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Appendix A: Supplemental Appendix

A.1 Experiments with noncompliance

In this section, we extend our main results to the case of experiments with imperfect
compliance. The theorems in this section are simple corollaries of our main results. For
completeness, full proofs are provided in Section A.9.

Previously, Ansel, Hong, and Li (2018) studied covariate adjustment in experiments
with noncompliance and i.i.d. or coarsely stratified treatment assignment. Bai, Guo,
Shaikh, and Tabord-Meehan (2024a) study matched pairs experiments with noncom-
pliance. See also Jiang, Linton, Tang, and Zhang (2024) and Ren (2023) for nonlinear
adjustment in coarsely stratified experiments and completely randomized experiments
with noncompliance, respectively.

Let z ∈ {0, 1} denote a binary instrument. Let D(z) be the potential treatments and
Y (d, z) = Y (d) the potential outcomes, satisfying exclusion. Define the intention-to-
treat (ITT) potential outcomes Wi(z) = Yi(Di(z)), so that Yi = ZiWi(1) + (1 − Zi )Wi(0)
andDi =ZiDi(1) + (1 −Zi )Di(0). Impose monotonicityD(1) ≥D(0) and positive com-
pliance τD = P(D(1) > D(0)) > 0. Define the ITT effect τW = E[W (1) − W (0)]. Under
these assumptions, the parameter τL ≡ τW /τD = E[Y (1) − Y (0)|D(1)>D(0)] is the lo-
cal average treatment effect (LATE) (Imbens and Angrist (1994)). To estimate τL, we con-
sider adjusted Wald estimators of the form

τ̂adj = W̄1 − W̄0 − γ̂′
W (h̄1 − h̄0 )cp

D̄1 − D̄0 − γ̂′
D(h̄1 − h̄0 )cp

. (A.1)

To analyze τ̂adj, we require that Assumption 3.1 holds for both potential outcomesW (z)
and D(z) and covariates h(X ), and also impose Assumption 3.14. Suppose the adjust-
ment coefficients (γ̂W , γ̂D ) = (γW , γD ) + op(1). Our first result is a consequence of
Theorem 3.4. To state the result, we define the modified potential outcomes Q(z) =
W (z) − τLD(z) for z ∈ {0, 1} and modified adjustment coefficient γQ = γW − τLγD.

Theorem A.1. If Z1:n ∼ Loc(ψ, p), then
√
n(τ̂adj − τL ) ⇒ N (0, V (γQ )/τ2

D ) with

V (γQ ) = Var(cQ ) +E[
Var

(
bQ − γ′

Qh|ψ
)] +E

[
σ2

1Q(X )

p
+ σ2

0Q(X )

1 −p
]

.
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The terms cQ(X ) =E[Q(1) −Q(0)|X], similarly for bQ and σ2
zQ, substituting the po-

tential outcomesQ(z) for Y (d) in each formula.

Optimal adjustment Let γ̂Q = γ̂W − τLγ̂D and define the adjustment scheme τ̂adj to be

efficient if γ̂Q
p→ γ∗

Q ∈ argminγ V (γ). We construct efficient adjusted Wald estimators us-

ing the generic efficient estimators of Section 3.4. Let θ̂Wk and θ̂Dk for k ∈ {PL, GO, TM } be
any of the generic efficient estimators of Section, plugging in outcomesW orD in place
of Y . For example, θ̂WPL is the coefficient on Zi in the regression Wi ∼ (1, ȟi ) + Zi(1, ȟi )
and θ̂DPL the coefficient on Zi in Di ∼ (1, ȟi ) + Zi(1, ȟi ). Define the LATE estimators
τ̂kL = θ̂Wk /θ̂

D
k for k ∈ {PL, GO, TM }. Our next theorem is a consequence of the efficiency

results in Section 3.4.

Theorem A.2. Suppose Z1:n ∼ Loc(ψ, p). For each k ∈ {PL, GO, TM }, the estimator τ̂kL is
efficient with

√
n(τ̂kL − τL ) ⇒ N (0, V ∗ ) for V ∗ = minγ V (γ).

Finally, we provide asymptotically exact inference on τL using the adjusted estima-
tors τ̂kL above. Define the augmented outcomesQai =Wi− τ̂kLDi−h′

i(γ̂W − τ̂kLγ̂D ). Let v̂q1 ,
v̂
q
0 , and v̂q10 be the variance estimators in Equation (4.3), plugging in Qai in place of Yai .

Define the variance estimator:

V̂ = 1(
θ̂Dk

)2

[
Varn

(
(Di −p)Qai
p−p2

)
− v̂q1 − v̂q0 − 2̂vq10

]
. (A.2)

Theorem A.3. Suppose Z1:n ∼ Loc(ψ, p). Then V̂ = V ∗ + op(1).

Theorems A.1 and A.3 show that the confidence interval Ĉ = [̂τkL ± V̂ 1/2c1−α/2/
√
n]

with cα =�−1(α) is asymptotically exact in the sense that P(τL ∈ Ĉ ) = 1 − α+ o(1).

A.2 Varying propensities

In this section, we extend our results to fine stratification with varying propensitiesp(ψ).
To that end, let p(ψ) ∈ {al/kl : l ∈ L} with |L| <∞ a finite index set. Cytrynbaum (2023)
extends Definition 2.1 to nonconstant p(ψ) by the following double stratification proce-
dure:

(1) Partition the units {1, 	 	 	 , n} into propensity strata Sl ≡ {i : p(Xi ) = al/kl}.

(2) In each propensity stratum Sl, draw samples (Di )i∈Sl ∼ Loc(ψ, al/kl ).

To implement this, we run the algorithm of Cytrynbaum (2023) to match units into
groups of kl separately in each propensity stratum Sl, drawing treatment assignments
(Di )i∈g ∼ CR(al/kl ) independently for each g ∈ Gl. Define θ̂adj(γ) to be the AIPW esti-
mator of Section 3.2, with linear models fd(Xi ) = γ′

dh(Xi ) for d ∈ {0, 1}, so that

θ̂adj(γ) = (γ1 − γ0 )′En[hi] +En
[
Di

(
Yi − γ′

1hi
)

p(ψi )

]
−En

[
(1 −Di )

(
Yi − γ′

0hi
)

1 −p(ψi )

]
.
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Define γ = (γ0, γ1 ) and weighted covariates hpi = (hi
√

pi
1−pi , hi

√
1−pi
pi

). Under assump-

tion 3.1, Theorem 3.4 may be extended to show that if γ̂
p→ γ and D1:n ∼ Loc(ψ, p(ψ)),

then
√
n(θ̂adj(γ̂) − ATE) ⇒ N (0, V (γ)) with variance

V (γ) = Var
(
c(X )

) +E[
Var

(
b− γ′hp|ψ

)] +E
[
σ2

1 (X )
p(ψ)

+ σ2
0 (X )

1 −p(ψ)

]
.

The optimal adjustment coefficient is γ∗ =E[Var(h
p
i |ψi )]−1E[Cov(h

p
i , bi|ψi )] if the con-

dition E[Var(h
p
i |ψi )] � 0 is satisfied. Let ki denote the size of the group that unit i be-

longs to. Extending the work in Section 3.4, the estimator

γ̂ =En
[
ȟ
p
i

(
ȟ
p
i

)′ ki
ki − 1

]−1

En

[
ȟ
p
i Y

TM
i

ki
ki − 1

]
with weighted outcomes YTM

i =DiYi(1 − pi )1/2p
−3/2
i + (1 −Di )Yip

1/2
i (1 − pi )−3/2 has

γ̂ = γ∗ + op(1). Then the estimator θ̂adj(γ̂) is efficient in the sense of achieving the min-
imal variance minγ V (γ).

A.3 Noninteracted regression adjustment

For completeness, before continuing we describe the asymptotic behavior of the com-
monly used noninteracted regression estimator under stratified designs. Let θ̂N be the
coefficient onDi in Y ∼ 1 +D+ h.

Theorem A.4. Suppose Assumptions 3.1 and 3.14 hold. The estimator has representation
θ̂N = θ̂− γ̂′

N (h̄1 − h̄0 )+Op(n−1 ). IfD1:n ∼ Loc(ψ, p), then
√
n(θ̂N−ATE) ⇒ N (0, V ) with

variance

V = Var
(
c(X )

) +E[
Var

(
b− γ′

Nh|ψ
)] +E

[
σ2

1 (X )
p

+ σ2
0 (X )

1 −p
]

.

The coefficient γN = argminγ∈Rdh Var(f − γ′h) for target function

f (x) =m1(x)
√

p

1 −p +m0(x)

√
1 −p
p

with f (x) = b(x) in general. The noninteracted regression estimator is efficient if ψ = 1
and either p= 1/2 or Cov(h, Y (1) −Y (0)) = 0.

Theorem A.4 shows that θ̂N is generally inefficient since it uses the wrong objective
function. In particular, the target function f (x) = b(x) unless p = 1/2. Also, the limit-
ing coefficient γN minimizes marginal instead of conditional variance. The results in
Section 4 show how to construct asymptotically exact confidence intervals for the ATE
using θ̂N .
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A.4 Nonlinear adjustment

Alternately, we may consider general nonlinear covariate adjustment strategies. Let ĥ(x)
be a function estimated in some class H and consider the adjusted estimator

θ̂adj(ĥ) =En
[(
Yi − ĥ(Xi )

)
(Di −pi )

pi −p2
i

]
.

For example, the usual AIPW estimator in Section 3.2 can be shown to take this form.
Linear adjustment corresponds to the parametric family H = {h(x)′γ : γ ∈ R

dh }. Simi-
lar to Bai, Jiang, Romano, Shaikh, and Zhang (2024b), suppose that for some function
h(X ) ∈L2 the equicontinuity condition holds

√
nEn

[
(ĥ− h)(Xi )(Di −pi )

pi −p2
i

]
= op(1).

