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APPENDIX A: PROOFS

A.1. Proof of Lemma 1

LEMMA 1: Under a given network α, the vector of log prices is given by

p(α) = −L(α)
(
ε+ a(α)

)
� (12)

and log GDP is given by

y(α) =ω(α)�(
ε+ a(α)

)
� (13)

where a(α) = (logAi(αi)� � � � � logAn(αn)).

PROOF: Combining the unit cost equation (8) with the equilibrium condition (10) and
taking the log, we find that, for all i,

pi = −εi − ai(αi) +
n∑

j=1

αijpj� (A.1)

where ai(αi) = log(Ai(αi)). This is a system of linear equations whose solution is (12).
The log price vector is also normally distributed since it is a linear transformation of
normal random variable. Combining with (6) yields (13). Q.E.D.

A.2. Proof of Corollary 1

The proof of Corollary 1 is in Supplemental Appendix D in Kopytov, Mishra, Nimark,
and Taschereau-Dumouchel (2024).
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A.3. Proof of Lemma 2

LEMMA 2: In equilibrium, the technique choice problem of the representative firm in sector
i is

α∗
i ∈ arg max

αi∈Ai

ai(αi) −
n∑

j=1

αijRj

(
α∗)� (17)

where

R
(
α∗) = E

[
p

(
α∗)] + Cov

[
p

(
α∗)�λ(

α∗)] (18)

is the vector of equilibrium risk-adjusted prices, and where

E
[
p

(
α∗)] = −L

(
α∗)(μ+ a

(
α∗)) and Cov

[
p

(
α∗)�λ(

α∗)] = (ρ− 1)L
(
α∗)	[

L
(
α∗)]�

β�

PROOF: We first consider the stochastic discount factor. Equation (SA.5) in Supple-
mental Appendix C in Kopytov et al. (2024) shows that aggregate consumption can be
written as a function of prices. Combining that equation with (5), we can write λ = log(�)
as

λ
(
α∗) = −(1 − ρ)

n∑
i=1

βipi

(
α∗)� (A.2)

Taking the log of (8) yields

ki

(
αi�α

∗) = −(
εi + a(αi)

) +
n∑

j=1

αijpj

(
α∗)� (A.3)

Both λ(α∗) and ki(αi�α
∗) are normally distributed since they are linear combinations of

ε and the log price vector, which is normally distributed by Lemma 1.
Turning to the firm problem (9), we can write

α∗
i ∈ arg min

αi∈Ai

E
[
�
β�L

(
α∗)1i

Pi

Ki(αi�P)
]
�

where we have used (SA.7) from Supplemental Appendix C in Kopytov et al. (2024). We
can drop β�L(α∗)1i > 0 since it is a deterministic scalar that does not depend on αi.
Rewriting this equation in terms of log quantities yields

α∗
i ∈ arg min

αi∈A
E exp

[
λ
(
α∗) −pi

(
α∗) + ki

(
αi�α

∗)]�
where we emphasize that λ and pi depend only on the equilibrium technique choice α∗.
The terms λ(α∗), pi(α∗), and ki(αi�α

∗) are normally distributed. We can therefore use
the expression for the expected value of a log-normal distribution and write

α∗
i ∈ arg min

αi∈A
exp

{
E

[
λ
(
α∗) −pi

(
α∗) + ki

(
αi�α

∗)] + 1
2

V
[
λ
(
α∗) −pi

(
α∗) + ki

(
αi�α

∗)]}�
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Taking away the exponentiation, as it is a monotone transformation, and E[λ(α∗)−qi(α∗)]
since it does not affect the minimization, yields

α∗
i ∈ arg min

αi∈A
E

[
ki

(
αi�α

∗)] + 1
2

V
[
λ
(
α∗) −pi

(
α∗) + ki

(
αi�α

∗)]� (A.4)

This expression can be written as

α∗
i ∈ arg min

αi∈A
E

[
ki

(
αi�α

∗)] + 1
2

V
[
λ
(
α∗)] + 1

2
V

[
ki

(
αi�α

∗) −pi

(
α∗)]

+ Cov
[
λ
(
α∗)�ki

(
αi�α

∗)] + Cov
[
λ
(
α∗)�−pi

(
α∗)]�

where we can drop V[λ(α∗)] and Cov[λ(α∗)�−pi(α∗)] as they do not affect the minimiza-
tion. Finally, we can expand V[ki(αi�α

∗) −pi(α∗)] to get

α∗
i ∈ arg min

αi∈A
E

[
ki

(
αi�α

∗)] + 1
2

E
[(
ki

(
αi�α

∗) −pi

(
α∗) − E

[
ki

(
αi�α

∗) −pi

(
α∗)])2]

+ Cov
[
λ
(
α∗)�ki

(
αi�α

∗)]�
Taking the first-order condition with respect to αik, we find

1
2

E
[

2
(
ki

(
αi�α

∗) −pi

(
α∗) − E

[
ki

(
αi�α

∗) −pi

(
α∗)])(dki

(
αi�α

∗)
dαik

− E
[
dki

(
αi�α

∗)
dαik

])]

+ E
[
dki

(
αi�α

∗)
dαik

]
+ Cov

[
λ
(
α∗)� dki

(
αi�α

∗)
dαik

]
+ γi −χik = 0�

where γi ≥ 0 is the Lagrange multiplier on
∑n

j=1 αij ≤ αi and χik ≥ 0 is the multiplier on
αik ≥ 0. At an equilibrium, α= α∗ and ki(α∗

i � α
∗) = pi(α∗), and so

E
[
dki

(
α∗
i � α

∗)
dαik

]
+ Cov

[
λ
(
α∗)� dki

(
α∗
i � α

∗)
dαik

]
+ γ∗

i −χ∗
ik = 0

describes the equilibrium choice of firm i. Notice that this equilibrium first-order condi-
tion can also come from the problem

α∗
i ∈ arg min

αi∈A
E

[
ki

(
αi�α

∗)] + Cov
[
λ
(
α∗)�ki

(
αi�α

∗)]�
Finally, note that

arg min
αi∈A

E
[
ki

(
αi�α

∗)] + Cov
[
λ
(
α∗)�ki

(
αi�α

∗)]
= arg min

αi∈A
−μi − ai(αi) +

n∑
j=1

αij E[pj]

+ Cov

[
λ
(
α∗)�−εi − ai(αi) +

n∑
j=1

αijpj

]
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= arg min
αi∈A

−ai(αi) +
n∑

j=1

αij E[pj]

+ Cov
[
λ
(
α∗)�−εi

] +
n∑

j=1

αij Cov
[
λ
(
α∗)�pj

]

= arg min
αi∈A

−ai(αi) +
n∑

j=1

αijRj

(
α∗)�

which completes the proof. Q.E.D.

