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Appendix A: Proofs

As a service to the reader, we collect here the key notational conventions and give a for-
mulaic description of the asymptotic RV variance σ2

RV. Additionally, we present a lemma
that serves as the foundation for multiple subsequent proofs.

For any variable y, we let y = y− wE[w′w]−1E[w′y], ŷ = y− w(w′w)−1w′y. Predicted
markups are �zm = z�m where �m = E[z′z]−1E[z′�m]. The GMM objective functions are
Qm = g′

mW gm where gm = E[zi(pi − �mi )] and W = E[ziz′
i]

−1 with sample analogs of

Q̂m = ĝ′
mŴ ĝm where ĝm = n−1ẑ′(p̂− �̂m ) and Ŵ = n(ẑ′ẑ)−1. The RV test statistic is TRV =√

n(Q̂1 − Q̂2 )/σ̂RV where

σ̂2
RV = 4

[
ĝ′

1Ŵ
1/2V̂ RV

11 Ŵ
1/2ĝ1 + ĝ′

2Ŵ
1/2V̂ RV

22 Ŵ
1/2ĝ2 − 2ĝ′

1Ŵ
1/2V̂ RV

12 Ŵ
1/2ĝ2

]
(31)

and the variance estimators are V̂ RV
�k = 1

n

∑n
i=1 ψ̂�iψ̂

′
ki for the influence function

ψ̂mi = Ŵ 1/2(ẑi(p̂i − �̂mi ) − ĝm
) − 1

2
Ŵ 3/4(ẑiẑ′

i − Ŵ −1)Ŵ 3/4ĝm. (32)

The AR statistic is TAR
m = nπ̂ ′

m(V̂ AR
mm )−1π̂m for π̂m = Ŵ ĝm, V̂ AR

�k = 1
n

∑n
i=1 φ̂�iφ̂

′
ki,

φ̂mi = Ŵ
(
ẑi(p̂i − �̂mi ) − ĝm

) − Ŵ (
ẑiẑ

′
i − Ŵ −1)Ŵ ĝm. (33)

Also, πm = Wgm. V̂ AR
mm is the White heteroskedasticity-robust variance estimator, since

we also have φ̂mi = Ŵ ẑi(p̂i − �̂mi − ẑ′
iπ̂m ).
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To state the following lemma and give a formulation of σ2
RV, we introduce population

versions of ψ̂mi and φ̂mi along with notation for their variances. Let ψmi =W 1/2zi(pi −
�mi ) − 1

2W
3/4ziz

′
iW

3/4gm− 1
2W

1/2gm andφmi =W ziemi. Also, let V RV
�k =E[ψ�iψ′

ki], V
AR
�k =

E[φ�iφ′
ki], and V RV = E[(ψ′

1i, ψ
′
2i )

′(ψ′
1i, ψ

′
2i )], which is a matrix with V RV

11 , V RV
12 , and V RV

22
as its entries. Finally,

σ2
RV = 4

[
g′

1W
1/2V RV

11 W
1/2g1 + g′

2W
1/2V RV

22 W
1/2g2 − 2g′

1W
1/2V RV

12 W
1/2g2

]
. (34)

Lemma A.1. Suppose Assumptions 1 and 2 hold. For �, k,m ∈ {1, 2}, we have

(i)
√
n

(
Ŵ 1/2ĝ1 −W 1/2g1

Ŵ 1/2ĝ2 −W 1/2g2

)
d−→N

(
0, V RV)

, (ii) V̂ RV
�k

p−→ V RV
�k , (35)

(iii)
√
n(π̂m −πm )

d−→N
(
0, V AR

m

)
, (iv) V̂ AR

m

p−→ V AR
m . (36)

Proof. See Appendix J.

Remark 1. From parts (iii) and (iv), it immediately follows that TAR
m

d−→ χ2
dz

under HAR
0,m

so that the AR tests are asymptotically valid when Assumptions 1 and 2 hold. When As-
sumption ND also holds, it follows from parts (i), (ii), and a first-order Taylor approxi-

mation that TRV d−→N(0, 1) underHRV
0 so that the RV test is asymptotically valid. Details

of this step can be found in Rivers and Vuong (2002), Hall and Pelletier (2011), and are
omitted. When Assumption ND fails to hold, a first-order Taylor approximation does not
capture the behavior of TRV as discussed in Section 5.

For the next two proofs, we rely on the following sequence of equalities:

E
[(
�z0i −�zmi

)2] =E[(
z′
i(�0 − �m )

)2]
(37)

= (�0 − �m )′E
[
ziz

′
i

]
(�0 − �m ) (38)

=E[
zi(�0i −�mi )

]′
E

[
ziz

′
i

]−1
E

[
zi(�0i −�mi )

]
(39)

=E[
zi(pi −�mi )

]′
E

[
ziz

′
i

]−1
E

[
zi(pi −�mi )

]
(40)

= πmE
[
ziz

′
i

]
πm =Qm. (41)

The first equality follows from�zmi = zi�m, the third is implied by�m =E[z′z]−1E[z′�m] =
E[ziz′

i]
−1E[zi�mi], the fourth is a consequence of E[ziω0i] = 0, W = E[ziz′

i]
−1, and

�0i = pi − ω0i, and the fifth and final equalities follow from πm = Wgm and gm =
E[zi(pi −�mi )].

Proof of Lemma 1. In our parametric framework, the falsifiable condition in Equation
(28) of Berry and Haile (2014) is39

E[pi −�mi|zi, wi] = wiτ+E[ω0i|zi, wi] a.s. (42)

39See Section 6, Case 2 in Berry and Haile (2014) for a discussion of their nonparametric environment.
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This equation, together with residualization against wi and integration over the distri-
bution of wi, then implies that

E[pi −�mi|zi] =E[ω0i|zi] a.s. (43)

Integrating the above against zi, using the assumption E[ziω0i] = 0, and relying on the
law of iterated expectations, then yields

E
[
zi(pi −�mi )

] = 0 (44)

Finally, we note the equivalence

E
[(
�z0i −�zmi

)2] = 0 ⇔ E
[
zi(pi −�mi )

] = 0 (45)

which follows from (37), (40), and E[ziz′
i] being positive definite. Thus, we have shown

that Equation (28) of Berry and Haile (2014) implies (3).

Proof of Proposition 1. For (i), we need to show the equivalence

πm = 0 ⇔ E
[(
�z0i −�zmi

)2] = 0 (46)

This equivalence is a consequence of Equations (37) and (41) in addition toE[ziz′
i] being

positive definite. For (ii), we we need to show the equivalence

Q1 −Q2 = 0 ⇔ E
[(
�z0i −�z1i

)2] −E[(
�z0i −�z2i

)2] = 0. (47)

This equivalence is a consequence of Equations (37) and (41).

