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TABLE A.I

GHM REPLICATION.

TFP

GHM Table 5
Column (4) Replication

(1) (2)

MDP 0.0477 0.049
(0.0231) (0.022)

Plant FE Yes Yes
Industry × year FE Yes Yes
Case FE Yes Yes

R-squared 0.986 0.98
Observations 28,732 29,000

Note: Column (2) presents a variant of the regression in column (1) of Table II using the original specification and sample selection
procedure from GHM. For comparison, column (1) shows the baseline estimate from Table 5 of GHM.
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TABLE A.II

TREATMENT EFFECT DYNAMICS.

TFP

Local Spillover Global Spillover

(1) (2) (3) (4)

MDP(−4) −0.004 −0.005 0.001 0.002
(0.024) (0.023) (0.013) (0.014)

MDP(−3) 0.006 0.004 0.004 0.001
(0.024) (0.024) (0.011) (0.014)

MDP(−2) −0.005 −0.008 −0.003 0.001
(0.021) (0.023) (0.010) (0.012)

MDP(−1) 0.002 −0.004 0.001 0.000
(0.020) (0.022) (0.009) (0.010)

MDP(0) 0.017 0.016 0.006 0.009
(0.018) (0.014) (0.008) (0.007)

MDP(1) 0.038 0.035 0.015 0.017
(0.018) (0.015) (0.008) (0.009)

MDP(2) 0.041 0.044 0.019 0.020
(0.020) (0.016) (0.010) (0.009)

MDP(3) 0.049 0.043 0.022 0.021
(0.022) (0.018) (0.010) (0.009)

MDP(4) 0.050 0.057 0.024 0.022
(0.023) (0.020) (0.011) (0.011)

MDP(5) 0.048 0.051 0.023 0.022
(0.022) (0.021) (0.011) (0.010)

Plant FE Yes Yes Yes Yes
Industry × year FE Yes Yes - -
Industry × county × year FE - - Yes Yes
Case FE Yes Yes Yes Yes

R-squared 0.88 - 0.88 -
Observations 157,000 157,000 423,000 423,000

Note: This table presents estimates from event-study regressions using OLS (columns (1) and (3)) or the imputation estimator
of Borusyak, Jaravel, and Spiess (2023, BJS) (columns (2) and (4)). The BJS estimates are obtained using the Stata code from Kirill
Borusyak’s website. MDP(0) denotes the year of the MDP opening. The base year is τ = −5. Only the main coefficients of interest are
shown. Observations are weighted by plant-level employment. Standard errors are double clustered at the county and year level. The
sample period is from 1977 to 1998.
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TABLE A.III

INPUT–OUTPUT LINKAGES AND KNOWLEDGE FLOWS (LOCAL SPILLOVER).

TFP

Input Flows Output Flows Same Industry Mutual R&D Flows Mutual Patent Citations
(1) (2) (3) (4) (5)

MDP 0.037 0.038 0.039 0.034 0.028
(0.017) (0.016) (0.017) (0.017) (0.016)

MDP × MDP
industry

0.594 0.339 0.032 0.997 0.723
(0.618) (0.476) (0.015) (0.401) (0.334)

Plant FE Yes Yes Yes Yes Yes
Industry × year

FE
Yes Yes Yes Yes Yes

Case FE Yes Yes Yes Yes Yes

R-squared 0.88 0.88 0.88 0.88 0.88
Observations 157,000 157,000 157,000 157,000 157,000

Note: This table presents variants of the regressions in columns (1) and (2) of Table VIII (columns (1) and (2)) or Table VII
(columns (3) to (5)) applied to the local productivity spillover. Only the main coefficients of interest are shown. Observations are
weighted by plant-level employment. Standard errors are double clustered at the county and year level. The sample period is from
1977 to 1998.

TABLE A.IV

MDP SIZE.