Theorem 3.4 can be extended to show that if D1:n ∼ Loc(ψ, p(ψ)), then
√
n(θ̂adj(ĥ) −

ATE) ⇒N (0, V (h)) with asymptotic variance

V (h) = Var
(
c(X )

) +E[
Var

(
b− h/cp(ψ)|ψ

)] +E
[
σ2

1 (X )
p(ψ)

+ σ2
0 (X )

1 −p(ψ)

]
for cp(ψ) = √

p(ψ) −p(ψ)2. One natural extension of the current work would be to solve
a general version of the optimal adjustment problem over a nonlinear or general non-
parametric function class H:

min
h∈H

E
[
Var

(
b− h/cp(ψ)|ψ

)]
. (A.3)

This requires new technical tools, the development of which we leave to future work.

A.5 Proofs for Section 3.1

Proof of Theorem 3.4. First, note that since E[|h|2
2]<∞ we may apply Lemma A.2 of

Cytrynbaum (2023) to show that

γ̂′(h̄1 − h̄0 )cp = γ̂′En
[

(Di −p)√
p−p2

hi

]
= γ′En

[
(Di −p)√
p−p2

hi

]
+ (γ̂− γ)′En

[
(Di −p)√
p−p2

hi

]

= γ′En
[

(Di −p)√
p−p2

hi

]
+ op

(
n−1/2) = γ′(h̄1 − h̄0 )cp + op

(
n−1/2).

Define auxiliary potential outcomes Z(d) = Y (d) − cpγ
′h(X ) for d ∈ {0, 1} with

Zi =Z(Di ). Summarizing, we have shown that θ̂adj = Z̄1 − Z̄0 + op(n−1/2 ). Observe that
E[Z(d)2] �E[Y (d)2] + c2

p|γ|2
2E[|h(X )|2

2]<∞. Then we may apply the general version of
Theorem 3.11 in Cytrynbaum (2023) (Equation (3.7)). Setting q= 1 and ψ1 =ψ2 and ap-
plying the theorem to the auxiliary potential outcomesZ(d), we have

√
n(θ̂adj −ATE) ⇒
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N (0, V ),

V = Var
(
cZ(X )

) +E[
Var

(
bZ(X; p)|ψ

)] +E
[
σ2

1,Z(X )

p
+ σ2

0,Z(X )

1 −p
]

.

Calculating, we have cZ(X ) = E[Z(1) −Z(0)|X] = c(X ) and

bZ(X ) =E[
Z(1)|X

](1 −p
p

)1/2

+ E
[
Z(0)|X

]( p

1 −p
)1/2

= b(X; p) − γ′h(X ).

Finally, σ2
d,Z(X ) = Var(Z(d)|X ) = Var(Y (d)|X ) = σ2

d (X ). Then the variance V above is

V = Var
(
c(X )

) +E[
Var

(
b− γ′h|ψ

)] +E
[
σ2

1 (X )
p

+ σ2
0 (X )

1 −p
]

as claimed.

Proof of Theorem 3.2. DefineWi = (1, h̃i ). First, consider the regression Yi ∼DiWi +
(1 −Di )Wi, with coefficients (γ̂1, γ̂0 ). By Frisch–Waugh and orthogonality of regressors,
γ̂1 is numerically equivalent to the regression coefficient Yi ∼DiWi and similarly for γ̂0.
Then consider Yi =DiW ′

i γ̂1 + ei with En[ei(DiWi )] = 0. Then DiYi =DiW ′
i γ̂1 +Diei and

En[Diei(DiWi )] = En[ei(DiWi )] = 0. Then γ̂1 can be identified with the regression co-
efficient of Yi ∼ Wi in the set {i : Di = 1}. Let γ̂1 = (ĉ1, α̂1 ). By the usual OLS formula,
ĉ1 = En[Yi|Di = 1] − α̂′

1En[h̃i|Di = 1] and α̂1 = Varn(h̃i|Di = 1)−1 Covn(h̃i, Yi|Di = 1).
Similar formulas hold forDi = 0 by symmetry. Next, note that form= dh+ 1 the original
regressors can be written as a linear transformation:(

DiWi
Wi

)
=

(
Im 0
Im Im

)(
DiWi

(1 −Di )Wi

)
.

Then the OLS coefficients for the original regression Yi ∼ DiWi + Wi are given by the
change of variables formula:((

Ik 0
Ik Ik

)′)−1 (
γ̂1

γ̂0

)
=

(
Ik −Ik
0 Ik

)(
γ̂1

γ̂0

)
=

(
γ̂1 − γ̂0

γ̂0

)
.

In particular, the coefficient onDi in the original regression is

θ̂L = ĉ1 − ĉ0 =En
[
Yi − α̂′

1h̃i|Di = 1
] −En

[
Yi − α̂′

0h̃i|Di = 0
]

= θ̂−En
[
α̂′

1h̃iDi
p

]
+En

[
α̂′

0h̃i(1 −Di )
1 −p

]
= θ̂−En

[
α̂′

1hi(Di −p)
p

]
−En

[
α̂′

0hi(Di −p)
1 −p

]
= θ̂− (̂

α1(1 −p) + α̂0p
)′
En

[
hi(Di −p)
p(1 −p)

]
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= θ̂−
(
α̂1

√
1 −p
p

+ α̂0

√
p

1 −p
)′

(h̄1 − h̄0 )cp.

The second equality since En[Di] = p identically. The third equality by expanding Di =
Di−p+p and usingEn[h̃i] = 0 andEn[(Di−p)En[hi]] = 0. The fourth equality is algebra
and collecting terms. The fifth equality since h̄1 − h̄0 = En[hi(Di − p)/p(1 − p)] again
using En[Di] = p and cp = √

p(1 −p) by definition.
Next, consider the coefficient α̂1 = Varn(h̃i|Di = 1)−1 Covn(h̃i, Yi|Di = 1). We have

Varn(h̃i|Di = 1) = p−1En[Dih̃ih̃′
i] −p−2En[Dih̃i]En[Dih̃′

i]. Let 1 ≤ t, t ′ ≤ dh. Then we may

compute En[Dih̃it h̃it ′ ] =En[(Di −p)h̃it h̃it ′ ] +pEn[h̃it h̃it ′ ]. Expanding the first term

En
[
(Di −p)h̃it h̃it ′

] =En
[
(Di −p)hithit ′

] −En[hit ]En
[
(Di −p)hit ′

]
−En[hit ′ ]En

[
(Di −p)hit

]
+En[hit ′ ]En[hit ]En[Di −p] = op(1).

The final equality follows since En[(Di − p)hithit ′ ] = op(1) by applying Lemma A.2 of
Cytrynbaum (2023), using that E[|hit h̃it ′|] ≤ E[|hi|2

2] < ∞, and similarly for the other

terms. By WLLN, we also have En[h̃it h̃it ′ ]
p→ Var(h). Then by continuous mapping

Varn(h̃i|Di = 1)−1 = Var(h)−1 + op(1). Similar reasoning shows Covn(h̃i, Yi|Di = 1) =
Cov(hi, Yi(1)) + op(1).

Then we have shown α̂1 = Var(h)−1 Cov(h, Y (1)) + op(1) = Var(h)−1 Cov(h,m1 ) +
op(1). By symmetry, we also have α̂0 = Var(h)−1 Cov(h,m0 ) + op(1). Putting this all to-

gether, we have α̂1

√
1−p
p + α̂0

√
p

1−p = Var(h)−1 Cov(h, b) + op(1) = γL + op(1). Then by

Theorem 3.4,
√
n(θ̂L − ATE) ⇒ N (0, V ) with

V = V (γL ) = Var
(
c(X )

) +E[
Var

(
b− γ′

Lh|ψ
)] +E

[
σ2

1 (X )
p

+ σ2
0 (X )

1 −p
]

as claimed. The claimed representation follows from the change of variables formula
above, since α̂1 = â1 + â0 and α̂0 = â0. This completes the proof.

Proof of Theorem A.4. We have Yi = ĉ + θ̂NDi + γ̂′
Nhi + ei with En[ei(1,Di, hi )] =

0. By applying Frisch–Waugh twice, we have Ỹi = θ̂N (Di − p) + γ̂′
Nh̃i + ei and θ̂N =

En[(Ďi )2]−1En[ĎiYi] with partialled treatment Ďi = (Di − p) − (En[h̃ih̃′
i]

−1En[h̃i(Di −
p)])′h̃i. Squaring this expression gives

(Ďi )
2 = (Di −p)2 − 2(Di −p)

(
En

[
h̃ih̃

′
i

]−1
En

[
h̃i(Di −p)

])′
h̃i

+ ((
En

[
h̃ih̃

′
i

]−1
En

[
h̃i(Di −p)

])′
h̃i

)2 ≡ ηi1 +ηi2 +ηi3.

Using En[h̃i(Di − p)] =Op(n−1/2 ) by Lemma A.2 of Cytrynbaum (2023) and En[h̃ih̃′
i]

p→
Var(h) � 0, we see that En[ηi2] = Op(n−1 ) and En[ηi3] = Op(n−1 ). Then we have
En[(Ďi )2] = En[(Di − p)2] + Op(n−1 ) = p − p2 + Op(n−1 ). Then apparently θ̂N = (p −
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p2 )−1En[ĎiYi] +Op(n−1 ). Now note that

En[ĎiYi] = En
[
(Di −p)Yi

] −En
[(
En

[
h̃ih̃

′
i

]−1
En

[
h̃i(Di −p)

])′
h̃iYi

]
= En

[
(Di −p)Yi

] −En
[
(Di −p)h̃i

]′(
En

[
h̃ih̃

′
i

]−1
En[h̃iYi]

)
.

