2–4 in
Supplemental Appendix D.1.

6.1 Rule-of-thumb choice of tuning parameters in the MMS procedure—Game 1

Before studying the effect of the tuning parameters in the MMS procedure, we demon-
strate that Assumption 2.6 holds generically. We draw values for all primitive parameters
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Table 1. Effect of tuning parameters in the TMS: running time (in seconds) and correct selec-
tion rate (CSR).

l1 = 8 l1 = 9 l1 = 10 l1 = 11 l1 = 12 l1 = 13

α1 λ Time CSR Time CSR Time CSR Time CSR Time CSR Time CSR

0.5% −0.27 0.0482 0.93 0.0417 0.96 0.0432 0.99 0.0598 0.99 0.0891 0.99 0.1529 0.99
−0.09 0.0876 0.93 0.0397 0.96 0.0433 0.99 0.0596 0.99 0.0894 0.99 0.1524 0.99
−0.03 0.1659 0.94 0.0762 0.96 0.0441 0.99 0.0594 0.99 0.0886 0.99 0.1524 0.99
−0.01 0.2198 0.96 0.1082 0.96 0.0445 0.99 0.0607 0.99 0.0901 0.99 0.1537 0.99

1% −0.27 0.0766 0.95 0.0666 0.96 0.0742 0.99 0.0820 0.99 0.1110 0.99 0.1764 0.99
−0.09 0.0949 0.95 0.0689 0.96 0.0704 0.99 0.0816 0.99 0.1117 0.99 0.1770 0.99
−0.03 0.1838 0.95 0.0961 0.96 0.0716 0.99 0.0817 0.99 0.1108 0.99 0.1760 0.99
−0.01 0.2417 0.97 0.1170 0.96 0.0709 0.99 0.0823 0.99 0.1110 0.99 0.1742 0.99

1.5% −0.27 0.0753 0.95 0.0948 0.96 0.0889 0.99 0.1046 0.99 0.1339 0.99 0.1993 0.99
−0.09 0.0950 0.95 0.0900 0.96 0.0885 0.99 0.1057 0.99 0.1343 0.99 0.1992 0.99
−0.03 0.1867 0.95 0.1135 0.96 0.0931 0.99 0.1047 0.99 0.1338 0.99 0.1989 0.99
−0.01 0.2442 0.97 0.1529 0.96 0.0893 0.99 0.1043 0.99 0.1334 0.99 0.1985 0.99

2.5% −0.27 0.1481 0.95 0.1369 0.96 0.1319 0.99 0.1509 0.99 0.1828 0.99 0.2514 0.99
−0.09 0.1598 0.95 0.1329 0.96 0.1323 0.99 0.1507 0.99 0.1800 0.99 0.2511 0.99
−0.03 0.2429 0.95 0.1505 0.96 0.1312 0.99 0.1504 0.99 0.1801 0.99 0.2509 0.99
−0.01 0.2992 0.97 0.1679 0.96 0.1332 0.99 0.1496 0.99 0.1790 0.99 0.2505 0.99

independently from uniform distributions whose supports cover the parameter values
used in the simulation. For all the drawn parameter values, Assumption 2.6 is satisfied.
We interpret this as evidence that our identification assumption holds generically in the
space of model primitives.

Tables 1 and 2 study the effect of the tuning parameters in the TMS and MMS pro-
cedures on the running time and CSR. We use random samples with 500 observations
per observed state. The values in the table are based on 100 repetitions. For the de-
sign in Table 1, l = 18; and for the design in Table 2, l = 27. It can be seen from both

Table 2. Effect of tuning parameters in the MMS: running time (in seconds) and correct selec-
tion rate (CSR).

�= 1 �= 2 �= 3 �= 4 �= 5 �= 6

l1 α1 λ Time CSR Time CSR Time CSR Time CSR Time CSR Time CSR

10 0.5% −0.03 0.0457 0.99 0.0423 0.99 0.0473 0.99 0.0529 0.99 0.0592 0.99 0.0729 0.99
−0.01 0.0458 0.99 0.0428 0.99 0.0471 0.99 0.0514 0.99 0.0582 0.99 0.0727 0.99

1% −0.03 0.0531 0.99 0.0489 0.99 0.0546 0.99 0.0676 0.99 0.0821 0.99 0.1093 0.99
−0.01 0.0527 0.99 0.0500 0.99 0.0574 0.99 0.0678 0.99 0.0840 0.99 0.1084 0.99