TFP

Local Spillover Global Spillover
(1) (2)

MDP 0.023 0.010
(0.018) (0.009)

MDP × MDP size 0.249 0.113
(0.116) (0.052)

Plant FE Yes Yes
Industry × year FE Yes -
Industry × county × year FE - Yes
Case FE Yes Yes

R-squared 0.88 0.88
Observations 157,000 423,000

Note: This table presents variants of the regressions in column (1) of Table II and column (3) of Table III in which both terms
in equation (1) are interacted with the MDP’s county-level employment share at the date of entry (“MDP size”). Only the main
coefficients of interest are shown. Observations are weighted by plant-level employment. Standard errors are double clustered at the
county and year level. The sample period is from 1977 to 1998.
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B. MODEL APPENDIX

B.1. Derivations

B.1.1. Consumer Problem

In this section, we derive the labor supply functions (equations (10) and (13)) and av-
erage realized utility (equation (14)) as part of the solution to the consumer problem.

Equation (3) implies that the CDF of indirect utility is given by

P

(⋂
n∈N

⋂
sj∈En

{
(1 + d)bnsj

wnsj

PαnR
1−α
n

≤ tnsj�
})

= exp
{
−

∑
n∈N

(∑
sj∈En

(BnBs)
1

1−ρ
(

(1 + d)
wnsj

PαnR
1−α
n

) ε
1−ρ
t
− ε

1−ρ
nsj

)1−ρ}
� (A.1)

Using the notation of Lind and Ramondo (2023), the multivariate Fréchet CDF in
equation (A.1) is generated by the Archimedean copula:

G
(
{xnsj}n∈N :sj∈En

) =
∑
n∈N

(∑
sj∈En

x
1

1−ρ
nsj

)1−ρ

with scale parameters Tnsj = (1 + d)BnBs(
wnsj

Pαn R
1−α
n

)ε. By Lemma O.5 in Lind and Ramondo
(2023), average equilibrium utility is given by

Ū = (1 + d)�
(
ε− 1
ε

)[∑
n∈N

Bn

(
W b
n

PαnR
1−α
n

)ε] 1
ε

�

Moreover, by Lemma O.6 (part 1) in Lind and Ramondo (2023), it can be shown that
(supply-side) plant labor shares are given by

lSnsj

L̄
≡ P{consumer ν chooses plant sj in location n}=

BnB
1

1−ρ
s

(
w

1
1−ρ
nsj W

b
n

− ρ
1−ρ

PαnR
1−α
n

)ε

∑
i∈N

Bi

(
W b
i

Pαi R
1−α
i

)ε � (A.2)

Summing equation (A.2) over all plants within the same location and sector and substi-
tuting in equation (12) gives

Lns

L̄
=
BnB

1
1−ρ
s

((
W b
ns

) 1
1−ρ (W b

n

)− ρ
1−ρ

PαnR
1−α
n

)ε

∑
i∈N

Bi

(
W b
i

Pαi R
1−α
i

)ε �
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Finally, dividing equation (A.2) by equation (10) and substituting in equation (12) gives

lSnsj

Lns
= w

ε
1−ρ
nsj∑

k∈Ens

w
ε

1−ρ
nsk

�

B.1.2. Producer Problem

In this section, we derive the labor demand function (equation (15)) and the Free on
Board price (equation (17)) as part of the solution to the producer problem.

We begin by characterizing final goods producers’ demand for intermediate goods. Let
pnisj denote the price which the final goods producer in location n and sector s pays to
plant {i� s� j} to receive one unit of its intermediate good. Moreover, define the price in-
dices p̄nis := (

∑
j∈Eis

p1−ω
nisj )

1
1−ω and p̂ns := (

∑
i∈Ns

p̄1−η
nis )

1
1−η . Standard nested CES demand

results imply that expenditure shares are given by

qnisjpnisj

qnsp̂ns
=

(
pnisj

p̄nis

)1−ω(
p̄nis

p̂ns

)1−η
� (A.3)

We next present the solution to the plant’s problem. Our pricing assumption is that
plants take the price indices p̄nis and p̂ns as given. Standard results then imply that plants
set a constant net markup over marginal cost given by μisj = 1