By using Frisch–Waugh to partial out Di − p from the original regression, we have
γ̂N = En[h̄ih̄′

i]
−1En[h̄iYi] with h̄i = h̃i − (En[(Di − p)2]−1En[h̃i(Di − p)])(Di − p). Then

using En[h̃i(Di − p)] = Op(n−1/2 ) again, we have En[h̄ih̄i
′
] = En[h̃ih̃′

i] + Op(n−1 ). Simi-

larly, En[h̄iYi] = En[h̃iYi] − θ̂En[h̃i(Di −p)] = En[h̃iYi] +Op(n−1/2 ). Then the coefficient
γ̂N =En[h̃ih̃′

i]
−1En[h̃iYi] +Op(n−1/2 ). Then we have shown that

θ̂N = θ̂−En
[

(Di −p)h̃i√
p−p2

]′(
En

[
h̃ih̃

′
i

]−1
En[h̃iYi]

)(
p−p2)−1/2 +Op

(
n−1)

= θ̂−En
[

(Di −p)hi√
p−p2

]′
γ̂N

(
p−p2)−1/2 +Op

(
n−1)

= θ̂− (γ̂N/cp )′(h̄1 − h̄0 )cp +Op
(
n−1).

The second line uses that En[(Di − p)c] = 0 for any constant. This shows the claimed
representation. We have En[h̃ih̃′

i] = Var(h) + op(1). Note also that En[h̃iYi(1)Di] =
pCov(h, Y (1)) + op(1) and En[h̃iYi(0)(1 −Di )] = (1 − p) Cov(h, Y (0)) + op(1). Putting
this together, we have shown that

γ̂N/cp = Var(h)−1 Cov
(
h,m1

√
p

1 −p +m0

√
1 −p
p

)
+ op(1)

= argmin
γ

Var
(
f − γ′h

) + op(1) = γN + op(1).

Then the first claim follows from Theorem 3.4. For the efficiency claims, (a) if p = 1/2
and ψ = 1, then f = b and γN = argminγ Var(f − γ′h) = argminγ E[Var(b − γ′h|ψ)]. For
(c), if ψ= 1 and Cov(h,m1 −m0 ) = 0, then we have

Cov(h, f ) − Cov(h, b) = Cov
(
h, (m1 −m0 )

2p− 1√
p(1 −p)

)
= 0.

By expanding the variance, we have argminγ Var(f − γ′h) = argminγ Var(b− γ′h). If (b)
holds, thenm1 −m0 = 0 and the same conclusion follows. This completes the proof.

Proof of Theorem 3.7. For any γ ∈ R
dh , we have argming∈L2(ψ)E[(Y (d) − g(ψ) −

γ′h)2] =E[Y (d) − γ′h|ψ] by standard arguments. Then the coefficients

γd = argmin
γ∈Rdh

E
[(
Y (d) − γ′h−E[

Y (d) − γ′h|ψ
])2] = argmin

γ∈Rdh
E

[
Var

(
Y (d) − γ′h|ψ

)]
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and gd(ψ) =E[Y (d) − γ′
dh|ψ]. Define fd(x) = gd(ψ) + γ′

dh. Then the AIPW estimator

θ̂AIPW =En
[
f1(Xi ) − f0(Xi )

] +En
[
Di

(
Yi − f1(Xi )

)
p

]
−En

[
(1 −Di )

(
Yi − f0(Xi )

)
1 −p

]
= θ̂−En

[
f1(Xi )

(Di −p)
p

]
−En

[
f0(Xi )

(Di −p)
1 −p

]
= θ̂−En

[
(Di −p)

(
f1(Xi )
p

+ f0(Xi )
1 −p

)]
=En

[
Di −p
p−p2

(
Yi − (1 −p)f1(Xi ) −pf0(Xi )

)]
.

Let F(x) = (1 + p)f1(x) + pf0(x). Then by vanilla CLT, we have
√
n(θ̂AIPW − ATE) ⇒

N (0, V ) with V = Var( Di−p
p−p2 (Yi − F(Xi ))) ≡ Var(Wi ) with Wi = Di−p

p−p2 (Yi − F(Xi )) − ATE.

By the fundamental expansion of the IPW estimator from Cytrynbaum (2023),

Wi = Di −p
p−p2

(
Yi − F(Xi )

) − ATE

=
[
Diε

1
i

p
− (1 −Di )ε0

i

1 −p
]

+ [
c(Xi ) − ATE

] +
[
Di −p√
p−p2

(
(m1 − f1 )

√
1 −p
p

+ (m0 − f0 )
√

p

1 −p
)]

.

By the law of total variance and tower law,

Var(W ) = Var
(
E[W |X]

) +E[
Var(W |X )

]
= Var

(
E[W |X]

) +E[
Var

(
E[W |X ,D]|X

)] +E[
Var(W |X ,D)

]
.

From the expansion above, Var(E[W |X]) = Var(c(X ) − ATE) = Var(c(X )). Next,

E[W |X ,D] = [
c(Xi ) − ATE

]
+

[
Di −p√
p−p2

(
(m1 − f1 )

√
1 −p
p

+ (m0 − f0 )
√

p

1 −p
)]

,

E
[
Var

(
E[W |X ,D]|X

)] =E
[(

(m1 − f1 )

√
1 −p
p

+ (m0 − f0 )
√

p

1 −p
)2]

.

Using the definition of fd(x) gives

E

[((
m1 − γ′

1h−E[
m1 − γ′

1h|ψ
])√1 −p

p
+ (
m0 − γ′

0h−E[
Y (0) − γ′

0h|ψ
])√ p

1 −p
)2]

=E
[

Var
((
m1 − γ′

1h
)√1 −p

p
+ (
m0 − γ′

0h
)√ p

1 −p |ψ
)]
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=E
[

Var
(
b−

(
γ1

√
1 −p
p

+ γ0

√
p

1 −p
)′
h|ψ

)]
= argmin

γ∈Rdh
E

[
Var

(
b− γ′h|ψ

)]
.

The final line by characterization of γd above and linearity of Z → argminγ E[Var(Z −
γ′h|ψ)]. Finally, note that

Var(W |X ,D) =E
[(
Diε

1
i

p
− (1 −Di )ε0

i

1 −p
)2

|X ,D
]

=E
[
Di

(
ε1
i

)2

p2 + (1 −Di )
(
ε0
i

)2

(1 −p)2 |Xi,Di

]

= Diσ
2
1 (Xi )

p2 + (1 −Di )σ2
0 (Xi )

(1 −p)2 .

Then E[Var(W |X ,D)] = E[
σ2

1 (Xi )
p + σ2

0 (Xi )
1−p ]; comparing with Equation (3.3) completes

the proof.

A.6 Proofs for Section 3.3

Proof of Theorem 3.9. By Theorem 3.2, the middle term of the asymptotic variance
is E[Var(b − β′h|ψ)] with β = Var(h)−1 Cov(h, b). This is the OLS coefficient from the
population regression b= a+β′h+ e= a+ α′z+ γ′w+ e with E[e(1, w, z)] = 0 and h=
(w, z). Denote b̃ = b− E[b] and similarly for w̃, z̃. By Frisch–Waugh, we have b̃ = α′z̃ +
γ′w̃+ e. Let w̌= w̃− (E[z̃z̃′]−1E[z̃w̃′])′z̃. Then again by Frisch–Waugh, the coefficient of
interest is γ =E[w̌w̌′]−1E[w̌b]. Next, we characterize this coefficient.

By assumption, E[w|ψ] = c + z. Demeaning both sides gives E[w̃|ψ] = z̃. Write
ũ= w̃−E[w̃|ψ] = w̃−z̃ with E[ũ|ψ] = 0. Then we have

E
[
z̃w̃′] =E[

z̃
(
w̃−E[w̃|ψ] +E[w̃|ψ]

)′] = E[
z̃ũ′] +E[

z̃z̃′′] = E[
z̃z̃′]′.

Then w̌= w̃− (E[z̃z̃′]−1E[z̃z̃′]′ )′z̃ = w̃−z̃ = ũ. We have now shown that

γ = E[
ũũ′]−1

E[ũb] =E[
Var(w̃|ψ)

]−1
E

[
Cov(w̃, b|ψ)

] = E[
Var(w|ψ)

]−1
E

[
Cov(w, b|ψ)

]
.

In particular, the coefficient β= (α, γ) is optimal:

E
[
Var

(
b−β′h|ψ

)] = E[
Var

(
b− γ′w|ψ

)] = min
γ̃
E

[
Var

(
b− γ̃′w|ψ

)]
= min

α̃, γ̃
E

[
Var

(
b− α̃′z− γ̃′w|ψ

)] = min
β
E

[
Var

(
b−β′h|ψ

)]
.

The second equality since z = z(ψ). This completes the proof.

A.7 Proofs for Section 3.4

Proof of Theorem 3.15. By Frisch–Waugh, Y̌i = θ̂FEĎi + γ̂′
FEȟi + ei with Ďi = Di −

k−1 ∑
j∈g(i)Dj =Di − p and ȟi = hi − k−1 ∑

j∈g(i) hj . Applying Frisch–Waugh again, the

estimator is θ̂FE = En[(D̄i )2]−1En[D̄iYi] with D̄i = (Di − p) − (En[ȟiȟi
′
]−1En[ȟi(Di −
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p)])′ȟi. By Lemma A.8, we have En[ȟiȟi
′
]
p→ k−1

k E[Var(h|ψ)] � 0, so that En[ȟiȟi
′
]−1 =

Op(1). By the definition of stratification,En[(Di−p)1(g(i) = g)] = 0 for all g. Then defin-
ing h̄g ≡ k−1 ∑

j∈g hj , we may write

En
[
(Di −p)ȟi

] =En
[

(Di −p)

(
hi −

∑
g

1
(
g(i) = g)h̄g)]

=En
[
(Di −p)hi

] =Op
(
n−1/2).