A.4. Proof of Lemma 3

LEMMA 3: An efficient production network α∗ solves

W ≡ max
α∈A

W (α�μ�	)�

where W is a measure of the welfare of the household, and where

W (α�μ�	) ≡ E
[
y(α)

] − 1
2

(ρ− 1) V
[
y(α)

]
(21)

is welfare under a given network α.

PROOF: Since we only have one agent in the economy, any Pareto efficient allocation
must maximize the utility of the representative household. Under a given network and
a given productivity shock ε, the first welfare theorem applies, and the equilibrium is
efficient. The consumption chosen by the planner is therefore given by (13). It follows
that the efficient production network must solve

max
α∈A

E
[
u(Y )

] = max
α∈A

1
1 − ρ

E
[
exp

(
(1 − ρ) logY

)]
= max

α∈A
1

1 − ρ
exp

(
(1 − ρ) E[logY ] + 1

2
(1 − ρ)2 V[logY ]

)

= max
α∈A

E[logY ] − 1
2

(ρ− 1) V[logY ]� (A.5)

where we have used the fact that logY is normally distributed. Q.E.D.

A.5. Proof of Corollary 2

COROLLARY 2: The efficient Domar weight vector ω∗ solves

W = max
ω∈O

ω�μ+ ā(ω)︸ ︷︷ ︸
E[y]

−1
2

(ρ− 1)ω�	ω︸ ︷︷ ︸
V[y]

� (26)

where O ={ω ∈R
n
+ :ω ≥ β and 1 ≥ ω�(1 − ᾱ)} and ā(ω) is given by (23).
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PROOF: Using (14) and the definition of Domar weights, the original planning problem
(21) can be written

W = max
α∈A�ω

ω�μ+ω�a(α) − 1
2

(ρ− 1)ω�	ω�

subject to β�(I − α)−1 =ω�, which is equivalent to

max
ω∈O

ω�μ+
[
max
α∈A

ω�a(α)
]
− 1

2
(ρ− 1)ω�	ω�

where the inner problem is subject to β�(I −α)−1 =ω� and where we can limit the feasi-
ble set of the outside problem to O since, for ω /∈O, the inner constraints could never be
satisfied. This last problem is the same as (26) because, by (23), ā(ω) = maxα∈Aω�a(α)
subject to β�(I − α)−1 =ω�. Q.E.D.

A.6. Proof of Lemma 4

LEMMA 4: The objective function of the planner’s problem (26) is strictly concave. Fur-
thermore, there is a unique vector of Domar weights ω∗ that solves that problem, and there is
a unique production network α(ω∗) associated with that solution.

PROOF: We first show that the value function ā(ω) defined by (23) is strictly concave.
Consider the maximization problem

ā(ω) = max
α∈A

ω�a(α)�

subject to β�(I − α)−1 = ω�. Since I − α is always invertible for α ∈ A, we can rewrite
this constraint as the affine relationship

α�ω = ω−β� (A.6)

Take two feasible points ω0 and ω1, and let α0 ∈ A and α1 ∈ A be their respective maxi-
mizers. Consider the convex combination αt defined component-by-component as

αt
i =

ω0
i

ω0
i +ω1

i

α0
i + ω1

i

ω0
i +ω1

i

α1
i �

We will show that αt is a feasible point for ωt = ω0+ω1

2 . First notice that αt ≥ 0 and that

∑
j

αt
ij = ω0

i

ω0
i +ω1

i

∑
j

α0
ij + ω1

i

ω0
i +ω1

i

∑
j

α1
ij ≤ ᾱi�

so that αt ∈A. Next, since (A.6) holds for (α0�ω0) and (α1�ω1), we can write∑
j

ω0
j α

0
ji = ω0

i −βi� and
∑
j

ω1
j α

1
ji =ω1

i −βi�
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Summing these two equations up, we get∑
j

(
ω0

j α
0
ji +ω1

i α
1
ji

) =ω0
i +ω1

i − 2βi�

∑
j

ω0
j +ω1

j

2

(
ω0

j

ω0
j +ω1

j

α0
ji +

ω1
i

ω0
j +ω1

j

α1
ji

)
= ω0

i +ω1
i

2
−βi�

∑
j

ωt
jα

t
ji =ωt

i −βi�

which implies that (A.6) holds for (αt�ωt). Therefore, αt is a feasible point for ωt .
Consider the value function at ωt :

ā
(
ωt

) = ā

(
ω0 +ω1

2

)
≥

∑
i

ωt
ia

(
αt
i

) =
∑
i

ω0
i +ω1

i

2
ai

(
ω0

i

ω0
i +ω1

i

α0
i + ω1

i

ω0
i +ω1

i

α1
i

)
�

where the inequality follows since αt might not be a maximizer for ωt . From the strict
concavity of ai, we find

ā
(
ωt

)
>

∑
i

ω0
i +ω1

i

2

(
ω0

i

ω0
i +ω1

i

ai

(
α0
i

) + ω1
i

ω0
i +ω1

i

ai

(
α1
i

)) = 1
2
ā
(
ω0

) + 1
2
ā
(
ω1

)
�

This holds for any feasible ω0 and ω1, and so ā is midpoint strictly concave. By the The-
orem of Maximum, ā is also continuous, and so ā is therefore strictly concave. It follows
that the objective function (26) is also strictly concave, which proves the first part of the
statement.

Since the objective (26) is strictly concave, the feasible set is convex, there is a unique
maximizer so there is a unique solution ω∗ to the planner’s problem. Now, notice that the
objective function (23) is strictly concave since ai is strictly concave for all i. The feasible
set (the intersection of (A.6) and A) is convex so there is once again a unique maximizer.
It follows that, for each ω, there is a unique α that solves (23), and there is therefore a
unique α∗ associated with ω∗. Q.E.D.

A.7. Proof of Proposition 1

PROPOSITION 1: There exists a unique equilibrium, and it is efficient.