ω−1 . Combining this with
Cobb–Douglas production implies that, in equilibrium,

pnisj = ω

ω− 1
z−1
isj w

γs
isj

(
pmis

)1−γs
τni� (A.4)

Plugging equation (A.4) into equation (A.3) and manipulating yields

Xisj∑
k∈Eis

Xisk

= zω−1
isj w

γs (1−ω)
isj∑

k∈Eis

zω−1
isk w

γs (1−ω)
isk

�

where Xisj denotes plant {i� s� j}’s revenue. Constant expenditure share on labor then
implies that labor demand is given by

lDisj

Lis
= zω−1

isj w
γs (1−ω)−1
isj∑

k∈Eis

zω−1
isk w

γs (1−ω)−1
isk

�

Finally, combining equation (A.4) with standard nested CES demand results gives

p̃is = ω

ω− 1

(∑
j∈Eis

(
wγs
isj

zisjW
γs
is

)1−ω) 1
1−ω
W γs
is

(
pmis

)1−γs ≡MC isW γs
is

(
pmis

)1−γs
�
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B.2. Proofs

B.2.1. Equilibrium Characterization and Uniqueness

In this section, we provide the proof of Proposition 1 and show the isomorphism be-
tween our model and an augmented version of Caliendo and Parro (2015).

Proof of Proposition 1

We divide the proof into two sub-claims.

CLAIM 1: Given firm networks and parameters, if ζ(1 + θ(maxj |Ej| − 1)) < 1, there exists
a unique vector of plant-level knowledge which satisfies the system of equations governed by
equation (8).

PROOF: Define the function:

gisj
(
{kntk}n∈N ;tk∈En

) :=
( ∑
tk∈En

kntk

)ζ(1−θ)(∏
n∈Ej

( ∑
tk∈En

kntk

)ζθ)
�

It is straightforward to see that gisj is positively homogeneous of degree ζ(1 + θ(|Ej| −
1)) and that ∂gisj

∂kntk
≥ 0. Combining this with Euler’s Homogeneous Function The-

orem gives
∑

n∈N
∑

tk∈En
| ∂lngisj
∂lnknk

| ≤ ζ(1 + θ(maxj |Ej| − 1)). Finally, note that kisj =∑
n∈N

∑
tk∈En

1ntk=isjgntk({kntk}n∈N ;tk∈En). Applying Remark 1 from Allen, Arkolakis, and
Li (2022) completes the proof. Q.E.D.

CLAIM 2: For each location-sector pair is, given parameter values, plant-level knowledge,
and fundamental productivity, there exist unique labor shares and relative wages which satisfy
equations (13) and (15).

PROOF: Define the function:

Disj

(
{wisk}k∈Eis

) := zω−1
isj w

γs (1−ω)−1
isj∑

k∈Eis

zω−1
isk w

γs (1−ω)−1
isk

− w
ε

1−ρ
isj∑

k∈Ens

w
ε

1−ρ
isk

� (A.5)

If equation (A.5) characterizes an excess demand system with the gross substitution prop-
erty, equilibrium labor shares and relative wages are unique. This requires four proper-
ties: (i) Disj is continuous, (ii) Disj is homogeneous of degree zero, (iii)

∑
j∈Eis

Disj = 0,
and (iv) Disj exhibits gross substitution in wages. It is straighforward to see that prop-

erties (i) and (ii) hold. For property (iii), note that
∑

j∈Eis

zω−1
isj w

γs (1−ω)−1
isj∑

k∈Eis
zω−1
isk

w
γs (1−ω)−1
isk

= 1 and

∑
j∈Eis

w

ε
1−ρ
isj∑

k∈Eis
w

ε
1−ρ
isk

= 1. Finally, for gross substitution, it is sufficient to show that ∂Disj
∂wisk

>
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0 ∀k ∈ Eis\{j}. To see that this holds, note that