The final equality since E[|h|2
2] < ∞ and by Lemma A.2 of Cytrynbaum (2023). Then

apparently En[(D̃i )2] = En[(Di − p)2] + Op(n−1 ), so that En[(D̃i )2]−1 = (p − p2 )−1 +
Op(n−1 ). Then we have shown that

θ̂FE = En
[
(Di −p)Yi

]
p−p2 − En

[
ȟi(Di −p)

]′
En

[
ȟiȟi

′]−1
En[ȟiYi]

p−p2 +Op
(
n−1)

= θ̂− (h̄1 − h̄0 )′En
[
ȟiȟi

′]−1
En[ȟiYi] +Op

(
n−1).

By Lemma A.8, we have

En[ȟiYi] =En
[
ȟiDiYi(1)

] +En
[
ȟi(1 −Di )Yi(0)

]
= p(k− 1)

k
E

[
Cov

(
h, Y (1)|ψ

)] + (1 −p)(k− 1)
k

E
[
Cov

(
h, Y (0)|ψ

)] + op(1)

= (k− 1)
k

E
[
Cov

(
h, p ·m1(X ) + (1 −p) ·m0(X )|ψ

)] + op(1).

Putting this together, we have c−1
p En[ȟiȟi

′
]−1En[ȟiYi]

p→E[Var(h|ψ)]−1E[Cov(h, f |ψ)] =
argminγ E[Var(f − γ′h|ψ)]. Similar reasoning shows that γ̂FE = En[ȟiȟi

′
]−1En[ȟiYi] +

Op(n−1/2 ). Then we have representation θ̂FE = θ̂− (c−1
p γ̂FE )′(h̄1 − h̄0 )cp+op(n−1/2 ). The

efficiency claims follow identically to the reasoning in Theorem A.4. This completes the
proof.

Proof of Theorem 3.23 (Part I). Consider the regression Yi ∼Di(1, ȟi ) + (1 −Di )(1,
ȟi ) with ȟi = hi − k−1 ∑

j∈g(i) hj . Denote the OLS coefficients by (ĉ1, α̂1 ) and (ĉ0, α̂0 ),
respectively. By Frisch–Waugh, the coefficient (ĉ1, α̂1 ) is given by the equation Yi =
ĉ1 + α̂′

1ȟi + ei with En[ei(1, ȟi )|Di = 1] = 0. By the usual OLS formula, α̂1 = Varn(ȟi|Di =
1)−1 Covn(ȟi, Yi|Di = 1). Observe that by definition of stratification

Pn
(
g(i) = g|Di = 1

) = Pn
(
Di = 1|g(i) = g)Pn(g(i) = g)

Pn(Di = 1)
= Pn

(
g(i) = g).

This shows that En[En[hi|g(i)]|Di = 1] =En[En[hi|g(i)]] =En[hi], so that En[ȟi|Di = 1] =
En[hi|Di = 1] −En[hi] =En[p−1(Di −p)hi] =Op(n−1/2 ) as above. Then we have

Varn(ȟi|Di = 1) =En
[
ȟiȟ

′
i|Di = 1

] −En[ȟi|Di = 1]En[ȟi|Di = 1]′

=En
[
ȟiȟ

′
i|Di = 1

] +Op
(
n−1).
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Similarly, Covn(ȟi, Yi|Di = 1) =En[ȟiYi|Di = 1] +Op(n−1/2 ). Then we have

α̂1 =En
[
ȟiȟ

′
i|Di = 1

]−1
En[ȟiYi|Di = 1] +Op

(
n−1/2)

= k− 1
k

k

k− 1
E

[
Var(h|ψ)

]−1
E

[
Cov

(
h, Y (1)|ψ

)] + op(1)

by Lemma A.8. Similarly, α̂0 = E[Var(h|ψ)]−1E[Cov(h, Y (0)|ψ)] + op(1). By the usual

OLS formula, the constant term ĉ1 has form ĉ1 = En[Yi|Di = 1] − α̂′
1En[ȟi|Di = 1] and

similarly for ĉ0. By change of variables used in the proof of Theorem 3.2, our estimator

θ̃= ĉ1 − ĉ0 =En[Yi|Di = 1] −En[Yi|Di = 0] − [̂
α′

1En[ȟi|Di = 1] − α̂′
0En[ȟi|Di = 0]

]
= θ̂−En

[
α̂′

1hi(Di −p)
p

+ α̂′
0hi(Di −p)

1 −p
]

= θ̂−
[
α̂1

√
1 −p
p

+ α̂0

√
p

1 −p
]′
En

[
hi(Di −p)√
p−p2

]
.

Define γ̂ = α̂1

√
1−p
p + α̂0

√
p

1−p . Then by work above

γ̂ =E[
Var(h|ψ)

]−1
E

[
Cov

(
h,

√
1 −p
p

Y (1) +
√

p

1 −pY (0)|ψ
)]

+ op(1)

=E[
Var(h|ψ)

]−1
E

[
Cov(h, b|ψ)

] + op(1) = argmin
γ

E
[
Var

(
b− γ′h|ψ

)] + op(1).

Then applying Theorem 3.4 completes the proof. As before, α̂1 = â1 + â0 and α̂0 = â0 by
change of variables.

Proof of Theorem 3.23 (Part II). Next, we analyze the group OLS estimator. By The-
orem 3.4, it suffices to show that γ̂G = Varg(hg )−1 Covg(hg, yg ) = cp · E[Var(h|ψ)]−1 ×
E[Cov(h, b|ψ)] + op(1). For the first term, note that Eg[hg] = Op(n−1/2 ) as above, so
that Var(hg ) =Eg[hgh′

g] −Eg[hg]Eg[hg]′ =Eg[hgh′
g] +Op(n−1 ). Similarly, Covg(hg, yg ) =

Eg[hgyg] +Op(n−1/2 ). Applying Lemma A.7 to each component of hih′
i shows that

Eg
[
hgh

′
g

] = k

n

∑
g

(
k−1

∑
i∈g

hi(Di −p)

p−p2

)(
k−1

∑
i∈g

h′
i(Di −p)

p−p2

)
= kE

[
Var(h|ψ)

]
a(k− a)

+ op(1).

Using the fundamental expansion of the IPW estimator, we have

Eg[yghg] = k

n

∑
g

(
k−1

∑
i∈g

hi(Di −p)

p−p2

)(
k−1

∑
i∈g

Yi(Di −p)

p−p2

)

= k

n

∑
g

(
k−1

∑
i∈g

hi(Di −p)

p−p2

)
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×
(
k−1

∑
i∈g
c(Xi ) + bi(Di −p)√

p−p2
+ Diε

1
i

p
− (1 −Di )ε0

i

1 −p
)

≡An +Bn +Cn.

First, note thatAn =Op(n−1/2 ) and Cn =Op(n−1/2 ) by Lemma A.7. Moreover, we have

Bn = k

n

∑
g

(
k−1

∑
i∈g

hi(Di −p)

p−p2

)(
k−1

∑
i∈g

bi(Di −p)√
p−p2

)

= k
√
p−p2

a(k− a)
E

[
Cov(h, b|ψ)

] + op(1) = E
[
Cov(h, b|ψ)

]√
a(k− a)

+ op(1).

Putting this together, by continuous mapping, we have

γ̂G = Varg(hg )−1 Covg(hg, yg )

= a(k− a)
k

1√
a(k− a)

E
[
Var(h|ψ)

]−1
E

[
Cov(h, b|ψ)

] + op(1)

=
√
p−p2E

[
Var(h|ψ)

]−1
E

[
Cov(h, b|ψ)

] + op(1).

Applying Theorem 3.4 completes the proof.

Proof of Theorem 3.23 (Part III). Finally, we analyze the ToM estimator. From the
work in Part I of this proof, we have

γ̂PL = Varn(ȟi|Di = 1)−1 Covn(ȟi, Yi|Di = 1)

√
1 −p
p

+ Varn(ȟi|Di = 0)−1 Covn(ȟi, Yi|Di = 0)
√

p

1 −p .

Comparing with Equation (3.10), it suffices to show that Varn(ȟi|Di = 1)−1 Varn(ȟi ) =
op(1) and Varn(ȟi|Di = 0)−1 Varn(ȟi ) = op(1). This follows immediately from Lemma
A.8. Applying Theorem 3.4 completes the proof.

Proof of Theorem 3.24. First, consider the fixed-effects estimator with

Yi = ĉ+ τ̂FEDi + γ̂′
FEȟi + γ̂′

zzi + ei,1.

Note that D̃i =Di −p and ȟi −En[ȟi] = ȟi − (En[hi] −En[En[hi|gi = g]) = ȟi. By Frisch–
Waugh, we may instead study Yi = τ̂FE(Di −p) + γ̂′

FEȟi + γ̂′
zz̃i + ei,2. Let w̌i = (ȟi, z̃i ) and

wi = (hi, zi ). Then by work in Theorem 3.15, τ̂FE =En[(D̄i )2]−1En[D̄iYi] with

D̄i = (Di −p) − (
En

[
w̌iw̌

′
i

]−1
En

[
w̌i(Di −p)

])′
w̌i.
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Previous work suffices to show that En[w̌i(Di − p)] = Op(n−1/2 ). Then as before,
En[(D̄i )2]−1 = (p−p2 )−1 +Op(n−1 ). Then we have

τ̂FE = θ̂− (
p−p2)−1(

En
[
w̌iw̌

′
i

]−1
En

[
w̌i(Di −p)

])′
En[w̌iYi]

= θ̂− (w̄1 − w̄0 )′En
[
w̌iw̌

′
i

]−1
En[w̌iYi].

The second equality usesEn[ȟi(Di−p)] =En[hi(Di−p)] andEn[z̃i(Di−p)] =En[zi(Di−
p)] as noted before. This shows the claim about estimator representation.

