Econometrica Supplementary Material

SUPPLEMENT TO "THE UNEQUAL EFFECTS OF POLLUTION ON LABOR SUPPLY" (Econometrica, Vol. 92, No. 4, July 2024, 1063–1096)

BRIDGET HOFFMANN Research Department, Inter-American Development Bank

JUAN PABLO RUD

Department of Economics, Royal Holloway, University of London, Institute for Fiscal Studies, and IZA Institute of Labor Economics

APPENDIX A: SUPPLEMENTAL APPENDIX TABLES

TABLE A.I NONLINEAR EFFECT OF DM 25 ON LADOR SUPPLY

	NUNLINEAR EFFECT	OF FIM 2.3 ON LABOR	COUPPLY.	
		Daily Hou	rs Worked	
	(1)	(2)	(3)	(4)
Hours Above WHO PM 2.5 Threshold	0.001 (0.001)	-0.003 (0.001)	-0.020 (0.002)	-0.160 (0.010)
WHO Threshold N R2	AQG 2,227,363 0.284	IT3 2,227,363 0.284	IT2 2,227,363 0.284	IT1 2,227,363 0.285

Note: Standard errors clustered by locality in parenthesis. Results of estimating (2) for the number of hours above the WHO air quality threshold for PM 2.5. A separate regression is run for each threshold.

				Day Worked			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Hours Above PM2.5 IT1 Threshold	-0.019 (0.001)	-0.019 (0.001)	-0.020 (0.001)	-0.020 (0.001)	-0.020 (0.008)	-0.024 (0.002)	-0.037 (0.001)
Method	Baseline	Occupation Controls	HH FE	Individual FE	IV	Weekdays	Peak Season
N R2	2,227,363 0.331	2,227,363 0.337	2,227,355 0.383	2,227,328 0.426	2,220,112 0.326	1,589,914 0.039	156,076 0.328

TABLE A.II THE EFFECT OF PM 2.5 ON WORKED DAY.

Note: Standard errors clustered by locality in parenthesis. Column (1) shows the baseline specification, equation ((2)). Column (2) includes type of job and position, formality status, and sector of employment as additional controls. Column (3) adds household fixed effects. Column (4) adds individual fixed effects. Column (5) is the IV specification, which instruments for PM 2.5 with wind speed. Column (6) shows the baseline specification in the sample of weekdays, Monday to Friday. Column (7) shows the baseline specification in the first 4 weeks of the year, which is the peak pollution season.

Bridget Hoffmann: bridgeth@iadb.org

Juan Pablo Rud: juan.rud@rhul.ac.uk

^{© 2024} The Authors. Econometrica published by John Wiley & Sons Ltd on behalf of The Econometric Society. Juan Pablo Rud is the corresponding author on this paper. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

TABLE A.III
INCOME DISTRIBUTION.

Decile	Average income	Ratio to Decile 1
1	1093	1.00
2	2248	2.06
3	2912	2.66
4	3462	3.17
5	3992	3.65
6	4570	4.18
7	5326	4.87
8	6284	5.75
9	8303	7.60
10	18,377	16.81

Note: In 2011, the average exchange rate was around 12.50 Mexican Pesos per US Dollar. In the same year, the monthly minimum wage was around 1500 Mexican Pesos.

TABLE A.IV

THE UNEQUAL RESPONSE TO POLLUTION BY INCOME LEVEL: QUINTILES AND MINIMUM WAGE.

	Top and Bott	om Quintiles	≤1 & >	5 MW
	(1)	(2)	(3)	(4)
Hours Above PM2.5	-0.314	-0.206	-0.324	-0.220
IT1 Threshold	(0.014)	(0.022)	(0.019)	(0.021)
Low Income ×	0.094	0.076	0.133	0.097
Hours Above IT1	(0.018)	(0.020)	(0.022)	(0.022)
Specification	Peak Season	Weekdays	Peak Season	Weekdays
N	43,738	442,949	28,138	308,006
R2	0.307	0.215	0.372	0.310

Note: Standard errors clustered at the locality level.