12 0.5% −0.03 0.1555 0.99 0.1564 0.99 0.1588 0.99 0.1953 0.99 0.2312 0.99 0.2639 0.99
−0.01 0.1534 0.99 0.1585 0.99 0.1557 0.99 0.1945 0.99 0.2294 0.99 0.2618 0.99

1% −0.03 0.1771 0.99 0.1767 0.99 0.1922 0.99 0.2349 0.99 0.3078 0.99 0.3687 0.99
−0.01 0.1748 0.99 0.1817 0.99 0.1875 0.99 0.2359 0.99 0.3092 0.99 0.3575 0.99
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tables that the tuning parameter l1 plays an important role in reducing the running
time and improving accuracy. As long as l1 ≥ 10 = 5lπ , the accuracy is higher or equal
to 0.99. As we discussed in Section 3.3, increasing α1 can increase the accuracy. But
the effect is marginal. At the same time, the running time increases with α1. When
the accuracy is high, for example, 99%, λ does not affect the computation time. Ta-
ble 2 studies the role of � in the MMS on the running time and CSR. The results sug-
gest that when the number of moments is large, a multistep procedure shall be ap-
plied. The estimator achieves a high CSR and short running time when � = 2. When l
increases from 18 to 27, the number of elements in the parameter space C increases
more than 500 times. However, because the novel MMS procedure is computationally
very efficient, its running time only increases slightly.22 As a comparison, (c̃, π̃ ) has an
average running time around 3000 seconds when l = 27. Even with the least desirable
choice of the tuning parameters, the MMS procedure is thousands of times faster than
(c̃, π̃ ).

Based on Tables 1 and 2, we recommend the following rule-of-thumb for setting the
tuning parameters: l1 = 5lπ , α1 = 0.5%, λ= −0.01, and �= 2. In the subsequent simula-
tion study, we adopt this rule for all the games and designs.

To provide additional insight on the computational savings of the MMS pro-
cedure, we elaborate on its intermediate steps. Computing (c̃, π̃ ) requires solving
a quadratic optimization problem |C | times; while calculating the MMS estimator
(ĉ, π̂ ) involves the same optimization problem

∑S
s=1 |S C s| + |Cn| times. When l =

18, the cardinality of C is 2l−1 = 131,072. On the other hand, when implementing
the MMS procedure with the rule-of-thumb proposed above, we have S = 4 with
|S C 1| = 512 and |S C s| = |Cn| = 12 for s = 2, 3, 4 based on one simulation run.
As a result, (ĉ, π̂ ) requires only about 1/250 number of optimizations compared to
(c̃, π̃ ).

Although S C 1 contains 512 subselection vectors, many are certainly incorrect.
In consequence, the output of Step 1, S C 1

n, contains only 3 elements. More impor-
tantly, we do not just eliminate these 512 − 3 = 509 number of subselection vectors,
but all selection vectors that share the same first 2 × l1 elements as the eliminated
sub-selection vectors. In total, we eliminate 509 × 2l−l1 = 130,304 selection vectors
after Step 1, leaving only a few selection vectors to be considered in the following
steps.

6.2 The MMS procedure, estimator, and test based on the rule-of-thumb

Applying the suggested rule-of-thumb for choosing the tuning parameters, we investi-
gate the finite sample performance of the estimator and test in this section. For Game
1 and Game 2, we introduce five designs for each game corresponding to different
numbers of observed states. The largest number of observed states considered in the
simulation is set to be larger than the sizes of the observed states in studies such as

22The running time for l = 27 can even be shorter than that for l = 18 because MMS rather than TMS is
used when l= 27.
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Sweeting (2009), De Paula and Tang (2012), Grieco (2014), Igami and Yang (2016), and
Xiao (2018).23