Next, consider γ̂FE. Define gi = (Di−p, z̃i ). Let h̄i = ȟi−(En[gig′
i]

−1En[giȟi])′gi. Then

by Frisch–Waugh γ̂FE = En[h̄ih̄i
′
]−1En[h̄iYi]. Consider En[z̃iȟi] = En[ziȟi] since En[ȟi] =

0. We have En[ziȟi] = op(1) by Lemma A.8. Then by previous work En[giȟi] = op(1).

Then En[h̄ih̄i
′
] = En[ȟiȟ′

i] + op(1). Similarly, En[h̄iYi] = En[ȟiYi] + op(1). Then by con-

tinuous mapping γ̂FE =En[h̄ih̄i
′
]−1En[h̄iYi] =En[ȟiȟ′

i]
−1En[ȟiYi]+op(1), the coefficient

from the regression without strata variables zi included shown in Theorem 3.15. Con-
sider the coefficient γ̂z on z(ψ). Let qi = (Di−p, ȟi ) and z̄i = z̃i− (En[qiq′

i]
−1En[qiz̃i])′qi.

We just showed that En[qiz̃i] = op(1). Then by similar reasoning as above and Frisch–
Waugh,

γ̂z =En
[
z̄iz̄i

′]−1
En[z̄iYi] =En

[
z̃iz̃

′
i

]−1
En[z̃iYi] + op(1)

= Var(z)−1 Cov
(
z, pm1 + (1 −p)m0

) + op(1) = cpVar(z)−1 Cov(z, f ) + op(1).

Our work so far also shows that En[w̌iw̌′
i]

p→ Diag(En[ȟiȟ′
i], En[z̃iz̃′

i]). Then it is easy to
see from our expression for τ̂FE that we may identify γ̂z = α̂1 +op(1). This completes the
proof for τ̂FE. The proofs for the modified partialled Lin estimator τ̂PL and modified ToM
estimators are similar and omitted for brevity.

A.8 Proofs for Section 4

Proof of Theorem 4.1. Define population augmented potential outcomes Yb(d) =
Y (d) − cpγ

′h(X ) for d ∈ {0, 1} with outcomes Ybi = Ybi (Di ) = Yi − cpγ
′hi. The proof of

Theorem 3.4 showed that θ̂adj = Ȳ b1 −Ȳ b0 +op(n−1/2 ). Define v̂b1, v̂b0, and v̂b10 to be the ana-
logues of v̂1, v̂0, and v̂10 substituting Ybi for Yai . By applying Theorem 6.1 of Cytrynbaum
(2023) to θ̂b ≡ Ȳ b1 − Ȳ b0 , we have V̂b = V + op(1) for variance estimator

V̂b = Varn

(
(Di −p)Ybi
p−p2

)
− v̂b1 − v̂b0 − 2̂vb10.

Then it suffices to show the following claim: V̂ − V̂b = op(1). We prove a slight generaliza-
tion, letting hi(d) possibly have a potential outcomes structure and setting hi = hi(Di ).
The case with hi(1) = hi(0) = hi is a special case.

We work term by term. Define the weights Li = (Di − p)/(p − p2 ). Then we
have Varn(LiYbi ) − Varn(LiYai ) = En[L2

i (Ybi )2] −En[LiYbi ]2 −En[L2
i (Yai )2] +En[LiYai ]2.

We have En[LiYai ]2 − En[LiYbi ]2 = ATE2 −ATE2 +op(1) = op(1) by previous work.
Next, we have |En[L2

i (Ybi )2] − En[L2
i (Yai )2]| = |En[L2

i (Ybi − Yai )(Ybi + Yai )]| � En[(Ybi −
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Yai )2]1/2En[(Ybi + Yai )2]1/2. It is easy to see that En[(Ybi + Yai )2]1/2 = Op(1). We have
En[(Ybi − Yai )2] = c2

pEn[(γ′hi − γ̂′hi )2] = c2
p(γ̂ − γ)′En[hih′

i](γ̂ − γ) = op(1). This shows

that Varn(LiYbi ) − Varn(LiYai ) = op(1), completing the proof for the first term.
Next, consider v̂b1 − v̂1. We may expand

v̂b1 − v̂1 = n−1
∑
g∈Gνn

1
a(g) − 1

1 −p
p2

∑
i =j∈g

DiDj
(
Yai Y

a
j −Ybi Ybj

)
.

Note that Yai Y
a
j −Ybi Ybj = (Yai −Ybi )Yaj +Ybi (Yaj −Ybj ) = cp(γ̂−γ)′(hiYaj +Ybi hj ). Then

by triangle inequality and Cauchy–Schwarz,

∣∣̂vb1 − v̂1
∣∣ =

∣∣∣∣cp(γ̂− γ)′n−1
∑
g∈Gνn

1
a(g) − 1

1 −p
p2

∑
i =j∈g

DiDj
(
hiY

a
j +Ybi hj

)∣∣∣∣
� |γ̂− γ|2

(
n−1

∑
g∈Gνn

∑
i =j∈g

|hi|2
∣∣Yaj ∣∣ + ∣∣Ybi ∣∣|hj|2).

Observe that∑
i =j∈g

|hi|2
∣∣Yaj ∣∣ ≤ (1/2)

∑
i =j∈g

|hi|22 + ∣∣Yaj ∣∣2 = k− 1
2

∑
i∈g

|hi|22 + ∣∣Yai ∣∣2
.

Then since Gνn is a partition of [n], we have |̂vb1 − v̂1| � |γ̂ − γ|2En[|hi|2
2 + |Yai |2] =

op(1)Op(1) = op(1). Then by symmetry v̂b0 − v̂0 = op(1) as well. A similar calculation
shows that v̂b10 − v̂10 = op(1). Then we have shown that V̂b− V̂ = op(1), which completes
the proof.

A.9 Proofs of noncompliance theorems

Proof of Theorems A.1, A.2, A.3. First, we show Theorem A.1. Define θ̂W (α) = W̄1 −
W̄0 − α′(h̄1 − h̄0 )cp and similarly for θ̂D(α). We claim that τ̂adj = θ̂W (γW )/θ̂D(γD ) +
op(n−1/2 ). By algebra, we have

τ̂adj − θ̂W (γW )

θ̂D(γD )
= θ̂D(γD )(γ̂W − γW )′(h̄1 − h̄0 )cp + θ̂W (γW )(γD − γ̂D )′(h̄1 − h̄0 )cp

θ̂D(γD )θ̂D(γ̂D )
.

By Theorem 3.4, θ̂D(γD ), θ̂D(γ̂D ) = τD+op(1) with τD > 0, so the denominator isOp(1).
The numerator is op(n−1/2 ) since θ̂D(γD ), θ̂W (γW ) =Op(1) and (γ̂A−γA )′(h̄1 − h̄0 )cp =
op(n−1/2 ) for A = D,W by the first line of the proof of Theorem 3.4. Next, recall the
potential outcomesQ(z) =W (z) − τLD(z) and define γQ = γW − τLγD. Then we have

θ̂W (γW )

θ̂D(γD )
− τL = θ̂W (γW ) − τLθ̂D(γD )

θ̂D(γD )
= θ̂Q(γQ )

θ̂D(γD )
.
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The ATE-like quantity E[Q(1) −Q(0)] = 0 by definition of τL. Then by Theorem 3.4, we

have
√
nθ̂Q(γQ ) ⇒ N (0, VQ ) with variance

VQ = Var(cQ ) +E[
Var

(
bQ − h′γQ|ψ

)] +E
[
σ2

1Q(X )

p
+ σ2

0Q(X )

1 −p
]

. (A.4)

The claim now follows by Slutsky since θ̂D(γD ) = E[D(1) − D(0)] + op(1), so that√
n(τ̂adj − τL ) = √

nθ̂Q(γQ )/θ̂D(γD ) + op(1) = √
nθ̂Q(γQ )/E[D(1) −D(0)] + op(1).

Next, we prove Theorem A.2. By linearity of the balance function (Equation (2.2)), we

have bQ = bW − τLbD. The optimal coefficient is γ∗
Q = E[Var(h|ψ)]−1E[Cov(h, bQ|ψ)] =

E[Var(h|ψ)]−1(E[Cov(h, bW |ψ)]−τLE[Cov(h, bD|ψ)]) = γ∗
W −τLγ∗

D. This shows that τ̂adj

is efficient if and only if γW −τLγD = γ∗
W −τLγ∗

D. In particular, this holds if γW = γ∗
W and

γD = γ∗
D. By the estimator representations in Section 3.4, the estimator θ̂Wk = W̄1 − W̄0 −

γ̂′
W ,k(h̄1 − h̄0 )cp for γ̂W ,k = γ∗

W + op(1) for k ∈ {PL, GO, TM }, and similarly for θ̂Dk . Then

τ̂kL is efficient for each k ∈ {PL, GO, TM }.

Finally, we show Theorem A.3. With γQ = γW − τLγD, define the “population” aug-

mented potential outcomes Qb(z) = Q(z) − h′γQ and outcomes Qbi = Qi − h′
iγQ. Let

V̂ aQ denote the bracketed term in Equation (4.1), and let V̂ bQ denote the bracketed

term with Qai replaced by the population version Qbi . Note that we showed above that√
n(Q̄b1 − Q̄b0 ) ⇒ N(0, VQ ). Then V̂ bQ = VQ + op(1) by Theorem 4.1. Then it suffices to

show that V̂ bQ − V̂ aQ = op(1). To see this, note that we may write Qbi = Wi − β′Si and

Qai =Wi − β̂′Si with β̂= β+ op(1) for β̂= (τ̂kL, γ̂Q ), β= (τL, γQ ), and Si = (Di, hi ). Then

the fact that V̂ bQ− V̂ aQ = op(1) for outcomes of this form and β̂= β+op(1) is exactly what

we showed in the main claim in the proof of Theorem 4.1. This completes the proof.

A.10 Technical lemmas

Lemma A.5 (Conditional convergence). Let (Gn )n≥1 and (An )n≥1 a sequence of σ-

algebras and RV’s. Then the following results hold:

(i) E[|An||Gn] = op(1)/Op(1) =⇒ An = op(1)/Op(1).

(ii) Var(An|Gn ) = op(c2
n )/Op(c2

n ) =⇒ An−E[An|Gn] = op(cn )/Op(cn ) for any positive

sequence (cn )n.