(1)	(2)	(3)	(4)
-0.106	-0.159	-0.094	-0.163
(0.010)	(0.014)	(0.014)	(0.014)
0.018	0.027	0.019	0.034
(0.007)	(0.008)	(0.010)	(0.009)
0.016	0.027	0.006	0.030
(0.008)	(0.009)	(0.010)	(0.011)
0.015	0.031	0.024	0.026
(0.008)	(0.007)	(0.010)	(0.008)
0.010	0.036	0.022	0.036
(0.009)	(0.007)	(0.010)	(0.009)
0.015	0.004	0.003	$0.008 \\ (0.009)$
(0.008)	(0.007)	(0.011)	
-0.032	-0.035	-0.021	-0.029
0.029	0.030	0.040	0.034
Bottom Quintile	Top Quintile	≤ 1 MW	<5 MW
324,195	293,669	210,756	219,269
0.127	0.419	0.111	0.471
	(1) -0.106 (0.010) 0.018 (0.007) 0.016 (0.008) 0.015 (0.008) 0.010 (0.009) 0.015 (0.008) -0.032 0.029 Bottom Quintile 324,195 0.127	$\begin{array}{c cccc} (1) & (2) \\ \hline -0.106 & -0.159 \\ (0.010) & (0.014) \\ 0.018 & 0.027 \\ (0.007) & (0.008) \\ 0.016 & 0.027 \\ (0.008) & (0.009) \\ 0.015 & 0.031 \\ (0.008) & (0.007) \\ 0.015 & 0.036 \\ (0.009) & (0.007) \\ 0.015 & 0.004 \\ (0.008) & (0.007) \\ 0.015 & 0.004 \\ (0.008) & (0.007) \\ -0.032 & -0.035 \\ 0.029 & 0.030 \\ \hline Bottom Quintile & Top Quintile \\ 324,195 & 293,669 \\ 0.127 & 0.419 \\ \end{array}$	(1)(2)(3) -0.106 -0.159 -0.094 (0.010)(0.014)(0.014)0.0180.0270.019(0.007)(0.008)(0.010)0.0160.0270.006(0.008)(0.009)(0.010)0.0150.0310.024(0.008)(0.007)(0.010)0.0150.0360.022(0.009)(0.007)(0.010)0.0150.0040.003(0.008)(0.007)(0.011) -0.032 -0.035 -0.021 0.0290.0300.040Bottom QuintileTop Quintile ≤ 1 MW $324,195$ $293,669$ $210,756$ 0.1270.4190.111

TABLE A.V Robustness of Heterogeneous Dynamic Effects.

Note: Standard errors clustered at the locality level.

TABLE A.VI
ALTERNATIVE PLACES OF WORK.

		Place of Work	
	(1)	(2)	(3)
	Work from Home	Changing Workplace	Fixed Workplace
Hours Above PM2.5	-0.192	-0.192	-0.170
IT1 Threshold	(0.062)	(0.032)	(0.016)
Characteristic ×	0.131	0.145	0.075
Hours Above IT1	(0.070)	(0.036)	(0.027)
Characteristic	Bottom Decile	Bottom Decile	Bottom Decile
N	21,818	79,610	188,455
R2	0.350	0.258	0.467

Note: Standard errors clustered at the locality level.

	TAE	BLE A	.VII	
105	our T		0	-

EFFECT OF PM 2.5	ON LABOR	SUPPLY BY	AGE GROUP.
E11 E01 01 1 11 2.5	on Labor	DOLLEL DI	THE ONCOUL

		Daily Ho	urs Worked by A	ge Group	
	(1)	(2)	(3)	(4)	(5)
	Up to 24	25–34	35–44	45–54	55+
Hours Above PM2.5	-0.149	-0.168	-0.162	-0.156	-0.158
IT1 Threshold	(0.011)	(0.011)	(0.013)	(0.015)	(0.012)
N	337,347	563,032	566,201	446,227	314,556
R2	0.212	0.322	0.322	0.315	0.258

Note: Standard errors clustered by locality in parenthesis. Results of estimating (2) for the number of hours above the WHO IT1 air quality threshold for PM 2.5.