Table 3 reports the running time, CSR, and mean squared error (MSE) of the MMS
procedure for different sample sizes and different designs constructed from Games 1
and 2.24 For each game, different designs correspond to different values of l. ns de-
notes the number of observations per observed state, and MSE reported in the table
that it is calculated as the sum of MSEs of each parameter. The values in the table are
computed from 1000 repetitions. Table 3 shows that the running time of the MMS in-
creases very slowly with l. When the number of elements in the parameter space C

increases millions of times, for example, from l = 27 to l = 64 in Game 1, the run-
ning time of the MMS only increases about two times. Even when there are more than
1024 (l = 81) or 1029 (l = 100) matchings, the MMS takes less than one second to com-
pute. This is consistent with Theorem 3.2, which shows that with probability approach-
ing one, the time complexity of the MMS becomes linear in l when the sample size
goes to infinity. The results in Table 3 also show that the running time either stays the
same or decreases with the sample size. We suspect that the former case occurs be-
cause the running time is already close to being linear in l and has little room to im-
prove with the sample size. When the sample size increases, the CSR increases and the
MSE decreases. It would be ideal to compare the CSR and MSE of the MMS with (c̃, π̃ ).
However, the extremely long running time of (c̃, π̃ ) makes the comparison impossi-
ble.

To study the finite sample performance of our inference procedure, we focus on De-
sign 1 of Game 1 and consider two null hypotheses of the form H0 : Rπ0 = r for R= I2,
r = (θ1A, δ1A )�; and R= (0, 1), r = δ1A. The first hypothesis is on the whole payoff pa-
rameter vector and the second one is on the parameter of strategic interaction, which is
of great interest in empirical research. The number of observed states is l = 18. We set
the nominal size as 5% and use the 95% quantile of χ2

18 and χ2
17 as the critical values

for R = I2 and R = (0, 1). In both cases, the bootstrap weighting matrices are calcu-
lated with 1000 bootstrap samples. The results are based on 5000 Monte Carlo repeti-
tions.

Table 4 reports the results on the null rejection probabilities for different sample
sizes. The size is well controlled and is getting closer to 0.05 as the sample size increases
for both hypotheses. Table 5 provides the finite sample power results when the model

23In Sweeting (2009), De Paula and Tang (2012), and Xiao (2018), the major observed state is the rank
of the market according to population, and there are 144 ranks in total; in Grieco (2014), the cardinality of
observed states for the baseline model is 12 (3 status for discretized population, 2 status for whether it is
active in 1998 and 2 status for whether there is a supercenter within 20 miles); in the static game version of
Igami and Yang (2016), the cardinality of observed states is 16 (4 categories for population and 4 categories
for average income).

24We also run simulations with even smaller sample sizes. The estimated parameters become less accu-
rate, whereas the running time is still short. As a sequential estimator, our MMS estimator is affected by the
well-known finite sample bias documented in papers like Aguirregabiria and Mira (2007) and Aguirregabiria
and Marcoux (2021). The bias largely results from poorly estimated CCPs at small sample sizes. Although
developing CCP estimators with better finite sample performance is beyond the scope of this paper, we see
much value in future research in this direction.



928 Fan, Jiang, and Shi Quantitative Economics 15 (2024)

T
a

b
l

e
3

.
Fi

n
it

e
sa

m
p

le
p

er
fo

rm
an

ce
o

f
th

e
M

M
S

p
ro

ce
d

u
re

in
d

if
fe

re
n

t
d

es
ig

n
s:

R
u

n
n

in
g

ti
m

e
(i

n
se

co
n

d
s)

,c
o

rr
ec

t
se

le
ct

io
n

ra
te

(C
SR

),
an

d
m

ea
n

sq
u

ar
ed

er
ro

r
(M

SE
).

D
es

ig
n

1:
l
=

18
D

es
ig

n
2:
l
=

27
D

es
ig

n
3:
l
=

64
D

es
ig

n
4:
l
=

10
0

D
es

ig
n

5:
l
=

28
8

n
s

T
im

e
C

SR
M

SE
T

im
e

C
SR

M
SE

T
im

e
C

SR
M

SE
T

im
e

C
SR

M
SE

T
im

e
C

SR
M

SE

G
am

e
1

25
0

0.
04

00
0.

94
4

0.
38

24
0.

04
48

0.
96

7
0.

08
86

0.
12

06
0.

91
2

0.
21

42
0.

23
38

0.
89

5
0.

33
73

0.
45

18
0.

79
5

0.
52

73
50

0
0.

03
63

0.
99

6
0.

07
49

0.
04

33
0.

99
7

0.
01

81
0.

08
11

0.
99

4
0.

03
55

0.
19

80
0.

99
0

0.
03

23
0.

46
38

0.
98

2
0.

07
50

75
0

0.
03

63
1

0.
01

59
0.

04
43

1
0.

01
21

0.
06

06
1

0.
00

46
0.

14
09

1
0.

00
30

0.
39

00
0.