∂

∂wisk

zω−1
isj w

γs (1−ω)−1
isj∑

k∈Eis

zω−1
isk w

γs (1−ω)−1
isk

= −(
γs(1 −ω) − 1

)︸ ︷︷ ︸
>0

zω−1
isk w

γs (1−ω)−2
isk zω−1

isj w
γs (1−ω)−1
isj(∑

k∈Eis

zω−1
isk w

γs (1−ω)−1
isk

)2

︸ ︷︷ ︸
>0

and

∂

∂wisk

w
ε

1−ρ
isj∑

k∈Ens

w
ε

1−ρ
isk

= − ε

1 − ρ︸ ︷︷ ︸
<0

w
ε

1−ρ
isj w

ε
1−ρ−1

isk( ∑
k∈Ens

w
ε

1−ρ
isk

)2

︸ ︷︷ ︸
>0

�

which implies that ∂Disj
∂wisk

> 0. Q.E.D.

Isomorphism to Caliendo and Parro

We finally show that the across-location equilibrium conditions (equations (10) and
(21)), which pin down {L�W}, are isomorphic to corresponding conditions in a version
of Caliendo and Parro (2015, CP) augmented with mobile labor across regions, idiosyn-
cratic preferences over locations and sectors, a land market, and local agglomeration
economies. Below, we state the augmentations to CP, present the equilibrium conditions
of the augmented CP model, and state the isomorphism between the equilibrium condi-
tions of our model and the corresponding conditions of the augmented CP model. For
ease of comparison, our notation closely follows CP.

Consider the following augmentations to CP: (i) workers are mobile across regions and
sectors; (ii) utility for atomistic consumer ν is given by unsν = bnsνC1−α

ν hαν , where n and s de-
note location and sector, respectively, with consumption goods as in CP and a land market
as described in equation (9); (iii) idiosyncratic preferences are given by the distribution

P(
⋂

n∈N
⋂

s∈Sn{bns ≤ tns}) = exp{−∑
n∈N (

∑
s∈Sn (Bns)

1
1−ρ t

− ε
1−ρ

ns )1−ρ}; and (iv) location-sector
specific productivity scale parameters are given by λsi = λ̃siLβsi , whereLβsi represents classi-
cal, local agglomeration economies and λ̃si is exogenous “fundamental productivity.” We
can state the equilibrium conditions (with s, t corresponding to sectors and i, n corre-
sponding to regions) for this augmented model as

csi =ϒsi
(
ws
i

)γsi S∏
t=1

(
Psi

)γt�si � (A.6)

Psn =As

(
N∑
i=1

λsi
(
csi κ

s
ni

)−θj
)− 1

θj

� (A.7)

πsni =
λsi

(
csi κ

s
ni

)−θj

N∑
h=1

λsh
(
cshκ

s
nh

)−θj
� (A.8)
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Xs
n =

S∑
t=1

γj�tn

N∑
i=1

Xk
i

(
πtin

1 + τkin

)
+ αjnIn� (A.9)

Lns

L̄
=

B
1

1−ρ
ns

((
ws
n

) 1
1−ρ (W b

n

)− ρ
1−ρ

PαnR
1−α
n

)ε

S∑
t=1

N∑
i=1

B
1

1−ρ
it

((
ws
n

) 1
1−ρ (W b

n

)− ρ
1−ρ

PαnR
1−α
n

) � (A.10)

Equations (A.6)–(A.9) correspond to equations (2), (4), (6), and (7) in CP, respec-
tively; equation (A.10) is an additional equilibrium condition resulting from the additional
forces in the augmented model.1 Given parametric restrictions, equations (A.6) and (A.7)
are isomorphic to equations (17) and (19), equation (A.8) is isomorphic to equation (20),
equation (A.9) is isomorphic to equation (21), and equation (A.10) is isomorphic to equa-
tion (10).

B.2.2. Inversion Uniqueness

In this section, we provide the proof of Proposition 2. We divide the proof into four
steps.

