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Regression discontinuity is a popular tool for analyzing economic policies or treat-
ment interventions. This research extends the classic static RD model to a dy-
namic framework, where observations are eligible for repeated RD events and,
therefore, treatments. Such dynamics often complicate the identification and es-
timation of long-term average treatment effects. Empirical papers with such de-
signs have so far ignored the dynamics or adopted restrictive identifying assump-
tions. This paper presents identification strategies under various sets of weaker
identifying assumptions and proposes associated estimation and inference meth-
ods. The proposed methods are applied to revisit the seminal study of Cellini, Fer-
reira, and Rothstein (2010) on long-term effects of California local school bonds.
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1. Introduction

Regression discontinuity (RD) models, which can be traced back to Thistlethwaite and
Campbell (1960), are popular in policy evaluations or other settings of treatment effect
analysis. The set-up exploits discontinuity in the design of many policies to nonpara-
metrically identify treatment effects for observations near the eligibility cutoff. Classic
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studies of RD identification, estimation, and inference include Hahn, Todd, and van der
Klaauw (2001), Porter (2003), Lee (2008), Imbens and Lemieux (2008), Calonico, Catta-
neo, and Titiunik (2014), and Calonico, Cattaneo, Farrell, and Titiunik (2019), among
many others. Cattaneo and Titiunik (2022) provide a comprehensive literature review.

While the classic RD set-up, either sharp or fuzzy, is static in empirical applications
we often see situations where each individual faces multiple rounds of RD and, there-
fore, could potentially receive repeated treatments. For example, voter-approved mea-
sures such as unionization (e.g., DiNardo and Lee (2004), Lee and Mas (2012)) or local
school bonds (e.g., Cellini, Ferreira, and Rothstein (2010)) could be put in front of vot-
ers recurrently. A large body of literature in political science and economics (e.g., Lee
(2008), Pettersson-Lidbom (2008), Ferreira and Gyourko (2009), Colonnelli, Prem, and
Teso (2020)) uses RD to study the effect of political races that happen on a regular basis.
Dube, Giuliano, and Leonard (2019) and Johnson (2020) examine the peer effect of RD
treatments. Their setting is repeated as well because the same individual can be exposed
to different peer treatments at different points of time.

The repeated treatment design brings complications to identifying long-term effects
in the RD setting just as in other non-RD settings. As Heckman, Humphries, and Vera-
mendi (2016) discuss, in repeated/sequential treatment settings reduced-form analy-
sis can only identify a mixed bag of effects, called the long-term total effect. For policy
analysis, researchers often want to distinguish a long-term direct effect, or the “clean”
long-term effect of an earlier treatment with no subsequent treatments (Heckman,
Humphries, and Veramendi (2016)), from the mixed bag.

In the California education bond example studied by Cellini, Ferreira, and Rothstein
(2010) (CFR), for example, policymakers are interested in identifying the long-run ef-
fect of passing a local education bond on education expenditure, test scores, and local
house prices. For the purpose of identification, one wishes that the education bond vot-
ing would only take place once. Then, comparing long-run outcomes between school
districts that barely pass and barely miss the vote share cutoff, would give average long-
term direct effects of interests (for those school districts at the vote share cutoff). In
reality, education bond measures can be put forward repeatedly. As is discussed in CFR,
the difference in observed long-run outcomes at the RD cutoff only captures an aver-
age total effect that is also influenced by subsequent bond authorizations. For example,
school districts failing to pass the initial bond measure are more likely to put forward
another bond measure in later periods (Cellini, Ferreira, and Rothstein (2010)).

Among the empirical literature on repeated RD settings, CFR and subsequent stud-
ies adopting their methods (e.g., Darolia (2013), Abott, Kogan, Lavertu, and Peskowitz
(2020)) are the only ones, as far as the authors know, that seek proper identification of
average long-term direct effects. Other empirical studies either ignore the repeated de-
sign or opt to only study immediate effects and/or long-term total effects. CFR proposes
to identify average long-term direct effects from total effects with a recursive RD strategy
and a more parametric event study strategy. Recently, Gallen, Joensen, Johansen, and
Veramendi (2023) extend CFR’s recursive identification strategy to a non-RD IV setting.

This paper formalizes the repeated RD design under the potential outcome frame-
work. We find that, under treatment effect heterogeneity, preserving the recursive CFR
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strategy to identify long-term average direct effects requires strong assumptions. In the
California education bond application, for example, using the recursive CFR strategy
requires the decision of putting forward other bond measures after the focal round to
be exogeneous, among other identifying conditions such as path-independency and
homogeneity in bond effects. As Dong (2019) points out in a study of RD design with
sample selection, although RD models could be regarded as local random experiments,
such randomness around running variable cutoffs could not be used to argue for the
ignorance of endogenous selection into RD events. In the dynamic RD design, random
participation in subsequent rounds of RD is rarely plausible. Homogeneity in average
effects across different RD rounds and regardless of past treatment paths is also very
strong.

Given the aforementioned considerations, the main contribution of this paper is to
propose a new identification strategy for long-term average direct effects. In contrast to
recursive CFR, our proposed identification strategy does not impose any restriction on
potentially endogenous RD participation decisions. Our strategy also allows treatment
effects to depend on last period’s treatment take-up. Our key identification restriction is
a conditional mean independence assumption (CIA) that requires mean independence
between the second-round running variable and the second-round potential outcomes
without the second-round treatment, conditional on RD participation. For tractabil-
ity in longer-term effect identification, we also impose a Markovian-type assumption
to simplify the path-dependency structure of average treatment effects. Besides point
identification, we provide partial identification results in the Supplemental Appendix
(Hsu and Shen (2024)) under Manski-type (e.g., Manski and Pepper (2000)) monotonic-
ity conditions.

Our paper relates to the dynamic treatment effect literature outside the RD setting.
As Han (2021) discusses, the biostatistics literature (e.g., Robins (1986, 1987), Murphy,
van der Laan, Robins, and C. P. P. R. Group (2001), Murphy (2003), Chakraborty and Mur-
phy (2014)) has a long history of studying dynamic causal effects under the assumption
of sequential randomization. As we shall explain in the paper, although sharp RD de-
signs are often understood as local random experiments, the dynamic RD set-up does
not enjoy sequential randomization by design. In addition, imposing sequential ran-
domization or ignorability (e.g., Blackwell (2013), Imai and Ratkovic (2015), Imbens and
Lemieux (2008), Bojinov, Rambachan, and Shephard (2021)) on treatments as an identi-
fication condition can be undesirable in empirical RD studies.

Our paper relates to Heckman, Humphries, and Veramendi (2016) who evaluate
treatment effects in ordered and unordered multistage decision problems with an in-
strumental variable approach, to Sun and Abraham (2021), Callaway and Sant’Anna
(2021), and Athey and Imbens (2022) who examine treatment effects in panel event stud-
ies with one single irreversible treatment, to De Chaisemartin and d’Haultfoeuille (2020)
who study linear two-way fixed-effect regressions for panel data models with treatment
effect heterogeneity across groups or over time, and to De Chaisemartin and d’Hault-
foeuille (2024) who investigate path-specific long-term average treatment effects using
the parallel trend condition. All aforementioned papers have different model set-ups
and identifying assumptions than ours. Han (2021) proposes to identify path-specific
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ATEs using a sequence of dynamic treatment selection equations and excluded instru-
ments. We do not have natural instruments in the repeated RD setting.

Our dynamic RD model also relates to RD models with repeated designs or mul-
tiple scores/cutoffs, including Grembi, Nannicini, and Troiano (2016) who propose a
difference-in-discontinuities strategy to partial out the effect of a confounding policy,
Lv, Sun, Lu, and Li (2019) who consider RD survival analysis where individual treatments
are allowed to be allocated at different pre-treatment duration, multiscore models stud-
ied by Papay, Willett, and Murnane (2011), Reardon and Robinson (2012), and Wong,
Steiner, and Cook (2013), and the multicutoff RD model of Cattaneo, Keele, Titiunik, and
Vazquez-Bare (2016). Given our focus on long-term direct effects, this paper is signifi-
cantly different from the others.

Aside from identification, our paper contributes to the literature by designing a new
two-step semiparametric boundary estimation procedure. Specifically, our identified
long-term effects has a form of inverse propensity score weighting (IPW), and so the
estimation follows two steps. In the first step, we model the propensity score function
semiparametrically and estimate it with the local MLE approach in Cai, Fan, and Li
(2000). In the second step, we plug in estimated propensity scores to local-linear regres-
sions. Our proposed first-step local MLE algorithm is particularly suitable for the RD
setting, because it allows the propensity score estimator to stay local to the RD cutoff
along the dimension of the running variable (cf. Gelman and Imbens (2019)) while not
overburdening the final two-step estimator with the “curse of dimensionality.” In terms
of inference, our paper is the first to apply the weighted bootstrap designed in Ma and
Kosorok (2005) to kernel-based boundary estimation, which is the main workhorse of
the RD literature. The weighted bootstrap method has also been adopted by Chen and
Pouzo (2009), Chernozhukov, Fernández-Val, Hoderlein, Holzmann, and Newey (2015),
Chernozhukov, Fernández-Val, and Kowalski (2015), and Fernández-Val, van Vuuren,
and Vella (2021), among others, in other estimation settings.