99
8

0.
01

62
10

00
0.

03
25

1
0.

01
21

0.
04

36
1

0.
00

86
0.

05
91

1
0.

00
33

0.
11

98
1

0.
00

20
0.

37
37

1
0.

00
12

D
es

ig
n

1:
l
=

24
D

es
ig

n
2:
l
=

36
D

es
ig

n
3:
l
=

54
D

es
ig

n
4:
l
=

81
D

es
ig

n
5:
l
=

16
2

n
s

T
im

e
C

SR
M

SE
T

im
e

C
SR

M
SE

T
im

e
C

SR
M

SE
T

im
e

C
SR

M
SE

T
im

e
C

SR
M

SE

G
am

e
2

25
0

0.
03

68
0.

93
3

0.
76

00
0.

03
07

0.
91

6
1.

10
2

0.
06

22
0.

84
5

2.
36

6
0.

19
92

0.
76

1
3.

28
6

0.
44

59
0.

74
0

3.
59

6
50

0
0.

03
88

0.
99

6
0.

07
25

0.
03

13
0.

99
0

0.
17

74
0.

06
52

0.
98

0
0.

36
02

0.
16

58
0.

95
6

0.
70

04
0.

35
57

0.
95

6
0.

74
68

75
0

0.
02

24
1

0.
02

37
0.

03
24

0.
99

8
0.

06
23

0.
06

15
0.

99
9

0.
04

15
0.

11
02

0.
99

1
0.

16
56

0.
27

42
0.

99
4

0.
18

44
10

00
0.

02
12

1
0.

02
03

0.
02

92
0.

99
9

0.
02

05
0.

05
31

1
0.

01
44

0.
08

39
0.

99
2

0.
16

46
0.

21
94

0.
99

6
0.

14
22



Quantitative Economics 15 (2024) Estimate games with unobserved heterogeneity 929

Table 4. Finite sample rejection probabilities underH0 for different sample sizes.

ns 500 625 750 875 1000 1125 1250

R= I2 0.0336 0.0334 0.0340 0.0394 0.0430 0.0406 0.0472
R= (0, 1) 0.0252 0.0262 0.0294 0.0350 0.0392 0.0386 0.0436

deviates from the null hypothesis. When the sample size is fixed, Table 5 shows that as
the true value deviates further from the hypothesized value, the probability of rejecting
the null hypothesis increases. At the same time, for any fixed deviation, the rejection
probability increases with the sample size.

6.3 Separating unobserved heterogeneity from multiple equilibria

We use Games 3 and 4 to examine the performance of our estimator for the General
Game. For both games, we consider two designs: in Design 1, there are 2 equilibria on
latent state A for the 8th observed state; and in Design 2, there are 2 equilibria on la-
tent state A for both the 8th and the 16th observed state. For observed states on which
there are no multiple equilibria, we let Pr(k=A|x) = 0.5. For observed states on which
there are multiple equilibria, the conditional distribution for the composite latent vari-
able ω is specified as follows: ω = 1 with probability 0.4, which corresponds to latent
state A and equilibrium 1; ω= 2 with probability 0.3, which corresponds to latent state
A and equilibrium 2; ω = 3 with probability 0.3, which corresponds to latent state B.
The results of the simulations are reported in the table below. From 100 repetitions, we
document the average running time and the correct grouping rate (CGR), where the run-
ning time is the total time to run our procedures developed in Sections 5.2.1 and 5.2.2,
and the CGR is probability that ŜK̂ is equal to the correct partition. When ŜK̂ equals to

the correct partition, K̂ = |K | and t̂πk is the average of consistent estimators of tπk0 for
k= 1, � � � , |K |.

From Table 6, we see that our estimation procedure developed in Section 5.2 for the
General Game is both fast to run and accurate. The CGR is very close or equal to one
across different designs and increases with sample size.

Table 5. Finite sample rejection probabilities under H1 for different deviations and sample
sizes.