Proof of Proposition 2. For (i), we use Equations (38) and (41) in addition to the def-
inition of the local alternative in Equation (13) to write

√
n(Q1 −Q2 ) = √

n
(
(�0 − �1 ) − (�0 − �2 )

)′
E

[
ziz

′
i

](
(�0 − �1 ) + (�0 − �2 )

)
(48)

= q′E
[
ziz

′
i

](
(�0 − �1 ) + (�0 − �2 )

)
. (49)

Assumption 2, part (iii), implies that (�0 − �1 ) + (�0 − �2 ) is bounded. We therefore
assume essentially without loss of generality that

√
n(Q1 − Q2 ) is a constant, say c.40

From Equations (37) and (41), we can also write

c = √
n
(
E

[(
�z0i −�z1i

)2] −E[(
�z0i −�z2i

)2])
(50)

=E[(
�RV,z

0i −�RV,z
1i

)2] −E[(
�RV,z

0i −�RV,z
2i

)2]
. (51)

As in Remark 1, a first-order Taylor expansion, Lemma A.1, parts (i) and (ii), together
with consistency of σ̂2

RV now leads to

TRV = c

σRV
+ g′

1W
1/2Ŵ 1/2ĝ1 − g′

2W
1/2Ŵ 1/2ĝ2

σRV
+ op(1)

d−→N(c, 1). (52)

40This assumption is essentially without loss of generality since the boundedness of (�0 − �1 ) + (�0 −
�2 ) and, therefore, of

√
n(Q1 −Q2 ), allows us to otherwise argue along subsequences where

√
n(Q1 −Q2 )

converges to a constant.
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For (ii), we first note that Assumption 3 implies that

V AR
mm =E[

ziz
′
i

]−1
E

[
e2
miziz

′
i

]
E

[
ziz

′
i

]−1 = σ2
mE

[
ziz

′
i

]
. (53)

Thus, we have from Equations (38) and (41) that

σ2
mnπ

′
m

(
V AR
mm

)−1
πm = n(�0 − �m )′E

[
ziz

′
i

]
(�0 − �m ) = q′

mE
[
ziz

′
i

]
qm, (54)

which in turn yields that nπ′
m(V AR

mm )−1πm =E[(�AR,z
0i −�AR,z

mi )2]/σ2
m is a constant, say cm.

From Lemma A.1, parts (iii) and (iv), and continuous mapping, we then have

TAR
m = nπ̂′

m

(
V̂ AR
mm

)−1
π̂m = nπ̂ ′

m

(
V AR
mm

)−1
π̂m + op(1)

d−→ χ2
dz

(cm ).

Proof of Proposition 3 and Corollary 1. From Equations (37) and (38), we have
equivalence between E[(�z0i − �zmi )

2] = 0 and �0 − �m = 0. Furthermore, we recall that
πm = �0 − �m. Thus, we only need to show that σ2

RV = 0 if and only if πm = 0 for all
m ∈ {1, 2}. Rewriting Equation (34) in matrix notation, we have

σ2
RV = 4

(
W −1/2π1

W −1/2π2

)′ [
V RV

11 −V RV
12

−V RV
12 V RV

22

](
W −1/2π1

W −1/2π2

)
. (55)

Therefore, the claims to be proven follow from positive definiteness of the variance ma-
trix V RV = E[(ψ′

1i, ψ
′
2i )

′(ψ′
1i, ψ

′
2i )], which is the matrix with V RV

11 , V RV
12 , and V RV

22 as its en-
tries.

To show that V RV is positive definite, we take an arbitrary nonzero, nonrandom vec-
tor v = (v′

1, v′
2 )′ ∈ R

2dz . V RV is positive definite if E(v′
1ψ1i + v′

2ψ2i )2 > 0 for any such
v. For certain implied nonrandom u = (u′

1, u′
2 )′ and t = (t ′1, t ′2 )′ where t is nonzero, we

have E(v′
1ψ1i + v′

2ψ2i )2 = E(u′
1zi · u′

2zi + t ′1zi · e1i + t ′2zi · e2i )2. Because σ2
12 < σ

2
1σ

2
2 (As-

sumption 3), we have that E(t ′1zi · e1i + t ′2zi · e2i )2 > 0. Therefore, we can only have
E(v′

1ψ1i + v′
2ψ2i )2 = 0 if e1i or e2i is a linear function of zi almost surely. However, be-

cause E[ziemi] = 0, such dependence is ruled out by σ2
m > 0 (Assumption 3).

Proof of Proposition 4. The proof proceeds in three steps. Step (1) provides a func-

tion of the data (�̃′−, �̃′+ )′ and two constants μ−, μ+ such that (�̃′−, �̃′+ )′ d−→ (�′−,�′+ )′.
All of (�̃′−, �̃′+ )′, μ−, and μ+ are also functions of the DGP. Step (2) establishes parts (ii)–
(iv). Step (3) shows that |TRV| = |�̃′−�̃+|/(‖�̃−‖2 + ‖�̃+‖2 + 2ρ�̃′−�̃+ + op(1))1/2 and
F = (‖�̃−‖2 + ‖�̃+‖2 − 2ρ�̃′−�̃+ )/(2dz ) + op(1). Part (i) follows from continuous map-
ping, step (1), and step (3).

Step (1) We first provide definitions of μ− and μ+. Let τ+ = 2(σ2
1 +σ2

2 + 2σ12 )1/2 and
τ− = 2(σ2

1 + σ2
2 − 2σ12 )1/2 and use these two positive constants to define(

μ1

μ2

)
=

(
1
τ−

+ 1
τ+

)( √
nW 1/2g1

−√
nW 1/2g2

)
+

(
1
τ−

− 1
τ+

)(
−√

nW 1/2g2√
nW 1/2g1

)
. (56)

Defining κ= 1 + 1{‖μ1‖ ≤ ‖μ2‖}, we then let μ− = ‖μκ‖−‖μ3−κ‖ and μ+ = ‖μ1‖+‖μ2‖.
Since the instruments are weak for testing, we have that

√
nW 1/2gm =E[ziz′

i]
1/2qm so μ−

and μ+ do not depend on n.
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To introduce �̃− and �̃+, we let Qm ∈ R
dz×dz be a nonrandom orthogonal matrix

(QmQ′
m = Q′

mQm = Idz ) such that Qmμm = ‖μm‖e1. With these matrices in hand, we de-
fine �̃− = μ̃κ − μ̃3−κ and �̃+ = μ̃1 + μ̃2 where(

μ̃1

μ̃2

)
=

(
1
τ−

+ 1
τ+

)( √
nQ1Ŵ

1/2ĝ1

−√
nQ2Ŵ

1/2ĝ2

)
+

(
1
τ−

− 1
τ+

)(
−√

nQ1Ŵ
1/2ĝ2√

nQ2Ŵ
1/2ĝ1

)
. (57)

The preceding definitions imply that (�̃′−, �̃′+ )′ = √
nA(ĝ′

1Ŵ
1/2, ĝ′

2Ŵ
1/2 )′ for a par-

ticular nonrandom matrix A ∈ R
2dz×2dz with

√
nA(g′

1W
1/2, g′

2W
1/2 )′ = (μ−e′

1, μ+e′
1 )′.

Since μ− and μ+ do not depend on n, it therefore follows from Lemma A.1, part (i), that

(�̃′−, �̃′+ )′ d−→ (�′−,�′+ )′ provided that AV RVA′ = [ 1 ρ
ρ 1

] ⊗ Idz where ρ is the correlation
between eκi − e3−κ,i and e1i + e2i. To see why this convergence occurs, note first that
weak instruments for testing (Assumption 4) implies that gm = O(n−1/2 ) for m = 1, 2,
which in turn yields that the second part of ψmi is Op(n−1/2 ). From Assumption 3, we
then have

V RV
�k =W 1/2E

[
e�iekiziz

′
i

]
W 1/2 +O(

n−1/2) = σ�kIdz +O(
n−1/2), (58)

where we write σmm for σ2
m. Thus, we have that V RV = [ σ2

1 σ12

σ12 σ2
2

] ⊗ Idz . Furthermore, we

note thatA takes the form

A=
[

(−1)3−κI (−1)κI
I I

][
Q1 0
0 Q2

][
I I

I −I

][
Iτ−1− 0

0 Iτ−1+

][
I −I
I I

]
(59)

and leave the verification ofA(
[ σ2

1 σ12

σ12 σ2
2

] ⊗ Idz )A′ = [ 1 ρ
ρ 1

] ⊗ Idz to the reader.