The rest of the paper is organized as follows. Section 2 starts with a simple two-
period dynamic RD model, explaining why long-term direct effects are important policy
parameters and why their identification cannot be obtained directly from the RD de-
sign. Section 2.2 formalizes the recursive CFR identification strategy under treatment
effect heterogeneity and discuss its limitations. Sections 2.3 and 2.4 present a new iden-
tification and estimation strategy for the one-period-after average direct effect in the
benchmark two-period model. Section 3 presents the general multiperiod dynamic RD
model and the identification of longer-term average direct effects. Section 4 studies es-
timation and inference of the general model. Section 5 revisits the empirical study of
California education bonds using CFR’s published data set. Section 6 concludes. Monte
Carlo simulations and proofs are provided in the Supplemental Appendix, which also
includes partial identification results and several empirical-relevant special cases.

2. A benchmark two-period model

In this section, we use a simple two-period model to define the dynamic RD design un-
der the potential outcome framework. We take the simple model to point out complica-
tions brought by having a repetition in the RD design, as well as the differences between
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dynamic RD models and other non-RD dynamic models previously studied in the liter-
ature. We propose a novel identification strategy in this two-period model and discuss
its advantages compared to previous methods.

Before we begin, it is important to point out that the simple two-period model de-
fined in this section is only a starting point. Some important identification results pro-
vided in this paper are only relevant for the general case presented in Section 3.

2.1 The classic potential outcome framework

Consider a repeated RD setting, where the RD event (e.g., election, testing, etc.) takes
place at the beginning of each period, and the treatment is administrated immediately
following the event for participants who pass a running variable threshold. An outcome
is observed at the end of each period.

In period one, we assume for now that everyone takes part in the RD event, so the
observed treatment Di1 and outcome Yi1 of individual i satisfy

Di1 = 1(Zi1 ≥ 0), Yi1 = Yi1(0) · (1 −Di1 ) +Yi1(1) ·Di1,

where Zi1 is the first-round running variable and Yi1(d1 ) is the potential first-period
outcome with Di1 = d1, for d1 = 0, 1. Without loss of generality, all RD cutoffs in this
paper are normalized to zero.

In period two, the potential outcome framework gives

Di2 =Di2(0) · (1 −Di1 ) +Di2(1) ·Di1, and

Yi2 = Yi2(0, 0) · (1 −Di1 ) · (1 −Di2(0)
) +Yi2(0, 1) · (1 −Di1 ) ·Di2(0)

+Yi2(1, 0) ·Di1 · (1 −Di2(1)
) +Yi2(1, 1) ·Di1 ·Di2(1)

≡
∑
�2∈L2

Yi2
(
�2) ·Di

(
�2), L2 = {

(0, 0), (0, 1), (1, 0), (1, 1)
}

,

where Di2 and Yi2 are observed treatment decisions and outcomes, while Di2(d1 ) and
Yi2(d1, d2 ), d1, d2 = 0, 1, are their potential counterparts. Di(.) is the path indicator of
individual i and L2 is the set of all possible treatment paths in two periods. This dynamic
potential outcome framework is common in dynamic causal effect settings outside RD.
See, for example, Section III of the biostatistics textbook Hernán and Robins (2023) and
previous work in econometrics, including Hahn, Todd, and van der Klaauw (2001) and
Bojinov, Rambachan, and Shephard (2021).

The RD setting also brings special features to the dynamic model. Specifically, the
second-period treatment decision Di2(d1 ) is determined by a potentially endogenous
RD participation indicator Si2(d1 ) and a potentially endogenous second-round running
variable Zi2(d1 ) such that Di2(d1 ) = Si2(d1 ) ·1(Zi2(d1 ) ≥ 0). The second-period observed
participation decision and treatment decision satisfy

Si2 = Si2(0) · (1 −Di1 ) + Si2(1) ·Di1,

Di2 = Si2(0) · 1
(
Zi2(0) ≥ 0

) · (1 −Di1 ) + Si2(1) · 1
(
Zi2(1) ≥ 0

) ·Di1.
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The second-round running variable Zi2 = Zi2(0) · (1−Di1 )+Zi2(1) ·Di1 is only observed
given RD participation, that is, Si2 = 1.

Example (California Education Bonds). In the California education bond example
studied in CFR, outcome measures include local education expenditures, house prices,
student achievements, etc. A bond measure is approved if its vote share exceeds the leg-
islative cutoff (normalized to (0). No matter whether a school district gets its bond ap-
proved in the first round (Di1) or not, it could choose to initiate a new bond measure in
the next election year (Si2 = 1) and choose how much campaign efforts to put into the
new measure to improve its vote share result (Zi2(d1 ), for d1 = 0, 1).

We formally define the following individual treatment effects for the two-period
model:

immediate effect of Di1 : θi;0,1 = Yi1(1) −Yi1(0);

immediate effect of Di2 : θd1
i;0,2 = Yi2(d1, 1) −Yi2(d1, 0), for d1 = 0, 1;

one-period-after direct effect of Di1 : θi;1,1 = Yi2(1, 0) −Yi2(0, 0);

one-period-after total effect of Di1 : θ̃i;1,1 = Ỹi2(1) − Ỹi2(0),

where Ỹi2(d1 ) ≡ Yi2
(
d1, Di2(d1 )

) = Yi2(d1, 0)
(
1 −Di2(d1 )

) +Yi2(d1, 1)Di2(d1 ).

Note that the immediate effect of the second-round treatment is path-dependent. Fol-
lowing Heckman, Humphries, and Veramendi (2016) and CFR, we define long-term di-
rect effects by prohibiting treatment take-ups after the focal round. The total effect, on
the other hand, does not limit treatment decisions after the focal round. Direct and to-
tal effects are also commonly seen in the mediation literature.1 See Huber (2020) for a
literature review.

Assumption 2.1. There exists an ε > 0, such that:

1. Zi1 is continuous in z1 ∈ (−ε, ε) ≡ Nε with P[Zi1 ≥ 0] ∈ (0, 1);

2. E[Yi1(d1 )|Zi1 = z1], E[Di2(d1 )|Zi1 = z1], and E[Ỹi2(d1 )|Zi1 = z1] are all continuous
in z1 ∈ Nε, for both d1 = 0, 1.

Assumption 2.1 imposes traditional RD smoothness conditions that provide iden-
tification for the average immediate effect E[θi;0,1|Zi1 = 0] and the average first-stage
effect E[Di2(1) − Di2(0)|Zi1 = 0]. Since the random variable Ỹi2(d1 ), which takes place
in the second period but only specifies the first-round treatment status, can be viewed

1In the mediation literature, θi;1,1 = Yi2(1, 0) −Yi2(0, 0) is the controlled direct effect, in contrast to the
pure direct effect, which would be Yi2(1, Di2(0))−Yi2(0, Di2(0)) in our notation. Flores and Flores-Lagunes
(2009, 2010) study the pure direct effect in the econometrics literature. As Huber (2020) discusses, the pure
direct effect is not interesting in the dynamic setting.
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as a potential outcome of the first-round treatment, smoothness conditions in Assump-
tion 2.1 also identifies the average one-period-after total effect:

E[θ̃i;1,1|Zi1 = z1] =E
[
Ỹi2(1) − Ỹi2(0)|Zi1 = 0

]
= lim

z1↘0
E[Yi2|Zi1 = z1] − lim

z1↗0
E[Yi2|Zi1 = z1]. (2.1)

In the rest of Section 2, we explore conditions that identify the average direct effect
E[θi;1,1|Zi1 = 0], which has important policy implications as argued in Heckman and
Navarro (2007) and CFR. For conciseness, we call E[θi;1,1|Zi1 = 0] the one-period-after
ATE. It has the following relationship with the one-period-after average total effect:

E[θ̃i;1,1|Zi1 = 0] =E[θi;1,1|Zi1 = 0] +E
[
θ1
i;0,2Di2(1)|Zi1 = 0

]
−E

[
θ0
i;0,2Di2(0)|Zi1 = 0

]
. (2.2)

Example (continued). In the California education bond example, the one-period-after
ATE (E[θi;1,1|Zi1 = 0]) is the average effect of passing an education bond in the first pe-
riod on the second-period outcome with no bond authorization after the first period,
among all school districts at the first-period vote share cutoff. The one-period-after ATE
influences the one-period-after average total effect (E[θ̃i;1,1|Zi1 = 0]), which is identified
by the period two outcome discontinuity observed at the period one vote share cutoff.
However, the one-period-after total effect is also influenced by the fact that school dis-
tricts can pass new bond measures in the second period, and hence receive immediate
effects from those additional treatments.

2.2 Recursive identification strategy in CFR

CFR propose a recursive identification strategy for long-term direct effects based on an
implicit treatment effect homogeneity assumption, which requires individual treatment
effects to vary only by the number of periods between potential outcomes and the focal
round of treatment.2 For the two-period model, that is to require

θ0 ≡ θi,0,1 = θ0
i,0,2 = θ1

i,0,2 and θ1 ≡ θi,1,1 for all i, (2.3)

where θ0 and θ1 are unknown fixed parameters.
The strong assumption reduces the relationship in (2.2) to

E[θ̃i;1,1|Zi1 = 0] = θ1 + θ0E
[
Di2(1) −Di2(0)|Zi1 = 0

]
.