Dev. −0.15 −0.1 −0.05 −0.025 0.025 0.05 0.1 0.15

R= I2 ns = 500 0.9586 0.4704 0.0662 0.0338 0.0722 0.2004 0.7822 0.9950
ns = 750 0.9996 0.8298 0.1526 0.0422 0.0892 0.3012 0.9440 0.9998
ns = 1000 1 0.9608 0.2596 0.0672 0.1126 0.4228 0.9904 1

Dev. −0.2 −0.15 −0.1 −0.05 0.05 0.1 0.15 0.2

R= (0, 1) ns = 500 0.8850 0.4902 0.1364 0.0330 0.1358 0.4966 0.8708 0.9440
ns = 750 0.9908 0.8064 0.2806 0.0470 0.2420 0.7710 0.9870 0.9950
ns = 1000 1 0.9380 0.4372 0.0666 0.3618 0.9170 0.9998 1
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Table 6. Performance of the consistent grouping method on top of MMS: running time (in sec-
onds) and correct grouping rate (CGR).

Game 3 Game 4

Design 1 Design 2 Design 1 Design 2

ns Time CGR Time CGR Time CGR Time CGR

250 4.8851 0.99 5.0575 1 5.4538 0.96 5.9654 0.98
500 4.7580 1 5.0110 1 5.0065 0.98 5.0314 0.99
750 5.0105 1 4.6777 1 4.9731 1 5.0438 1
1000 4.7189 1 4.6639 1 4.8997 1 4.9798 1

7. Conclusion

In this paper, we have proposed a computationally fast sequential method to estimate
the payoff function and to conduct uniform inference in static games of incomplete in-
formation with unobserved heterogeneity and multiple equilibria. It builds on a novel
characterization of the matching-types problem as a minimum-distance problem with
both correct and incorrect moments. Based on this characterization, we develop a new
MMS procedure that is extremely fast to implement. For inference, we construct an
asymptotically uniformly valid test for linear hypotheses on the payoff function. The
test is easy to implement with known critical values from the chi-squared distribution.
An extensive Monte Carlo study is carried out to investigate the finite sample perfor-
mance of our estimation and inference procedures.

Instead of employing sequential estimators, researchers could make use of the equi-
librium condition to improve the finite sample performance of structural estimators.
Aguirregabiria and Mira (2007) develop a nested pseudo-likelihood algorithm that im-
poses the equilibrium condition iteratively while avoids solving the equilibrium condi-
tion exactly for any parameter as in nested fixed-point algorithm. In a companion paper,
we aim to extend the nested pseudo-likelihood algorithm to games with both multiple
equilibria and unobserved heterogeneity.25 We shall address open questions on the sta-
bility and convergence of the algorithm and to combine it with our consistent grouping
method to separate multiple equilibria from unobserved heterogeneity.

The MMS procedure introduced in this paper has broad applicability besides the
study of games. We are currently working on its extensions to the general moment se-
lection problems discussed in Andrews (1999).

Appendix A: Additional details of the General Game

In this Appendix, we provide additional details of the General Game discussed in Sec-
tion 5. In Appendix A.1, we provide the expressions of π and 	 for constructing the sys-
tem of moment functions. Appendix A.2 contains the detailed procedure for estimating
(ch0 , πh0 ) for h = 1, � � � , |�z1 | by extending the MMS procedure developed in Section 3.1
for the Simple Game. In Appendix A.3, we prove that our estimators are consistent and

25We thank an anonymous referee for suggesting this future line of research.
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fast to compute. Appendix A.4 shows that the test is asymptotically uniformly valid and
consistent.

A.1 Expressions of π and 	

For s = 1, � � � , |�z|, we defineω(s, z) as the sth value for the composite latent variable on
observed state vector z. The coefficient matrices in the moment function G(π ) for the
General Game are

π = [π1
(
z1)�, � � � , π1

(
zl
)�]�

and 	= [	1
(
z1)�, � � � , 	1

(
zl
)�]�

,

where π has dimension J
∑l
t=1 |�zt |, 	 has dimension J

∑l
t=1 |�zt | by J(J + 1)N−1, and

for t = 1, � � � , l,

π1
(
zt
)=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

π1
(
1, zt ,ω

(
1, zt

))
...

π1
(
J, zt ,ω

(
1, zt

))
...

π1
(
1, zt ,ω

(|�zt |, zt
))

...
π1
(
J, zt ,ω

(|�zt |, zt
))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and 	1

(
zt
)=

⎡⎢⎣ ι1
(
1, zt

)
...

ι1
(|�zt |, zt

)
⎤⎥⎦ .

For s = {1, � � � , |�zt |}, the matrix ι1(s, zt ) is a block diagonal matrix with J identical blocks
given by

ι1
(
s, zt

)=
⎡⎢⎣p−1

(
zt ,ω

(
s, zt

))
0

. . .