(iii) If (An )n≥1 hasAn ≤ Ā <∞ Gn-a.s. ∀n andAn = op(1) =⇒ E[|An||Gn] = op(1).

See Appendix C of Cytrynbaum (2023) for the proof.

Lemma A.6. Let (ai ), (bi ), (ci ) be positive scalar arrays for i ∈ I for some index set I. Then

we have
∑

i,j,s∈I
i =j,j =s

aibjcs ≤ 3
∑
i∈I(a3

i + b3
i + c3

i ).
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Proof. Note that by AM-GM inequality and Jensen, for nonnegative x, y, z we have
xyz ≤ ((1/3)(x+ y + z))3 ≤ (1/3)(x3 + y3 + z3 ). Applying this gives

∑
i,j,s

i =j,j =s

aibjcs ≤
(∑

i

ai

)(∑
j

bj

)(∑
s

cs

)

≤ (1/3)

[(∑
i

ai

)3

+
(∑

j

bj

)3

+
(∑

s

cs

)3]
≤ 3

∑
i

(
a3
i + b3

i + c3
i

)
.

Lemma A.7 (Group OLS). Let h, w : X → R. Denote hi = h(Xi ) and wi =w(Xi ) and sup-
pose E[hi|ψi = ψ] and E[wi|ψi = ψ] are Lipschitz continuous. Suppose E[h4

i ] < ∞ and
E[w4

i ]<∞. Let εdi = Yi(d) −md(Xi ) for d ∈ {0, 1}. Then we have

An = n−1
∑
g

(
k−1

∑
i∈g

hi(Di −p)

p−p2

)(
k−1

∑
i∈g

wi(Di −p)

p−p2

)
= E

[
Cov(h, w|ψ)

]
a(k− a)

+ op(1),

Bn = n−1
∑
g

(
k−1

∑
i∈g

hi(Di −p)

p−p2

)(
k−1

∑
i∈g
wi

)
=Op

(
n−1/2),

Cn =
∑
g

(
k−1

∑
i∈g

hi(Di −p)

p−p2

)(
k−1

∑
i∈g

Diε
1
i

p
− (1 −Di )ε0

i

1 −p
)

=Op
(
n−1/2).

Proof. Define h̄g1 = a−1 ∑
i∈g hi1(Di = 1), h̄g0 = (k− a)−1 ∑

i∈g hi1(Di = 0), and w̄g =
k−1 ∑

i∈g wi. Recall that g ∈ σ(ψ1:n, πn ) for each g and D1:n ∈ σ(ψ1:n, πn, τ) for an ex-
ogenous variable τ ⊥⊥ (X1:n, Y (0)1:n, Y (1)1:n ) used to randomize treatments. Notice that
k−1 ∑

i∈g
hi(Di−p)
p−p2 = h̄g1 − h̄g0. First, consider Bn. By Lemma C.10 of Cytrynbaum (2023),

we have E[Bn|X1:n, πn] = 0. Next, we have

E
[
B2
n|X1:n, πn

]
=E

[
n−2

∑
g,g′

(
k−1

∑
i∈g

hi(Di −p)

p−p2

)(
k−1

∑
i∈g′

hi(Di −p)

p−p2

)
w̄gw̄g′|X1:n, πn

]

=E
[
n−2

∑
g

(
k−1

∑
i∈g

hi(Di −p)

p−p2

)2

w̄2
g|X1:n, πn

]
.

The second equality follows by Lemma C.10 of Cytrynbaum (2023), since Cov(Di,Dj|
X1:n, πn ) = 0 if i, j are in different groups. We may calculate

E

[(
k−1

∑
i∈g

hi(Di −p)

p−p2

)2 ∣∣∣∣X1:n, πn

]

= 1

k2(p−p2)2

∑
i∈g
h2
i Var(Di|X1:n, πn )
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+ 1

k2(p−p2)2

∑
i =j∈g

hihj Cov(Di,Dj|X1:n, πn )

= 1

k2(p−p2)[∑
i∈g
h2
i − (k− 1)−1

∑
i =j∈g

hihj

]
.

Note that
∑
i =j∈g |hihj| ≤ (

∑
i∈g |hi|)2 = k2(k−1 ∑

i∈g |hi|)2 ≤ k
∑
i∈g |hi|2, the final in-

equality by Jensen. Then by triangle inequality, a simple calculation gives

1

k2

∣∣∣∣∑
i∈g
h2
i − (k− 1)−1

∑
i =j∈g

hihj

∣∣∣∣ ≤ 1

k2

2k− 1
k− 1

∑
i∈g
h2
i ≤ 3k−2

∑
i∈g
h2
i .

Then continuing from above

E
[
B2
n|X1:n, πn

]
� k−2n−2

∑
g

(∑
i∈g
h2
i

)(∑
i∈g
wi

)2

≤ 1

kn2

∑
g

(∑
i∈g
h2
i

)(∑
i∈g
w2
i

)

≤ 1

2kn2

∑
g

[(∑
i∈g
h2
i

)2

+
(∑
i∈g
w2
i

)2]
= (2n)−1En

[
h4
i +w4

i

] =Op
(
n−1).

The second inequality follows from Jensen, and the third by Young’s inequality. The first
equality by Jensen and final equality by our moment assumption. Then by Lemma A.5,
Bn =Op(n−1/2 ).

Next, considerAn. Using the within-group covariances above, we compute

E[An|X1:n, πn] = 1

nk2(p−p2)2

∑
g

∑
i,j∈g

Cov(Di,Dj|X1:n, πn )hiwj

= 1

nk2(p−p2)2

∑
g

(∑
i∈g

(
p−p2)hiwi − ∑

i =j∈g

a(k− a)

k2(k− 1)
hiwj

)

= 1

k2(p−p2)(
En[hiwi] − 1

n(k− 1)

∑
g

∑
i =j∈g

hiwj

)
.

Define ui =wi −E[wi|ψi] and vi = hi −E[hi|ψi]. Consider the second term. We have

n−1
∑
g

∑
i =j∈g

hiwj = n−1
∑
g

∑
i =j∈g

(
E[hi|ψi] + vi

)(
E[wj|ψj ] + uj

) ≡
4∑
l=1

An,l.

First, note that for any scalars aibj + ajbi = aibi + ajbj + (ai − aj )(bj − bi ). Then we have

An,1 ≡ n−1
∑
g

∑
i =j∈g

E[hi|ψi]E[wj|ψj ]

= n−1
∑
g

∑
i<j∈g

E[hi|ψi]E[wj|ψj ] +E[hj|ψj ]E[wi|ψi]
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= n−1
∑
g

∑
i<j∈g

E[hi|ψi]E[wi|ψi] +E[hj|ψj ]E[wj|ψj ]

+ n−1
∑
g

∑
i<j∈g

(
E[hi|ψi] −E[hj|ψj ]

)(
E[wj|ψj ] −E[wi|ψi]

) ≡ Bn,1 +Cn,1.

By counting ordered tuples (i, j), it is easy to see that

Bn,1 = n−1
∑
g

∑
i∈g

(k− 1)E[hi|ψi]E[wi|ψi] = (k− 1)En
[
E[hi|ψi]E[wi|ψi]

]
= (k− 1)E

[
E[hi|ψi]E[wi|ψi]

] + op(1) = (k− 1)
(
E[hiwi] −E[viui]

) + op(1).

For the second term, by our Lipschitz assumptions we have |Cn,1| � n−1 ∑
g

∑
i<j∈g |ψi−

ψj|2
2 = op(1). Next, claim thatAn,l = op(1) for l= 2, 3, 4. For instance, we have

E[An,2|ψ1:n, πn] = n−1
∑
g

∑
i =j∈g

E
[
E[hi|ψi]uj|ψ1:n, πn

] = 0.

Since E[uj|ψ1:n, πn] = E[uj|ψj ] = 0 by Lemma 9.21 of Cytrynbaum (2022). Moreover, we
have

E
[
A2
n,2|ψ1:n, πn

] = n−2
∑
g,g′

∑
i =j∈g

∑
s =t∈g′

E[hi|ψi]E[hs|ψs]E[ujut|ψ1:n, πn].

For j = t, we have E[ujut|ψ1:n, πn] = E[uj|ψj ]E[ut|ψt ] = 0 by Lemma 9.21 of the paper
above. Since the groups g are disjoint, and using E[u2

j |ψ1:n, πn] =E[u2
j |ψj ],

E
[
A2
n,2|ψ1:n, πn

] = n−2
∑
g

∑
i,j,s∈g
i =j,j =s

E[hi|ψi]E[hs|ψs]E
[
u2
j |ψj

]

≤ 3n−2
∑
g

∑
i∈g

2E[hi|ψi]
3 +E[

u2
i |ψi

]3

= 3n−1En
[
2E[hi|ψi]

3 +E[
u2
i |ψi

]3] =Op
(
n−1).

Then we have shown An,2 = Op(n−1/2 ) by Lemma A.5. The proof for l = 3, 4 is almost
identical. Summarizing, the work above has shown that

E[An|X1:n, πn] = 1

k2(p−p2)(
En[hiwi] − 1

k− 1
(k− 1)

(
E[hiwi] −E[viui]

)) + op(1)

= 1

k2(p−p2)E[viui] + op(1) = E
[
Cov(h, w|ψ)

]
a(k− a)

+ op(1).

Next, we claim that Var(An|X1:n, πn ) = op(1). Define �h,g = k−1 ∑
i∈g

hi(Di−p)
p−p2 , then

Var(An|X1:n, πn ) = n−2
∑
g,g′

Cov(�h,g�w,g, �h,g′�w,g′|X1:n, πn ).
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Note that �h,g�w,g ⊥⊥ �h,g′�w,g′|X1:n, πn for g = g′, since treatment assignments are
(conditionally) independent between groups. Then the on-diagonal terms are

Var(An|X1:n, πn ) = n−2
∑
g

Var
((
k−1

∑
i∈g

hi(Di −p)

p−p2

)(
k−1

∑
i∈g

wi(Di −p)

p−p2

) ∣∣∣∣X1:n, πn

)

= n−2k−4(p−p)−4
∑
g

Var
(∑
i,j∈g

hiwj(Di −p)(Dj −p)|X1:n, πn

)
.