Step 1: Within-County-Sector Inversion. We first provide an analytical inversion for
within-county relative wages and productivity. Given plant-level employment, equation
(13) can be manipulated to show that

wisj

Wis

= l 1−ρ
ε

isj

∑
k∈Eis

lisk

∑
k∈Eis

l
1+ 1−ρ

ε
isk

� (A.11)

Thus, we can invert plant-level employment to recover plant-level relative wages, which

we denote by w̃isj := wisj

Wis
. Define z∗

isj := l
1

ω−1
isj w̃

1−γs (1−ω)
ω−1

isj . Given relative wages and employ-
ment, it can be shown that for any κis ∈ R++, the set of productivity parameters given by
{κisz∗

isj}j∈Eis ensures that equation (15) holds for observed labor shares. We refer to z∗
isj as

“relative productivity”; we pin down κis later in Step 3.

Step 2: Sectoral Amenity Scale Parameters and Wages.

CLAIM 3: Given plant-level employment and wages, parameters, and recovered markups,
there exist unique (up to a normalization) sets of sector-specific amenity scale prameters and
county-sector wages that rationalize the observed data as an equilibrium of the model.

1The above equations correspond to all of the equilibrium conditions in CP, except equation (9), which
accounts for trade imbalances. In our model, trade imbalances are fully captured in equation (21), so we omit
stating the additional equilibrium condition for brevity. Also, while our model does not feature tariffs, plant-
level markups enter equilibrium conditions in the same way.
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PROOF: Summing equation (21) within each sector, plugging in equation (10), and

manipulating yields the system Os = ∑
t∈S Otφts, for sns := L

ε+1−ρ
ε

ns (W̃ b
ns)

−1B−ε
s∑

t∈Sn L
ε+1−ρ
ε

nt (W̃ b
nt )−1B̃−ε

t

, W b
ns :=

(
∑

j∈Ens
w̃

ε
1−ρ
nsj )

1−ρ
ε , Os :=

∑
n∈Ns snsWnLn∑

t∈S
∑
n∈Nt sntWnLn

, and φts := γs
γt

(ω−1)
ω

(κs(γt + 1
(ω−1) ) + δts(1 − γt)).

Linearity implies that the system has at most one solution with
∑

s∈S Os = 1. All that re-
mains to show is therefore that there is a unique inversion from {Os}s∈S to {Bs}s∈S . To
show this, define

Os

(
{Bt}t∈S

) :=

∑
n∈Ns

L
ε+1−ρ
ε

ns

(
W̃ b
ns

)−1
B−ε
s∑

t∈Sn
L

ε+1−ρ
ε

nt

(
W̃ b
nt

)−1
B̃−ε
t

wnLn

∑
n∈N

wnLn
� (A.12)

Ds

(
{Bt}t∈S

) := Os

(
{Bt}t∈S

) −Os� (A.13)

If the system of equations defined by equation (A.13) represents an excess demand system
with the gross substitution property, then it has a unique (up to scale) solution. This re-
quires (i) Ds is continuous, (ii) Ds is homogeneous of degree zero, (iii)

∑
sDs = 0, and (iv)

Ds exhibits gross substitution in amenity scale parameters. Properties (i) and (ii) follow
immediately from inspection of equation (A.12). For property (iii), clearly

∑
s∈S Os = 1;

we also have

∑
s∈S

Os

(
{Bt}t∈S

) =
∑
s∈S

∑
n∈Ns

L
ε+1−ρ
ε

ns

(
W̃ b
ns

)−1
B−ε
s∑

t∈Sn
L

ε+1−ρ
ε

nt

(
W̃ b
nt

)−1
B̃−ε
t

wnLn

∑
n∈N

wnLn

=

∑
n∈N

∑
s∈Sn

L
ε+1−ρ
ε

ns

(
W̃ b
ns

)−1
B−ε
s

∑
t∈Sn

L
ε+1−ρ
ε

nt

(
W̃ b
nt

)−1
B̃−ε
t

wnLn

∑
n∈N

wnLn
=

∑
n∈N

wnLn∑
n∈N

wnLn
= 1�

For property (iv), define Ons := ( L
ε+1−ρ
ε

ns (W̃ b
ns)

−1B−ε
s∑

t∈Sn L
ε+1−ρ
ε

nt (W̃ b
nt )−1B̃−ε

t

). It is sufficient to show that ∀n ∈N ,

∂ lnOns

∂lnBs′
≥ 0 and ∃n ∈ N : ∂ lnOns

∂lnBs′
> 0 ∀s′ ∈ S\{s}. We have that ∂ lnOns

∂lnBs′
= εsnssns′ ≥ 0. Since all

sectors overlap in at least one location in the economy, the inequality is strict for at least
one location. Finally, equation (10) pins down {Wns}n∈N :s∈Sn . Q.E.D.
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Step 3: Plant-Level Productivities.