PROOF: For a given production network α and a given draw of the random TFP vector
ε, the economy is standard, and the equilibrium is unique. The first welfare theorem also
applies and so the allocation is efficient. We therefore only need to focus on the choice
of network under uncertainty. An equilibrium network α∗ ∈ A is fully characterized by
a solution to (17) and where R(α∗) is given by (18) which can be written in terms of
primitives as

R
(
α∗) = −L

(
α∗)(μ+ a

(
α∗))︸ ︷︷ ︸

E[p]

+ (ρ− 1)L
(
α∗)	[

L
(
α∗)]�

β︸ ︷︷ ︸
Cov(p�λ)

�
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Since the objective function is strictly concave and the constraint set is defined by affine
functions, it follows that α∗ ∈ A is an equilibrium network if there exist Lagrange multi-
pliers χe

ij ≥ 0 and γe
i ≥ 0 such that (1) the first-order conditions of the firms

∂ai

∂αi

(
α∗) +L

(
α∗)(μ+ a

(
α∗)) − (ρ− 1)L

(
α∗)	L(

α∗)�
β+χe

i − γe
i 1 = 0 (A.7)

evaluated at α∗ are satisfied, and (2) the complementary slackness conditions

−χe
ijα

∗
ij = 0� (A.8)

γe
i

(
n∑

j=1

α∗
ij − αi

)
= 0� (A.9)

are satisfied for all i, j.
Next, consider the social planner’s problem given by (26) and subject to the constraints

in Corollary 2. By Lemma 4, the objective function is strictly concave and the constraint
set is defined by affine function. It follows that an allocation α ∈A is efficient if there exist
non-negative Lagrange multipliers χ̂ and γ̂ such that (1) the first-order conditions

μ+ ∇ā− (ρ− 1)	ω+ χ̂− γ̂(1 − ᾱ) = 0� (A.10)

where ω� = β�L(α) and where ∇ā is the derivative of the aggregate TFP shifter (23), are
satisfied, and (2) the complementary slackness conditions

−χ̂i(ωi −βi) = 0� (A.11)

γ̂
(
ω�(1 − ᾱ) − 1

) = 0� (A.12)

are satisfied for all i. To derive ∇ā, we can use the problem (23). The objective function of
this problem is strictly concave (see proof of Lemma 4) and the constraint set is convex.1
It follows that the unique maximizer is characterized by the first-order condition

ωi

∂ai

∂αij

− ζjωi + χ̌ij − γ̌i = 0 ⇔ ζj = ∂ai

∂αij

+ χ̃ij − γ̃i� (A.13)

and the complementary slackness conditions

α�ω−ω+β = 0� (A.14)

−χ̌ijαij = 0� (A.15)

γ̌i

(
n∑

j=1

αij − αi

)
= 0� (A.16)

for all i, j and where χ̃ij = χ̌ij

ωi
and γ̃i = γ̌i

ωi
. Applying the envelope theorem to (23), we

obtain

∇ā= a(α) + (I − α)ζ = a(α) + (I − α)
(
∂ai

∂αi

+ χ̃i − γ̃

)
�

1Recall that the constraint set is given by α ∈ A and an affine function (A.6).
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where we use (A.13) to express ζ. Plugging this expression in (A.10), we get

μ+ a(α) + (I − α)
(
∂ai

∂αi

+ χ̃i − γ̃

)
− (ρ− 1)	ω+ χ̂− γ̂(1 − ᾱ) = 0

⇔ ∂ai

∂αi

+L(α)
(
μ+ a(α)

) − (ρ− 1)L(α)	L(α)�β+ χ̃i

+L(α)χ̂− (
γ̂L(α)(1 − ᾱ) + γ̃

) = 0� (A.17)

where the second line follows from the first by left-multiplying by L(α) = (I − α)−1.
Now, we will show that the equilibrium and efficiency conditions coincide. Suppose that

we have a solution to the planner’s problem (αp�ωp� χ̃� χ̂� γ̃� γ̂� ζ). Consider the candi-
date equilibrium (αe�ωe�χe�γe), where αe = αp, ωe = ωp, χe

i = χ̃i + L(αp)χ̂ for all i,
and γe = γ̂L(αp)(1 − ᾱ) + γ̃. First, note that since χ̃, γ̂, γ̃, γ̂ are non-negative, so are
χe,γe. Next, the candidate equilibrium satisfies the first-order condition (A.7). The first
complementary slackness condition (A.8) is also satisfied. Indeed, suppose that αp

ij > 0,
which implies that ωp

i > βi, then χ̃ij = 0 and χ̂j = 0, such that χe
ij = 0, and the condition is

satisfied. If, instead, the constraint αp
ij ≥ 0 binds such that χ̃ij > 0, we have χe

ij > 0. Further-
more, from the first-order condition (A.7), αe

ij = 0, so the condition is satisfied. For the
second complementary slackness condition (A.9), if

∑n

j=1 α
p
ij < αi for some i, then γ̃i = 0

and γ̂ = 0. It follows that γe = 0 and the condition is satisfied. If, instead, the constraint
binds such that

∑n

j=1 α
p
ij = αi for some i, then

∑n

j=1 α
e
ij = αi, and the second complemen-

tary slackness condition (A.9) is satisfied. It follows that any efficient allocation can be
decentralized as an equilibrium allocation. Since we know that an efficient allocation ex-
ists (it is the outcome of an optimization problem on a compact set), this proves that an
efficient equilibrium exists.

Suppose instead that we have an equilibrium (αe�ωe�χe�γe), where ωe =L(αe)�β, and
consider the candidate efficient allocation (αp�ωp� χ̃� χ̂� γ̃� γ̂� ζ), where αp = αe, ωp =
ωe, χ̃= χe, χ̂= 0, γ̃ = γe, γ̂ = 0, ζ = −L(αe)(μ+ a(αe)) + (ρ− 1)L(αe)	L(αe)�β. Note
that the first-order conditions (A.17) of the planner are satisfied. Next, notice that the
complementary slackness conditions (A.11)–(A.12) are always satisfied. Finally, the first-
order conditions (A.13) and the complementary slackness conditions (A.14)–(A.16) are
also satisfied. For the condition (A.14), note that since ωe =L(αe)�β, we have (αp)�ωp −
ωp + β = 0 and so the condition is satisfied. For the condition (A.15), if αe

ij > 0, then
χe

ij = χ̃ij = 0 and the condition is satisfied. If, instead, the constraint αe
ij ≥ 0 binds such

that αe
ij = 0, then α

p
ij = 0 and the condition is also satisfied. Finally, for the condition

(A.16), if
∑n

j=1 α
e
ij < ᾱi, then γe

i = 0 and so γ̃ = 0, so that the condition is satisfied. If,
instead,

∑n

j=1 α
p
ij = ᾱi, it must be that

∑n

j=1 α
e
ij = ᾱi, and so (A.16) is satisfied. We have

therefore shown that any equilibrium corresponds to an efficient allocation. By Lemma 4,
the objective function of the planner is strictly concave and its constraint set is convex.
It follows that there is a unique efficient allocation and therefore a unique equilibrium.

Q.E.D.