0 p−1
(
zt ,ω

(
s, zt

))
⎤⎥⎦ ,

where p−1(zt ,ω(s, zt )) is a row vector with (J+1)N−1 elements being the probabilities of
joint actions for all other players in the same spirit as the Simple Game in Section 2.2.2.

A.2 MMS procedure for estimating πh0

We focus on developing the MMS procedure for (c1
0 , π1

0 ) to simplify our discussion and
notation.

Let sc denote the subselection vector of dimension J
∑l
t=1 |�zt | that consists of e1

and e0. Following Definition 5.1, denote sct for t = 1, � � � , l as the tth subvector of sc such
that sc ≡ [sc1, � � � , scl]�. Define Jn(sc) ≡ minπ∈� ‖Gn,sc(π )‖2.

Step 0: Set l1 ∈ {lπ , lπ + 1, � � � , l}, α1 ∈ (0, 1], λ ∈ (−1, 0), and � ∈ {1, � � � , l − l1}. Let
S = � l−l1� � and α = (2|�z1 | − 1)−�. The value of α is chosen according to the same spirit
as the one in the MMS procedure for the Simple Game: the more moments we add in
each step, the smaller proportion of matchings we tend to keep. See Section 3.3 for more
detail. Relabel {z1, � � � , zl} such that |�z| for z ∈ {z1, � � � , zl} are in an ascending order.
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Step 1: The input of Step 1 is

S C 1 ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[sc1, � � � , scl]

� : sc1 = [sc1,1, � � � , sc1, |�z1 |] with sc1,1 = e1

and sc1,j ∈ {e1, e0} for j 
= 1;
for t = 2, � � � , l1, sct = [sct,1, � � � , sct, |�zt |] with sct,w ∈ {e1, e0}, where

w ∈ {1, � � � , |�zt |
}

and sct 
= [e0, � � � , e0]; for t = l1 + 1, � � � , l, sct = [e0, � � � , e0]

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Sort Jn(sc1 ) for all sc1 ∈ S C 1, and denote Jα1
n as the value of the 100α1% smallest. The

output of Step 1 is

S C 1
n ≡ {sc1 ∈ S C 1 : Jn

(
sc1)≤ max

{
Jα1
n , nλ

}}
.

Steps 2, 3, . . .S: For s = 2, � � � , S, define ls ≡ ls−1 +�. The input of Step s is the collec-
tion of subselection vectors defined as

S C s ≡

⎧⎪⎨⎪⎩
[sc1, � � � , scl]

� : [sc1, � � � , scls−1 ] = [scs−1
1 , � � � , scs−1

ls−1

]
for some scs−1 ∈ S C s−1

n ;

for t = ls−1 + 1, � � � , ls, sct = [sct,1, � � � , sct, |�zt |] with sct,w ∈ {e1, e0}, where
w ∈ {1, � � � , |�zt |

}
and sct 
= [e0, � � � , e0]; for t = ls + 1, � � � , l, sct = [e0, � � � , e0]

⎫⎪⎬⎪⎭ .

The output of Step s is

S C s
n ≡ {scs ∈ S C s : Jn

(
scs
)≤ max

{
Jαn , nλ

}}
.

Step (S+ 1): The effective parameter space for c1
0 is

C 1
n ≡

⎧⎪⎨⎪⎩
[c1, � � � , cl]

� : [c1, � � � , clS ] = [scS1 , � � � , scSlS
]

for some scS ∈ S C S
n;

for t = lS + 1, � � � , l, ct = [ct,1, � � � , ct, |�zt |] with ct,w ∈ {e1, e0},
where w ∈ {1, � � � , |�zt |

}
and ct 
= [e0, � � � , e0]

⎫⎪⎬⎪⎭ .

Given the effective parameter space, the MMS estimator for (c1
0 , π1

0 ) is defined as(̂
c1, π̂1)≡ arg min

c∈C 1
n ,π∈�

∥∥Gn,c(π )
∥∥2
Wn(c) − ρ1

(‖c‖0
)
κ1,n/n.

By eliminating incorrect matchings in multiple steps, the size of the effective pa-
rameter space C 1

n is much smaller than that of C 1. As a result, the multistep estimator
(ĉ1, π̂1 ) is much faster to compute than (c̃1, π̃1 ). We repeat the above procedure to ob-
tain estimators (ĉh, π̂h ) for h= 2, � � � , |�z1 |.