The simplification implies recursive identification of the one-period-after ATE θ1, since
all other components of the equation are directly identifiable through smoothness con-
ditions.

CFR’s recursive strategy can be extended to allow for individual treatment effect het-
erogeneity under the potential outcome framework outlined in the previous section.

2See, for example, Section IV.B of CFR. In CFR, our direct effect is called the “treatment-on-the-treated”
effect and our total effect is called the “intent-to-treat” effect.
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Lemma 2.1. Under Assumption 2.1, the homogeneous ATE requirement:

ATE0 ≡ E[θi;0,1|Zi1 = 0] =E
[
θ1
i;0,2|Zi1 = 0

] =E
[
θ0
i;0,2|Zi1 = 0

]
, (2.4)

and the random second-round treatment selection requirement:

E
[
θd1
i;0,2|Di2(d1 ), Zi1 = 0

] =E
[
θd1
i;0,2|Zi1 = 0

]
, d1 = 0, 1, (2.5)

the recursive identification strategy in CFR can be preserved:

ATE0 = lim
z1↘0

E[Yi1|Zi1 = z1] − lim
z1↗0

E[Yi1|Zi1 = z1],

ATE1 ≡E[θi;1,1|Zi1 = 0] = lim
z1↘0

E[Yi2|Zi1 = z1] − lim
z1↗0

E[Yi2|Zi1 = z1]

− ATE0 ·
(

lim
z1↘0

E[Di2|Zi1 = z1] − lim
z1↗0

E[Di2|Zi1 = z1]
)

.

To preserve CFR’s recursive identification strategy under individual treatment ef-
fect heterogeneity, conditions (2.4) and (2.5) are required. The conditions include the
strong homogeneity assumption in (2.3) as a special case.3If the homogeneity ATE con-
dition in (2.4) is violated due to diminishing marginal returns to repeated treatments
(i.e., E[θ1

i;0,2|Zi1 = 0] < E[θ0
i;0,2|Zi1 = 0] = E[θi;0,1|Zi1 = 0]), then ATE1 identified in

Lemma 2.1 is smaller than the true value of E[θi;1,1|Zi1 = 0].
The random treatment selection condition in (2.5) should not to be confused with

the local randomness intuition of the RD design. A treatment intervention satisfying
the sharp RD design is only locally random at its own running variable cutoff. In other
words, the RD design associated with Di2(d1 ) only indicates local randomness among
individuals at Zi2(d1 ) = 0, for d1 = 0, 1. Equation (2.5) is different. It is not implied by
the RD design and is a strong condition used to obtain the recursive identification re-
sult.

Example (continued). In the California education bond example, data reveal that
school districts barely passing their education bond in the first round do not put forward
another bond in the second period (i.e., E[Si2(1)|Zi1 = 0] = limz1↘0 E[Si2|Zi1 = z1] = 0).
Therefore, equation (2.5) essentially restricts that, for a school district i that marginally
failed the first-round voting, the decision of putting forward another measure in the
next election cycle (Si2(0)) is not related to the immediate treatment effect of the new

3A more general multiperiod version of the lemma is discussed in the Supplemental Appendix, where we
also extend Lemma 2.1 to include conditioning covariates Xi ∈ X . The extension replaces the homogeneous
ATE assumption in (2.4) and the random treatment selection assumption in (2.5) with

E
[
θd1
i;0,2|Di2(d1 ), Xi = x, Zi1 = 0

] = E
[
θd1
i;0,2|Xi = x, Zi1 = 0

]
, and (2.6)

CATE0(x) = E[θi;0,1|Xi = x, Zi1 = 0]

= E
[
θd1
i;0,2|Xi = x, Zi1 = 0

]
, ∀d1 = 0, 1, x ∈ X . (2.7)



Quantitative Economics 15 (2024) Dynamic regression discontinuity 1043

measure (θ0
i;0,2). The equation also implies that, conditional on putting forward an-

other measure (Si2(0) = 1), the amount of resources devoted toward campaigning to
improve the second-round vote share (Zi2(0)) is not related to the immediate treatment
effect (θ0

i,0,2) either. If school districts with higher θ0
i,0,2’s are more likely to pass their

second-round measures, ATE1 identified by Lemma 2.1 is smaller than the true value of
E[θi;1,1|Zi1 = 0].

The recursive identification structure of Lemma 2.1 is to be distinguished from
the one-step approach commonly seen in the biostatistics literature (e.g., Hernán and
Robins (2023)). To see this, we note that an alternative way of imposing randomization
on Di2 is to rule out the possibility that individuals endogenously choose Di2 based on
how quickly the effect of Di1 dies out over time. In such a case, ATE1 could be identi-
fied in one step as limz1↘0 E[Yi2|Di2 = 0, Zi1 = z1] − limz1↗0 E[Yi2|Di2 = 0, Zi1 = z1] (or
a more robust version allowing for conditioning covariates). In many empirical appli-
cations including the California education bond example, it is likely more plausible to
assume that Di2 is exogenous to its own immediate effect as in (2.5) than to assume that
Di2 is irrelevant to the long-run effect of Di1, hence favoring the recursive identification
strategy proposed by CFR. Having said that, condition (2.5) is still potentially strong. In
the following sections, we seek to relax both identifying conditions (2.4) and (2.5) re-
quired in Lemma 2.1.

2.3 Proposed identification strategy

In this section, we propose a new identification strategy for the one-period-after ATE.
Compared to Lemma 2.1, the new method imposes no restrictions on the potentially
endogenous second-round RD participation decision. In addition, the new strategy al-
lows for arbitrary path-dependency in the second-round immediate effect.

Assumption 2.2. There exists ε > 0 such that for both d1, d2 = 0, 1:

1. (CIA) E[Yi2(d1, 0)|Zi2(d1 ) = z2, Si2(d1 ) = 1, Zi1 = z1] = E[Yi2(d1, 0)|Si2(d1 ) = 1,
Zi1 = z1] for all z1 ∈ Nε;

2. (Smoothness) E[Yi2(d1, d2 )|Di2(d1 ) = d2, Zi1 = z1] and E[Di2(d1 )|Si2(d1 ) = 1, Zi1 =
z1] are both continuous in z1 ∈ Nε;

3. (Overlapping) E[Di2(d1 )|Si2(d1 ) = 1, Zi1 = z1] ∈ (0, 1) for all z1 ∈ Nε.

The key identifying condition of Assumption 2.2 is the first CIA condition. It imposes
a mean independence condition on marginal individuals at the first-round RD cutoff
who choose to participate in the second-round RD. The CIA condition could be weak-
ened using covariates and observationally equivalent subpopulations. The second and
third parts of Assumption 2.2 are standard RD smoothness and overlapping conditions.
Section A.4.1 in the Supplemental Appendix discusses an important departure from As-
sumption 2.2.3 for having an absorbing treatment in the dynamic RD model.
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Example (continued). In the California education bond example, the CIA condition in
Assumption 2.2 requires that, should the second-round education bond measure fail,
the potential second-period outcome (of a school district at the first-round vote share
cutoff) is mean independent of the second-round vote share. Note that the CIA con-
dition is not about potential outcomes with second-round bond authorization. This is
important because, for example, the size of the proposed bond can affect both the vote
share and the potential outcome with second-round bond approval. The CIA condition
also does not impose any restriction on the potentially endogenous decision of putting
forward a new bond measure in the second period.

By standard RD identification arguments, Assumptions 2.2.2 and 2.2.3 imply that

E
[
Yi2(1, 1)|Di2(1) = 1, Zi1 = 0

] = lim
z1↘0

E[Yi2|Si2 = 1, Di2 = 1, Zi1 = z1].

Assumptions 2.2.1, 2.2.2, and 2.2.3 together imply that

E
[
Yi2(1, 0)|Di2(1) = 1, Zi1 = 0

] = lim
z1↘0

E
[
Yi2(1, 0)|Si2(1) = 1, Zi2(1) ≥ 0, Zi1 = z1

]
= lim

z1↘0
E

[
Yi2|Si2(1) = 1, Zi2(1) < 0, Zi1 = z1

]
= lim

z1↘0
E[Yi2|Si2 = 1, Di2 = 0, Zi1 = z1],

where the second equality holds by the CIA. Summarizing the above two equations and
obtaining a similar result for d1 = 0, we have

E
[
Yi2(1, d2 )|Di2(1) = 1, Zi1 = 0

] = lim
z1↘0

E[Yi2|Si2 = 1, Di2 = d2, Zi1 = z1], (2.8)

E
[
Yi2(0, d2 )|Di2(0) = 1, Zi1 = 0

] = lim
z1↗0

E[Yi2|Si2 = 1, Di2 = d2, Zi1 = z1], (2.9)

which further imply that

E
[
θ1
i;0,2Di2(1)|Zi1 = 0

] = lim
z1↘0

E
[
Yi2Si2

(
Di2 − λ1

D2|S2

)
|Zi1 = z1

]
/
(
1 − λ1

D2|S2

)
,

E
[
θ0
i;0,2Di2(0)|Zi1 = 0

] = lim
z1↗0

E
[
Yi2Si2

(
Di2 − λ0

D2|S2

)
|Zi1 = z1

]
/
(
1 − λ0

D2|S2

)
,

λd1
D2|S2

= P
[
Di2(d1 ) = 1|Si2(d1 ) = 1, Zi1 = 0

]
.

