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APPENDIX B: ONLINE APPENDIX

B.1. Additional Theoretical Results for Section 3

B.1.1. Approximate Solutions

PROPOSITION 3: FOR ANY σ ∈ Ik, we have

P
(
X(k)�σ

) ≤
∑
x

max
ω

∑
θ

[
w(ω�θ)σ (x�θ) +

∑
i

ui(ω�θ)∇̃+
i σ (x�θ)

]
�

For any m ∈M0
k, we have

G
(
X(k)�m

) ≥
∑
θ

μ(θ) min
x

∑
ω

[
w(ω�θ)m(ω|x) +

∑
i

ui(ω�θ)∇+
i m(ω|x)

]
�

PROOF: This is an immediate implication of the proofs of Theorem 1. In particular, the
program (UB-P-k) is obtained by taking the dual of the inner maximization over mech-
anisms and equilibria from (MIN-P), so that any feasible solution to that dual provides
an upper bound on the value of the primal, meaning that it provides an upper bound on
welfare under any mechanism and equilibrium. Similarly, we obtained (LB-G-k) by taking
the dual of the inner minimization program, and any feasible solution to the dual provides
a lower bound on welfare in the primal program. Q.E.D.

B.1.2. Robustness to the Prior

The following corollary of Proposition 3 generalizes Proposition 9 of Brooks and Du
(2021b):

PROPOSITION 4: Fix a mechanism m ∈ M0
k. Then, for any μ′ ∈ �(�), welfare in any

information structure I ′ with prior μ′ and equilibrium b ∈ E ((X(k)�m)� I ′) is at least

∑
θ

μ′(θ) min
x

∑
ω

[
w(ω�θ)m(ω|x) +

∑
i

ui(ω�θ)∇+
i m(ω|x)

]
� (41)

PROOF: From Proposition 3, we replace μ with μ′ and conclude that (41) is a lower
bound on equilibrium welfare. Q.E.D.
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2 B. BROOKS AND S. DU

In particular, the bound (41) holds for any mechanism that maximizes the lower bound
on the guarantee at a particular prior μ, and at μ′ = μ, the lower bound (41) coincides
with the optimum. Thus, while we have treated the prior over θ as a feature of the en-
vironment that is ostensibly known by the designer, in fact our theory remains valid and
useful even if the designer has only approximate knowledge of the distribution of θ.

B.1.3. Strong Maxmin Solutions

As discussed in Section 3.3.3, Brooks and Du (2021b) characterized analogues of (LB-
G-k) and (UB-P-k) in a setting with infinitely many actions and signals. In this case, equi-
librium existence is not guaranteed, and care has to be taken that guarantees and poten-
tials are not vacuous. To finesse this issue, we solved for a strong maxmin solution, which
is a triple (M�I�b) such that b ∈ E (M�I), and P(I) =G(M).

With finite action and signal spaces, an equilibrium always exists, but the optimal guar-
antee and potential may not be exactly attained. We now formulate an analogous solution
concept for the discrete setting and relate its existence to whether or not there is a duality
gap.

A pair (M�I) is an ε-strong maxmin solution if P(I) −G(M) ≤ ε. The following result
is immediate from definitions:

PROPOSITION 5: The min potential is equal to the max guarantee if and only if, for every
ε > 0, there exists an ε-strong maxmin solution.

PROOF: If W (MIN-P) = W (MAX-G) = W ∗, then for every ε > 0, there exist an M
and I such that G(M) ≥ W ∗ − ε/2 and P(I) ≤ W ∗ + ε/2, and hence P(I) − G(M) ≤ ε.
Conversely, suppose (M�I) is an ε-strong maxmin solution. Then W (MIN-P) ≤ P(I) and
W (MAX-G) ≥ G(M). Hence, W (MIN-P) −W (MAX-G) ≤ P(I) −G(M) ≤ ε. Since ε is
arbitrary, we conclude that W (MIN-P) =W (MAX-G). Q.E.D.

As a consequence of Proposition 5 and Theorem 2, we obtain the following:

COROLLARY 1: In the optimal auctions problem, an ε-strong maxmin solution exists for
all ε > 0.

Corollary 1 is essentially a “strong minimax theorem” for the zero-sum game in which
the designer chooses the mechanism and an adversary chooses the information structure
to maximize and minimize welfare, respectively. It is important to note, however, that
this is not quite a game, because for a given (M�I), there may be multiple equilibria
with different payoffs for the designer, and therefore the standard results on zero-sum
games do not apply. In (MAX-G), we have effectively selected the mechanism designer’s
preferred equilibrium, and in (MIN-P), we selected the worst case for the designer. The
theorem therefore implies that the values of these programs would coincide regardless of
how an equilibrium is selected. Equivalently, we could consider the collection of zero-sum
games that are parameterized by the choice of equilibrium selection rule (as a function
of the mechanism and information structure). Then any ε-strong maxmin solution is an
ε-equilibrium of all of the zero-sum games with different equilibrium selection rules.
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B.1.4. A Sufficient Condition for Tight Bounds and Zero Duality Gap

For a sequence of functions {f k}∞
k=1, where f k : X(k) → R, and a function f : RN

+ → R,
we say that {f k} converges uniformly to f if, for all ε > 0, there exists a K such that if k≥K
and x ∈X(k), then|f k(x) −f (x)|≤ ε. Given an f :RN

+ → R, we denote by ∇if the partial
derivative with respect to the ith argument. Also define Xi(k) ={x ∈ X(k)|xi < k}.