A.3 Asymptotic properties of the estimators

In this section, we present results on the consistency of our estimators and the time and
space complexities of our MMS procedure. We provide sufficient conditions that parallel
those stated in the Simple Game. The proofs for the results in this section follow the sim-
ilar arguments for the results in Sections 3.2. All proofs are collected in the Supplemental
Appendix.

We first provide assumptions for the consistency of the proposed estimator (ĉh, π̂h )
for h= 1, � � � , |�z1 |.
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Assumption A.1. (i)� is compact. (ii) The estimated equilibrium CCPs are
√
n consistent

and asymptotically normal.

Assumption A.1(ii) is satisfied by many estimators such as the ones proposed by
Bonhomme, Jochmans, and Robin (2016) and Xiao (2018). See Supplemental Appendix
C.3 for primary conditions that guarantee the consistency and asymptotic normality of
Xiao (2018)’s CCP estimator.

Assumption A.2. ∀ c ∈ C h
n for h= 1, � � � , |�z1 |, Wn(c)

p→W (c) for some positive definite
matrixW (c).

Assumption A.3. ρ1(·) > 0 is a known strictly increasing function and κ1,n → ∞ with
κ1,n = o(n).

Theorem A.1. Under Assumptions 5.1–5.3 and A.1–A.3, it holds that for h= 1, � � � , |�z1 |,
ĉh = ch0 wp → 1 and π̂h

p→ πh0 for any l1 ∈ {lπ , lπ + 1, � � � , l}, α1 ∈ (0, 1], λ ∈ (−1, 0), and
� ∈ {1, � � � , l− l1}.

The time and space complexities of the MMS procedure achieve linearity in l if the
following assumption holds.

Assumption A.4. The number of the observed states where multiple equilibria exist is
not a function of l.

The MMS procedure improves the computational time upon the classical moment
selection estimator by eliminating selection vectors c ∈ C such that c /∈ C I in multiple
steps. In the Simple Game, C I contains only one element; while in the General Game,
C I can contain more than one element because of multiple equilibria. In cases where
multiple equilibria occur at a significant portion of the observed states, the number of
elements in C I is large and might be of similar magnitude as C . The MMS procedure
will no longer enjoy the linear time complexity because very few selection vectors can be
eliminated in such cases. However, even when the number of observed states is large, it
is not uncommon to have multiple equilibria being played at only a few observed states.

Theorem A.2. Let Assumptions 5.1–5.3 and A.1–A.4 hold. Then with probability ap-
proaching one as n→ ∞, for all payoffs except for a set of Lebesgue measure zero, both the
time and space complexities of the MMS procedure for the General Game are linear in l.26

With the following assumption on ρ2(·) and κ2,n, we can show that K̂ and t̂πk for
k= 1, � � � , K̂ are consistent estimators.

Assumption A.5. ρ2(·) > 0 is a known strictly increasing function and κ2,n → ∞ with
κ2,n = o(n).

26In Lemma B.9 of the Supplemental Appendix, we show that the time complexity of the MMS procedure
is at most a polynomial function in l as long as the number of observed states where multiple equilibria
exist grows slowly with l.
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Theorem A.3. Under Assumptions 5.1–5.3, A.1–A.3, and A.5, K̂ = |K | wp → 1; and t̂πk

with k= 1, � � � , K̂ are consistent estimators for tπk0 with k= 1, � � � , |K |.

A.4 Asymptotic validity and consistency of the inference procedure

For controlling the asymptotic size, we impose the following assumptions. The defini-
tions of �R and �R(ξ) extend the ones in Section 4.

Assumption A.6. (i) On any z and ω,
∂2�−1

1zω(p)
∂p∂p� is bounded for any p. (ii) For any ξ ∈�R,

z takes each value in Z with probability bounded below by ε > 0. (iii) For any ξ ∈ �R
and the parameter sequence {ξn} ∈�R(ξ), given each c ∈ C h

n ,Wn(c) =W (c) +op(1), with
W (c) being positive definite. (iv) W (ch0 ) =�−1

h,0 for �h,0 being the asymptotic variance of√
n(Gn,ch0

(πh0 ) −Gch0 (πh0 )).

Assumption A.6(i) and (ii) play the same role as Assumption 4.1(i) and (ii), and they
are needed for uniform asymptotic linear representation of the moment function. In
particular, Assumption A.6(i) is satisfied, for example, if the normalized private informa-
tion follows a logistic distribution. Assumption A.6(iii) and (iv) are standard assumptions
on the weighting matrix.