Together with the decomposition in (2.2), the one-period-after ATE is identified.
The CIA condition in Assumption 2.2 can be extended to include covariates. Specif-

ically, let Xi ∈ X be the vector of covariates. The extended CIA condition is

E
[
Yi2(d1, 0)|Xi = x, Zi2(d1 ) = z2, Si2(d1 ) = 1, Zi1 = z1

]
=E

[
Yi2(d1, 0)|Xi = x, Si2(d1 ) = 1, Zi1 = z1

]
, ∀x ∈ X . (2.10)

The vector of covariates Xi could include both pretreatment controls and first-period
outcomes. The role of Xi here is different from that in static RD, where covariates are
used to improve estimation efficiency (e.g., Calonico et al. (2019)).
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Example (continued). Suppose school expenditure is the outcome of interest. The
vanilla CIA condition without covariates might not be appropriate if school districts
with lower baseline funding levels (Yi2(d1, 0)) are more incentivized to carry out an ac-
tive campaign, resulting in a higher vote share (Zi2(d1 )). A useful conditioning covariate
for the extended CIA condition in (2.10) is hence the first-period school expenditure
(Yi1(d1 )). If a district’s expenditure without new bond authorization follows an AR(1)
process with the random shock in each period being mean independent of the bond
vote share, then the extended CIA condition in (2.10) holds.

Identification results in (2.8) and (2.9) could be easily extended to incorporate co-
variates. Let

λd1 (x) ≡ λd1
D2|S2

(x) = P
[
Di2(d1 ) = 1|Xi = x, Si2(d1 ) = 1, Zi1 = 0

]
, d1 = 0, 1,

be the propensity score function conditional on second-round RD participation.
Strengthen smoothness and overlapping conditions in Assumption 2.2 to require that,
for all x ∈X ,

E
[
Yi2(d1, d2 )|Xi = x, Di2(d1 ) = d2, Zi1 = z1

]
and

E
[
Di2(d1 )|Xi = x, Si2(d1 ) = 1, Zi1 = z1

]
are continuous in z1 ∈ Nε, (2.11)

and

E
[
Di2(d1 )|Xi = x, Si2(d1 ) = 1, Zi1 = z1

] ∈ (0, 1) for all z1 ∈ Nε. (2.12)

The following lemma summarizes identification of the one-period-after ATE using
IPW.4

Lemma 2.2. Under Assumptions 2.1, and the extended CIA, smoothness, and overlapping
conditions in (2.10), (2.11), and (2.12), the one-period-after ATE is identified:

E[θi;1,1|Zi1 = 0] = α1 − α0, where

α1 = lim
z1↘0

E

[
Yi2 − Yi2Si2

(
Di2 − λ1(Xi )

)
1 − λ1(Xi )

∣∣Zi1 = z1

]
,

α0 = lim
z1↗0

E

[
Yi2 − Yi2Si2

(
Di2 − λ0(Xi )

)
1 − λ0(Xi )

∣∣Zi1 = z1

]
.

The proof is provided in the Supplemental Appendix. In the next section, we pro-
pose a semiparametric local MLE method (cf. Cai, Fan, and Li (2000)) for propensity
score estimation. The method will require additional functional form assumptions on

4Angrist, Jordà, and Kuersteiner (2018) adopted IPW in the static RD model for extrapolating treatment
effects away from the running variable cutoff. IPW is also commonly used outside RD, for both cross-
sectional and dynamic treatment models (e.g., Blackwell (2013), Huber (2020), Bojinov, Rambachan, and
Shephard (2021), Imai, Kim, and Wang (2023), Hernán and Robins (2023), among many others).
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the propensity score functions. The semiparametric approach is particularly suitable
for the RD setting as it will allow the propensity score estimator to stay local to the RD
cutoff along the dimension of the running variable (Gelman and Imbens (2019)) while
not overburdening the final ATE estimator with the “curse of dimensionality.”

2.4 Proposed estimation strategy

Assume that the conditional probability function P[Di2 = 1|Xi = x, Si2 = 1, Zi1 = z1] fol-
lows a class of semiparametric models p(x, γ(z1 )), where p(., .) : X × � → R is known
but γ(.) : R → � is unknown. For example, p(x, γ(z1 )) can be a varying coefficient logit
model, nesting both parametric logit and semiparametric partial-linear logit as special
cases. Let γ0 = limz1↗0 γ(z1 ) and γ1 = limz1↘0 γ(z1 ). Propensity score functions λ0(x)
and λ1(x) could be written as p(x, γ0 ) and p(x, γ1 ).

Let β0
FS = limz1↗0 ∇γ(z1 ) and β1

FS = limz1↘0 ∇γ(z1 ) be the left and the right limits of
the gradient of γ(.) at the RD cutoff. Let K(·) be the kernel function and h the bandwidth.
Let γ̂0, γ̂1, β̂0

FS and β̂1
FS denote estimators of γ0, γ1, β0, and β1. They solve the following

maximization problems:

(
γ̂1, β̂1

FS

) = arg max
γ,β

n∑
i=1

S2i1(Z1i ≥ 0)K
(
Z1i

h

)

· [D2i logp(Xi, γ +βZ1i ) + (1 −D2i ) log
(
1 −p(Xi, γ +βZ1i )

)]
,

(
γ̂0, β̂0

FS

) = arg max
γ,β

n∑
i=1

S2i1(Z1i < 0)K
(
Z1i

h

)

· [D2i logp(Xi, γ +βZ1i ) + (1 −D2i ) log
(
1 −p(Xi, γ +βZ1i )

)]
.

When p(x, γ(z1 )) follows a varying coefficient logit model, the optimization problem
described above are weighted logit regressions of D2i on Xi, Zi, and XiZi, with weights
determined by K(Z1i/h). Details are provided in Section 4 for estimation in the general
multiperiod case. If the CIA condition in the previous section holds without any condi-
tioning covariates, the first-step estimation is fully nonparametric.

Denote E[θi;1,1|Z1 = 0] by θ̄1,1 and its estimator by ˆ̄θ1,1. Given the above-defined
first-step propensity score estimators, θ̄1,1 could be estimated by boundary local linear
regressions of generated outcomes on the RD running variable. Specifically,

ˆ̄θ1,1 = α̂1 − α̂0,

(
α̂1, β̂1) = arg min

α,β

n∑
i=1

1(Z1i ≥ 0)K
(
Z1i

h

)[
Ai

(
α, β; γ̂1)]2

,

(
α̂0, β̂0) = arg min

α,β

n∑
i=1

1(Z1i < 0)K
(
Z1i

h

)[
Ai

(
α, β; γ̂0)]2

,

where Ai(α, β; γ) = Y2i − Y2iS2i(D2i−p(Xi ,γ))
1−p(Xi ,γ) − α−βZ1i.
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Estimators λ̂0, λ̂1, and ˆ̄θ1,1 are all consistent and asymptotically normally distributed
under proper assumptions. In the above estimation procedure, the kernel bandwidth is
kept the same in both steps. If the bandwidth in the first-step propensity score estima-
tion is chosen to shrink at a slower rate, the first-step estimation error would vanish

asymptotically for the two-step estimator, simplifying the asymptotic variance of ˆ̄θ1,1.
We use the same bandwidth in both steps to save the number of tuning parameters.
More details about estimation, as well as a weighted bootstrap inference strategy, will be
discussed in Section 4.

When the conditioning covariate Xi is nonempty, the proposed estimation proce-
dure is semiparametric. An interesting extension for future research is to extend the first-
step propensity score estimation procedure along the lines of high-dimensional covari-
ate selection (cf. Chernozhukov et al. (2018)), doubly robust estimation (cf. Kennedy, Ma,
McHugh, and Small (2017)), or Fan, Hsu, Lieli, and Zhang (2022) who combine doubly
robust estimation with high-dimensional covariate selection in treatment evaluation.