A.8. Proof of Proposition 2

PROPOSITION 2: The Domar weight ωi of sector i is (weakly) increasing in μi and (weakly)
decreasing in 	ii.
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PROOF: Note that by the maximum theorem applied to (26), ωi is a continuous func-
tion of μ and 	. We consider the comparative statics with respect to μi first. We proceed
by contradiction. Suppose that ωi is not an increasing function of μi. Then, by continu-
ity of ωi as a function of μi, there exists a point (μ0�	0) and an interval (μ0

i �μ
1
i ) such

that ωi(μi�μ
0
−i�	

0) < ωi(μ0
i �μ

0
−i�	

0) for any μi ∈ (μ0
i �μ

1
i ). Denote the optimal network

at (μ�	) by α∗(μ�	). Now, consider an increase in μi from μ0
i to μ1

i (holding other ele-
ments of μ0 and 	0 fixed). From Corollary 4, we can write the change in welfare as

W
(
μ1

i �μ
0
−i�	

0
) =W

(
μ0

i �μ
0
−i�	

0
) +

∫ μ1
i

μ0
i

ωi

(
μi�μ

0
−i�	

0
)
dμi�

Suppose instead that the network is fixed at its original value α∗(μ0
i �μ

0
−i�	

0). Equation
(14) imply that, under a fixed network, the change in μi affects welfare only through its
impact on expected log GDP. By Corollary 1, the change in welfare can thus be written as

W
(
α∗(μ0

i �μ
0
−i�	

0
);μ1

i �μ
0
−i�	

0
)

=W
(
α∗(μ0

i �μ
0
−i�	

0
);μ0

i �μ
0
−i�	

0
) +ωi

(
μ0

i �μ
0
−i�	

0
)(
μ1

i −μ0
i

)
�

But since the initial network α∗(μ0
i �μ

0
−i�	

0) is feasible at (μ1
i �μ

0
−i�	

0), welfare maximiza-
tion implies that W (μ1

i �μ
0
−i�	

0) = W (α∗(μ1
i �μ

0
−i�	

0);μ1
i �μ

0
−i�	

0) ≥ W (α∗(μ0
i �μ

0
−i�	

0);
μ1

i �μ
0
−i�	

0), and so

∫ μ1
i

μ0
i

ωi

(
μi�μ

0
−i�	

0
)
dμi ≥ωi

(
μ0

i �μ
0
−i�	

0
)(
μ1

i −μ0
i

)
� (A.18)

Since we have assumed by contradiction that ωi(μi�μ
0
−i�	

0) <ωi(μ0
i �μ

0
−i�	

0) for all μi ∈
(μ0

i �μ
1
i ), it follows that

∫ μ1
i

μ0
i

ωi

(
μi�μ

0
−i�	

0
)
dμi <

∫ μ1
i

μ0
i

ωi

(
μ0

i �μ
0
−i�	

0
)
dμi =ωi

(
μ0

i �μ
0
−i�	

0
)(
μ1

i −μ0
i

)
�

which contradicts (A.18). Therefore, ωi is an increasing function of μi.
For the second part of the proposition, recall that dW

d	ii
= − 1

2 (ρ − 1)ω2
i by Corollary 4.

Using analogous steps, we can then establish the second part of this proposition. Q.E.D.

A.9. Proof of Proposition 3

PROPOSITION 3: Let γ denote either the mean μi or an element of the covariance matrix
	ij . If ω ∈ intO, then the response of the equilibrium Domar weights to a change in γ is given
by

dω

dγ
= −H−1

︸ ︷︷ ︸
propagation

× ∂E
∂γ︸︷︷︸

impulse

� (31)

where the n× n negative-definite matrix H is given by

H = ∇2ā+ dE
dω

� (32)
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and where the matrix ∇2ā is the Hessian of the aggregate TFP shifter function ā, and dE
dω

=
dCov[ε�λ]

dω
= −(ρ− 1)	 is the Jacobian matrix of the risk-adjusted TFP vector E .

PROOF: At an interior solution, the first-order conditions of (26) are

F (ω�μ�	) := μ+ ∇ā− (ρ− 1)	ω= 0�

where ∇ā is the gradient of ā. Differentiating with respect to ω, we find that

dF

dω
= ∇2ā− (ρ− 1)	�

where ∇2ā is the Hessian matrix of ā. From the implicit function theorem, it follows that

dω

dγ
= −[∇2ā− (ρ− 1)	

]−1 ∂F

∂γ
�

If γ = μi, we have

∂F

∂γ
= ∂F

∂μi

= 1i = ∂E
∂μi

�

where 1i is a column vector of zeros except for 1 at element i. If γ = 	ij , we have

∂F

∂γ
= ∂F

∂	ij

= −1
2

(ρ− 1)(ωj1i +ωi1j) = ∂E
∂	ij

�

where, if i 
= j, we differentiate with respect to 	ij and 	ji simultaneously to preserve the
symmetry of the covariance matrix and divide by two to preserve the scale. Finally, in the
proof of Lemma 4, we show that ∇2ā is negative definite. It follows from (32) that H and
its inverse are also negative definite. Q.E.D.

Proposition 3 can be extended to handle the case in which some of the constraints
ωi ≥ βi bind with strictly positive Lagrange multipliers. We show how this can be done in
Supplemental Appendix F in Kopytov et al. (2024).

A.10. Proofs of Corollary 3, Lemmas 5, 6, and 7, and of Proposition 4

These proofs are in Supplemental Appendix D in Kopytov et al. (2024).

A.11. Proof of Lemma 8

LEMMA 8: If ω intO, the equilibrium Domar weights are approximately given by

ω =ω◦ − [
H◦]−1E ◦ +O

(∥∥ω−ω◦∥∥2)
� (35)

where the superscript ◦ indicates that H and E are evaluated at ω◦.

PROOF: At an interior solution, the first-order conditions of (26) are

μ+ ∇ā(ω) − (ρ− 1)	ω= 0� (A.19)
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The first-order Taylor expansion of ∇ā(ω) around ω◦ is

∇ā(ω) = ∇ā
(
ω◦) + ∇2ā

(
ω◦)(ω−ω◦) +O

(∥∥ω−ω◦∥∥2)
�

Plugging it into (A.19), we get

ω−ω◦ = −[∇2ā
(
ω◦) − (ρ− 1)	

]−1[
μ− (ρ− 1)	ω◦ + ∇ā

(
ω◦)] +O

(∥∥ω−ω◦∥∥2)
�

From (32), we can write H◦ = ∇2ā(ω◦) − (ρ − 1)	. From (27), E ◦ = μ − (ρ − 1)	ω◦.
Therefore,

ω−ω◦ = −[
H◦]−1[E ◦ + ∇ā

(
ω◦)] +O

(∥∥ω−ω◦∥∥2)
�

Next, by the envelope theorem applied to (23), we find

∇ā
(
ω◦) = a

(
α◦) + (

I − α◦)ζ = 0� (A.20)

where ζ is the vector of Lagrange multipliers associated with the constraint α�ω◦ =
ω◦ − β. To find these multipliers, recall from (A.13) that the first-order conditions of
the problem (23) are

ζi = ∂ai

∂αij

+ χ̃ij − γ̃i� (A.13)

Now recall that ∂ai
∂αij

(α◦
i ) = 0 for all i, j by the definition of α◦

i . It follows that if we set
αi = α◦

i for all i and all the Lagrange multipliers χ̃ij , γ̃i equal to zero, then the first-order
conditions and complementary slackness conditions are satisfied, and by definition of ω◦,
the constraint (α◦)�ω◦ = ω◦ − β is also satisfied. This is therefore the (unique) solution
to that optimization problem. It follows from (A.20) that ∇ā(ω◦) = a(α◦) = 0, where the
last equality comes from our normalization. Q.E.D.