Step (2) Part (iv) is an immediate implication of the triangle inequality and the def-
initions μ− = ‖μκ‖ − ‖μ3−κ‖ and μ+ = ‖μ1‖ + ‖μ2‖. For part (ii), we have that μ− = 0 if
and only if ‖μ1‖2 − ‖μ2‖2 = 0. In turn, we have that

‖μ1‖2 − ‖μ2‖2 = n((τ−1− + τ−1+
)2 − (

τ−1− − τ−1+
)2)

(Q1 −Q2 ) (60)

= 4n(τ+τ− )−1(Q1 −Q2 ), (61)

from which part (ii) is immediate. For part (iii), we have thatμ+ = 0 if and only if ‖μ1‖2 +
‖μ2‖2 = 0. We now have

‖μ1‖2 + ‖μ2‖2 = n
(
W 1/2g1

W 1/2g2

)′
A′A

(
W 1/2g1

W 1/2g2

)

= n
(
W −1/2π1

W −1/2π2

)′
A′A

(
W −1/2π1

W −1/2π2

)
, (62)

so part (iii) follows from the positive definiteness of both W and the matrix A′A =
4
[ τ−2+ +τ−2− τ−2+ −τ−2−
τ−2+ −τ−2− τ−2+ +τ−2−

] ⊗ Idz .
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Step (3) For TRV, we first consider the numerator. Here, we observe that

�̃′−�̃+ = μ̃′
κμ̃κ − μ̃′

3−κμ̃3−κ = 4n(τ+τ− )−1(Q̂κ − Q̂3−κ ) (63)

so that
√
n|Q̂1 − Q̂2| = (τ+τ−/4)|�̃′−�̃+|/√n. For the denominator, we initially note that

Lemma A.1, part (ii), and Equation (58) yields that

(τ+τ−/4)−2nσ̂2
RV = 43n

τ2+τ2−

[
σ2

1 Q̂1 + σ2
2 Q̂2 − 2σ12ĝ

′
1Ŵ ĝ2

] + op(1). (64)

Similarly, we can calculate that

‖�̃−‖2 + ‖�̃+‖2 + 2ρ�̃′−�̃+

= n
(
Ŵ 1/2ĝ1

Ŵ 1/2ĝ2

)′
A′(

[
1 ρ

ρ 1

]
⊗ Idz )A

(
Ŵ 1/2ĝ1

Ŵ 1/2ĝ2

)
(65)

= 42n

(
Ŵ 1/2ĝ1

Ŵ 1/2ĝ2

)′ (
4

τ2+τ2−

[
σ2

1 −σ12

−σ12 σ2
2

]
⊗ Idz

)(
Ŵ 1/2ĝ1

Ŵ 1/2ĝ2

)
(66)

= 43n

τ2+τ2−

[
σ2

1 Q̂1 + σ2
2 Q̂2 − 2σ12ĝ

′
1Ŵ ĝ2

]
, (67)

where the second equality follows from the last sentences of steps (1) and (2) together
with [

τ−2+ + τ−2− τ−2+ − τ−2−
τ−2+ − τ−2− τ−2+ + τ−2−

][
σ2

1 σ12

σ12 σ2
2

][
τ−2+ + τ−2− τ−2+ − τ−2−
τ−2+ − τ−2− τ−2+ + τ−2−

]

=
[
σ2

1 −σ12

−σ12 σ2
2

]
4

τ2+τ2−
. (68)

Thus, we have the desired conclusion

∣∣TRV
∣∣ = √

n
|Q̂1 − Q̂2|
σ̂RV

= 4n(τ+τ− )−1/2|Q̂1 − Q̂2|((
τ+τ−/42)−1

nσ̂2
RV

)1/2 (69)

= ∣∣�̃′−�̃+
∣∣/(‖�̃−‖2 + ‖�̃+‖2 + 2κ�̃′−�̃+ + op(1)

)1/2
(70)

For F , we first note that standard arguments lead to

2dzF = n(1 − ρ̂2) σ̂2
2 ĝ

′
1Ŵ ĝ1 + σ̂2

1 ĝ
′
2Ŵ ĝ2 − 2σ̂12ĝ

′
1Ŵ ĝ2

σ̂2
1 σ̂

2
2 − σ̂2

12

(71)

= n(1 − ρ2)σ2
2 Q̂1 + σ2

1 Q̂2 − 2σ12ĝ
′
1Ŵ ĝ2

σ2
1σ

2
2 − σ2

12

+ op(1). (72)
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Similarly, we can calculate that

‖�̃−‖2 + ‖�̃+‖2 − 2ρ�̃′−�̃+

= n
(
Ŵ 1/2ĝ1

Ŵ 1/2ĝ2

)′
A′(

[
1 −ρ

−ρ 1

]
⊗ Idz )A

(
Ŵ 1/2ĝ1

Ŵ 1/2ĝ2

)
(73)

= n(1 − ρ2)(
Ŵ 1/2ĝ1

Ŵ 1/2ĝ2

)′ ([σ2
1 σ12

σ12 σ2
2

]−1

⊗ Idz
)(
Ŵ 1/2ĝ1

Ŵ 1/2ĝ2

)
(74)

= n(1 − ρ2)σ2
2 Q̂1 + σ2

1 Q̂2 − 2σ12ĝ
′
1Ŵ ĝ2

σ2
1σ

2
2 − σ2

12

, (75)

which follows from inverting the equality in the last sentence of step (1).

Appendix B: Testing with nonconstant marginal cost

In this Appendix, we discuss how the results of the paper are preserved in a more gen-
eral setting where marginal cost depends on quantity sold. While in the paper, we derive
results assuming constant marginal cost, this is an important extension. It is well known
going back to Bresnahan (1982) and Lau (1982) that the requirements for testing con-
duct are greater when marginal cost is nonconstant. Thus, the reader may wonder if the
results of our paper would be qualitatively different in a more general setting.

Let qi denote quantity, and consider a separable cost function:

ci = c̄(qi, wi; τ) +ωi, (76)

where c̄ is specified up to some cost parameters τ. The specification of marginal cost
that we adopt in the paper is a special case where c̄(qi, wi; τ) = wiτ.

There are two additional cases to consider. The first concerns the researcher know-
ing the true value of τ. We can define �̄mi = �mi + c̄(qi, wi; τ): this term is pinned down
by a model of conductm, and a cost function c̄. In this case, we can test alternative pairs
of models of conduct and cost functions with the methods described in the paper. In
particular, that can be done by replacing �m in the paper with �̄m. The set of instru-
ments z must include w in this case, but since c̄ is fully specified, there is no additional
requirement on instruments.

Alternatively, when τ is unknown to the researcher, she can estimate it under a model
of conduct m either as a preliminary step, or simultaneously with testing, as she would
in the case of constant marginal cost. However, excluded instruments are now needed
to estimate τ, and thus must be sufficient to identify τ under the true model of conduct.
If a researcher pursues a sequential approach, the researcher can construct ωmi = pi −
�mi − c̄(qi, wi; τm ) and perform testing after having estimated τm under each model.

The results in the paper are still applicable as long as the researcher adjusts the stan-
dard errors of the RV test statistic and the effective F-statistic. As there may exist models,
falsified by a set of instruments under constant marginal cost, which are not falsified
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by those same instruments with a more flexible marginal cost specification, degener-
acy is more likely to occur when cost is nonconstant. This is akin to the classic exam-
ple of demand shifters in Bresnahan (1982). More specifically, Corollary 3 in Magnolfi,
Quint, Sullivan, and Waldfogel (2022) shows that falsification does not necessarily re-
quire rotators, but rather two sets of economically distinct variables—intuitively, after
using some exogenous variation to pin down the slope of marginal cost implied by a
given model, we need to have some residual exogenous variation to falsify models of
conduct. For instance, two cost shifters of the same rivals will not be enough, but cost
shifters of two different firms may be sufficient to falsify models of conduct. While this
is an additional requirement as compared to falsification in the constant marginal cost
case, conditional on having this additional variation, our discussion of falsification in
the constant marginal cost case goes through. As this setup places additional require-
ments on the instruments, evaluating the quality of the inference on conduct using our
diagnostic is even more important in this setting. However, beyond the extra burden, the
testing problem is fundamentally unchanged, therefore the results in this paper apply.