3. Identification in the general multiperiod setting

3.1 Set-up

Let k = 1, 2, 
 
 
 , K denote the round of treatment intervention whose eligibility is de-
termined by an RD design. Let t = 1, 2, 
 
 
 , T denote the period of observed outcomes,
and assume without loss of generality that T = K.5 Let Dik be the observed treatment
status of an individual in round k, Sik the observed participation indicator, and Zik the
observed running variable, which is observed only when Sik = 1. Recall from Section 2
that Si1 = 1 and Di1 = 1(Zi1 ≥ 0). For any k≥ 2,

Dik =
∑

�k−1∈Lk−1

Dik

(
�k−1) ·Di

(
�k−1) ≡

∑
�k−1∈Lk−1

Sik
(
�k−1)1

(
Zik

(
�k−1) ≥ 0

) ·Di

(
�k−1),

Sik =
∑

�k−1∈Lk−1

Sik
(
�k−1) ·Di

(
�k−1),

Zik =
∑

�k−1∈Lk−1

Zik

(
�k−1) ·Di

(
�k−1) if Sik = 1,

where Dik(�k−1 ), Sik(�k−1 ), and Zik(�k−1 ) are potential counterparts (with past treat-
ment path �k−1) of Dik, Sik, and Zik, respectively. The path indicator Di(.) and set
Lk−1 extend definitions in Section 2. Specifically, the event {Di(�k ) = 1} is equivalent
to {Di1 = �k1 , Di2(�k1 ) = �k2 , 
 
 
 , Dik(�k1:(k−1) ) = �kk} = {Di1 = �k1 , Di2 = �k2 , 
 
 
 , Dik = �kk},

where �kj (�kj:j′ ) represent the jth (jth to j′th) element(s) of path �k.
Let Yit be the observed outcome in period t and Yit(�t ) the potential outcome with

past treatment path �t ∈ Lt such that

Yit =
∑
�t∈Lt

Yit

(
�t

) ·Di

(
�t

)
.

5Although in many settings outcomes can be observed in periods after the last round of treatment in-
tervention, for identification purposes it is not necessary to distinguish such longer-term outcomes from
outcomes that occur right after the last round of treatment.
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Let 0τ be a τ-dimensional vector of zeros. Let Ỹi(k+τ)(�
k ) be a (k + τ)-th period

quasi-potential outcome, where only the first k rounds of the total (k + τ) rounds of
past treatment status are specified. Specifically, Ỹi(k+τ)(�

k ) = ∑
η∈Lτ Yi(k+τ)(�

k, η) ×
Di;(k+1):(k+τ)(�

k, η), where partial path indicator {Di;l:l′(�k ) = 1} ⇔ {Dil(�k1:(l−1) ) =
�kl , Di(l+1)(�

k
1:l ) = �kl+1, 
 
 
 , Dil′(�k1:(l′−1) ) = �kl′ }. Extending definitions in Section 2, we

have long-term effects of the first-round treatment for all τ ≥ 1:

τ-period-after direct effect of Di1 : θi;τ,1 = Yi(1+τ)(1, 0τ ) −Yi(1+τ)(0, 0τ ),

τ-period-after total effect of Di1 : θ̃i;τ,1 = Ỹi(1+τ)(1) − Ỹi(1+τ)(0).

In addition, define the following treatment effects of the kth round treatment:

immediate effect of Dik : θ�
k−1

i;0,k = Yk

(
�k−1, 1

) −Yk

(
�k−1, 0

)
,

τ-period-after direct effect of Dik : θ�
k−1

i;τ,k = Yi(k+τ)
(
�k−1, 1, 0τ

) −Yi(k+τ)
(
�k−1, 0, 0τ

)
,

τ-period-after total effect of Dik : θ̃�
k−1

i;τ,k = Ỹi(k+τ)
(
�k−1, 1

) − Ỹi(k+τ)
(
�k−1, 0

)
,

for all τ ≥ 1, k≥ 2, and past treatment path �k−1 ∈ Lk−1.
Before concluding this set-up section, we present a lemma that motivates the study

of long-term direct effects. The following lemma shows that treatment effects not falling
into the categories discussed above, such as Yi2(1, 1) −Yi2(0, 1) or Yi2(1, 0) −Yi2(0, 1),
can be obtained from the immediate effects and long-term direct effects defined above.

Lemma 3.1. The difference between any pair of potential outcomes can be represented by
a linear combination of above-defined immediate effects and long-term direct effects.

3.2 Identification

In this section, we seek identification of the τ-period-after ATE, or E[θi;τ,1|Z1 = 0], for
all τ ≥ 2. Following discussions in Section 2, we continue to impose no assumptions on
subsequent RD participation decisions, which could be potentially endogenous.

Just as in the simple two-period model, our proposed identification strategy is built
upon a decomposition of long-term average total effects. The decomposition shows that
any long-term total effect is equal to its corresponding direct effect plus a sum of various
shorter-term total effects adjusted by subsequent round first-stage treatment decisions:

θ̃i;τ,1 = θi;τ,1 + (
θ̃1
i;τ−1,2 ·Di2(1) − θ̃0

i;τ−1,2 ·Di2(0)
)

+
τ−2∑
s=1

(
θ̃

(1,0τ−1−s )
i;s,τ+1−s ·Di(τ+1−s)(1, 0τ−1−s ) − θ̃

(0,0τ−1−s )
i;s,τ+1−s ·Di(τ+1−s)(0, 0τ−1−s )

)

+ θ
(1,0τ−1 )
i;0,τ+1 ·Di(τ+1)(1, 0τ−1 ) − θ

(0,0τ−1 )
i;0,τ+1 ·Di(τ+1)(0, 0τ−1 ). (3.1)

When τ = 2, the decomposition reduces to

θ̃i;2,1 = θi;2,1 + θ̃1
i;1,2Di2(1) − θ̃0

i;1,2Di2(0) + θ(1,0)
i;0,3Di3(1, 0) − θ(0,0)

i;0,3Di3(0, 0). (3.2)
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The decomposition is new to the literature, as far as the authors know. It is different
from the decomposition used behind the recursive CFR identification strategy, where
the long-term total effect is decomposed to its corresponding direct effect plus a sum
of various shorter-term direct effects adjusted by first-stage treatment decisions.6 In the
rest of the section, we use equation (3.1) to develop an identification strategy because
the new decomposition involves much fewer path-dependent treatment effects in its
formulation.

Aside from utilizing the new decomposition result, we impose a Markovian-type
condition to further reduce the number of path-dependent treatment effect parame-
ters involved in identification. Let ηi;0,1, η�k−1

i;0,k, ηi;τ,1, η�k−1

i;τ,k, η̃i;τ,1, and η̃�k−1

i;τ,k be first-

stage counterparts of immediate effects θi;0,1 and θ�
k−1

i;0,k, direct effects θi;τ,1 and θ�
k−1

i;τ,k,

and total effects θ̃i;τ,1 and θ̃�
k−1

i;τ,k, respectively.7 The following assumption summarizes
the identifying restrictions used in the general multiperiod dynamic RD model.

Assumption 3.1 (Longer-term ATEs). There exists ε > 0 such that for all z1 ∈ Nε, we
have:

1. (Markovian) for any k = 3, 4, 
 
 
 , K, �k−2 ∈ Lk−2, and d = 0, 1, immediate effects

and τ-period-after total effects satisfy that E[θ(�k−2,d)
i;0,k |Dik(�k−2, d) = 1, Zi1 = z1] =

E[θdi;0,2|Di2(d) = 1, Zi1 = z1] ≡ μd
0 and E[θ̃(�k−2,d)

i;τ,k |Dik(�k−2, d) = 1, Zi1 = z1] =
E[θ̃di;τ,2|Di2(d) = 1, Zi1 = z1] ≡ μ̃d

τ , for all τ = 1, 
 
 
 , K − k; similar conditions also
hold for immediate and long-term first-stage effects;

2. (CIA: multiperiod) for any d1 = 0, 1, z2 ∈R, and x ∈ X , E[Mi(d1, 0)|Xi = x, Zi2(d1 ) =
z2, Si2(d1 ) = 1, Zi1 = z1] = E[Mi(d1, 0)|Xi = x, Si2(d1 ) = 1, Zi1 = z1], where the ran-
dom variable Mi(d1, 0) can be Di3(d1, 0), Ỹi(2+τ)(d1, 0) for all τ = 1, 
 
 
 , K − 2, or
D̃i(3+τ)(d1, 0) for all τ = 1, 
 
 
 , K − 3;

3. (Smoothness: multiperiod) for all d1, d2 = 0, 1, and x ∈ X , E[Mi(d1, d2 )|Xi =
x, Di2(d1 ) = d2, Zi1 = z1] is continuous in z1, where the random variable Mi(d1, d2 )
can be Di3(d1, d2 ), Ỹi(2+τ)(d1, d2 ) for all τ = 1, 
 
 
 , K − 2, or D̃i(3+τ)(d1, d2 ) for all
τ = 1, 
 
 
 , K − 3;

The second and third parts of Assumption 3.1 are vanilla extensions of Assump-
tion 2.2 viewing Di3(d1, d2 ), Ỹi(2+τ)(d1, d2 ), and D̃i(2+τ)(d1, d2 ) as potential outcomes
associated with the first two treatments but taking place in a later period. The key new

6When τ = 2, for example, the decomposition underlying the recursive CFR identification strategy is

θ̃i;2,1 = θi;2,1 + θ1
i;1,2Di2(1) + θ(1,0)

i;0,3 (1 − Di2(1))Di3(1, 0) + θ(1,1)
i;0,3 Di2(1)Di3(1, 1) − θ0

i;1,2Di2(0) − θ(0,0)
i;0,3 (1 −

Di2(0))Di3(0, 0) + θ(0,1)
i;0,3 Di2(0)Di3(0, 1).