PROPOSITION 6: Suppose that there exist optimal solutions to (12), {(mk�λk)}∞
k=1, for

which mk converge uniformly to a Lipschitz continuous function m : RN
+ → �(�).39 Further

suppose that ∇im(ω|x) exists everywhere and is Lipschitz continuous, ∇−
i m

k(ω|·) restricted
to Xi(k) converges uniformly to ∇im(ω|·) for all i, and that xi = 0 is participation secure
under m for all i. Then

lim
k→∞

W (UB-P-k) =W (MIN-P) =W (MAX-G) = lim
k→∞

W (LB-G-k)�

PROOF: Let C1 be an upper bound on |w(ω�θ)| and |ui(ω�θ)|. Since λk is optimal,

λk(θ) = min
x

∑
ω

[
w(ω�θ)mk(ω|x) +

∑
i

ui(ω�θ)∇−
i m

k(ω|x)
]
�

The program (UB-P-k) is feasible with σ (x�θ) = μ(θ)/(1 + k2)N for all θ and x, which
generates an upper bound on the value of (UB-P-k) equal to

∑
x

max
ω

∑
θ

μ(θ)(
1 + k2

)N
[
w(ω�θ) +

∑
i

ui(ω�θ)
(
(1 − k)Ixi=k−1/k − Ixi=k

)] ≤ (N + 1)C1�

We conclude that for all k,
∑

θ μ(θ)λk(θ) ≤ (N + 1)C1.
Now, let m̃k(ω|θ) be the restriction of m to X(k), and define

λ̃k(θ) = min
x

∑
ω

[
w(ω�θ)m̃k(ω|x) +

∑
i

ui(ω�θ)∇+
i m̃

k(ω|x)
]
�

Participation security of m̃k follows from that of m, so (m̃k� λ̃k) is feasible for (9), and

W (UB-P-k) −W (LB-G-k) ≤
∑
θ

μ(θ)
(
λk(θ) − λ̃k(θ)

)
�

Let C2 be a Lipschitz constant for ∇im and m. Fix ε > 0. From uniform convergence,
there exists a K such that for k ≥ K and x ∈ X(k), |mk(ω|x) −m(ω|x)|≤ ε, and for all i
and x ∈ Xi(k), |∇−

i m
k(ω|x) − ∇im(ω|x)|≤ ε. Without loss, we may also take K ≥ C2/ε.

As a result, if x ∈ Xi(k) and k ≥K, then

∇+
i m̃

k(ω|x) = (k− 1)
∫ xi+1/k

y=xi

∇im(ω|y�x−i) dy

= k− 1
k

∇im(ω|x) + (k− 1)
∫ 1/k

z=0

(∇im(ω|xi + z�x−i) − ∇im(ω|x)
)
dz�

39By this, we mean that the sequence of functions mk(ω|·) : X(k) → R converges uniformly to m(ω|·) :
R

N
+ →R, for every ω.
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and hence,∣∣∣∣∇+
i m̃

k(ω|x) − k− 1
k

∇−
i m

k(ω|x)
∣∣∣∣ ≤

∣∣∣∣∇+
i m̃

k(ω|x) − k− 1
k

∇im(ω|x)
∣∣∣∣ + ε

≤ (k− 1)
∫ 1/k

z=0

∣∣∇im(ω|xi + z�x−i)

− ∇im(ω|x)
∣∣dz + ε

≤ C2(k− 1)
k2 + ε ≤ C2

K
+ ε≤ 2ε�

In addition, if x ∈X(k) \Xi(k) and k ≥K, then∣∣∣∣∇+
i m̃

k(ω|k�x−i) − k− 1
k

∇−
i m

k(ω|k�x−i)
∣∣∣∣ = k− 1

k

∣∣mk(ω|k�x−i) −mk(ω|k− 1/k�x−i)
∣∣

≤ ∣∣m(ω|k�x−i) −m(ω|k− 1/k�x−i)
∣∣ + 2ε

≤ C2

k
+ 2ε≤ 3ε�

We conclude that for k≥K,

λ̃k(θ) = min
x∈X(k)

∑
ω

[
w(ω�θ)m̃k(ω|x) +

∑
i

ui(ω�θ)∇+
i m̃

k(ω|x)
]

≥ k− 1
k

min
x∈X(k)

∑
ω

[
w(ω�θ)mk(ω|x) +

∑
i

ui(ω�θ)∇−
i m

k(ω|x)
]

−C1|�|
(
ε
k− 1
k

+ 1
k

+ 3Nε

)

= k− 1
k

λk(θ) −C1|�|
(
ε
k− 1
k

+ 1
k

+ 3Nε

)
�

As a result, for k≥K,

∑
θ

μ(θ)
(
λk(θ) − λ̃k(θ)

) ≤ 1
k

∑
θ

μ(θ)λk(θ) +C1|�|
(
ε
k− 1
k

+ 1
k

+ 3Nε

)

≤ 1
k

(N + 1)C1 +C1|�|
(
ε
k− 1
k

+ 1
k

+ 3Nε

)
�

Since ε is arbitrary, we conclude that (UB-P-k) and (LB-G-k) have the same value when
k → ∞, as desired. Q.E.D.

The hypotheses of Proposition 6 may be difficult to verify in practice. Their value is
in making precise what kind of asymptotic smoothness implies that the bounds are tight.
Note that these conditions, Lipschitz continuity of ∇im(ω|x) in particular, are stronger
than needed and are not always satisfied by guarantee maximizers in the optimal auctions
problem, such as in Brooks and Du (2021b).
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B.2. Bounding Programs for the Optimal Auctions Problem

We now derive the bounding programs for the optimal auctions problem.

THEOREM 3: For all k ∈N, we have

W (19) ≥W (MIN-P) ≥W (MAX-G) ≥W (18)�

Moreover,
• If (q� t) solves (18), then G(X(k)� q� t) ≥W (LB-G-k).
• If σ solves (19), then P(X(k)�σ) ≤W (UB-P-k).