This discussion makes it explicit that testing firm conduct also jointly tests models
of marginal cost. In fact, �̄m generalizes the term �̆m defined in Appendix E below. In
that Appendix, we show that cost misspecification can be incorporated in �̆m, and thus
be understood as markup misspecification. Here, misspecification of c̄ is manifested as
misspecification of �̄m. If one is flexible in specifying c̄, misspecification of �̄m largely
concerns misspecification of �m and, therefore, conduct. Finally, this formulation shows
that the methods described in the paper can be used to test models of cost, even when
conduct is known.

Appendix C: Standard error adjustments

This Appendix extends all our previously introduced statistics to take into account un-
certainty stemming from preliminary demand estimation as well as dependence across
observations. We suppose that �m is a function of demand parameters θD0 that are
estimated using a GMM estimator θ̂D. We therefore let W D denote the GMM weight
matrix and h(θD ) = 1

n

∑n
i=1 hi(θ

D ) the GMM sample moment function used. Further-
more, we let H = ∇θh(θ̂D ) be the gradient of the sample moment function h and let
Gm = − 1

n ẑ
′∇θ�̂m(θ̂D ) be the gradient of ĝm. Both gradients are with respect to θD.

RV test

The RV statistic with a two-step adjustment replaces V̂ RV
�k in the definition of σ̂2

RV with
Ṽ RV
�k = 1

n

∑n
i=1 ψ̃�iψ̃

′
ki. Here, the influence function ψ̃mi adjusts ψ̂mi to account for pre-

liminary demand estimation:

ψ̃mi = ψ̂mi − Ŵ 1/2Gm�
(
hi

(
θ̂D

) − h(
θ̂D

))
, (77)

where � = (H ′W DH )−1H ′W D. This is a standard adjustment for first-step estimation
based on the asymptotic approximation θ̂D − θD0 = −�h(θD0 ) + op(n−1/2 ).
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AR test

Analogously to the above, the AR statistics with a two-step adjustment replaces V̂ AR
mm

with Ṽ AR
mm where Ṽ AR

�k = 1
n

∑n
i=1 φ̃�iφ̃

′
ki. Here, the influence function φ̃mi adjusts φ̂mi =

Ŵ ẑi(p̂i − �̂mi − ẑ′
iπ̂i ) to account for preliminary demand estimation using the same ap-

proximation to θ̂D as above:

φ̃mi = φ̂mi − Ŵ Gm�m
(
hi

(
θ̂D

) − h(
θ̂D

))
. (78)

F-statistic

The F-statistic with a two-step adjustment replaces σ̂2
1 , σ̂2

2 , and σ̂12 in the definition of F
and ρ̂2 with σ̃2

m = d−1
z trace(Ṽ AR

mmŴ
−1 ) for m ∈ {1, 2} and σ̃12 = d−1

z trace(Ṽ AR
�k Ŵ

−1 ). Here,
Ṽ AR
�k and φ̃mi were introduced in the preceding paragraph.

An extension of Proposition 4 that accounts for two-step estimation can be estab-
lished under homoskedasticity, that is, when Ŵ −1/2Ṽ AR

�k Ŵ
−1/2 for �, k ∈ {1, 2} converge

in probability to diagonal matrices. In the absence of homoskedasticity, F is still infor-
mative about the strength of the instruments, but the exact thresholds for size control
reported in Table 1 may only be approximations to the true thresholds.

Dependence

Dependent data, for example, cluster sampling, is easily accommodated by adjustments
to V̂ RV

�k and V̂ AR
�k . If we let cij take the value one if observations i and j are deemed depen-

dent and zero otherwise, then the variance estimators used in the paper can be replaced
by

V̆ RV
�k = 1

n

n∑
i=1

n∑
j=1

cijψ̂�iψ̂
′
kj and V̆ AR

�k = 1
n

n∑
i=1

n∑
j=1

cijφ̂�iφ̂
′
kj . (79)

Combinations of two-step estimation and dependence are also handled by simply re-
placing ψ̂ and φ̂ by ψ̃ and φ̃ in the definitions of V̆ RV

�k and V̆ AR
�k . Provided that suitable

central limit theorem and laws of large numbers can be alluded to under the type of
dependence considered, any claims on asymptotic validity under strong instruments
made in the paper continue to hold. For clustered data, we refer to Hansen and Lee
(2019) for such results.

Appendix D: Other model assessment tests

In this section, we discuss the two other model assessment procedures used in the em-
pirical IO literature. Although the details of test performance differ across the three
model assessment procedures, EB and Cox share with AR the undesirable property that
inference on conduct is not valid under misspecification.
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Estimation Based test (EB)

A test of Equation (3) can be constructed by viewing the problem as one of inference
about a regression parameter. We refer to this approach as estimation based, or EB. One
way to implement an estimation based approach, proposed in Pakes (2017), is to con-
sider the equation41

p= �mθm +ωm, (80)

For each modelm, the null and alternative hypotheses for model assessment are

HEB
0,m : θm = 1 and HEB

A,m : θm �= 1. (81)

Note also that under the null we have that ωm =ω0 so that E[ziωmi] = 0.
With this formulation, a natural testing procedure to consider is then based on the

Wald statistic:

TEB
m = (θ̂m − 1)′V̂ −1

θ̂m
(θ̂m − 1), (82)

where θ̂m is the 2SLS estimator applied to the sample counterpart of Equation (80) and
V̂θ̂m is a consistent estimator of the variance of θ̂m. The asymptotic null distribution of

TEB
m is a χ2

1 distribution and the EB test at level α therefore rejects if TEB
m exceeds the α-th

quantile of that null distribution.
The EB test is similar to AR. We can, in general, show that if markups are misspeci-

fied, EB rejects the true model of conduct. To see this, note that

plimn−1TEB
m = (θm − 1)′V −1

θm
(θm − 1), (83)

where θm = plim θ̂m is given as

θm = 1 +E[
�zmi�

z
mi

]−1
E

[
�zmi

(
�z0i −�zmi

)]
(84)

Since V −1
θm

is strictly positive, plimn−1TEB = 0 if and only if θm = 1. Thus, EB asymptot-
ically rejects any model m for which E[�zmi(�

z
0i − �zmi )] �= 0 as plimn−1TEB

m = ∞ in that
case. Generically with misspecification, E[�zmi(�

z
0i − �zmi )] �= 0 for m = 1, 2, and EB re-

jects both models. In the presence of misspecification, a researcher is not guaranteed to
learn the true nature of conduct with this model assessment procedure.