The inner variance term can be expanded as∑
i,j∈g

∑
s,t∈g

hiwjhswt Cov
(
(Di −p)(Dj −p), (Ds −p)(Dt −p)|X1:n, πn

)
.

We have | Cov((Di−p)(Dj−p), (Ds−p)(Dt−p)|X1:n, πn )| ≤ 2 since |(Di−p)| ≤ 1 for all
i ∈ [n]. Using Lemma 9.17 in Cytrynbaum (2022), the previous display is bounded above
by

∑
i,j∈g

∑
s,t∈g |hiwjhswt| · 2 ≤ 2k3 ∑

i∈g(h4
i +w4

i ). Putting this all together,

Var(An|X1:n, πn ) ≤ 2n−2k−4(p−p)−4k3
∑
g

∑
i∈g

(
h4
i +w4

i

)
= 2n−1k−1(p−p)−4En

[
h4
i +w4

i

] =Op
(
n−1)

By conditional Markov, this shows that An −E[An|X1:n, πn] =Op(n−1/2 ). Then we have

shown thatAn = E[Cov(h,w|ψ)]
a(k−a) + op(1).

Finally, we consider Cn. Note that g,D1:n ∈ σ(X1:n, πn, τ) and E[εdi |X1:n, πn, τ] =
E[εdi |Xi] = 0 for d = 0, 1 by Lemma 9.21 of Cytrynbaum (2022), so we have E[Cn|X1:n,
πn, τ] = 0. Next, we claim that E[C2

n|X1:n, πn, τ] =Op(n−1 ). Note that C2
n can be written

1

n2k4

∑
g,g′

(∑
i,j∈g

∑
s,t∈g′

hi(Di −p)

p−p2

(
Djε

1
j

p
− (1 −Dj )ε0

j

1 −p
)
hs(Ds −p)

p−p2

(
Dtε

1
t

p
− (1 −Dt )ε0

t

1 −p
))

.

We have E[εdj ε
d′
t |X1:n, πn, τ] = E[εdj |Xj ]E[εd

′
t |Xt ] = 0 for any j = t by Lemma 9.21 of

Cytrynbaum (2022). By group disjointness, the term E[C2
n|X1:n, πn, τ] simplifies to

1

n2k4

∑
g

( ∑
i,j,s∈g

hi(Di −p)

p−p2

hs(Ds −p)

p−p2 E

[(
Djε

1
j

p
− (1 −Dj )ε0

j

1 −p
)2 ∣∣∣∣X1:n, πn, τ

])
.

We have E[(εdi )2|X1:n, πn, τ] = E[(εdi )2|Xi] = σ2
d (Xi ). Then by Young’s inequality and

Lemma 9.21 of the paper above

E

[(
Djε

1
j

p
− (1 −Dj )ε0

j

1 −p
)2 ∣∣∣∣X1:n, πn, τ

]
≤ 2

(
p∧ (1 −p)

)−1(
σ2

1 (Xj ) + σ2
0 (Xj )

)
.
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Taking the absolute value of the second to last display and using triangle inequality gives
the upper bound:

2
[
n2k4(p−p2)2(

p∧ (1 −p)
)]−1 ∑

g

( ∑
i,j,s∈g

|hihs|
(
σ2

1 (Xj ) + σ2
0 (Xj )

))

� n−2
∑
g

( ∑
i,j,s∈g

|hihs|2 + (
σ2

1 (Xj ) + σ2
0 (Xj )

)2
)

≤ n−1k2En
[(
σ2

1 (Xi ) + σ2
0 (Xi )

)2] + n−2k
∑
g

∑
i,s∈g

|hihs|2.

By Young’s inequality and assumption E[En[(σ2
1 (Xi ) + σ2

0 (Xi ))2]] ≤ 2E[σ2
1 (Xi )2 +

σ2
0 (Xi )2]<∞. For the second term, using Jensen, we have

n−1
∑
g

∑
i,s∈g

|hihs|2 = n−1
∑
g

(∑
i∈g

|hi|2
)2

≤ kn−1En
[
h4
i

] =Op(1).

Then we have shown that E[C2
n|X1:n, πn, τ] = Op(n−1 ), so by conditional Markov in-

equality in Lemma A.5, Cn =Op(n−1/2 ). This completes the proof.

Lemma A.8 (Partialled Lin). Under assumptions, En[ȟizi] = op(1). Also, we have

En
[
Diȟiȟ

′
i

] = p(k− 1)
k

E
[
Var(h|ψ)

] + op(1),

En
[
ȟiȟ

′
i

] = k− 1
k

E
[
Var(h|ψ)

] + op(1),

En[DiȟiYi] = p(k− 1)
k

E
[
Cov(h,m1|ψ)

] + op(1),

En
[
(1 −Di )ȟiYi

] = (1 −p)(k− 1)
k

E
[
Cov(h,m0|ψ)

] + op(1).

Proof. First, observe that

ȟi = hi − k−1
∑
j∈g(i)

hj = k− 1
k

· hi − k−1
∑

j∈g(i)\{i}

hj = k−1
∑

j∈g(i)\{i}

(hi − hj ).

Note that En[Diȟiȟi] = En[(Di − p)ȟiȟi] + pEn[ȟiȟi]. We claim that En[(Di − p)ȟiȟi] =
Op(n−1/2 ). For 1 ≤ t, t ′ ≤ dh, by Lemma A.2 of Cytrynbaum (2022) and Cauchy–Schwarz,

we have Var(
√
nEn[(Di − p)ȟit ȟit ′ ]|X1:n, πn ) ≤ 2En[ȟ2

it ȟ
2
it ′ ] ≤ 2En[ȟ4

it ]
1/2En[ȟ4

it ′ ]
1/2. Next,

note that by Jensen’s followed by Young’s inequality

ȟ4
it =

(k− 1)4

k4

(
1

k− 1

∑
j∈g(i)\{i}

(hit − hjt )
)4

≤ (k− 1)3

k4

∑
j∈g(i)\{i}

(hit − hjt )4

≤ 8
(k− 1)3

k4

∑
j∈g(i)\{i}

(
h4
it + h4

jt

) ≤ 8
(k− 1)3

k4

(
(k− 1)h4

it +
∑

j∈g(i)\{i}

h4
jt

)
.
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By counting, we have En[
∑
j∈g(i)\{i} h

4
jt ] = (k − 1)En[h4

it ]. Putting this all together,

En[ȟ4
it ] � En[h4

it ] = Op(1). Then Var(
√
nEn[(Di − p)ȟit ȟit ′ ]|X1:n, πn ) = Op(1), so that

En[(Di − p)ȟit ȟit ′ ] = Op(n−1/2 ) by Lemma A.5. Then it suffices to show the claim for

En[ȟiȟi]. Let fit =E[ht(Xi )|ψi] and write hit = fit + uit . Then we have

En[ȟit ȟit ′ ] = 1

nk2

∑
i

( ∑
j∈g(i)\{i}

hit − hjt
)( ∑

l∈g(i)\{i}

hit ′ − hlt ′
)

= 1

nk2

∑
i

Di
∑

j,l∈g(i)\{i}

(hit − hjt )(hit ′ − hlt ′ ).

We can expand the expression above as

1

nk2

∑
i

∑
j,l∈g(i)\{i}

[
(fit − fjt )(fit ′ − flt ′ ) + (fit − fjt )(uit ′ − ult ′ )

+ (uit − ujt )(fit ′ − flt ′ ) + (uit − ujt )(uit ′ − ult ′ )
] ≡An +Bn +Cn +Dn.

First, considerAn. By the Lipschitz assumption in 3.1 and Young’s inequality,

|An| ≤ 1

nk2

∑
i

∑
j,l∈g\{i}

|fit − fjt ||fit ′ − flt ′ | � 1

nk2

∑
i

∑
j,l∈g\{i}

|ψi −ψj|2|ψi −ψl|2

≤ 2

nk2

∑
i

∑
j,l∈g\{i}

(|ψi −ψj|22 + |ψi −ψl|22
) = 4(k− 1)

nk2

∑
g

∑
i,j∈g

|ψi −ψj|22 = op(1).

The second to last equality by counting and the final equality by Assumption 2.1.
Next, consider Bn. Note that each g ∈ σ(ψ1:n, πn ) and E[uit|ψ1:n, πn] = E[uit|ψi] = 0, so
E[Bn|ψ1:n, πn] = 0. We can rewrite the sum∑

i

∑
j,l∈g\{i}

(fit − fjt )(uit ′ − ult ′ ) =
∑
g

∑
i,j,l∈g
j,l =i

(fit − fjt )(uit ′ − ult ′ ).

Then we may compute Var(
√
nBn|ψ1:n, πn ) =E[nB2

n|ψ1:n, πn] as follows. By Lemma 9.21
of Cytrynbaum (2022), E[uit ′ujt ′|ψ1:n, πn] = 0 for any g(i) = g(j), so we only consider the
diagonal

0 ≤ 1

nk4

∑
g

∑
i,j,l∈g
j,l =i

∑
a,b,c∈g
b,c =a

E
[
(fit − fjt )(fat − fbt )(uit ′ − ult ′ )(uat ′ − uct ′ )|ψ1:n, πn

]

≤ n−1
∑
g

∑
i,j,l∈g
j,l =i

∑
a,b,c∈g
b,c =a

|fit − fjt ||fat − fbt |
∣∣E[

(uit ′ − ult ′ )(uat ′ − uct ′ )|ψ1:n, πn
]∣∣

� n−1
∑
g

max
i,j∈g

|ψi −ψj|22
∑
i,j,l∈g
j,l =i

∑
a,b,c∈g
b,c =a

∣∣E[
(uit ′ − ult ′ )(uat ′ − uct ′ )|ψ1:n, πn

]∣∣.
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Next, by Lemma 9.21 of Cytrynbaum (2022), E[(uit ′ − ult ′ )(uat ′ − uct ′ )|ψ1:n, πn] is

δaiE
[
u2
it ′|ψi

] − δlaE
[
u2
at ′|ψa

] − δciE
[
u2
it ′|ψi

] + δlcE
[
u2
lt ′|ψl

]
.