7Let D̃i(k+1+τ)(�k ) be the (k + 1 + τ)-th period quasi-potential treatment decision with only the first
k rounds of previous treatment status specified, for any τ ≥ 1 and k ≥ 1. Then ηi;0,1 = Di2(1) − Di2(0),
ηi;τ,1 = Di(2+τ)(1, 0τ ) − Di(2+τ)(0, 0τ ), and η̃i;τ,1 = D̃i(2+τ)(1) − D̃i(2+τ)(0) for all τ ≥ 1. For all k ≥
2, η�k−1

i;0,k = Di(k+1)(�k−1, 1) − Di(k+1)(�k−1, 0), η�k−1

i;τ,k = Di(k+1+τ)(�k−1, 1, 0τ ) − Di(k+1+τ)(�k−1, 0, 0τ ), and

η̃�k−1

i;τ,k = D̃i(k+1+τ)(�k−1, 1) − D̃i(k+1+τ)(�k−1, 0) for all τ ≥ 1.
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condition in Assumption 3.1 is the Markovian restriction. In the California education
bond application, the Markovian restriction allows an education bond’s various imme-
diate and long-term average effects to depend arbitrarily on last election cycle’s bond
authorization but not any other bond authorizations further in the past. Although non-
trivial, the Markovian condition is much less restrictive than the homogeneous ATE con-
dition used in Lemma 2.1 (or Lemma A.1) for the recursive CFR identification strategy.

Similar Markovian-type restrictions are also used in De Chaisemartin and d’Hault-
foeuille (2024) and Imai, Kim, and Wang (2023) for non-RD dynamic treatment effect
settings. When τ = 2, the Markovian assumption together with the decomposition in
(3.2) imply that

E[θ̃i;2,1|Zi1 = 0] = E[θi;2,1|Zi1 = 0] + μ̃1
1 ·E[

Di2(1)|Zi1 = 0
] − μ̃0

1 ·E[
Di2(0)|Zi1 = 0

]
+μ0

0 ·E[ηi;1,1|Zi1 = 0].

Lemma 3.2. Under the assumptions used in Lemma 2.2, Assumption A.1 for identifying
long-term average total effects, and Assumption 3.1, we have that for τ = 2, 
 
 
 , K − 1,

E[θi;τ,1|Zi1 = 0] = lim
z1↘0

E[Yi(τ+1)|Zi1 = z1] − lim
z1↗0

E[Yi(τ+1)|Zi1 = z1]

− μ̃1
τ−1 · lim

z1↘0
E[Di2|Zi1 = z1] + μ̃0

τ−1 · lim
z1↗0

E[Di2|Zi1 = z1]

−
τ−2∑
s=1

μ̃0
s ·E[ηi;τ−1−s,1|Zi1 = 0] −μ0

0 ·E[ηi;τ−1,1|Zi1 = 0], (3.3)

where

μ0
0 = lim

z1↗0
E

[
Yi2Si2

(
Di2 − λ0(Xi )

)
(
1 − λ0(Xi )

)
E[Di2|Zi1 = z1]

∣∣Zi1 = z1

]
,

μ̃0
s = lim

z1↗0
E

[
Yi(2+s)Si2

(
Di2 − λ0(Xi )

)
(
1 − λ0(Xi )

)
E[Di2|Zi1 = z1]

∣∣Zi1 = z1

]
, and

μ̃1
s = lim

z1↘0
E

[
Yi(2+s)Si2

(
Di2 − λ1(Xi )

)
(
1 − λ1(Xi )

)
E[Di2|Zi1 = z1]

∣∣Zi1 = z1

]
,

for all s ≥ 1. In addition, treating first-stage decisions as outcomes, E[ηi;1,1|Z1 = 0] is
identified by Lemma 2.2 and E[ηi;k,1|Z1 = 0] for all k = 2, 
 
 
 , τ − 1 is identified by (3.3)
recursively.

The proof is given in the Supplemental Appendix. In Section A.4 of the Supplemental
Appendix, we also discuss several important special cases of the dynamic RD model,
including having an absorbing state treatment and not observing some initial rounds of
RD data.
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4. Estimation and inference

Estimation of the one-period-after ATE is discussed in Section 2.4 for the benchmark
two-period model. In the next, we first study inference of the proposed one-period-after
ATE estimator. Then we extend the two-period estimation and inference strategy to the
general multiperiod setting introduced in Section 3.

4.1 Inference in the benchmark two-period setting

The inference procedure proposed in this section for the one-period-after ATE estima-
tor defined in Section 2.4 adapts the weighted bootstrap procedure following Ma and
Kosorok (2005). The procedure is tractable in empirical applications as it keeps esti-
mation and inference of different long-term ATEs within a uniform format. The pro-
cedure does not pursue bandwidth choice optimality in the sense of asymptotic mean
squared errors (AMSE), however. In the Supplemental Appendix, we discuss an alter-
native AMSE-optimal estimation and inference procedure for the one-period-after ATE
based on Calonico, Cattaneo, and Titiunik (2014), Calonico, Cattaneo, and Farrell (2018,
2020, 2022).8 The weighted bootstrap procedure discussed in this section could also be
adapted for recursive CFR estimators.

4.1.1 Assumptions and asymptotic properties Let φγ1,ni(D2i, S2i, Z1i, Xi ) and
φγ0,ni(D2i, S2i, Z1i, Xi ) be influence functions of estimators γ̂1 and γ̂0 defined in Sec-
tion 2.4, respectively, such that

√
nh

(
γ̂1 − γ1) = 1√

nh

n∑
i=1

φγ1,ni(D2i, S2i, Z1i, Xi ) + op(1),

√
nh

(
γ̂0 − γ0) = 1√

nh

n∑
i=1

φγ0,ni(D2i, S2i, Z1i, Xi ) + op(1).

Let φ̃α1,ni(Y2i, D2i, S2i, Z1i, Xi ) and φ̃α0,ni(Y2i, D2i, S2i, Z1i, Xi ) be influence func-
tions of infeasible estimators α̃1 and α̃0 defined by the following:

(
α̃1, β̃1) = arg min

α,β

n∑
i=1

1(Z1i ≥ 0)K
(
Z1i

h

)[
Ai

(
α, β; γ1)]2

,

(
α̃0, β̃0) = arg min

α,β

n∑
i=1

1(Z1i < 0)K
(
Z1i

h

)[
Ai

(
α, β; γ0)]2

.

The infeasible estimators are generated by the same local linear regressions as used in
Section 2.4 for estimators α̂1 and α̂0, but assuming known first-step propensity scores.

8Extending the robust inference procedure to longer-term ATE estimators could be realized through cal-
culating first-order linear approximations of each τ-period-after estimator (e.g., Sections 4.1 and 4.2 of
Calonico, Cattaneo, and Titiunik (2014)) for bias correction and optimal bandwidth choice calculation. It
would be an interesting topic for future research.
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Define gradient terms �1
γ = limz1↘0 E[∇γ[Y2S2(D2−p(X ,γ))

1−p(X ,γ) ]|γ=γ1 |Z1 = z1] and �0
γ =

limz1↗0 E[∇γ[Y2S2(D2−p(X ,γ))
1−p(X ,γ) ]|γ=γ0 |Z1 = z1]. By the delta method, we obtain the follow-

ing influence function representation of α̂0 and α̂1 such that for d1 = 0, 1, we have
√
nh

(
α̂d1 − αd1

)
= 1√

nh

n∑
i=1

(
φ̃αd1 ,ni(Y2i, S2i, D2i, Z1i, Xi ) − d1

γ ·φγd1 ,ni(D2i, S2i, Z1i, Xi )
) + op(1)

≡ 1√
nh

n∑
i=1

φαd1 ,ni(Y2i, S2i, D2i, Z1i, Xi ) + op(1). (4.1)

The representation implies that the asymptotic variance of ˆ̄θ1,1 could be estimated by

V̂11 = 1
nh

n∑
i=1

(
φ̂α1,ni(Y2i, D2i, S2i, Z1i, Xi )

)2 + (
φ̂α0,ni(Y2i, D2i, S2i, Z1i, Xi )

)2
,

where φ̂αd1 ,ni(Y2i, D2i, S2i, Z1i, Xi ) is the estimated version of φαd1 ,ni(Y2i, D2i, S2i, Z1i,
Xi ) with all unknown parameters replaced with corresponding estimators; d1 = 0, 1.

We next provide detailed assumptions and asymptotic properties of the proposed
two-step estimator with respect to a varying coefficient logit first stage. For notational
simplicity, we assume for the rest of the paper that the Xi vector includes a constant.
Then a varying coefficient logit first-stage model is formulated as p(x, γ) = L(x′γ) with
L(a) = exp(a)/(1 + exp(a)).

Assumption 4.1. λ(x; z1 ) = L(x′γ(z1 )) is the correct specification on z1 ∈ Nε for some
ε > 0.

Assumption 4.2. Density fz1 (z1 ) is twice continuously differentiable in z1 on Nε, and
fz1 (z1 ) is bounded away from zero on Nε for some ε > 0.

Assumption 4.3. Assume that:

1. The kernel function K(·) is a nonnegative symmetric bounded kernel with support
[−1, 1];

∫
K(u)du = 1.