Cox test (Cox)

The next testing procedure we consider is inspired by the Cox (1961) approach to testing
nonnested hypotheses. To perform a Cox test, we formulate two different pairs of null
and alternative hypotheses for each model m, based on the same moment conditions

41Alternatively, the procedure could be based on the regressionp= �θ+ω, where�= [�1, �2] is a n-by-2
vector of the implied markups for each of the two models. The analysis of this procedure is substantively
identical, except for the fact that this procedure requires at least two valid instruments.
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defined for RV. Specifically, for model m we formulate the null and alternative hypothe-
ses:

HCox
0,m : gm = 0 and HCox

A,m : g−m = 0, (85)

where −m denotes the opposite of model m. To implement the Cox test in our environ-
ment, one can follow Smith (1992). With ĝm as the finite sample analogue of the moment
conditions, the test statistic for modelm is

TCox
m =

√
n

σ̂Cox

(
ĝ′−mŴ ĝ−m − ĝ′

mŴ ĝm − (ĝ−m − ĝm )′Ŵ (ĝ−m − ĝm )
)

(86)

= 2
√
nĝ′
mŴ (ĝ−m − ĝm )
σ̂Cox

, (87)

where σ̂2
Cox = 4ĝ′−mV̂ AR

mmĝ−m is a consistent estimator of the asymptotic variance of the
numerator of TCox

m under the null. As shown in Smith (1992), this statistic is asymptot-
ically distributed according to a standard normal distribution under the null hypothe-
sis. Under the alternative, the mean of TCox

m is negative, so the test rejects for values of
TCox
m below the αth quantile of a standard normal distribution. As for the case of RV, the

asymptotic normal limit distribution requires that Assumption ND is satisfied.
The Cox test maintains—under the null and the alternative—that either of the two

candidate models is correctly specified. Thus, in the presence of misspecification, one
is neither under the null nor the alternative making the properties of the test hard to
characterize.

In practice, as n→ ∞, the Cox test statistic diverges. To see this, note that the plim of
TCox
m is given as

plimTCox
m = lim

n→∞
2
√
ng′
mW (g−m − gm )
σCox

(88)

= lim
n→∞

2
√
n
(∥∥W 1/2g1

∥∥∥∥W 1/2g2
∥∥ cos(ϑ) − ∥∥W 1/2g1

∥∥2)
σCox

, (89)

where σ2
Cox = 4g−mV AR

mmg−m and ϑ is the angle between W 1/2g1 and W 1/2g2. Suppose
now that model 1 is the true model, both models are misspecified, and model 1 has the
better fit, that is, 0 < ‖W 1/2g2‖−1‖W 1/2g1‖ < 1. While the RV test will select in favor of
model 1 in this case, the behavior of the Cox test depends on the angle ϑ:

plimTCox
1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

+∞, if cos(ϑ)>

∥∥W 1/2g1
∥∥∥∥W 1/2g2
∥∥ ,

−∞, if cos(ϑ)<

∥∥W 1/2g1
∥∥∥∥W 1/2g2
∥∥ .

(90)

If treated as a two-sided test, Cox therefore rejects the true model with probabil-
ity approaching one for all g1 and g2 except in the knife edge case of cos(ϑ) =
‖W 1/2g2‖−1‖W 1/2g1‖. If treated as a one-sided test, Cox may still reject the true model
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if cos(ϑ) is sufficiently small. By similar derivations and the ordering ‖W 1/2g1‖−1 ×
‖W 1/2g2‖ > 1 > cos(ϑ), it follows that plimTCox

2 = −∞, that is, the worse fitting model,
model 2, is rejected with probability approaching one in large samples. In summary,
if considered as a two-sided test the Cox test will reject both models in large samples,
while as a one-sided test, it can also lead the researcher to reject the true model of con-
duct even when the true model has better asymptotic fit than the wrong model.

Appendix E: Marginal cost misspecification

In Section 4.2, we consider the consequences of misspecification of markups, for ex-
ample, because of misspecification of the demand system. It is also possible that a
researcher misspecifies marginal cost. Here, we show that testing with misspecified
marginal costs can be reexpressed as testing with misspecifed markups so that the re-
sults in the previous section apply. As a leading example, we consider the case where the
researcher specifies wa, which are a subset of w. This could happen in practice because
the researcher does not observe all the variables that determine marginal cost or does
not specify those variables flexibly enough in constructing wa.42

To perform testing with misspecified costs, the researcher would residualize p, �1,
�2, and z with respect to wa instead of w. Let ya denote a generic variable y residualized
with respect to wa. Thus, with cost misspecification, both RV and AR depend on the
moment

E
[
za
i

(
pa
i −�a

mi

)] =E[
za
i

(
�a

0i − �̆a
mi

)]
, (91)

where �̆a
mi = �a

mi − waτ and wa is w residualized with respect to wa. When price is resid-
ualized with respect to cost shifters wa, the true cost shifters are not fully controlled
for and the fit of model m depends on the distance between �az

0 and �̆az
m . For example,

suppose model 1 is the true model and demand is correctly specified so that �0 = �1.
Model 1 is still falsified as �̆a

1 = �a
0 − waτ. Thus, when performing testing with misspec-

ified cost, it is as if the researcher performs testing with markups that have been mis-
specified by −waτ. We formalize the implications of cost misspecification on testing in
the following lemma.

Lemma 2. Suppose wa is a subset of w, all variables ya are residualized with respect to
wa, and Assumptions 1, 2, and ND are satisfied. Then, with probability approaching one
as n→ ∞:

(i) RV rejects the null of equal fit in favor of model 1 if E[(�az
0i − �̆az

1i )2] < E[(�az
0i −

�̆az
2i )2],

(ii) AR rejects the null of perfect fit for any modelmwith E[(�az
0i − �̆az

mi )
2] �= 0.

Thus, the effects of cost misspecification can be fully understood as markup mis-
specification.

42Under a mild exogeneity condition, the results here extend to the broader case where w �= wa.
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Appendix F: Simulations

We construct three Monte Carlo experiments that illustrate the finite sample perfor-
mance of the RV test and the ability of the F-statistic to detect low power and size dis-
tortions generated by weak instruments.

Monte Carlo environment

We consider an environment that mirrors the market for yogurt in our empirical appli-
cation, importing the same market structure, product characteristics, and cost shifters.
We also adopt the estimated demand model of Table 3, column 3, and the estimated cost
parameters implied by the zero retail margin model as the true demand system and cost
function in the data generating process. The cost shocks, ω, are drawn from a normal
distribution with the same mean and standard deviation as the empirical distribution of
the estimated shocks. For each of the three experiments, we perform 1000 simulations;
in each simulation, we sample 500 markets uniformly at random from the set of 5034 yo-
gurt markets to limit computational burden, and we take draws from the distribution of
the cost unobservables. We solve for prices and quantities according to a true model of
conduct, which differs across the three experiments as discussed below. Note that in all
three experiments, we assume that the researcher knows the true demand model, which
allows us to avoid reestimating demand for thousands of simulations.

Experiment 1

In this experiment, we illustrate how weak instruments for power affect the RV test, and
how the F-statistic diagnoses weak instruments for power in finite samples. We con-
sider as the true model of conduct Nash price setting, and we test the Nash price setting
hypothesis against a model of joint profit maximization. To vary the power of the test,
we consider instruments that are found to be strong in our application, the “NoProd”
(number of own and rivals’ products). We then inject noise by adding a vector of random
values u drawn from a uniform distribution to construct a sequence of instruments with
varying strength: z′(λ1 ) = (1 − λ1 )z + λ1u with values of λ1 ranging from 0 to 0.9. As λ1

increases, the instruments become more noisy.
Figure F.1 shows the simulated rejection probability of the RV test and the fraction of

simulations for which the F-statistic diagnoses that the instruments are strong for best-
case power of 0.95. As we increase the noise in the instruments, the power of the test
reduces monotonically, from always rejecting to power essentially equal to size. Appro-
priately, our proposed F-statistic detects this reduction in power by increasingly diag-
nosing instruments as weak for power.