Applying the triangle inequality and summing out using this relation, the above is

≤ 4k(k− 1)3

n

∑
g

max
i,j∈g

|ψi −ψj|22
∑
i∈g
E

[
u2
it ′|ψi

]
� n−1

∑
g

(
max
i,j∈g

|ψi −ψj|42 +
∑
i∈g
E

[
u2
it ′|ψi

]2
)

≤ n−1
∑
g

Diam
(
Supp(ψ)

)2 ∑
i,j∈g

|ψi −ψj|22 +En
[
E

[
u2
it ′|ψi

]2]
.

We claim that E[u4
it ′ ] < ∞. Note that E[u4

it ′ ] = E[(hit ′ − fit ′ )4] ≤ 8E[h4
it ′ ] + 8E[f 4

it ′ ] by
Young’s inequality. We have E[h4

it ′ ] < ∞ by assumption. Note that E[f 4
it ′ ] ≤ Cf |ψi|4 ≤

Cf Diam(Supp(ψ))4 <∞ by Assumption 3.1, with Lipschitz constant Cf . Then E[u4
it ′ ]<

∞, so E[En[E[u2
it ′|ψi]

2]] = E[E[u2
it ′|ψi]

2] ≤ E[u4
it ′ ] < ∞. The inequality follows by con-

ditional Jensen and tower law. Then En[E[u2
it ′|ψi]

2 = Op(1) by Markov inequality. Then
using Assumption 2.1 in the display above, we have shown E[nB2

n|ψ1:n, πn] =Op(1) and
by Lemma A.5 we have shown Bn = Op(n−1/2 ). We have Cn = Op(n−1/2 ) by symmetry.
Finally, considerDn. By Lemma 9.21 of Cytrynbaum (2022), compute E[(uit −ujt )(uit ′ −
ult ′ )|ψ1:n, πn] =E[uituit ′|ψi] +E[ujtujt ′|ψj ]δjl for j, l = i. Then we calculate

E[Dn|ψ1:n, πn] = 1

nk2

∑
i

∑
j,l∈g(i)\{i}

E[uituit ′|ψi] +E[ujtujt ′|ψj ]1(j = l)

= 1

nk2

∑
i

(k− 1)2E[uituit ′|ψi] + 1

nk2

∑
i

∑
j∈g(i)\{i}

E[ujtujt ′|ψj ]

= (k− 1)2

nk2

∑
i

E[uituit ′|ψi] + k− 1

nk2

∑
i

E[uituit ′|ψi]

= k(k− 1)

nk2

∑
i

E[uituit ′|ψi].

Now, E[E[uituit ′|ψi]2] ≤ E[u2
itu

2
it ′ ] ≤ 2E[u4

it ] + 2E[u4
it ′ ]<∞ by Jensen, tower law, Young’s,

and work above. Then by Chebyshev (k−1)
nk

∑
i E[uituit ′|ψi] = k−1

k E[uituit ′ ] +Op(n−1/2 ) =
k−1
k E[Cov(hit , hit ′|ψi )] + Op(n−1/2 ). Then we have shown E[Dn|ψ1:n, πn] = k−1

k ×
E[Cov(hit , hit ′|ψi )] + Op(n−1/2 ). Next, we claim that Var(

√
nDn|ψ1:n, πn ) = Op(1). Fol-

lowing the steps above for Bn replacing terms shows that Var(
√
nDn|ψ1:n, πn ) is

0 ≤ 1

nk4

∑
g

∑
i,j,l∈g
j,l =i

∑
a,b,c∈g
b,c =a

Cov
(
(uit − ujt )(uit ′ − ult ′ ), (uat − ubt )(uat ′ − uct ′ )|ψ1:n, πn

)
.
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For any variables A, B, | Cov(A, B)| ≤ |E[AB]| + |E[A]E[B]| ≤ 2|A|2|B|2 by Cauchy–
Schwarz and increasing Lp(P) norms. By Young’s inequality, (a − b)4 ≤ 8(a4 + b4 ) for
any a, b ∈R. Then using these facts,∣∣Cov

(
(uit − ujt )(uit ′ − ult ′ ), (uat − ubt )(uat ′ − uct ′ )|ψ1:n, πn

)∣∣
≤ 2E

[
(uit − ujt )2(uit ′ − ult ′ )2|ψ1:n, πn

]1/2
E

[
(uat − ubt )2(uat ′ − uct ′ )2|ψ1:n, πn

]1/2

≤ 4E
[
(uit − ujt )2(uit ′ − ult ′ )2|ψ1:n, πn

] + 4E
[
(uat − ubt )2(uat ′ − uct ′ )2|ψ1:n, πn

]
≤ 2E

[
(uit − ujt )4 + (uit ′ − ult ′ )4|ψ1:n, πn

] + 2E
[
(uat − ubt )4 + (uat ′ − uct ′ )4|ψ1:n, πn

]
≤ 16

(
E

[
u4
it + u4

jt + u4
it ′ + u4

lt ′|ψ1:n, πn
] +E[

u4
at + u4

bt + uat ′ + u4
ct ′|ψ1:n, πn

])
= 16

(
2E

[
u4
it|ψi

] +E[
u4
jt|ψj

] +E[
u4
lt ′|ψl

] + 2E
[
u4
at|ψa

] +E[
u4
bt|ψb

] +E[
u4
ct ′|ψc

])
.

Plugging this bound in above and summing out gives

Var(
√
nDn|ψ1:n, πn ) ≤ 32k5

nk4

∑
g

∑
i∈g
E

[
u4
it|ψi

] �En
[
E

[
u4
it|ψi

]] =Op(1).

The final equality by Markov since E[u4
it ]<∞. Then by conditional Markov A.5, we have

Dn = k−1
k E[Cov(hit , hit ′|ψi )] +Op(n−1/2 ). Since t, t ′ were arbitrary, this shows En[ȟiȟ′

i] =
E[Var(h|ψ)] + op(1).

Next, consider En[DiȟiYi] = En[(Di − p)ȟiYi(1)] + pEn[ȟiYi(1)]. We claim that
En[(Di − p)ȟiYi(1)] = Op(n−1/2 ). For 1 ≤ t ≤ dh, by Lemma A.2 of Cytrynbaum (2023),
and Cauchy–Schwarz,

Var
(√
nEn

[
(Di −p)ȟitYi(1)

]
|X1:n, Y (1)1:n, πn

) ≤ 2En
[
ȟ2
itYi(1)2]

≤ 2En
[
ȟ4
it

]1/2
En

[
Yi(1)4]1/2

.

Note that En[Yi(1)4] = Op(1) by Markov inequality and Assumption 3.1 and En[ȟ4
it ] =

Op(1) was shown above. Then by Lemma A.5 (conditional Markov), this shows the claim.

Then it suffices to analyze En[ȟiYi(1)]. Let gi = E[Yi(1)|ψi] and vi = Yi(1) − gi with
E[vi|ψi] = 0. Then as above, we may expand

En
[
ȟiYi(1)

] = 1
nk

∑
i

( ∑
j∈g(i)\{i}

fit − fjt + uit − ujt
)

(gi + vi )

= 1
nk

∑
i

∑
j∈g(i)\{i}

(fit − fjt )gi + (fit − fjt )vi + (uit − ujt )gi + (uit − ujt )vi

≡Hn + Jn +Kn +Ln.

First, consider Hn. By Assumption 3.1, ψ→ g(ψ) is continuous and Supp(ψ) ⊆ B̄(0,K)
compact, so supψ∈B̄(0,K) |g(ψ)| ≡K′ <∞ and |gi| ≤K′ a.s. Then we have

|Hn| � n−1
∑
i

∑
j∈g(i)\{i}

|ψi −ψj|2|gi| � n−1
∑
g

∑
i,j∈g

|ψi −ψj|2 = op(1).
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For the final equality, note that here we have the unsquared norm, different from As-
sumption 2.1. Proposition 8.6 of Cytrynbaum (2022) showed that this quantity is also
op(1). By substituting zi for gi, which satisfies the same conditions, this also shows that

En[ziȟ′
i] = op(1). The proof that Jn,Kn =Op(n−1/2 ) are similar to the termsBn,Cn above.

Next, consider Ln. We have

E[Ln|ψ1:n, πn] = 1
nk

∑
i

∑
j∈g(i)\{i}

E
[
(uit − ujt )vi|ψ1:n, πn

]
= 1
nk

∑
i

∑
j∈g(i)\{i}

E[uitvi|ψi] = k− 1
k

En
[
E[uitvi|ψi]

]
= k− 1

k
E

[
Cov

(
hit , Yi(1)|ψi

)] +Op
(
n−1/2).

The second equality follows since j = i and by Lemma 9.21 of Cytrynbaum (2022). The
third equality by counting. For the last equality, note that by Jensen, tower law, Young’s
inequality E[E[uitvi|ψi]2] ≤ E[u2

itv
2
i ] ≤ (1/2)(E[u4

it ] + E[v4
i ]). We showed E[u4

it ] < ∞
above and a similar proof applies to vi. Then the final equality above follows by Cheby-
shev. The proof that Var(Ln|ψ1:n, πn ) =Op(n−1/2 ) is similar to our analysis of Dn above.

Then we have shown En[DiȟiYi] = pk−1
k E[Cov(h, Y (1)|ψ)] + op(1). The conclusion for

En[(1 −Di )ȟiYi] follows by symmetry. This completes the proof.
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