2. The bandwidth satisfies that h→ 0, nh3 → ∞, and nh5 → 0 as n → ∞.

Assumption 4.1 requires that the varying coefficient logit model is correctly spec-
ified. Assumption 4.2 imposes standard smoothness conditions on the density of the
running variable. Assumption 4.3 imposes standard conditions on the kernel function
and undersmoothed bandwidth. Undersmoothing is required such that the bias of ker-
nel estimators becomes asymptotically negligible. In practice, we recommend using the
triangular kernel (i.e., K(x) = |x| · 1(|x| < 1)) and undersmoothing the robust RD band-
width introduced in Calonico, Cattaneo, and Titiunik (2014) (CCT), which is of order
n1/5. As discussed earlier, undersmoothing is not AMSE optimal. In the Supplemental
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Appendix, we propose an alternative procedure that uses bias correction and AMSE-
optimal bandwidth in the second step. The alternative procedure also requires a higher-
order local polynomial and a larger bandwidth in the first step such that estimation er-
rors from the first step do not affect AMSE of the final estimator.

The following lemma provides asymptotic properties of the first-step varying coef-
ficient logit estimators. Similar results could be derived if the propensity score function
λ(.; .) follows other semiparametric models such as varying coefficient Probit.

Lemma 4.1. Suppose that Assumptions 4.1–4.3 and B.1–B.2 hold. Then for d = 0, 1, we
have

√
nh

(
γ̂d − γd

hβ̂d
FS − hβd

)
= 1√

nh

n∑
i=1

(
�d

)−1
S2i · 1(Z1i ≥ 0)d · 1(Z1i < 0)1−d

·K(Z1i/h)
(
D2i −L

(
X ′

i

(
γd +βdZ1i

)))(
Xi

Z1iXi/h

)
+ op(1),

where �d is given in equation (D.2) in the Supplemental Appendix. In addition, for d =
0, 1, we have

√
nh

(
γ̂d − γd

hβ̂d
FS − hβd

)
⇒N

(
0,

(
�d

)−1
�d

(
�d

)−1)
,

where �d is given in equation (D.3) in the Supplemental Appendix.

Aside from assumptions stated earlier, the lemma also requires Assumptions B.1 and
B.2 in the Supplemental Appendix. The former imposes smoothness conditions on the
varying coefficient in neighborhoods right above and below the RD cutoff. The latter
imposes moment conditions on the conditioning covariates.

For asymptotic properties of α̂0 and α̂1, we impose additional Assumptions B.1 and
B.4, stated in the Supplemental Appendix. The former includes smoothness conditions
for the infeasible estimators α̃0 and α̃1 using true values of first-step propensity score
functions. The latter imposes conditions that control the impact of first-step estimation
errors on the asymptotic properties of feasible two-step estimators α̂0 and α̂1. Given the
assumptions,

√
nh(α̂d1 − αd1 ), for d1 = 0, 1, has linear representation as in (4.1) with

φ̃αd1 ,ni(Y2i, D2i, S2i, Z1i, Xi )

= (10) ·�−1
z · 1(Z1i ≥ 0)d1 · 1(Z1i < 0)1−d ·K(Z1i/h)

·
(
Y2i −E[Y2i|Z1i] − Y2iS2i

(
D2i −L

(
X ′

iγ
d1

))
1 −L

(
X ′

iγ
d1

) +E

[
Y2iS2i

(
D2i −L

(
X ′

iγ
d1

))
1 −L

(
X ′

iγ
d1

) ∣∣Z1i

])

·
(

1
Z1i/h

)
,

where �z = fz1 (0) · (μz,0 μz,1
μz,1 μz,2

)
, and μz,j = ∫

u≥0 u
jK(u)du for j = 1, 2, 
 
 
 . The influence

function representation then implies the following asymptotic results.
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Theorem 4.1. Suppose that Assumptions 4.1–4.3 and B.1–B.4 hold. For d1 = 0, 1, we then
have

√
nh

(
α̂d1 − αd1

) d→N(0, Vαd1 ), d1 = 0, 1;

√
nh( ˆ̄θ1,1 − θ̄1,1 )

d→N(0, Vα1 + Vα0 ),

where Vα0 = limn→∞ limz1↗0 h
−1E[φ2

α0,ni(Y2i, D2i, S2i, Z1i, Xi )|Z1i = z1] and Vα1 =
limn→∞ limz1↘0 h

−1E[φ2
α1,ni(Y2i, D2i, S2i, Z1i, Xi )|Z1i = z1].

The exact expressions of Vα0 and Vα1 are tedious to calculate in general. In the next
section, we adapt the weighted bootstrap procedure first introduced in Ma and Kosorok
(2005) to simulate the limiting distribution of the proposed estimator. Studies adopt-
ing the procedure in other settings include Chen and Pouzo (2009), Chernozhukov et
al. (2015), Chernozhukov, Fernández-Val, and Kowalski (2015), and Fernández-Val, van
Vuuren, and Vella (2021), among many others. Our paper is the first to apply weighted
bootstrap to kernel-based boundary estimation, which is the main workhorse of the RD
literature.

4.1.2 Weighted bootstrap inference Let {Wi}ni=1 be a sequence of pseudo-random vari-
ables independent of the sample path with unit mean and variance. Define the weighted
bootstrap estimator for θ̄1,1 as

ˆ̄θw1,1 = α̂1,w − α̂0,w,

(
α̂1,w, β̂1,w) = arg min

α,β

n∑
i=1

Wi · 1(Z1i ≥ 0)K
(
Z1i

h

)[
Ai

(
α, β; γ̂1,w)]2

,

(
α̂0,w, β̂0,w) = arg min

α,β

n∑
i=1

Wi · 1(Z1i < 0)K
(
Z1i

h

)[
Ai

(
α, β; γ̂0,w)]2

,

where

(
γ̂1,w, β̂1,w

FS

) = arg max
γ,β

n∑
i=1

Wi · S2i1(Z1i ≥ 0)K
(
Z1i

h

)

· [D2i logp(Xi, γ +βZ1i ) + (1 −D2i ) · log
(
1 −p(Xi, γ +βZ1i )

)]
,

(
γ̂0,w, β̂0,w

FS

) = arg max
γ,β

n∑
i=1

Wi · S2i1(Z1i < 0)K
(
Z1i

h

)

· [D2i logp(Xi, γ +βZ1i ) + (1 −D2i ) · log
(
1 −p(Xi, γ +βZ1i )

)]
.

The weighted bootstrap procedure is simple to carry out. Given a simulated copy of
{Wi}ni=1, weighted bootstrap repeats the original two-step kernel-based estimation pro-
cedure (i.e., first-step local MLE propensity score estimation and second-stage local
linear regressions), replacing the original kernel weights K(Z1i/h) with new weights
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Wi · K(Z1i/h). The procedure could also be easily extended to adjust for within-cluster
correlations by assigning random Wi at the cluster level.

Following Ma and Kosorok (2005),
√
nh( ˆ̄θw1,1 − ˆ̄θ1,1 ) and

√
nh( ˆ̄θ1,1 − θ̄1,1 ) have the

same limiting distribution under suitable conditions. The next theorem formalizes the
validity of the weighted bootstrap estimator given a varying coefficient logit first stage.

Theorem 4.2. Suppose that Assumptions 4.1–4.3 and B.1–B.4 hold and that {Wi}ni=1 is a
sequence of i.i.d. pseudo-random variables independent of the sample path with E[Wi] =
Var[Wi] = 1 for all i. We then have

√
nh

( ˆ̄θw1,1 − ˆ̄θ1,1
) d→N(0, Vα1 + Vα0 )

conditional on the sample path with probability approaching one.

Although Wi can follow any distribution with unit mean and variance, in the simu-
lation and empirical sessions where the first-step propensity score function is modeled
with varying-coefficient logit, we use a discrete distribution where Wi = 0.5 or 3 with
probabilities 0.8 and 0.2, respectively. The binary random variable with positive support
ensures that the weighted logit objective functions remain globally concave.

4.2 Estimation and inference in the general multiperiod setting

Long-term ATEs in the multiperiod setting or E[θi;τ,1|Zi1 = 0] for τ ≥ 2 are identified in
Lemma 3.2. This section elaborates their estimation and inference.

Let us start with case of τ = 2. To estimate the two-period-after ATE, or θ̄2,1 ≡
E[θi;2,1|Zi1 = 0], one can first estimate the one-period-after average first-stage effect
η̄1,1 ≡ E[ηi;1,1|Zi1 = 0] following the estimation procedure for one-period-after ATE,
or θ̄1,1, described in Section 2.4, treating first-stage treatment decisions as outcomes.
Then one can estimate other components of equation (3.3). Similarly, the estimation
of any τ-period-after ATE for τ ≥ 3 involves estimating the average first-stage effect
η̄k,1 ≡ E[ηi;k,1|Zi1 = 0] for all k= 1, 2, 
 
 
 , τ−1, which can be done recursively following
Lemma 3.2, and separate estimation of other components in equation (3.3).