Experiment 2

To perform the second experiment, we need an environment where we can approach the
region of degeneracy while staying in the null space. Example 3 from the paper provides
an economically meaningful environment in which we can accomplish this goal. In par-
ticular, we consider “rule-of-thumb” pricing models, and we assume that prices are set
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Figure F.1. Power reduction from weak instruments. The figure plots the rejection probabilities
of the RV test (solid line) and the fraction of simulations when the F-statistic exceeds the critical
value for best-case power of 0.95 (dashed line) as a function of λ1. As λ1 increases, we inject more
noise into the NoProd instruments.

by firms as two times cost, or p = 2c0 = 2(wγ+ω). We then test between two alternative
rule-of-thumb models: �1 = 0.5c0 + λ2z + 0.01ẽ1 and �2 = 1.5c0 + λ2z + 0.01ẽ2, where
the instrument z is the sum of rivals’ products, λ2 determines the correlation between
the instrument and markups for models 1 and 2, and (ẽ1, ẽ2 ) are random draws from a
standard normal distribution. By considering alternatives where markups are specified
as multipliers of costs plus the instruments (rescaled by a parameter), we can stay un-
der the null (as �1 = �2) while varying the strength of the instruments for size: as λ2 gets
closer to zero, we move toward the space of degeneracy (as �1 −�0 and �2 −�0 approach
zero). Random components (ẽ1, ẽ2 ) are included to satisfy Assumption 3.

Figure F.2 shows the simulated rejection probabilities of the RV test and the fraction
of simulations for which the F-statistic diagnoses that the instruments are strong for

Figure F.2. Size distortions from weak instruments. The figure plots the rejection probabilities
of the RV test (solid line) and the fraction of simulations when the F-statistic exceeds the critical
value for worst-case size of 0.075 (dashed line) as a function of λ2. As λ2 increases, we move away
from the space of degeneracy, while remaining under the null.
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Table F.1. Fraction of simulations with correctly signed RV test statistics.

Pr(TRV < 0)

JPM vs. Nash price setting JPM vs. perfect competition
β̃
p
I (1) (2)

5.09 0.88 0.99
4.71 0.96 1
4.52 0.98 1
4.33 1 1
4.14 1 1
3.95 1 1
3.57 1 0.97

Note: The table reports the fraction of simulations for which TRV is correctly signed, that is, suggests better fit of the joint
profit maximization (JPM) model relative to Nash price setting (column 1) and perfect competition (column 2). Different rows
correspond to different values of the demand parameter β̃pI used in testing. Data are generated for the true value β̃pI = 4.33.

size. Near degeneracy, that is, for small values of λ2, we find large size distortions for
the RV test (around 0.15). As λ2 increases, and we move away from the space of degen-
eracy, size approaches the level of the test. Our diagnostic appropriately detects when
instruments are weak for size.

Experiment 3

In the third experiment, we explore the degree to which the RV test is affected by mis-
specification of demand. To do so, we test between different models of conduct while
using a misspecified demand model to construct markups. Prices and shares are sim-
ulated from a joint profit maximization model, using the estimated demand model of
Table 3, column 3. To approximate the effects of misspecification of demand for testing
conduct, we construct markups for joint profit maximization, Nash price setting, and
perfect competition, while altering the value of the coefficient β̃pI of the interaction be-
tween prices and income, in the spirit of the misspecification introduced in Example 1
of the paper. We vary β̃pI by adding values that correspond to ±0.5, ±1, ±2 times the
standard error for the coefficient (0.378).

Table F.1 reports the fraction of simulations for which the RV test has the correct sign,
that is, the true model of joint profit maximization (JPM) with potentially misspecified
demand fits the data better than the wrong model with misspecified demand. We find
that the RV statistic has the correct sign in virtually all simulations, showing that the RV
test may still be able to conclude for the true JPM model with misspecified demand.

Appendix G: Additional empirical details

This Appendix provides additional details for our empirical application.

Code details

Figure G.1 below provides the definition of the demand estimation problem in PyBLP
and the testing problem in pyRVtest.
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Figure G.1. Code for demand estimation and testing. Panels A and B report the definitions of
the demand estimation problem in PyBLP and the testing problem in pyRVtest, respectively.

Description of the models of conduct

Following Villas-Boas (2007), the markups in market t for a model m among those we

consider can be written in the following form:

�mt = −(
�r
mt Drt

)−1
st︸ ︷︷ ︸

=�downstream
mt

−(
�w
mt Dwt

)−1
st︸ ︷︷ ︸

=�
upstream
mt

,

where �r
mt and �w

mt are ownership matrices, Dwt is the Jacobian of retail share st with re-

spect to wholesale price, and Drt is the Jacobian of retail share with respect to retail price.

The markup �mt implied by each model is the sum of downstream markups �downstream
mt

and upstream markups �upstream
mt . We can derive each model by using different assump-

tions on the ownership matrices:

1. Zero wholesale margin: Set �w
mt to a matrix of zeros, set �r

mt to a matrix of ones.

2. Zero retail margin: Set �w
mt to a matrix of zeros, and set �r

mt to a matrix with ele-

ment (i, j) that is equal to one if products i and j are produced by the same manu-

facturer, and to zero otherwise.
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Table G.1. Cox and EB test results.

2 3 4

Cox Test
1. Zero wholesale margin −4.72, 3.99 4.34, −6.53 4.35, -6.55
2. Zero retail margin 9.47, −12.42 9.47, −12.46
3. Linear pricing 0.01, −0.01
4. Hybrid model

EB Test
1. Zero wholesale margin 253.16, 319.1 253.16, 338.14 253.16, 337.97
2. Zero retail margin 319.1, 338.14 319.1, 337.97
3. Linear pricing 338.14, 337.97
4. Hybrid model

Note: Each cell reports the respective pair of test statistics Ti , Tj for row model i and column model j, with NoProd instru-
ments. For 95% confidence, the critical value for Cox is ±1.95, and EB is 5.98. Standard errors account for two-step estimation
error and clustering at the market level; see Appendix C.

3. Linear pricing : Set �r
mt to a matrix of ones, and set �w

mt to a matrix with element

(i, j) that is equal to one if products i and j are produced by the same manufacturer,
and to zero otherwise.

4. Hybrid model: Set �r
mt to a matrix of ones, and set �w

mt to a matrix with element

(i, j) that is equal to one if products i and j are produced by the same manufacturer
and i is not a private label, and to zero otherwise.

5. Wholesale collusion: Set �r
mt and �w

mt to matrices of ones.

Assessment test results

We present in Table G.1 the test results from the two other model assessment procedures
defined in Appendix D. With NoProd instruments, the EB and Cox tests reject all models.
Similar to the AR results in Table 4, the Cox and EB results illustrate the pitfalls of using
model assessment tests for conduct, formally discussed in Section 4.2.

Pooling all instrument sets

We present in Table G.2 the test results obtained by pooling all instrument sets used in
Section 7. Two observations emerge from the table. First, the F-statistics with the pooled
instruments, although above the corresponding critical values for 95% best-case power,
are below those for the NoProd instrument set. This confirms our observation that pool-
ing instruments may result in lower F-statistics, and potentially weak instruments. Sec-
ond, the MCS for both sets of pooled instruments now includes not only model 2, but
also model 1 at a confidence level α = 0.05. Hence, pooled instrument sets lead to less
sharp conclusions in this example.
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Table G.2. RV test results with alternative instruments.

TRV F-statistics

Models 2 3 4 2 3 4 MCS p-values

IVs: No. Products + Demo + Cost + Diff (dz = 11)
1. Zero wholesale margin 1.664 −8.827 −8.838 105.3 70.7 70.8 0.096
2. Zero retail margin −5.655 −5.653 85.6 86.2 1.0
3. Linear pricing −1.781 101.1 0.00
4. Hybrid model 0.00

Note: Table reports the RV test statistics TRV and the effective F-statistic for all pairs of models, and the MCS p-values
(details on their computation are in Appendix F). A negative RV test statistic suggests better fit of the row model. With MCS p-
values below 0.05 a row model is rejected from the model confidence set. All F-statistics exceed the appropriate critical values
for a worst-case size of 0.075 and best-case power of 0.95. Both TRV and the F-statistics account for two-step estimation error
and clustering at the market level; see Appendix C for details.