The following theorem shows that using an appropriately chosen chi-squared criti-
cal value, the test achieves asymptotic size control.

Theorem A.4. Let Assumptions 5.1–5.3, A.1, and A.6 hold. For any l1 ∈ {lπ , lπ + 1, � � � , l},
α1 ∈ (0, 1], λ ∈ (−1, 0), and � ∈ {1, � � � , l− l1}, it holds that

lim sup
n→∞

sup
ξ∈�R

Prξ
(
Tn > χ

2
[Jl−lπ+lR],1−α

)≤ α.

In Theorem 4.1, the subscript l in the critical value corresponds to the number of
moments selected by elements in C . In the General Game, elements in C h select at least
Jl number of moments. In addition, there might be more than one element in C I h. We
obtain inequality in Theorem A.4 rather than equality in Theorem 4.1.

To obtain consistency of the test, we need to impose the following assumption.

Assumption A.7. Gc(π ) = 0 has a unique solution for any c ∈ C I h.

Without Assumption A.7, there might exist some c� ∈ C I h and π� 
= πh0 such that
Gc�(π� ) = 0. The asymptotic power of the test is not one if Rπ� = r. In the Simple Game
where there is no multiple equilibria, C I h contains only one element ch0 . By the iden-
tification assumption, Gch0

(π ) = 0 has a unique solution, making Assumption A.7 auto-

matically satisfied. However, the identification assumption for the General Game, As-
sumption 5.3 allows Gc(π ) = 0 to have multiple solutions for c ∈ C I h and c 
= ch0 . As-
sumption A.7 is essential to guarantee the consistency. With the same argument in the
proof of Theorem 3.2, it can be shown that Assumption A.7 holds for all payoffs except
for a set of Lebesgue measure zero.
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It is also worth mentioning that to achieve both the asymptotic size control and con-
sistency, it is difficult if not impossible to avoid imposing Assumption A.7 by modifying
the test statistic. To obtain the consistency without Assumption A.7, we need to find a
criterion that separates ch0 with other c ∈ C I h. Since they barely differ by their ‖ · ‖0

norms, the norm is the only criterion. However, under drifting model parameter se-
quences, restricting ourselves to selection vectors in C h that have the largest ‖ · ‖0 norm
may result in excluding ch0 due to the existence of nearly true selections. For a nearly true

selection c† ∈ C h such that Gξn
c† (π ) 
= 0 but Gξn

c† (π ) → 0 for some π 
= πh0 as n→ ∞, it is

possible that ‖c†‖0 > c
h
0 . In consequence, Assumption A.7 is crucial for the consistency

of any test.

Theorem A.5. Let Assumptions 5.1–5.3, A.1, A.2, and A.7 hold. For any l1 ∈ {lπ , lπ +
1, � � � , l}, α1 ∈ (0, 1], λ ∈ (−1, 0), and � ∈ {1, � � � , l− l1}, it holds that for any ξ /∈�R,

lim
n→∞ Prξ

(
Tn > χ

2
[Jl−lπ+lR],1−α

)= 1.

For implementation of the test using the bootstrap weighting matrixW b
n (c), we need

to match the labels of composite latent variables across different bootstrap draws. The
following assumption provides a sufficient condition. Define

P(z,ω) ≡ [p1(z,ω), � � � , pN (z,ω)
]
, where

pi(z,ω) ≡ [Pr(di = 1|z,ω), � � � , Pr(di = J|z,ω)
]
.

Assumption A.8. There is a known scalar valued function ψ(·) such that for each z ∈ Z

and ω 
=ω′, ψ(P(z,ω), p(ω|z)) 
=ψ(P(z,ω′ ), p(ω′|z)).

Examples ψ(·) include ψ(P(z,ω), p(ω|z)) = p(ω|z) and ψ(P(z,ω), pk(z)) =∑N
i=1 Pr(di = 1|z,ω). Researchers can trackω using the distinctive weight corresponding

to each ω in the first case or using the sum of equilibrium CCPs of choosing 1 across all
players in the second case. Note that Assumption A.8 is not needed for the Simple Game
because of Assumption 2.5. Under Assumptions 5.1–5.3, A.1, A.6(i) and (ii), and A.8, the
bootstrap weighting matrix satisfies Assumption A.6(iii) and (iv).
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