We formally define the estimator of θ̄2,1. Rewriting Lemma 3.2 with τ = 2 gives

θ̄2,1 = α1
1 − α0

1 − (
μ̃0
nu/μ̃de

)
η̄1,1, where μ̃0

nu = lim
z1↗0

E

[
Yi2Si2

(
Di2 − λ0(Xi )

)
1 − λ0(Xi )

∣∣Zi1 = z1

]
,

μ̃de = E[Di2|Zi1 = z1],

α1
1 = lim

z1↘0
E

[
Yi3 − Yi3Si2

(
Di2 − λ1(Xi )

)
1 − λ1(Xi )

∣∣Zi1 = z1

]
,

α0
1 = lim

z1↗0
E

[
Yi3 − Yi3Si2

(
Di2 − λ0(Xi )

)
1 − λ0(Xi )

∣∣Zi1 = z1

]
.

Let α̂1
1, α̂0

1, ˆ̃μ0
nu, ˆ̃μde, α̂1

f s , and α̂0
f s be estimators of α1

1, α0
1, μ̃0

nu, μ̃de, α1
f s , and α0

f s,
respectively. All of them can be defined using the same two-step semiparametric pro-
cedure described in Section 2.4 for the estimation of α̂0 and α̂1, where the first-step
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propensity estimation uses kernel-based local MLE. Let φα1
1,ni, φα0

1,ni, φμ̃0
nu,ni, φμ̃de,ni,

φα1
f s ,ni, and φα0

f s ,ni denote the influence functions of the estimators, respectively. Def-

initions of φα1
1,ni, φα0

1,ni, φμ̃0
nu,ni, φα1

f s ,ni, and φα0
f s ,ni are similar to influence functions

given in equation (4.1) for α̂0 and α̂1. The influence function for ˆ̃μde is defined as
φμ̃de,ni = 1

fz1 (0)K( Z1i
h )(D2i −E[D2i|Z1i]).

Let ˆ̄θ2,1 = α̂1
1 − α̂0

1 − ˆ̃μ0
nu/

ˆ̃μde(α̂1
f s − α̂0

f s ) be the estimator of θ̄2,1. By the delta

method, we have
√
nh( ˆ̄θ2,1 − θ̄2,1 ) = 1√

nh

∑n
i=1 φθ̄2,1,ni(Y3i, Y2i, D3i, D2i, S2i, Z1i, Xi ) +

op(1), where φθ̄2,1,ni(Y3i, Y2i, D3i, D2i, S2i, Z1i, Xi ) = φα1
1,ni − φα0

1,ni − α1
f s−α0

f s

μ̃de
φμ̃0

nu,ni +
μ̃0
nu(α1

f s−α0
f s )

(μ̃de )2 φμ̃de,ni − μ̃0
nu

μ̃de
(φα1

f s ,ni −φα0
f s ,ni ). The asymptotic normality of ˆ̄θ2,1 follows from

the influence function representation. Given the influence function representation, it
is easy to see that the weighted bootstrap procedure could be applied here, too, and in
general, to the inference problem of any τ-period-after ATE with τ ≥ 2.

Monte Carlo simulations for the proposed estimation and inference procedure are
summarized in the Supplemental Appendix.

5. Empirical example: The effect of CA school bonds

This section revisits the study of local education bonds using the data set published by
CFR. As described in CFR, school districts in California became eligible for issuing gen-
eral obligation bonds through Proposition 46 in 1984. CFR study the effects of bond au-
thorization on local house prices, student achievements, and other outcomes using Cal-
ifornia data from 1987 to 2006. Due to data limitations, we study two outcome variables:
total expenditure per pupil and capital loading per pupil in a school district.

There are 1551 bond measures from 655 school districts with nonmissing vote share
information. Although the data set starts from the first years of education bonds, the ex-
penditure outcomes we use are not observed until 1995. Among all the bond measures,
282 are proposed after 5 or more years of inaction (no measure) and have nonmissing
expenditure outcome data up to 4 periods after the measure year. We focus on long-term
effects of these bond measures.

Figure 1 gives a visual illustration of the data. The bottom row of the figure shows
immediate and long-term total first-stage effects of passing an education bond mea-
sure. No school districts that barely passed the vote share cutoff in the first trial autho-
rized another bond the following year. The probabilities increase slightly in years 3 and
4. Around 27% of school districts that barely missed the vote share cutoff in the first
trial successfully authorized their first education bond in the following year. The nega-
tive first-stage effects imply that long-term average total effects observed directly from
outcome discontinuity are smaller than the long-term ATEs of policy interests.

Table 1 reports nonparametric estimation results of immediate and long-term av-
erage direct effects following the extended recursive CFR strategy formalized in Lem-
mas 2.1 and A.1. The estimated average effects for the capital outlays outcome are highly
statistically significant. Effects of the total expenditures outcome are only marginally
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Figure 1. Average total effects and histograms. Note: The data set is from Cellini, Ferreira, and
Rothstein (2010). The kernel bandwidth of each row is set to the same value, which is the average
of CCT bandwidths among all four RD regressions of the row. The data sample of the first two
rows is a subset of that of the last row, because of missing values in the expense outcomes.

significant. Estimates in Table 1 are larger than those reported in Table 4 of CFR. The dif-
ference comes from two sources. First, Table 4 of CFR is estimated by pooling different
rounds of RDs. Under treatment effect heterogeneity, such a pooling strategy is not ap-
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Table 1. Average direct effects: nonparametric CFR based on Lemmas 2.1 and A.1.

Immediate One-period-after Two-period-after Three-period-after

k = 4.25 4.5 4.25 4.5 4.25 4.5 4.25 4.5

Total expenditures per pupil
897 767 1502 1385 2101 2025 3581 3626
(664) (601) (885) (826) (1384) (1294) (1888) (1775)
Capital outlays per pupil
361 275 497 455 1002 977 2379 2399
(248) (216) (203) (186) (569) (497) (1026) (898)

Note: The data set is from Cellini, Ferreira, and Rothstein (2010). Standard errors are calculated using weighted bootstrap
with 1000 bootstrap repetitions. Undersmoothed CCT bandwidth is calculated following suggestions in Section E of the Sup-
plemental Appendix, with the CCT bandwidth reported in Figure 1.

propriate, because marginal individuals at different rounds of RD cutoffs have different
treatment effects. Second, Table 4 of CFR is estimated parametrically with global poly-
nomials while Table 1 is estimated nonparametrically using the local linear method.

Table 2 reports estimation results following the proposed method. Varying-
coefficient logit is used in first-step propensity score estimation. Panel A of the table
reports estimation and inference results when the CIA condition in Section 2 holds with-
out any conditioning covariate. Panel B of the table reports results when the first-period
outcome is used as the first-stage conditioning covariate. The estimates are semipara-
metric and rely on the first-step varying-coefficient logit functional form of propensity

Table 2. Average direct effects: the proposed procedure.

Immediate One-period-after Two-period-after Three-period-after

k = 4.25 4.5 k = 4.25 4.5 4.25 4.5 4.25 4.5

Panel A:
Total expenditures per pupil
897 767 1070 959 1440 1266 2532 2331
(664) (601) (776) (716) (1453) (1244) (2874) (1992)

Capital outlays per pupil
361 275 405 398 1245 1240 2850 2884
(248) (216) (158) (149) (448) (401) (882) (760)

Panel B:
Total expenditures per pupil
897 767 903 808 1016 863 1682 1511
(664) (601) (964) (882) (2073) (1863) (4684) (3629)

Capital outlays per pupil
361 275 433 416 1387 1364 3176 3195
(248) (216) (176) (164) (495) (472) (1156) (1146)

Note: The data set is from Cellini, Ferreira, and Rothstein (2010). Standard errors are calculated using weighted bootstrap
with 1000 bootstrap repetitions. Undersmoothed CCT bandwidth is calculated following suggestions in Section E of the Sup-
plemental Appendix, with the CCT bandwidth reported in Figure 1. Panel A reports estimation results with nonparametric
first-step propensity score estimators with no conditioning covariates. Panel B uses the first-period outcome as the condition-
ing covariate in the first-step propensity score estimation.
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scores. Estimates of the two panels share the same patterns. Compared to the results
of Table 1, long-term ATE estimates for the total expenditure outcome become smaller,
although the estimation is not very precise. Long-term ATE estimates for the capital out-
lays outcome, on the other hand, are larger than those reported in Table 1 and remain
highly statistically significant.

6. Conclusion

Static RD models with a single eligibility test have been very popular in the last two
decades. Recently, more empirical studies have targeted situations where individuals
are eligible for repeated RD treatments. Most studies under such a setting have either
ignored dynamics in repeated RD models or employed restrictive identifying assump-
tions. This paper is the first to employ the conventional potential outcome framework
to identify long-term average direct treatment effects. Our proposed identification strat-
egy allow explicitly for treatment effect heterogeneity under a conditional independence
assumption and does not impose any assumption on endogenous RD participation de-
cisions of later rounds. For estimation and inference, we propose a novel multistep semi-
parametric estimation procedure. Employing the proposed method, we revisit the study
of local education bonds following CFR. We find much larger long-term average direct
effects of education bonds on the capital outlays per pupil outcome.
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