Appendix H: MCS details

In this Appendix, we provide further details on the construction of the model confidence
set. The construction is iterative where in each step a p-value for a model of worst fit is
computed. For a set of instruments z�, the MCS M∗

� is the collection of models with a
p-value above the significance level.

For a researcher testing a set of candidate modelsM , we now describe the construc-
tion of the MCS p-values at each step of the algorithm. At iteration k, there are Mk ⊂M
models under current consideration. Denoting |Mk| as the cardinality ofMk, this results
inK = ( |Mk|

2

)
distinct pairs of models and, therefore, RV test statistics. To make notation

compact, we define � as a one-to-one mapping from unique model pairs to {1, � � � ,K},
and let TRV

�(m1,m2 ) = √
n(Q̂m1 − Q̂m2 )/σ̂RV,�(m1,m2 ). In this iteration, we find the pair of

models (m1,m2 ) associated with the largest test statistic in magnitude, denoted T̄RV. If
T̄RV is positive (negative), then m1 (m2) is the model of worst fit for which we compute
the MCS p-value. This model will be dropped fromMk+1 in the next iteration.

For computation of the MCS p-values, we utilize that (TRV
1 , � � � , TRV

K )′ is asymptot-
ically normal with zero mean and a variance � under no degeneracy and a null of
equal fit. This observation follows by extending Lemma A.1 to |Mk| models and al-
luding to a first-order Taylor approximation as in Remark 1. We estimate � using �̂.
The diagonal entries of �̂ are all one. For any off-diagonal element �̂ij with (i, j) =
(�(m1,m2 ),�(m3,m4 )), we have

�̂ij = 4σ̂−1
RV,iσ̂

−1
RV,j

(
ĝ′
m1
Ŵ 1/2V̂ RV

m1m3
Ŵ 1/2ĝm3 − ĝ′

m2
Ŵ 1/2V̂ RV

m2m3
Ŵ 1/2ĝm3 (92)

− ĝ′
m1
Ŵ 1/2V̂ RV

m1m4
Ŵ 1/2ĝm4 + ĝ′

m2
Ŵ 1/2V̂ RV

m2m4
Ŵ 1/2ĝm4

)
. (93)

We take 99,999 draws from this distribution and for each draw compute the max of
the absolute value of theK simulated test statistics denoted T̄RV,sim. The p-value is then
computed as the fraction of draws for which T̄RV,sim > |T̄RV|.

This procedure is computationally expedient. In particular, one does not need
to bootstrap both demand estimation and the testing procedure, which can be pro-
hibitively costly. Instead, using the adjustments derived in Appendix C, �̂ can incorpo-
rate adjustments for demand estimation and clustering.
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Appendix I: Simultaneous versus sequential demand estimation:
Implications for testing

Consider the sequential setting in the paper, where demand is estimated in a prelim-
inary step, and then testing is performed with the RV test. The lack of fit for a model
of conduct m is measured by the GMM objective function formed with the supply
moments: ĝm(θD ) = 1

n ẑ
′(p̂ − �̂m(θD )), and the hat notation denotes that these are fi-

nite sample objects, residualized against the observed cost shifters w. We augment the
framework in the paper by allowing the supply moments to depend on demand pa-
rameters θD through markups �m = �m(θD ). Demand moments are instead ĥ(θD ) =
1
nzD′ξ(θD ), where ξ(θD ) is the value of the demand unobservable implied by θD, and zD

is a vector of demand instruments.43 We assume that the dimension of zD is sufficient
to identify θD from demand moments alone.

We define the probability limit of the demand parameter estimates obtained from
sequential estimation as

θDseq = arg min
θD
QD

(
θD

)
,

where QD(θD ) = h(θD )′W Dh(θD ), h(θD ) = plim ĥ(θD ), and W D is the probability limit
of the weight matrix used in demand estimation. We construct the RV test statistic in a
second step from a measure of fit based on supply moments. The asymptotic value of
the measure of fit for each modelm is

Qm
(
θDseq) = gm

(
θDseq)′

Wgm
(
θDseq)

.

Alternatively, we could pursue a simultaneous approach, where we use the supply
moments to estimate demand under each model of conduct. Stacking the demand and
supply moments, the simultaneous GMM objective function is

Qsim
m

(
θD

) = (
gm

(
θD

)′
, h

(
θD

)′)
W sim(

gm
(
θD

)′
, h

(
θD

)′)′

We maintain the following assumption onW sim for tractability.

Assumption 5. W sim is block diagonal, so thatW sim = diag(W ,W D ).

The probability limit of the demand parameters obtained from simultaneous esti-
mation is

θDsim
m = arg min

θD
Qm

(
θD

) +QD(
θD

)
.

While the value of θDsim
m is model specific, θDseq is not. We now establish the following.

Proposition 5. Let Assumption 5 hold, w be correctly specified, θDsim
m be unique, and

θDseq �= θDsim
m for modelm. Then E[(�z0 −�zm(θDsim

m ))2]<E[(�z0 −�zm(θDseq ))2].

43Demand moments could include micromoments; our discussion in this section would still apply.
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The consequences of the proposition depend on the model of conduct m and the
testing environment. Suppose m= 1 is the true model and there is no misspecification.
Then θDseq = θDsim

1 , and E[(�z0 −�z1(θDsim
1 ))2] =E[(�z0 −�z1(θDseq ))2] = 0. However, pre-

dicted markups form= 2 also get closer to the true ones. It follows thatQ1 −Q2 is smaller
in magnitude under simultaneous estimation. Instead, when demand is misspecified,
the proposition implies that the MSE in predicted markups is smaller with a simultane-
ous approach for each model. We summarize these findings as follows.

Corollary 2. Let Assumption 5 hold, θDsim
m be unique, and θDseq �= θDsim

m for modelm.

(i) Without misspecification, the probability limit of the RV numerator is smaller in
magnitude under simultaneous estimation, but has the same sign as under sequen-
tial estimation.

(ii) With misspecification, the sign and magnitude of probability limit of the RV nu-
merator could differ under simultaneous and sequential estimation.

While we focus on the numerator, the mode of demand estimation will also affect the
denominator of TRV. How these forces affect the power of RV is ambiguous even under
our simplifying assumptions and we leave it to future research.

The demand estimation literature (see Conlon and Gortmaker (2020)) has discussed
how simultaneous and sequential estimation affect estimates and standard errors for
the demand parameters. Our results show that simultaneous estimation does not guar-
antee demand parameter estimates closer to the true demand parameters. Instead, the
supply moments pull the demand parameters toward values, which improve the fit of
the predicted markups under the assumed conduct model. Moreover, efficiency consid-
erations that apply to estimation do not immediately apply to our setup as one of the
models we consider is not correctly specified.

Appendix J: Proof of Appendix results

Remark 2. As a prologue to the proof of Lemma A.1, we remind the reader that the
first- order properties of Ŵ −1 = n−1ẑ′ẑ and the infeasible W̌ −1 = n−1z′z are the same.
This follows from the equality n−1ẑ′ẑ = n−1z′ẑ, which in turn leads to

Ŵ −1 = W̌ −1 + n−1z′w︸ ︷︷ ︸
=Op(n−1/2 )

(
E

[
w′w

]−1
E

[
w′z

] − (
w′w

)−1w′z
)︸ ︷︷ ︸

=Op(n−1/2 )

= W̌ −1 +Op
(
n−1). (94)

The same argument applied to ĝm = n−1ẑ′(p̂− �̂m ) yields ĝm = ǧm +Op(n−1 ) where
ǧm = n−1z′(p−�m ).