A.12. Proof of Lemma 9

The proof of Lemma 9 is a special case of Proposition 9 in Supplemental Appendix I in
Kopytov et al. (2024).

A.13. Proof of Proposition 5

PROPOSITION 5: Let γ denote either the mean μi or an element of the covariance matrix
	ij . Under an endogenous network, welfare responds to a marginal change in γ as if the
network were fixed at its equilibrium value α∗, that is,

dW (μ�	)
dγ

= ∂W
(
α∗�μ�	

)
∂γ

�

PROOF: Recall from Lemma 3 that the equilibrium α∗ solves the welfare-maximization
problem

W (μ�	) = max
α∈A

W (α�μ�	)� (A.21)

where

W (α�μ�	) = E
[
y(α)

] − 1
2

(ρ− 1) V
[
y(α)

]
(A.22)
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is welfare under a given network α and beliefs (μ�	). Both E[y] and V[y] depend on
beliefs through (14). Since the objective function (A.21) and its associated constraints
are continuously differentiable functions of α, and since the constraint α ∈ A does not
depend on beliefs, the envelope theorem immediately implies that

dW (μ�	)
dγ

= ∂W
(
α∗�μ�	

)
∂γ

�

where the right-hand side is the change in welfare keeping the network constant at α∗.
Q.E.D.

A.14. Proof of Corollary 4

COROLLARY 4: The impact of an increase in μi on welfare is given by

dW
dμi

=ωi� (39)

and the impact of an increase in 	ij on welfare is given by

dW
d	ij

= −1
2

(ρ− 1)ωiωj� (40)

PROOF: Combining (A.22) with Corollary 14, it is immediate to show that

∂W
(
α∗�μ�	

)
∂μi

= ωi�

and

dW
(
α∗�μ�	

)
d	ij

= −1
2

(ρ− 1)ωiωj�

Putting these expressions together with Proposition 5 yields the result. Q.E.D.

A.15. Proof of Proposition 6

PROPOSITION 6: The presence of uncertainty lowers expected log GDP, in the sense that
E[y] is largest when 	 = 0.

PROOF: The proof follows from Corollary 3. From (14), define

Y (α�μ�	) = E
[
y(α)

] = ω(α)�(
μ+ a(α)

)
� (A.23)

and

V (α�μ�	) = V
[
y(α)

] =ω(α)�	ω(α)� (A.24)

as the expected value and the variance of log GDP under the network α and the beliefs
(μ�	). Let α∗(μ�	) denote an optimal network (a solution to (21)) under the beliefs
(μ�	).
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Fix μ. We first establish that α∗(μ�0) maximizes Y (α�μ�0). To see this, note that (A.24)
implies that V (α�μ�0) = 0 for all pairs (α�μ). The problem (21) of the social planner with
	 = 0 can therefore be written as

max
α∈A

Y (α�μ�0) − 1
2

(ρ− 1)V (α�μ�0) = max
α∈A

Y (α�μ�0) =Y
(
α∗(μ�0)�μ�0

)
�

where the second equality comes from the definition of α∗(μ�0).
Next, notice that

Y
(
α∗(μ�0)�μ�0

) ≥Y
(
α∗(μ�	)�μ�0

) =Y
(
α∗(μ�	)�μ�	

)
� (A.25)

where the inequality comes from the fact that α∗(μ�0) maximizes Y (α�μ�0), and the
equality comes from the fact that Y (α�μ�	), given by (A.23), does not explicitly depend
on 	. Since (A.25) holds for any 	, it follows that expected log GDP Y (α∗(μ�	)�μ�	) is
maximized at 	= 0, which is the desired result. Q.E.D.

A.16. Proof of Corollary 5

The proof of Corollary 5 is in Supplemental Appendix D in Kopytov et al. (2024).

A.17. Proof of Proposition 7

PROPOSITION 7: If ω ∈ intO, the following hold:
1. The impact of an increase in μi on log GDP is given by

dE[y]
dμi

= ωi︸︷︷︸
Fixed network

−(ρ− 1)ω�	H−1 ∂E
∂μi

� and

dV[y]
dμi

= 0︸︷︷︸
Fixed network

−2ω�	H−1 ∂E
∂μi

�

2. The impact of an increase in 	ij on log GDP is given by

dE[y]
d	ij

= 0︸︷︷︸
Fixed network

−(ρ− 1)ω�	H−1 ∂E
∂	ij

� and

dV[y]
d	ij

= ωiωj︸ ︷︷ ︸
Fixed network

−2ω�	H−1 ∂E
∂	ij

�

PROOF: Differentiating (14) with respect to μi yields

dV[y]
dμi

= 2ω�	
dω

dμi

�

which, together with (31), yields

dV[y]
dμi

= −2ω�	H−1 ∂E
∂μi

� (A.26)



14 KOPYTOV, MISHRA, NIMARK, AND TASCHEREAU-DUMOUCHEL

Next, from (39), we find

dW
dμi

= ωi = dE[y]
dμi

− 1
2

(ρ− 1)
dV[y]
dμi

�

which we can combine with the previous equation to get

dE[y]
dμi

=ωi − (ρ− 1)ω�	H−1 ∂E
∂μi

�

Similarly, differentiating (14) with respect to 	ij yields

dV[y]
d	ij

=ωiωj + 2ω�	
dω

d	ij

= ωiωj − 2ω�	H−1 ∂E
∂	ij

�

From (40), we can write

dW
d	ij

= −1
2

(ρ− 1)ωiωj = dE[y]
d	ij

− 1
2

(ρ− 1)
dV

[
y(α)

]
d	ij

�

which we can combine with the previous equation to find

dE[y]
d	ij

= −(ρ− 1)ω�	H−1 ∂E
∂	ij

�
Q.E.D.