PROOF: The proof that W (MIN-P) ≥W (MAX-G) is the same as for Theorem 1.
For (MAX-G), clearly a subset of participation-secure mechanisms are those with the

message space X(k) and the action 0 is participation secure, and moreover, the transfer
is zero if an agent takes action 0. For any such mechanism, infimum expected revenue
across all information structures and equilibria is equal to minimum expected revenue
across all Bayes correlated equilibria, that is,

min
σ :X(k)×�→R+

∑
θ�x�i

ti(x)σ (x�θ)

s.t.
∑
x−i�θ

(∑
l

θi�l

[
qi�l(xi�x−i) − qi�l

(
x′
i� x−i

)] − [
ti(xi�x−i) − ti

(
x′
i� x−i

)])
σ (xi�x−i� θ)

≥ 0 ∀i� xi� x
′
i�∑

x

σ (x�θ) = μ(θ) ∀θ�

This program is clearly feasible, and because X(k) is finite and t and σ are bounded, the
value of this program is also bounded. Hence, by the strong duality theorem, its value is
equal to that of its dual:

max
α:X1(k)×X1(k)→R

N+ �
λ:�→R

∑
θ

λ(θ)μ(θ)

s.t. λ(θ) ≤
∑
i

ti(x)

+
∑
i�x′

i

αi

(
xi�x

′
i

)(∑
l

θi�l

[
qi�l

(
x′
i� x−i

) − qi�l(xi�x−i)
]

− [
ti
(
x′
i� x−i

) − ti(xi�x−i)
]) ∀x�θ�

(Recall that X1(k) is one dimension of the action/signal space X(k).) We may further
constrain this program (and therefore decrease its value) by fixing

αi

(
xi�x

′
i

) =
{
k− 1 if xi < k and x′

i = xi + 1/k�
0� otherwise�
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which results in the program

max
λ:�→R

∑
θ

λ(θ)μ(θ)

s.t. λ(θ) ≤
∑
i

ti(x) +
∑
i

(∑
l

θi�l∇+
i qi�l(xi�x−i) − ∇+

i ti(xi�x−i)
)

∀x�θ�
(42)

We conclude that (42) is a lower bound on equilibrium expected revenue for any mech-
anism in M0

k. Hence, a lower bound on (MAX-G) can be obtained by maximizing this
lower bound across all such mechanisms, which is (18).

Similarly, for (MIN-P), an upper bound on the min potential is given by restricting at-
tention to information structures with signals in X(k). Moreover, participation security
implies that each agent’s interim expected utility is non-negative. Thus, by the revelation
principle, maximum expected revenue across participation-secure mechanisms and equi-
libria is bounded above by maximum expected revenue across all incentive compatible
and individually rational direct mechanisms, that is,

max
q:X(k)→R

NL+ �t:X(k)→RN

∑
x�θ�i

ti(x)σ (x�θ)

s.t.
∑
i

qi�l(x) ≤ 1 ∀l� x�

∑
x−i�θ

(∑
l

θi�lqi�l(xi�x−i) − ti(xi�x−i)
)
σ (xi�x−i� θ) ≥ 0 ∀i� xi�

∑
x−i�θ

(∑
l

θi�l

[
qi�l(xi�x−i) − qi

(
x′
i� x−i

)] − [
ti(xi�x−i) − ti

(
x′
i� x−i

)])
σ (xi�x−i� θ)

≥ 0 ∀i� xi� x
′
i�

We obtain an even more permissive upper bound on the value of the inner program by
dropping the interim individual rationality constraint except for xi = 0 and dropping in-
centive compatibility except for x′

i = xi − 1/k and xi > 0:

max
q:X(k)→R

NL+ �t:X(k)→RN

∑
x�θ�i

ti(x)σ (x�θ)

s.t.
∑
i

qi�l(x) ≤ 1 ∀l� x�

∑
x−i�θ

(∑
l

θi�lqi�l(0�x−i) − ti(0�x−i)
)
σ (0�x−i� θ) ≥ 0 ∀i�

∑
x−i�θ

(∑
l

θi�l

[
qi�l(xi�x−i) − qi(xi − 1/k�x−i)

]

− [
ti(xi�x−i) − ti(xi − 1/k�x−i)

])
σ (xi�x−i� θ) ≥ 0 ∀i� xi > 0�
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Since the constraints are not altered by multiplication by a positive scalar (1 or k), this
program is equivalent to

max
q:X(k)→R

NL+ �t:X(k)→RN

∑
x�θ�i

ti(x)σ (x�θ)

s.t.
∑
i

qi�l(x) ≤ 1 ∀l� x�

∑
x−i�θ

(∑
l

θi�l∇−
i qi�l(xi�x−i) − ∇−

i ti(xi�x−i)
)
σ (xi�x−i� θ) ≥ 0 ∀i� xi�

Note that this program is feasible with q ≡ 0 and t ≡ 0. However, it may be unbounded.
Nonetheless, its value (possibly infinity) is an upper bound on the potential of the infor-
mation structure (X(k)�σ). Finally, we can relax the program even further by removing
the constraints and adding them to the objective, which gives us a weakly higher value:

max
q:X(k)→R

NL+ �

t:X(k)→R
N

∑
x�θ�i

[
ti(x) +

∑
l

θi�l∇−
i qi�l(xi�x−i) − ∇−

i ti(xi�x−i)
]
σ (x�θ)

s.t.
∑
i

qi�l(x) ≤ 1 ∀l� x�

Using Lemma 2 to sum by parts, the objective in this last program is equivalent to

∑
x�θ�i

[
ti(x)σ (x�θ) −

(∑
l

θi�lqi�l(xi�x−i) − ti(xi�x−i)
)

∇̃+
i σ (x�θ)

]
�

Hence, minimizing the value of this program across all σ ∈ �(X(k) × �) is exactly (19).
Q.E.D.