Remark 3. For a matrix A with all singular values strictly below 1, the proof of
Lemma A.1 relies on the binomial series expansion (I + A)−1/2 = ∑∞

j=0

(−1/2
j

)
Aj =

I − 1
2A + 3

8A
2 − 5

16A
3 + · · · , where the generalized binomial coefficient is

(α
j

) =
(j!)−1 ∏j

k=1(α− k+ 1).
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Proof of Lemma A.1. We prove parts (i) and (ii) in three steps and then comment
on the modifications to these steps that derive (iii) and (iv). Step (1) shows that∑n
i=1(ψ′

1i, ψ
′
2i )

′/
√
n
d−→N(0, V RV ) and V̌ RV

�k := 1
n

∑n
i=1ψ�iψ

′
ki

p−→ V RV
�k for �, k ∈ {1, 2}, step

(2) establishes that
√
n(Ŵ 1/2ĝm−W 1/2gm )− 1√

n

∑n
i=1ψmi = op(1) form ∈ {1, 2}, and step

(3) proofs that trace((V̂ RV
�k − V̌ RV

�k )′(V̂ RV
�k − V̌ RV

�k )) = op(1) for �, k ∈ {1, 2}. The combination
of steps (1) and (2) establishes (i) while steps (1) and (3) yield (ii).

Step (1) From Assumption 2, parts (i) and (iii), it follows from the standard central

limit theorem for i.i.d. data that 1√
n

∑n
i=1(ψ′

1i, ψ
′
2i )u

d−→N(0, u′V RVu) for any nonrandom

u ∈ R
2dz with ‖u‖ = 1. The Cramér–Wold device therefore yields 1√

n

∑n
i=1(ψ′

1i, ψ
′
2i )

′ d−→
N(0, V RV ). Additionally, a standard law of large numbers applied elementwise implies

V̌�k
p−→ V�k for �, k ∈ {1, 2}.
Step (2) From standard variance calculations, it follows that

W̌ −W =Op
(
n−1/2) and ǧm − gm =Op

(
n−1/2). (95)

In turn, Equation (95) together with Remarks 2 and 3 implies that

Ŵ 1/2 −W 1/2 =W 1/4((I +W 1/2(Ŵ −1 −W −1)W 1/2)−1/2 − I)W 1/4 (96)

= −1
2
W 1/4(W 1/2(Ŵ −1 −W −1)W 1/2)W 1/4 +Op

(
n−1) (97)

Combining Equations (95) and (96), we then arrive at

√
n
(
Ŵ 1/2ĝm −W 1/2gm

)
=W 1/2(ĝm − gm ) + (

Ŵ 1/2 −W 1/2)gm +Op
(
n−1) (98)

=W 1/2(ĝm − gm ) − 1
2
W 3/4(Ŵ −1 −W −1)W 3/4gm +Op

(
n−1) (99)

=W 1/2(ǧm − gm ) − 1
2
W 3/4(W̌ −1 −W −1)W 3/4gm +Op

(
n−1) (100)

= 1
n

n∑
i=1

ψmi +Op
(
n−1). (101)

Step (3) Letting Rm = 1
n

∑n
i=1(ψ̂mi −ψmi )′(ψ̂mi −ψmi ), it follows from matrix analogs

of the Cauchy–Schwarz inequality that

trace
((
V̂ RV
�k − V̌ RV

�k

)′(
V̂ RV
�k − V̌ RV

�k

)) ≤ 4
(
trace

(
V̌ RV
��

)
Rk + trace

(
V̌ RV
kk

)
R� +R�Rk

)
. (102)

Therefore, it suffices to show that Rm = op(1) for m ∈ {1, 2}, since we have from step (1)
that V̌ RV

mm =Op(1) form ∈ {1, 2}. To further compartmentalize the problem, we note that

Rm ≤ 3
n

n∑
i=1

∥∥Ŵ 1/2ẑi(p̂i − �̂mi ) −W 1/2zi(pi −�mi )
∥∥2

(103)
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+ 3
4n

∑
i

∥∥Ŵ 3/4ẑiẑ
′
iŴ

3/4ĝm −W 3/4ziz
′
iW

3/4gm
∥∥2

+ 3
4

∥∥Ŵ 1/2ĝm −W 1/2gm
∥∥2

. (104)

Argumentation analogous to Remark 2 combined with Equation (95) yields Rm = op(1).
Finally, note that to derive (iii) and (iv), one can follow the same line of argument.

The only real difference is that Equation (96) gets replaced by

Ŵ −W = −W −1(Ŵ −1 −W −1)W −1 +Op
(
n−1).

As a prelude to the proof of Lemma 2, we establish the following analogous result.

Lemma 3. Suppose that Assumptions 1, 2, and ND are satisfied. Then, with probability
approaching one as n→ ∞,

(i) RV rejects the null of equal fit in favor of model 1 ifE[(�z0i−�z1i )2]<E[(�z0i−�z2i )2];

(ii) AR rejects the null of perfect fit for modelmwith E[(�z0i −�zmi )2] �= 0.

Proof of Lemma 3. For (i), suppose for concreteness that E[(�z0i − �z1i )
2] < E[(�z0i −

�z2i )
2]. We need to show that Pr(TRV < −q1−α/2(N )) → 1 where q1−α/2(N ) is the (1 −

α/2)-th quantile of a standard normal distribution. From Proposition 1, part (ii), we have

Q1 <Q2. Lemma A.1, parts (i) and (ii), together with Remark 1 yield TRV/
√
n= Q̂1−Q̂2

σ̂RV

p−→
Q1−Q2
σRV

< 0. Therefore, Pr(TRV/
√
n <−q1−α/2(N0,1 )/

√
n) → 1.

For (ii), suppose that E[(�z0i − �zmi )
2] �= 0 for some m ∈ {1, 2}. We need to show that

Pr(rejectHAR
0,m ) → 1. From Proposition 1, part (i), it follows that πm �= 0 and since V AR

mm

is positive definite we have π′
m(V AR

mm )−1πm > 0. Using Lemma A.1, parts (iii) and (iv),

we have (π̂m, V̂ AR
mm )

p−→ (πm, V AR
mm ) so that TAR

m /n = π̂′
m(V̂ AR

mm )−1π̂m
p−→ π′

m(V AR
mm )−1πm >

0. Therefore, Pr(rejectHAR
0,m ) = Pr(TAR

m /n > q1−α(χ2
dz

)/n) → 1 where q1−α(χ2
dz

)/n) → 1

where qdz (1 − α) denotes the (1 − α)-th quantile of a χ2
dz

distribution.

Proof of Lemma 2. Since wa is a subset of w, the proof follows immediately by replac-
ing any variable y residualized with respect to w in the proof of Lemma 3, with ya, which
has been residualized with respect to wa.

Proof of Proposition 5. By definition of θDsim
m and because θDseq is the minimizer of

Qdem, it must be that Qsim
m (θDsim

m )<Qsim
m (θDseq ). In turn, this implies that Qm(θDsim

m )<
Qm(θDseq )—if this inequality did not hold, we would need to have QD(θDseq ) >
QD(θDsim

m ). Since each objective function is assumed to have a unique minimizer, this
last inequality is a contradiction. Because we assumed that cost shifters are correctly
specified, we haveQm(�(θD )) =E[(�z0 −�zm(θD ))2]. Therefore,

E
[(
�z0 −�zm

(
θDsim
m

))2]
<E

[(
�z0 −�zm

(
θDseq))2]

.
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