A.18. Proof of Corollary 6

COROLLARY 6: Without uncertainty (	= 0), the moments of GDP respond to changes in
beliefs as if the network were fixed, such that

dE[y]
dμi

= ∂E[y]
∂μi

=ωi� and
dV[y]
d	ij

= ∂V[y]
∂	ij

=ωiωj�

PROOF: When 	 = 0, the problem of the planner (3) becomes

W = E
[
y
(
α∗)] = max

α∈A
E

[
y(α)

] = max
α∈A

ω(α)�(
μ+ a(α)

)
�

The envelope theorem then implies that dE[y]
dμi

=ωi which proves the first part of the corol-
lary. The envelope theorem also implies dE[y]

d	ij
= 0 which leads to the second part of the

corollary when combined with Proposition 5 and Corollary 1. Q.E.D.

A.19. Proofs of Corollaries 7 and 8

These proofs are in Supplemental Appendix D in Kopytov et al. (2024).

APPENDIX B: ADDITIONAL RESULTS RELATED TO THE CALIBRATED ECONOMY

In this appendix, we provide additional information about (1) the data used in the cali-
bration of Section 8, (2) our calibration strategy, (3) how well the model fits the data, (4)
the quantitative importance of the mechanism, and (5) robustness exercises.
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TABLE B.I

THE 37 SECTORS USED IN OUR ANALYSIS.

Mining Utilities
Construction Wood products
Nonmetallic minerals Primary metals
Fabricated metals Machinery
Computer and electronic manufacturing Electrical equipment manufacturing
Motor vehicles manufacturing Other transportation equipment
Furniture and related manufacturing Misc. manufacturing
Food and beverage manufacturing Textile manufacturing
Apparel manufacturing Paper manufacturing
Printing products manufacturing Petroleum and coal manufacturing
Chemical manufacturing Plastics manufacturing
Wholesale trade Retail trade
Transportation and warehousing Information
Finance and insurance Real estate and rental services
Professional and technical services Management of companies and enterprises
Administrative and waste management services Educational services
Health care and social assistance Arts and entertainment services
Accommodation Food services
Other services

Note: Sectors are classified according to the NAICS-based BEA codes. See Vom Lehn and Winberry (2022) for details of the data
construction.

B.1. Data

The Bureau of Economic Analysis (BEA) provides sectoral input-output tables that
allow us to compute the intermediate input shares as well as the shares of final consump-
tion expenditure accounted for by different sectors. We rely on the harmonized tables
constructed by Vom Lehn and Winberry (2022) that provide consistent annual data for
n = 37 sectors over the period 1948–2020. Table B.I provides the list of the sectors in-
cluded in this data set.

From these data, we can compute the input shares αijt of each sector in each year t.
The typical share αij in the data has an average of 0.0128 and a standard deviation over
time of 0.0048, for a coefficient of variation of 0.37. We also use the input-output tables
to compute sectoral total factor productivity, following the procedure in Vom Lehn and
Winberry (2022) closely. Specifically, sectoral TFP is measured as the Solow residual,
that is, the residual that remains after removing the contribution of input factors from a
sector’s gross output. We make three departures from Vom Lehn and Winberry (2022) in
constructing the TFP series. First, to be consistent with our model, we let the input shares
αijt vary over time. Second, we do not smooth the resulting Solow residuals. Finally, we
update the time-series to include the years up to 2020.

B.2. Calibration Procedure

The three groups of parameters that we need to calibrate are (1) the household’s pref-
erences, that is, the consumption shares β and the risk aversion ρ, (2) the parameters of
the TFP shifter function (2), and (3) the processes for the exogenous sectoral productivity
shocks, that is, μt and 	t . Some of these parameters can be computed directly from the
data. The other ones are estimated using a combination of indirect inference and stan-
dard time-series methods. Below, we describe the exact procedure used for each set of
parameters.
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Household Preferences. Since the preference parameter βi corresponds to the house-
hold’s expenditure share of good i, we pin down its value directly from the data by aver-
aging the consumption share of good i over time. The sectors with the largest consump-
tion shares are “Real estate” (14%), “Retail trade” (12%), and “Health care” (11%). See
Supplemental Appendix J in Kopytov et al. (2024) for a version of the calibrated economy
with time-varying β’s.

The relative risk aversion parameter ρ determines to what extent firms are willing to
trade off higher input prices for access to more stable suppliers. The literature uses a
broad range of values for ρ and it is unclear a priori which one is best for our application.
We therefore estimate ρ using a method of simulated moments (MSM) described below.

Endogenous Productivity Shifter. We specialize the TFP shifter function (2) to

logAi(αi) = a◦
i −

n∑
j=1

κij

(
αij − α◦

ij

)2 − κi0

(
n∑

j=1

αij −
n∑

j=1

α◦
ij

)2

� (A.27)

where the last term can provide a penalty from deviating from an ideal labor share. We
denote by κ the matrix with typical element κij . This functional form takes as inputs the
ideal shares α◦

ij , the actual shares αijt , the coefficients κij , and the constant a◦
i . The ideal

shares α◦
ij are set to the time average of the input shares observed in the data.2 We set the

constant a◦
i equal to the average TFP of sector i. The coefficients κij , which determine

how costly it is to deviate from the ideal shares in terms of productivity, are estimated
using the MSM procedure described below. Without any restrictions, the matrix κ would
have n× (n+ 1) = 1406 elements. To reduce the number of free parameters to estimate,
we restrict κ to be of the form κ = κiκj , where κi is an n × 1 column vector and κj is
a 1 × (n + 1) row vector. The kth element of κi then scales the cost for producer k of
changing the share of any of its inputs, and the lth element in κj scales the cost of changing
the share of input l for any producer. We normalize the first element in κi to pin down the
scale of κi and κj . The matrix κ then contains only 2n = 74 free parameters to estimate.

Exogenous Productivity Process. The source of uncertainty in the model is the vector
of productivity shocks εt ∼N (μt�	t). In the calibrated model, we allow μt and 	t to vary
over time to account for changes in the stochastic process for εt over the sample period.
To parameterize the evolution of μt and 	t , we first filter out the endogenous produc-
tivity shifter Ai(αit) and the normalization term ζ(αit) from the measured sectoral TFP,
eεitAi(αit)ζ(αit), implied by the production function (1). We then estimate the evolution
of μt and 	t from the remaining component. To do so, we assume that εt follows a random
walk with drift,

εt = γ + εt−1 + ut� (42)

where γ is an n×1 vector of deterministic drifts and ut ∼ iid N (0�	t) is a vector of shocks.
We estimate γ by computing the average of the productivity growth rates �εt = εt − εt−1

over time.
When making decisions in period t, firms know the past realizations of εt so that the

conditional mean of εt is given by μt = γ + εt−1. The covariance 	t of the innovation ut is

2We experimented with an alternative calibration in which we include and estimate a j-specific shifter to α◦
ij .