B.3. Transfers and the Aggregate Excess Growth

B.3.1. Preliminary Observations

The proof of Theorem 2, and Lemma 1 in particular, shows that we can essentially
solve out the transfers from the optimal auctions lower bound program (18) in terms of
the aggregate excess growth , to obtain the equivalent program (28). In applications, we
have found that it is often more convenient to work with the program (28), and derive the
optimal multipliers and allocation (λ��q).

Importantly, Lemma 1 tells us that it is possible to go back and forth between solutions
of the programs (18) and (28). In particular, given (λ�q� t) that is feasible for (18), we
can define  according to (23). Lemma 1 implies that  is balanced, so that (λ��q) is
feasible for (28) and has the same value as (λ�q� t) in (18). In the other direction, given
(λ��q) that is feasible for (28), there is another optimal solution (λ + C� − C�q)
such that −C is balanced. Lemma 1 then implies that there exists a transfer rule t with
aggregate excess growth −C and satisfies participation security (24), so that (λ+C�q� t)
is feasible for (18) and has the same value. This discussion is formalized in the following
corollary:



8 B. BROOKS AND S. DU

COROLLARY 2: The triple (λ∗� q∗� t∗) is an optimal solution to (18) only if (λ∗�∗� q∗) is
an optimal solution to (28), where ∗ = ∇+ · t∗ − �t∗. The triple (λ∗�∗� q∗) is an optimal
solution to (28) only if there is a C ∈ R and a t∗ where ∗ − C = ∇+ · t∗ − �t∗ and (λ∗ +
C�q∗� t∗) is an optimal solution to (18).

The proof of Lemma 1 is non-constructive. But in fact, given a balanced , we can
construct a transfer rule t that is participation secure and has the given aggregate excess
growth. To develop this result, let us first denote by ξi(x) agent i’s individual excess growth:

ξi(x) ≡ ∇+
i t(x) − ti(x)� (43)

We can view this as a first-order difference equation in xi, which we can use to solve
for the transfer in terms of the individual excess growth. The solution that satisfies the
boundary condition ti(k�x−i) = −ξi(k�x−i) (which is just equation (43) when xi = k) is

ti(x) = −
∑

yi :yi≥xi

(
k− 1
k

)(yi−xi)k 1
kIyi<k

ξi(yi� x−i)�

Using the definition of ρi, we can rewrite this more simply as

ti(x) = − 1
ρi(xi)

∑
yi :yi≥xi

ρi(yi)ξi(yi� x−i)� (44)

Thus, the transfers will satisfy ti(0�x−i) = 0 if and only if40

∑
yi∈Xi(k)

ρi(yi)ξi(yi� x−i) = 0� (45)

We conclude that there is a correspondence between feasible solutions to (45) and indi-
vidual excess growths that correspond to participation-secure transfer rules.

Now, for  to be the aggregate excess growth, we must have

�ξ(x) =(x) (46)

for all x. Thus, the task of constructing transfers with a given aggregate excess growth
reduces to constructing individual excess growths that satisfy (45) and (46).

PROPOSITION 7: Fix a transfer rule t and its associated individual excess growth functions
ξ defined by (43). Then t is given by the formula (44). Moreover, t is participation secure and
has aggregate excess growth  if and only if ξ satisfies (45) and (46).

40Brooks and Du (2021b) stated and used an analogue of (45) in a continuum model where actions are non-
negative real numbers. In particular, the condition (45) is key to showing that truthful reporting is an equilib-
rium of the strong maxmin solution constructed in that paper. A subtlety arises in the continuum model, in that
there is no boundary condition at the top. Instead, the analogue of the condition (45) ensures that transfers re-
main bounded in the limit as xi goes to infinity, and the transfer given by (44) converges to limxi→∞ ξi(xi�x−i).
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B.3.2. Construction of Transfers for N = 2

Given a balanced , we now explicitly describe the solutions to (45) and (46), which in
turn define transfer rules with aggregate excess growth . For notational simplicity, we
specialize to the case of N = 2. In the next section, we give a general construction for
N > 2, which is conceptually the same but more involved in terms of notation.

A balanced division of  is a pair of functions i :X(k) → R for i = 1�2 such that i is
balanced and  = 1 +2. Any balanced division induces individual excess growths that
satisfy (45) and (46), as we now explain. We interpret i as agent i’s “initial” allocation
of the aggregate excess growth. We then make “correction” to the initial excess growth to
satisfy (45):

ξi(x) =i(x) −
∑

yi∈Xi(k)

i(yi� xj)ρi(yi) +
∑

yj∈Xj (k)

j(xi� yj)ρj(yj)� (47)

PROPOSITION 8: Suppose N = 2. If (1�2) is a balanced division of , then ξ given by
(47) satisfies (45) and (46). The corresponding transfers t defined by (44) are participation
secure and have aggregate excess growth .

The proof of Proposition 8 follows immediately from the definitions: Taking the expec-
tation over xi with respect to ρi(xi), the last term in the right-hand side of (47) vanishes,
since j is balanced, and the first two terms obviously cancel each other; thus, ξ defined
by (47) satisfies (45). Moreover, using the assumption that 1(x) + 2(x) = (x), it is
easy to see that ξ1(x) + ξ2(x) =(x) in (47) as well.

The set of solutions to (45) and (46) given by Proposition 8 is complete in the sense that
if (ξ1� ξ2) satisfies (45) and (46), then (1�2) = (ξ1� ξ2) is clearly a balanced division, and
the correction terms in (47) are all zero.