CLAIM 4: Given observed data, parameters, and recovered fundamentals, there exists a
unique set of fundamental productivities (up to a normalization for each sector s ∈ S) that is
consistent with an equilibrium of the model.

PROOF: Consider sector s, and define yns := ω
ω−1

WnsLns
γs

and ynst := WntLnt ((1 + d)κs +
δts

1−γt
γt

). Moreover, define the function

Dns

(
{p̃is}i∈Ns

) = yns −
∑
i∈N

∑
t∈Si

(
τinp̃ns

pis

)1−η
yist � (A.14)

If Dns characterizes an excess demand system with the gross substitution property, there
is a unique (up to scale) set of Free on Board prices satisfying equation (A.14). This
requires (i)Dns is continuous, (ii)Dns is homogeneous of degree zero, (iii)

∑
n∈Ns

Dns = 0,
and (iv) Dns exhibits gross substitution in Free on Board prices. Properties (i) and (ii)
follow immediately by inspection. Property (iii) requires that

∑
n∈Ns

yns = ∑
i∈N

∑
t∈Si yist ,

which follows from the proof of Claim 3. For property (iv), it is sufficient to show that
∂

∂p̃n′s

∑
i∈N

∑
t∈Si (

τinp̃ns
pis

)1−ηyist has a constant sign for n′ 
= n. We have

∂

∂p̃n′s

∑
i∈N

∑
t∈Si

(
τinp̃ns

pis

)1−η
yist = (1 −η)

∑
i∈N

∑
t∈Si

(
τinp̃ns

pis

)−η
τin

∂
p̃ns

pis
∂p̃n′s

yist︸ ︷︷ ︸
<0

�

Thus, all cross-partials have the same sign (which depends on the value of η), which is
sufficient for gross substitution.

It remains to show that within-industry fundamental productivities are unique up
to scale. Let {p̃∗

is}i∈N :s∈Si be an (arbitrarily scaled) set of Free On Board prices that
solves equation (A.14). Final goods prices in sector s and location n are then given
by p∗

ns = (
∑

i∈N τ
1−η
ni (p̃∗

is)
1−η)

1
1−η , which in turn pins down materials prices {pm∗

is }i∈Ns . It
then follows that MC∗

is = p̃∗
is

(pm∗
is )1−γis W γs

is

. Suppose we re-scale sector s’s prices by ks. Then,

p̃′
is = ksp̃

∗
is, p

′
ns = ksp

∗
ns, and pm′

is = pm∗
is

∏
t∈S k

δts
t , so MC ′

is = MC∗
is(

∏
t∈S k

δts
t )γs−1. Note

that (
∏

t∈S k
δts
t )γs−1 is constant within-sector; therefore, MC is is unique up to scale within

each sector.
We finally show that the recovered values of MC is pin down the values of zisj . Manipu-

lating the definition of MC is and zisj gives

zisj = z∗
isj

MC∗
is

1
ω− 1

(∑
j∈Eis

(
z∗
isj

)ω−1
w̃
γs (1−ω)
isj

) 1
1−ω
� (A.15)

Note that equation (A.15) pins down κis, which was introduced in Step 1. Finally, com-
bining Claim 1 with observed employment gives the unique decomposition of zisj into z̃isj ,
Lβi , and kisj . Q.E.D.
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Step 4: County-Level Amenity Scale Parameters.

CLAIM 5: Given observed data, parameters, and recovered fundamentals, there exists a
unique (up to a normalization) set of county amenity scale parameters that rationalizes the
observed data as an equilibrium of the model.