The results are similar to our baseline calibration.
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estimated using a rolling window that puts more weight on more recent observations to al-
low for time-varying uncertainty about sectoral productivity. Specifically, we estimate the
covariance between sector i and j at time t by computing 	ijt = ∑t−1

s=1 φ
t−s−1uisujs, where

0 <φ< 1 is a parameter that determines the relative weight of more recent observations.
Its value is set to the sectoral average of the corresponding parameters of a GARCH(1,1)
model estimated on each sector’s productivity innovation uit . In the calibrated economy,
its value is φ = 0�47. Note that this procedure implies that the time-series for εt depends
on the parameters of the TFP shifters. Therefore, the estimation of the stochastic process
for sectoral productivity has to be done jointly with the estimation of κ.

Matching Model and Data Moments. We use an indirect inference approach and esti-
mate the parameters � ≡{ρ�κ} by minimizing

�̂= arg min
�

(
m(z) −m(�)

)�
W

(
m(z) −m(�)

)
�

where m(z) is a vector of moments computed from the data, and m(�) is the vector of
corresponding model-implied moments conditional on the parameters �. The moments
that we target are the time-series of the production shares αijt , normalized by their av-
erage in the data, and the demeaned time-series of aggregate consumption growth, nor-
malized by the average of its absolute value in the data. We target consumption since the
stochastic discount factor of the household is central to the trade-off that firms face when
choosing production techniques.3

We match n2 ×T +T − 1 moments with only 2n+ 1 free parameters. The model is thus
strongly over-identified. We use particle swarm optimization to find the global minimizer
�̂ (Kennedy and Eberhart (1995)). The estimated coefficient of relative risk aversion ρ̂ is
4.27, which is similar to values used or estimated in the macroeconomics literature.

B.3. The Calibrated Economy

We want our model to fit key features of the data that relate to (1) the structure of the
production network, (2) how the network responds to changes in beliefs, and (3) how this
response affects macroeconomic aggregates. As we have seen earlier, the Domar weights,
and how they react to changes in μt and 	t , play a central role for these mechanisms. In
this section, we first describe the evolution of μt and 	t in the calibrated economy. We
then report unconditional moments of the model-implied Domar weights and how they
compare to the data. Finally, we look at the relationship between the Domar weights and
the beliefs μt and 	t and verify that the correlations predicted by the mechanisms of the
model are present in the data.

Evolution of Beliefs in the Data. Our estimation procedure provides a time-series for
μt and 	t . To illustrate the overall evolution of beliefs over our sample period, we compute
two measures that capture the aggregate impact of changes in μt and 	t . The first measure

3To strike a balance between matching both the shares and consumption growth reasonably well, the weight-
ing matrix W assigns a weight of (n2 ×T )−1 to the shares moments (recall that there are n2 shares time-series,
each of length T ) and a weight of (T −1)−1 to the consumption growth moment (the length of the consumption
growth time-series is T − 1).
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FIGURE B.1.—Domar-weighted TFP and uncertainty changes. Note: Solid blue line: Domar-weighted av-
erage growth in the conditional mean of productivity, �μ̄t = ∑n

j=1 ωjt�μjt . Red dashed line: Domar-weighted

conditional variance of productivity, σyt = √
ω�

t 	tωt . Shaded areas represent NBER recessions.

is the Domar-weighted average growth in the conditional mean of productivity, defined
as

�μ̄t =
n∑

j=1

ωjt�μjt� (A.28)

We use the Domar weights ωjt in this equation to properly reflect the importance of a
sector for GDP, as implied by (13). The solid blue line in Figure B.1 shows the evolution
of �μ̄t over the sample period. As expected, �μ̄t tends to go below zero during NBER
recessions and is positive during expansions.

To describe how aggregate uncertainty evolves in the calibrated economy, we also com-
pute the within-period perceived standard deviation of log GDP. From (14), this can be
written as

σyt =
√

V[y] =
√
ω�

t 	tωt� (A.29)

The red dashed line in Figure B.1 represents the evolution of σyt over the sample period.
While uncertainty is, on average, relatively low, especially during the Great Moderation
era, spikes are clearly visible in the earlier years and, in particular, during the Great Re-
cession of 2007–2009.4

Unconditional Domar Weights. Figure B.2 shows the average Domar weight of each
sector in the data (blue bars) and in the model (black line). The sectors with the highest
Domar weights in the data are “Real estate,” “Food and beverage,” “Retail trade,” “Fi-
nance and insurance,” and “Health care.” According to our theory (Corollary 4), changes
in the expected level and variance of productivity in those sectors will have the largest
effects on welfare.

The cross-sectional correlation between the average Domar weights in the model and in
the data is 0.96, so that the calibrated model fits this important feature of the production
network well. However, the average Domar weight in the model (0.032) is lower than
its counterpart in the data (0.047). This is because the estimation also targets aggregate
consumption growth. Given the observed variation in TFP, if the model were to match

4σyt pertains only to uncertainty about the stochastic part of TFP ε. As such, it does not capture overall
economic uncertainty, which might also be affected by changes in employment, investment, monetary and
fiscal policy, etc.
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FIGURE B.2.—Sectoral Domar weights in the data and the model. Note: The Domar weights are computed
for each sector in each year and then averaged over all time periods.

the Domar weights perfectly, consumption would be too volatile compared to the data.
Under our calibration, the volatility of consumption growth in the model is 2.73%, close
to its data target of 2.65% (row (6) of Table B.II).5

The model can account for about 40% of the observed average standard deviation of
the Domar weights over time, as shown in row (2) of Table B.II. Row (3) also reports that
the coefficient of variation of the Domar weights in the model is 0.07, compared to 0.11
in the data. Once we take into account their relative scale, the model can thus account

TABLE B.II

DOMAR WEIGHTS, CONSUMPTION, AND TFP IN THE MODEL AND IN THE DATA.

Statistic Data Model

(1) Average Domar weight ω̄j 0.047 0.032
(2) Standard deviation σ (ωj) 0.0050 0.0021
(3) Coefficient of variation σ (ωj)/ω̄j 0.107 0.066
(4) Corr(ωjt�μjt) 0.08 0.08
(5) Corr(ωjt�	jjt) −0�37 −0�31
(6) Consumption growth volatility 2.65% 2.73%
(7) TFP growth volatility 1.83% 2.73%

Note: For each sector, we compute the time-series of its Domar weight ωjt , as well as its standard deviation σ (ωj) and its mean ω̄j .
Rows (1) and (2) report cross-sectional averages of these statistics. Row (3) is the ratio of rows (2) and (1). Each period, we compute
cross-sectional correlations of the Domar weights ωjt with μjt and 	jjt (mean and variance of exogenous TFP εjt ). Rows (4) and (5)
report time-series averages of these correlations. Rows (6) and (7) compare consumption growth and TFP growth volatilities across
the model and the data. The TFP data come from Fernald (2014) and are not adjusted for capacity utilization.