While it is simple to prove, Proposition 8 yields rich possibilities for constructing
participation-secure transfers with the desired aggregate excess growth. For example, we
can set 1(x) = c(x) and 2 = (1 − c)(x), where c ∈ [0�1] is a constant, which is
a balanced division whenever  is balanced. Moreover, if (1�2) is a balanced divi-
sion, then so is (1 + E�2 − E) for any balanced function E. If E is skew-symmetric—
meaning E(x1�x2) = −E(x2�x1)—then E will also be balanced; this follows from the fact
that ρ is exchangeable, so the expectation of E over ρ is zero. Simple examples of skew-
symmetric functions include any odd function of the difference x1 − x2. In Supplemental
Appendix B.3.4, we will illustrate that including a skew-symmetric E in the balanced divi-
sion can lead to a significant simplification in the functional form of the transfers in the
model studied in Section 6.

B.3.3. Construction of Transfers for N > 2

We now give a general construction of participation-secure transfers via balanced divi-
sions of the aggregate excess growth. The idea of the general construction is as follows:
When there were two agents, we initially allocated each agent a share of the total ag-
gregate excess growth. Each agent then received an “adjustment” so that their individual
excess growth satisfied (45), where the adjustment is essentially the interim expected indi-
vidual excess growth of the other agent. We now adopt a more general construction where
there is an initial allocation of the aggregate excess growth to each agent, and then ad-
justments (in the form of interim expected excess growths) are passed around from agent
to agent, so that (45) is satisfied.
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We now proceed formally. For this section, we will suppress k and write Xi = Xi(k).
For any subset N ′ ⊆{1�2� � � � �N} of agents, let XN ′ = ∏

i∈N ′ Xi.
Let Z be the set of non-repeating sequences in {1� � � � �N} of length less than or equal

to N . We also define Z(i) ⊆ Z to be the set of sequences of length less than or equal to
N − 1 which do not contain i. Given z ∈ Z, we let N(z) be the set of agents not in z. And
for z ∈Z(i), we let (z� i) be the sequence that appends i to the end of z.

Fix an aggregate excess growth  that is balanced. We say that a collection {z}z∈Z is a
balanced division (of ) if the following conditions are satisfied:

1. ∅ =.
2. For all i, z ∈ Z(i), (z�i) :XN(z) → R.
3. For all i, z ∈ Z(i),

∑
x∈XN(z)

(z�i) (x)
∏

j∈N(z) ρj(xj) = 0.
4. For all i, z ∈ Z(i), and xN(z�i) ∈ XN(z�i),∑

xi∈Xi

(z�i) (xi�xN(z�i))ρi(xi) =
∑

j∈N(z�i)

(z�i�j) (xN(z�i))�

5. For all x ∈ XN(∅) = ∏N

j=1 Xj ,

∅(x) =
∑

j∈N(∅)

j(x)�

We interpret (z�i) as agent i’s excess growth (before adjustment) when the agents in z
are ahead of i in a queue. Condition 2 says that the excess growth (z�i) depends on xi and
xN(z�i) , but not on the actions of the agents in z. Condition 3 says that (z�i) is balanced.
Condition 4 says that the adjustment one makes to i’s excess growth (see equation (48)) is
equal to the total unadjusted excess growths of the agents who are behind i in the queue.
Finally, Conditions 1 and 5 say that the unadjusted excess growths for agents who are first
in the queue add up to the given aggregate excess growth .

An example of a balanced division is i(x) =(x)/N , and

(z�i�j) (xN(z�i)) = 1∣∣N(z� i)
∣∣ ∑
xi∈Xi

(z�i) (xi�xN(z�i))ρi(xi)�

Another example is 1(x) = (x), and

(z�i�j) =
⎧⎨
⎩

∑
xi∈Xi

(z�i) (xi�xN(z�i))ρi(xi) if j = i+ 1�

0� otherwise�

where i+ 1 is defined in modulo arithmetic, that is, N + 1 = 1.
Given a balanced division {z}z∈Z , we can define the individual excess growths

ξi(x) =
∑
z∈Z(i)

(
(z�i) (xi�xN(z�i)) −

∑
yi∈Xi

(z�i) (yi� xN(z�i))ρi(yi)
)
� (48)

We claim that ξi defines participation-secure transfers. This can be verified by checking:∑
xi∈Xi

ξi(x)ρi(xi) =
∑
z∈Z(i)

(∑
xi∈Xi

(z�i) (xi�xN(z�i))ρi(xi) −
∑
yi∈Xi

(z�i) (yi� xN(z�i))ρi(yi)

︸ ︷︷ ︸
=0

)
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= 0�

Moreover, {ξi}1≤i≤N has aggregate excess growth , since

N∑
i=1

ξi(x) =
N∑
i=1

i(x)

+
N∑
i=1

∑
{z∈Z(i):|z|<N−1}

[ ∑
j∈N(z�i)

(z�i�j) (xN(z�i)) −
∑
yi∈Xi

(z�i) (yi� xN(z�i))ρi(yi)

︸ ︷︷ ︸
=0

]

−
N∑
i=1

∑
{z∈Z(i):|z|=N−1}

∑
yi∈Xi

(z�i) (yi)ρi(yi)

︸ ︷︷ ︸
=0

=(x)�

In this last calculation, all we have done is to break up the sum over sequences into those
that end in i and those that end in (i� j), then we use the fact that N(z� i) = ∅ when
|z|= N − 1, so the balanced condition implies that the terms in the third line are all zero.

Given an arbitrary profile of participation-secure transfers, we can “recover” their in-
dividual excess growths ξ from equation (48) with the balanced division {z}z∈Z such that
∅ = �ξ, i = ξi, and z = 0 for all other z. Thus, the participation-secure transfers given
by the balanced divisions are complete.