			TABLE	A.VIII				
			ROBUSTNES	S CHECKS.				
	Hours Above PM2.5 IT1 Threshold			Ď	aily Hours Wc	rked		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)
Mean Wind Speed	-0.108 (0.011)							
Hours Above PM2.5		-0.227	-0.455	-0.098	-0.159			0.001
11 1 1 ILLESUOID		(con.u)	(71170)	(ccn·n)	(1110.0)			(0.004)
Lead Hours Above PM2.5 IT1 Threshold					-0.008 (0.005)			
Hours Above PM10 IT1 Threshold						-0.082 (0.009)	-0.089 (0.010)	
Method	First Stage	IV-Indiv. FE	IV	IV	Lead	PM10	PM10-Indiv. FE	Usual Hours
Sample	Full	Full	Weekdays	Peak Season	Full	Full	Full	Weekdays
N	2,220,112	2,220,076	1,584,712	155,948	2,226,027	2,342,968	2,342,937	152, 137
R2	0.199	0.324	0.054	0.258	0.285	0.283	0.475	0.042
<i>Note:</i> Robust standard e F-statistic for the specificatio the IT1 threshold to the base	rors in parenthesis. Column (n in column (2) is 1401, for th ine specification. Columns (6)	(1) shows the first stage 1 e specification in column) and (7) use PM 10 in th	for column (5) in n (3) is 2487, and he baseline specif	Table III. Columns in column (4) the F- ication. In column (8	(2)–(4) use two-s statistic is 1595. 8), the dependent	tage least square Column (5) adds t variable is repor	s to instrument PM 2.5 with the 1-day lead of the numb ted usual daily hours worke	wind speed. The er of hours above and the sample

Note: Robust standard errors in parenthesis. Column (1) shows the first stage for column (5) in Table III. Columns (2)–(4) use two-stage least squares to instrument PM 2.5 with wind spec
-statistic for the specification in column (2) is 1401, for the specification in column (3) is 2487, and in column (4) the F-statistic is 1595. Column (5) adds the 1-day lead of the number of hour
he IT1 threshold to the baseline specification. Columns (6) and (7) use PM 10 in the baseline specification. In column (8), the dependent variable is reported usual daily hours worked and the
s restricted to weekdays.

B. HOFFMANN AND J. P. RUD

APPENDIX B: SUPPLEMENTAL APPENDIX FIGURES

FIGURE B.1.—Monitoring Stations and Sample Localities. Note: Map of Ciudad (pink) and Estado (purple) de Mexico regions. The red dots are air pollution monitoring stations and yellow lines link them to the centroid of the localities that are within 20 km and included in the ENOE sample.

FIGURE B.2.—Quarterly Distribution of PM 2.5 for 2004–2016—Most Populated Localities. Note: Average pollution at 11 am for all days and months in each quarter for years 2004–2016.

FIGURE B.3.—Daily Number of Hours Above WHO Thresholds and Worked Day. Note: Coefficients and 90% confidence intervals are plotted from equation (2) for the number of hours above the WHO air quality threshold for PM 2.5. A separate regression is run for each threshold.

FIGURE B.4.—Semielasticity of Daily Hours Worked to the Number of Hours Above WHO Thresholds. for PM 2.5 Note: Coefficients and 90% confidence intervals are plotted from equation (2) for the number of hours above the WHO air quality threshold for PM 2.5. The outcome variable is the natural logarithm of 1 + daily hours worked. A separate regression is run for each threshold.

FIGURE B.5.—Hourly Realizations of PM 2.5 Above IT1. Note: Average (across days and localities) PM 2.5 level for observations above the WHO IT1 threshold by hour of the day.

FIGURE B.6.—Daily Number of Hours Above WHO Thresholds and Daily Hours Worked For Top and Bottom Income Deciles. Note: Coefficients and 90% confidence intervals are plotted from equation (2) for the number of hours above the WHO air quality threshold for PM 2.5. A separate regression is run for each threshold and income level.

Co-editor Oriana Bandiera handled this manuscript.

Manuscript received 11 January, 2022; final version accepted 9 May, 2024; available online 9 May, 2024.