5Since there is no investment and that the only primary factor of production (labor) is in fixed supply,
consumption and aggregate TFP are equal in the model. It follows that we cannot match the volatility of
both quantities and the model somewhat overpredicts TFP volatility (see Table B.II). Including an investment
margin in the model, so that GDP no longer equals consumption, might improve the fit of the Domar weights
while keeping consumption growth in the model as volatile as in the data.
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for a sizable portion of the variation in a key moment that characterizes the production
network.6

Domar Weights and Beliefs. One of the key mechanisms of the model predicts that a
decline in the expected productivity of a sector, or an increase in its variance, should lead
firms to reduce the importance of that sector as an input provider, leading to a decline
in its Domar weight. Proposition 2 makes this point formally for a single change in μi or
	ii. Of course, in the data, multiple changes in μt and 	t occur at the same time, and it
would be difficult to isolate the impact of a single change on the Domar weights. Instead,
we look at simple cross-sector correlations between the Domar weights ωit and the first
(μit) and the second moments (	iit) of sectoral TFPs, both in the data and in the model.
These correlations provide a straightforward, albeit noisy, measure of the interrelations
between ωt , μt , and 	t . As can be seen in rows (4) and (5) of Table B.II, the predictions
of the model are borne out in the data. The model is thus able to capture well the impact
of beliefs on the structure of the production network.

Sectoral Correlations. The model is also able to replicate features of the correlation
between sectoral outputs. We focus on growth rates to accommodate different trends in
the data and in the model. For each pair of sectors, we compute the correlation in their
output growth in the model and in the data, and plot them in Figure B.3. The model
reasonably captures cross-sectoral comovements: We find that the correlation between
the data- and model-implied values is 0.44. On average, sectoral outputs are positively
correlated in the model and in the data, although the model correlation is somewhat
weaker on average (see the first column of Table B.III).

Table B.III also reports averages of these correlations during periods of low and high
TFP growth and uncertainty growth, as measured by (A.28) and (A.29). We see that in the

FIGURE B.3.—Cross-sector correlations in the model and in the data. Note: For each pair of sectors, we
compute correlations in the growth rates of sectoral output in the model and in the data. Each dot in the graph
shows the value of this correlation in the model (X-axis) and in the data (Y-axis). The solid black line results
from the ordinary least square analysis.

6One reason why the Domar weights are less volatile in the model than in the data is that we assume that the
{Ai}ni=1 functions are time invariant. In reality, technological changes might affect the shape of these functions
which would translate into additional variation in the Domar weights.



ENDOGENOUS PRODUCTION NETWORKS UNDER UNCERTAINTY 21

TABLE B.III

CORRELATIONS IN SECTORAL SALES GROWTH.

TFP Growth Uncertainty Growth

All Years Low High Low High

Model 0.18 0.22 0.13 0.16 0.20
Data 0.36 0.37 0.34 0.32 0.38

Note: For each sector pair (i� j), we compute correlations in the growth rates of sectoral output in the model and in the data. We
then take averages across all sectors. TFP growth and Uncertainty growth are measured as in Figure B.1. We use high/low to refer to
years with TFP growth or uncertainty growth above/below corresponding median levels.

data, these correlations are lower in good times, when TFP growth is high and uncertainty
growth is low. The model is able to replicate this ranking. Intuitively, in bad times, con-
sumption is low and so the household is particularly worried about bad shocks. To avoid
them, firms rely more on the most stable producers. As firms are mostly purchasing from
the same sectors, sectoral outputs become more correlated.

B.4. Counterfactual Exercises

In this appendix, we provide more information about the counterfactual exercises of
Section 8.2.

Long-Run Moments. Table B.IV provides differences in long-run moments between
our baseline model and the three alternative economies described in the main text. In
the “known εt ,” E[y] and W collapse to realized GDP and V[y] = 0. In Table B.IV, we
compute instead these moments before εt is known but still assuming that the production
network is chosen optimally for the realized draw of εt

Time-Series Under the “Known εt” Alternative Economy. In the “known εt ,” beliefs
(μt�	t), and in particular uncertainty, play no role in shaping the network and, from
the planner’s problem, the optimal network is simply the one that maximizes (realized)
consumption. It follows that consumption (or GDP) is always larger than in the baseline
model (bottom right panel in Figure B.4).7 Unsurprisingly, the difference is particularly

TABLE B.IV

UNCERTAINTY, GDP, AND WELFARE IN THE POST-WAR SAMPLE.

Baseline Model Compared to. . .

Fixed Network As if 	t = 0 Known εt

Expected log GDP, E[y] +2�12% −0�01% +0�68%
Expected st. dev. of log GDP,

√
V[y] +0�13% −0�10% −0�22%

Expected welfare, W +2�11% +0�01% +0�71%
Realized log GDP, y +1�61% +0�07% −0�54%

Note: Baseline variables minus their counterparts in the “fixed network,” the “as if 	t = 0,” the “known εt ” alternatives.

7Again, here we report the moments before εt is known but still assuming that the production network is
chosen optimally for the realized draw of εt .
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FIGURE B.4.—The role of uncertainty in the postwar period. Note: The differences between the series im-
plied by the baseline model (without tildes) and the two alternatives (marked by tildes): the “as if 	t = 0”
alternative (left column) and the “known εt” alternative (right column). All economies are hit by the same
shocks that are filtered out from the TFP data under our baseline model. All differences are expressed in
percentage terms. Expected log GDP E[y] and expected standard deviation of log GDP

√
V[y] are evaluated

before εt is realized.

pronounced during episodes of high uncertainty, when knowing εt provides a larger ad-
vantage, and reaches a high of 3% during the Great Recession. On average, GDP is 0.54%
larger than in the baseline economy, suggesting a sizable impact of uncertainty on the
economy (bottom row in Table B.IV).

The top three panels in the right column of Figure B.4 show how the baseline and
alternative economies differ in terms of expected log GDP, the standard deviation of log
GDP, and (expected) welfare. Crucially, these measures are evaluated before ε is realized.8
Welfare W is always lower in the alternative economy because, by construction, W is what
the network in the baseline model maximizes. Furthermore, the optimal network in this
economy does not seek to increase E[y] and reduce V[y]. As a result, E[y] is on average
lower and V[y] is, on average, higher (right column in Table B.IV).
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