When N = 2, then Z just consists of {∅�1�2�12�21}. Thus, for any balanced division
{z}z∈Z , it must be that 1 and 2 are balanced and satisfy  = 1 + 2; moreover, we
have ∑

x2∈X2

2(x1�x2)ρ2(x2) =21(x1)�

and likewise for 1 and 12. Thus, the expression for the individual excess growths given
in (48) reduces to the formula (47) given in the case of two agents.

B.3.4. Transfer Rules for Constant-sum Values

We now apply the results of this section to the construction of transfers for optimal
auctions problem with a certain empirical distribution of values from Section 6. We first
take k→ ∞ and then take m → 0.

Let us first consider the case where the agents initially get half of the aggregate excess
growth: 1 =2 =/2.

Taking k→ ∞, the aggregate excess growth from equation (30) becomes

(x) = − 1
2m

(
1 − exp(−m)

) + 1
2m

I|x1−x2|<m�

where we have modified the constant to make  balanced for a fixed m > 0 (see the
paragraph following (30) for a discussion about the distribution of |x1 − x2|).
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The individual excess growth (equation (47)) and the transfers (equation (44)) in the
limit as k→ ∞ are

ξi(x) = 1
2
(x) − 1

2

∫ ∞

yi=0
exp(−yi)(yi� xj) dyi + 1

2

∫ ∞

yj=0
exp(−yj)(xi� yj) dyj

= − 1
4m

(
1 − exp(−m)

) + 1
4m

I|xi−xj|<m

− 1
4m

∫ ∞

yi=0
exp(−yi)I|yi−xj|<m dyi + 1

4m

∫ ∞

yj=0
exp(−yj)I|xi−yj|<m dyj (49)

and

ti(x) = −1
exp(−xi)

∫ ∞

yi=xi

exp(−yi)ξi(yi� xj) dyi

= −
∫ ∞

yi=0
exp(−yi)ξi(xi + yi� xj) dyi�

Substituting ξi into ti, we get

ti(x) = 1
4m

(
1 − exp(−m)

) −
∫ ∞

yi=0

1
4m

I|xi+yi−xj|<m exp(−yi) dyi

+ 1
4m

∫ ∞

yi=0
exp(−yi)I|yi−xj|<m dyi

− 1
4m

∫ ∞

yi=0

∫ ∞

yj=0
exp(−yj − yi)I|xi+yi−yj|<m dyj dyi

= 1
4m

(
1 − exp(−m)

)
︸ ︷︷ ︸

A

− 1
4m

(
exp

(−max(xj − xi −m�0)
) − exp

(−max(xj − xi +m�0)
))

︸ ︷︷ ︸
B

+ 1
4m

(
exp

(−max(xj −m�0)
) − exp

(−(xj +m)
))

︸ ︷︷ ︸
C

− 1
4m

(
L(−xi +m) −L(−xi −m)

)
︸ ︷︷ ︸

D

� (50)

where L is the CDF of a Laplace distribution:

L(z) =
{

exp(z)/2� z < 0�
1 − exp(−z)/2� z ≥ 0�
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Using L’Hôpital’s rule to take m→ 0, we get

A= 1/4�

B =

⎧⎪⎨
⎪⎩

0� xj < xi�

1/4� xj = xi�

exp(−xj + xi)/2� xj > xi�

C =
{

1/4� xj = 0�
exp(−xj)/2� xj > 0�

D= exp(−xi)/4�

So in the limit as m → 0, we have

ti(x) =

⎧⎪⎨
⎪⎩

1/4 − exp(−xj + xi)/2 + exp(−xj)/2 − exp(−xi)/4� xi < xj�

exp(−xj)/2 − exp(−xi)/4� xj = xi�

1/4 + exp(−xj)/2 − exp(−xi)/4� xi > xj�

(51)

when xj > 0, and

ti(x) =
{

0� xi = 0�
1/2 − exp(−xi)/4� xi > 0�

(52)

when xj = 0.
We now show that an alternative balanced division of the aggregate excess growth

yields a simpler transfer rule. To this end, suppose initially agent i gets i(x) = (x)/2 +
c sign(xi − xj), where c is a constant, and sign(z) is 1 if z > 0, −1 if z < 0, and zero if
z = 0.

The individual excess growth (equation (47)) in the limit is now

ξi(x) = (x)
2

+ c sign(xi − xj) −
∫ ∞

yi=0
exp(−yi)

(
(yi� xj)

2
+ c sign(yi − xj)

)
dyi

+
∫ ∞

yj=0
exp(−yj)

(
(xi� yj)

2
+ c sign(yj − xi)

)
dyj�

Let us denote the difference between the above equation and equation (49) as

vi(x) ≡ c sign(xi − xj) −
∫ ∞

yi=0
exp(−yi)c sign(yi − xj) dyi

+
∫ ∞

yj=0
exp(−yj)c sign(yj − xi) dyj�

The transfer given by i(x) = (x)/2 + c sign(xi − xj) is equation (50) plus

�i(x) ≡ −
∫ ∞

yi=0
exp(−yi)vi(xi + yi� xj) dyi
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= −
∫ ∞

yi=0
c sign(xi + yi − xj) exp(−yi) dyi +

∫ ∞

yi=0
exp(−yi)c sign(yi − xj) dyi

−
∫ ∞

yi=0

∫ ∞

yj=0
exp(−yj − yi)c sign(yj − xi − yi) dyj dyi

= −c
(
2 exp

(−max(xj − xi�0)
) − 1

) + c
(
2 exp(−xj) − 1

) + c
(
1 − exp(−xi)

)
�

Taking c = −1/4 and adding �i(x) to equations (51) and (52), we get as m→ 0

ti(x) =

⎧⎪⎨
⎪⎩

0� xi < xj�

1/4� xj = xi�

1/2� xi > xj�

when xj > 0, and

ti(x) =
{

0� xi = 0�
1/4� xi > 0�

when xj = 0. Thus, in the limit as m→ 0, the winner simply pays a posted price of 1/2.