PROOF: The proof is identical to the proof of Proposition 3 in Redding (2016). Q.E.D.

C. ESTIMATION APPENDIX

C.1. Model Economy

To construct our model economy, we combine public Census data with information
from confidential Census data (1982, CMF) to match key characteristics of MC firms,
MC plants, and MC plant-level networks, as described below.2

First, we use public Census data to measure county-level exogenous fundamentals. We
gather data on land areas and geographical coordinates from the U.S. Gazetteer and
TIGER/Line Shapefiles. We use these data to compute (haversine) geographical dis-
tances, which in our model pin down trade costs, τni = distψni.

Second, for each county, we obtain data on manufacturing employment and wages
as well as the number of plants in each sector from the 1982 County Business Patterns
(CBP). We augment the CBP with imputed data from Eckert, Fort, Schott, and Yang
(2021) to fill in missing values for county-sector level employment. Overall, our model
economy has 312,633 plants. We consider 14 sectors based on 2-digit SIC codes: Food
and Tobacco (SIC 20–21), Textiles, Apparel, and Leather (SIC 22–23, 31), Lumber and
Furniture (SIC 24–25), Paper and Printing (SIC 26–27), Chemicals (SIC 28), Petroleum
and Coal (SIC 29), Rubber and Plastics (SIC 30), Minerals (SIC 32), Primary Metals
(SIC 33), Fabricated Metals (SIC 34), Industrial Machinery (SIC 35), Electronics (SIC
36), Transportation Equipment (SIC 37), and Miscellaneous Manufacturing (SIC 38–39).

Third, for each county-sector cell, we use the (augmented) CBP in combination with
confidential Census data to simulate plant-level employment and whether a plant is SC or
MC. While this information is not directly observable in public data, the CBP provides for
each county-sector cell a breakdown of the number of plants by employment size, grouped
into 12 granular size buckets.3 Using confidential Census data, we compute for each size
bucket: (i) the share of MC plants, (ii) mean SC plant employment, and (iii) mean MC
plant employment. For each size bucket, we then fit a (truncated) Pareto distribution to
plant-level employment separately for SC and MC plants (24 Pareto distributions). We
use these distributions together with the MC plant share to simulate, for each county-
sector cell, plant-level employment and, given employment, whether a plant is SC or MC.
The end result is a rich plant-level data set where, as in confidential Census data, we know,
for each plant, its county, sector, employment, plant ID, and SC/MC affiliation.

Finally, using confidential Census data, we generate the (winsorized, non-parametric)
joint distribution of firm size and spatial dispersion in firms’ plant-level networks. We
assign MC plants to firms matching this joint distribution. Firm size is the number of
plants; spatial dispersion corresponds to the fraction of MC firms that have all of their

2Computational constraints make it necessary to run the estimation outside the Census Bureau.
3The size buckets are: 1–4 employees, 5–9 employees, 10–19 employees, 20–49 employees, 50–99 employees,

100–249 employees, 250–499 employees, 500–999 employees, 1000–1499 employees, 1500–2499 employees,
2500–4999 employees, and 5000+ employees.
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plants in the same state, same Census region, two Census regions, three Census regions,
or all four Census regions. (Using a more granular partitioning does not materially affect
the estimates.) Matching the joint distribution of firm size and spatial dispersion in firms’
plant-level networks accounts for observed patterns in the data, where larger MC firms
tend to be much more geographically dispersed than smaller MC firms.

C.2. Parameter Estimation

Let � := {ζ�θ�η�ε�ω�ρ} denote the set of estimated parameters. We employ a stan-
dard indirect inference objective function, Q(�) = (m−m(�))′�(m−m(�)) and �̂ =
arg min�Q(�) for data moments m, corresponding model moments m(�), and positive
definite weighting matrix �.4 The process to compute m(�) consists of three steps.

Step 1. Pre-Shock Equilibrium and Recovery of Fundamentals. Given parameter values
and observed fundamentals, we recover the unobserved fundamentals, plant-level knowl-
edge, and plant-level wages that rationalize the data as an equilibrium of the model. The
inversion process follows the step-by-step procedure described in Supplemental Appendix
B.2.