B.3.5. Concluding Remarks

In summary, given (λ∗� q∗� t∗) that is feasible for (18), there will generally be many
transfer rules t such that (λ∗� q∗� t) is also feasible and has the same value. For example, in
characterizing guarantee-maximizing transfers in the pure common value model, Brooks
and Du (2021b) showed that in addition to the solution given by (47) with i = /2, there
is a distinct solution with an especially simple form, wherein each agent simply pays a con-
stant price per unit, and that price depends just on the sum of the bids. This multiplicity
of optimal transfer rules, not all of which are of practical interest, presents a challenge
to the study of guarantee-maximizing auctions, and additional properties may be needed
to isolate the most useful transfer rules. Going back to common values, the transfer rule
in the proportional auction is characterized by the property that the aggregate transfer
depends only on the aggregate action.

B.4. Rate of Convergence for Optimal Auctions

Our next result calculates an upper bound on the rate of convergence of the bounding
programs in the optimal auctions problem:

PROPOSITION 9: For all k≥ 1,

|W (UB-P-k) −W (LB-G-k)| ≤O(1/
√
k)�

PROOF: Theorem 3 shows that W (UB-P-k) −W (LB-G-k) ≥ 0. The proof of Theorem
2 shows that W (UB-P-k) −W (LB-G-k) is at most

ε(k) +
(

1 − k− 1
k
(
1 +Nε̃(k)

))
Cλ

+N(1 − 1/k)k
2−1

(
k− 1

k
(
1 +Nε̃(k)

)kNLθ+ (k− 1)NLθ

)
�
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where ε(k) is given by (40) and ε̃(k) = 2/(h(k) + 1). The second term can be rewritten
as

1 +Nkε̃(k)
k
(
1 +Nε̃(k)

)Cλ = 1/k+ 2N/
(
h(k) + 1

)
1 + 2N/

(
h(k) + 1

) Cλ�

which goes to zero at a rate of 1/h(k) since h(k) goes to infinity at a slower rate than k.
The third term goes to zero at the same rate as exp(−k)k (cf. Footnote 38). Moreover,
considering the formula in (40), we see that the first term in ε(k) goes to zero at a rate
equal to that of 1 − exp(−h(k)/k) =O(h(k)/k), while the remaining terms go to zero at
a rate of either 1 − exp(−Nh(k)/k) or exp(−k)k. Thus, the rate at which W (UB-P-k) −
W (LB-G-k) goes to zero is therefore max(1/h(k)�h(k)/k). Clearly, the optimal choice
is h(k) = √

k, which gives a rate of 1/
√
k. Q.E.D.

B.5. Numerical Examples for Optimal Auctions

B.5.1. Perfectly Correlated Values

We now present a numerical example with one good and two bidders, L = 1, N = 2,
and θ1 = θ2 + c for a constant c, that is, values are perfectly positively correlated. Agent
2’s value θ2 is uniformly distributed on an evenly spaced grid of 10 values between 0 and
1.

We first present numerical results for the case of c = 0, that is, there is a pure com-
mon value for the good. This case was previously studied in Brooks and Du (2021b),
where we solved analytically for optimal mechanisms and information structures in the
limit when the action/signal space is all of R+. The mechanism has the form of a “pro-
portional auction,” in which the aggregate allocation and aggregate transfer only de-
pend on the aggregate action, and individual allocations and transfers are proportional
to actions. For this example, the aggregate allocation Q(x) = q1(x) + q2(x) has the form
Q(�x) = min{α�x�1} for a constant α, and qi(x) = Q(�x) xi

�x
. Thus, each agent i’s allo-

cation on the low rationing region is a simple linear function of their action: qi(x) = αxi.
(This appears to be a general feature of aggregate allocations for solutions to the optimal
auctions problem in which the good is rationed at low aggregate actions.)

The top and middle panels of Figure 3 show the approximate optimal allocation as
computed by solving (18) with k = 10 (so that each agent has 101 actions). The associ-
ated profit guarantee is 0.2620, or 52% of the expected value. The approximate optimal
aggregate allocation in the top panels bears a close resemblance to the theoretical so-
lution Q(�x) = min{α�x�1} for α ≈ 1/2. The middle panel shows that bidder 1’s share
q1(x)/Q(x) in the approximate optimal allocation is close to the proportional fraction
x1/�x. Indeed, the solution in Brooks and Du (2021b) was in part motivated by looking
at simulations of this sort.

We have omitted the numerical solution for the transfer. As we discussed in Sec-
tion 5 and Supplemental Appendix B.3, even holding fixed a particular guarantee-
maximizing allocation, there may be many transfer rules which could complete a
guarantee-maximizing mechanism. Numerical simulations of (18) need not produce the
most interesting or tractable solution. In this case, the numerical solution did not suggest
the proportional form which is part of the analytical solution in Brooks and Du (2021b).
In our subsequent examples, we will similarly focus on optimal allocations.

The bottom panels of Figure 3 show the approximate potential-minimizing information
structure that solves (19). The potential of this information structure is at most 0.2820,
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FIGURE 3.—Approximate guarantee-maximizing allocations and potential-minimizing information with
pure common values.
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so that the gap between W (18) and W (19) is approximately 3.99% of the expected
value. The approximate potential-minimizing information very nearly coincides with the
theoretical solution with a continuum of signals: The interim expected (common) value
v(x) = vi(x) is an increasing function of the aggregate signal. There is a cutoff (which
is around 2 in the approximate solution), below which the interim expected value grows
exponentially, and above which the interim expected value is equal to the ex post value.
This structure gives rise to the discontinuities in the value function, evident in the bottom-
right panel, which occur when the interim expected value jumps up to the next higher
value in the grid with increments of 0�1. Note that the signals themselves are distributed
according to ρ, as per Proposition 1, as they are in all of the simulations reported in this
appendix.

Our next simulation has c = 0�1, so that there is common knowledge that agent 1’s value
is higher than agent 2’s.41 In this case, it is socially efficient to always allocate the good
to agent 1. In contrast, the guarantee-maximizing mechanism takes into account the cost
of incentives, and sometimes allocates to agent 2 so as to reduce information rents, as we
can see in the simulated allocation depicted in the top panels of Figure 4. We also see that
the aggregate allocation no longer just depends on the aggregate action, and the contour
lines tend to be vertical, that is, the aggregate allocation tends to just depend on agent
1’s action. Together with the transfer that solves (18), this mechanism guarantees profit at
least 0�3045, while the efficient surplus (if the good is always allocated to agent 1) is now
0�6.42 In the approximate potential-minimizing information structure in the bottom panels
of Figure 4, agent 2’s interim expected value is identical to that when c = 0. (Agent 1’s
interim expected value is simply v1(x) = v2(x) + 0�1.) Profit on this information structure
is at most 0�3272. Consistent with Theorem 2, we see that the upper and lower bounds on
profit are quite close.

As c increases, the region where the aggregate allocation is interior shrinks. When c
is sufficiently large, the optimal mechanism always allocates the good to agent 1 at their
lowest ex post value.

B.5.2. Independent Values

Our next example involves one good and two agents whose values are independently
distributed on the same evenly spaced ten-point grid in [0�1]. The simulated allocation
and interim values for agent 1 are depicted in Figure 5.

The allocation that solves (18) with k = 10 is in the top and bottom-left panels. We
again see some striking structure: The aggregate allocation Q(x) has the same functional
form as that of the common value, and Q(x) = min{α�x�1} for α ≈ 1/1�75. Agent 1’s
share of allocation q1(x)/Q(x) (the bottom-left panel) is x1/�x when �x is below the
threshold of 1.75 (just like the case of common value), but q1(x)

Q(x) = min{max{x1−f (�x)�0}
�x−2f (�x) �1}

when �x is above the threshold for some function f of the aggregate action. Moreover,
�x − 2f (�x) appears to be a constant when �x is above the threshold of 1.75, which
corresponds to the parallel lines when �x is fixed at 2, 3, and 6 in the bottom-left panel.

41Note that this model does not have pure common values and is not characterized by Brooks and Du
(2021b).

42Note that the profit guarantee rises by much less than the increase in the efficient surplus, because in
order to realize that gain, it would be necessary to allocate the good to agent 1, which in turn would necessitate
granting agent 1 a large information rent.
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FIGURE 4.—Approximate guarantee-maximizing mechanism and potential-minimizing information with
perfectly correlated asymmetric values (c = 0�1).

The expected highest value in this discrete example is 0�6818, and the lower bound on
the max guarantee is 0�2892, or approximately 42% of the efficient surplus.43

The interim expected value that solves (19) with k = 10 is in the bottom-right panel.
While there is more noise than in the allocation, we again see some patterns: In particular,
v1(x) essentially depends only on |x1 − x2| when this absolute difference is large enough.
While agents’ ex post values are independent, their interim expectations are highly corre-
lated, with both agents’ interim expected values being higher when the absolute difference
in their signals is large. The potential of this information structure is at most 0.3127.

43Thus, while the profit guarantee is higher than with the common value, it does not rise nearly as much as
the surplus. The reason, of course, is that the agents also have more private information when their values are
independent than when they are common.
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FIGURE 5.—Approximate guarantee-maximizing mechanism and potential-minimizing information for in-
dependent values.

B.5.3. Multiple Goods

We now present examples with two agents and two goods. First assume agents have pure
common values for each good, so θ1�l = θ2�l almost surely for each l = 1�2. The common
values are independently distributed across goods and are distributed on the same evenly
spaced ten-point grid in [0�1]. The lower and upper bounds from solving (18) and (19)
with k= 10 are 0�5897 and 0�6306, respectively. The simulated solution in Figure 6 clearly
indicates that the interim expected values for the two goods are exactly the same and have
the same form as that in Figure 3. The approximate guarantee-maximizing allocations for
the two goods also have the same form as in Figure 3, and we omit their plots. Thus, the
two-good pure common value model reduces to a single-good pure common value model,
in which the value for the single good is the sum of the values of the two goods. The logic
for this finding was given in Section 5.3, where we argued that the model should always
reduce to a single-good problem, where the mechanism only offers the “grand bundle,”
as long as the ex post value distribution is “exchangeable across goods.”
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FIGURE 6.—Approximate potential-minimizing information with pure common values and two goods.

If, however, values are not exchangeable across goods, then the multiple-good problem
need not reduce to an auction for the grand bundle, as the following example shows.
Agent 2’s values θ2�l are distributed as before, uniform on each good l and independent
across goods; agent 1 has the same value for good 2 as agent 2 but assigns more value to
good 1 than agent 2: θ1�2 = θ2�2 and θ1�1 = θ2�1 + 1. The approximate optimal allocations
are depicted in Figure 7 as surface plots, so that it is easier to see levels. As we can see,
the two agents receive each good with different probabilities. As we would expect, good 1
is mostly allocated to agent 1, since their value for that good is much higher. Interestingly,
agent 1 also tends to get more shares of good 2 than agent 2, even though the two agents
have the same value for good 2, because of the endogenous bundling of the two goods in
the guarantee-maximizing mechanism.
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FIGURE 7.—Approximate guarantee-maximizing allocation with two goods with non-exchangeable values.
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