DEFINITION 1: Given parameter values and fundamentals, the pre-shock equilibrium
is given by {k(�)� l�w(�)�L�W (�)}.

We denote the dependence of endogenous objects, {k�w�W}, on estimated parameters
as a reminder that the unobserved endogenous objects are functions of the parameters to
be estimated. Proposition 2 shows that, given parameter values, the vector of endogenous
objects {W �w�k} that is consistent with an equilibrium of the model is unique.

Step 2. Post-Shock Equilibrium. The second step involves re-computing the endoge-
nous objects after perturbing the pre-shock equilibrium by adding an MDP to the winner
county. We use characteristics of the actual MDPs to discipline corresponding fundamen-
tals in the model. Specifically, we set the MDPs’ fundamental productivities to match
the actual MDPs’ county-level employment shares immediately after entry and compute
MDP parent firm knowledge as described in the model.5 Holding all other fundamentals
constant, we compute the new equilibrium of the model, which we refer to as “post-shock
equilibrium.” We perform this step for each of the 47 MDP cases (i.e., we use the actual
winner and runner-up counties from the data).6

DEFINITION 2: Given parameter values and fundamentals, the post-shock equilibrium
is given by {k′

c(�)� l′c(�)�w′
c(�)�L′

c(�)�W ′
c(�)}.

Step 3. Difference-in-Differences Regressions. To generate model moments that corre-
spond to the data moments, we stack the pre-shock equilibrium together with the 47
post-shock equilibria and estimate local and global spillover difference-in-differences re-
gressions akin to those in our reduced-form analysis. As in our reduced form, the local

4Since, at the estimated parameter values, our model moments exactly match the data moments, the choice
of weighting matrix is irrelevant.

5For simplicity, we use a representative MDP parent firm to compute parent firm knowledge. In our esti-
mated model, larger MDPs generate stronger local productivity spillovers, which is consistent with the reduced-
form evidence in Table A.IV.

6For two of these counties, CBP wage data are unavailable; we use instead wage data from the Quarterly
Census of Employment and Wages (QCEW).
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spillover sample includes all plants in the winner and corresponding runner-up counties
(except for the MDPs and any plants owned by the MDPs’ parent firms). We measure
outcome variables yiskct (in logs) at the plant-case-time level, where isk indicates plants,
as specified in our model, c indicates cases, and time t corresponds to pre- and post-MDP
entry. We estimate the following specification:

yiskct = ξisk + ξcst +β1(Winneri × Postct) + εiskct�
where the dependent variable is either plant-level productivity, plant-level employment,
or plant-level wages. The specification is exactly the same as in our reduced form, except
that we interact the case fixed effects with the industry × time fixed effects to account for
the stacked nature of the MDP experiments.7 The estimated parameter β̂1 provides us
with three model moments—local semi-elasticities of plant-level employment, wages, and
productivity to the MDP openings. To generate the remaining three model moments—
global semi-elasticities of plant-level employment, wages, and productivity to the MDP
openings—we estimate the same specification as in our reduced-form global spillover
analysis, except that we again interact the case fixed effects with the industry × county ×
year fixed effects to account for the stacked nature of the experiments.

Finally, to estimate standard errors for the structural parameters, we employ a
GMM standard error estimator for just-identified models. This takes the form of �̂ =
(G′Ŝ−1G)−1, where G denotes the Jacobian of moments to parameters, and Ŝ denotes
the sample moment covariance matrix. We calculate G numerically. To calculate Ŝ, we
estimate all six central reduced-form regressions (local and global TFP, wage, and em-
ployment responses to the MDP openings) jointly as one regression by concatenating
the regression samples, interacting all right-hand-side variables with “local” or “global”
indicators × corresponding outcome variable (TFP, wages, employment) indicators, and
otherwise mimicking the reduced-form regression specifications.8 The standard errors for
the structural parameters are the square roots of the diagonal elements of �̂.
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