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APPENDIX A: PROOFS OF PROPOSITIONS

Proposition 1.

PROOF: All objects in this proof are in nominal terms. The government faces the fol-
lowing one-period budget constraint:

Gt − Tt +Q$
t−1(1) =

H∑
h=1

(
Q$

t (h) −Q$
t−1(h+ 1)

)
P$
t (h)� (A.1)

where Gt is total nominal government spending, Tt is total nominal government revenue,
Q$

t (h) is the number of nominal zero-coupon bonds of maturity h outstanding in pe-
riod t each promising to pay back $1 at time (t + h), and P$

t (h) is today’s price for an
h-period zero-coupon bond with $1 face value. A unit of (h + 1)-period bond issued at
t − 1 becomes a unit of h-period bond in period t. Moreover, bonds could be issued
or redeemed in period t, so that the stock of bonds of each maturity evolves accord-
ing to Q$

t (h) = Q$
t−1(h + 1) + �Q$

t (h). Note that this notation can easily handle coupon-
bearing bonds. For any bond with deterministic cash-flow sequence, we can write the price
(present value) of the bond as the sum of the present values of each of its coupons. We
assume that H is the longest maturity issued in each period so that Q$

t−1(H + 1) = 0, ∀t.
The left-hand side of the budget constraint denotes new financing needs in the current

period, due to primary deficit G − T and one-period debt from last period that is now
maturing. The right-hand side shows that the money is raised by issuing new bonds of
various maturities. Alternatively, we can write the budget constraint as total expenses
equaling total income:

Gt +Q$
t−1(1) +

H∑
h=1

Q$
t−1(h+ 1)P$

t (h) = Tt +
H∑
h=1

Q$
t (h)P$

t (h)�
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We can now iterate the budget constraint forward. The period t constraint is given by

Tt −Gt =Q$
t−1(1) −Q$

t (1)P$
t (1) +Q$

t−1(2)P$
t (1) −Q$

t (2)P$
t (2)

+Q$
t−1(3)P$

t (2) −Q$
t (3)P$

t (3) + · · · −Q$
t (H)P$

t (H) +Q$
t−1(H + 1)P$

t (H)�

Consider the period-t + 1 constraint,

Tt+1 −Gt+1 =Q$
t (1) −Q$

t+1(1)P$
t+1(1) +Q$

t (2)P$
t+1(1) −Q$

t+1(2)P$
t+1(2) +Q$

t (3)P$
t+1(2)

−Q$
t+1(3)P$

t+1(3) + · · · −Q$
t+1(H)P$

t+1(H) +Q$
t (H + 1)P$

t+1(H)�

multiply both sides by M$
t+1, and take expectations conditional on time t:

Et

[
M$

t+1(Tt+1 −Gt+1)
]=Q$

t (1)P$
t (1) −Et

[
Q$

t+1(1)M$
t+1P

$
t+1(1)

]+Q$
t (2)P$

t (2)

−Et

[
Q$

t+1(2)M$
t+1P

$
t+1(2)

]+Q$
t (3)P$

t (3)

−Et

[
Q$

t+1(3)M$
t+1P

$
t+1(3)

]+ · · · +Q$
t (H)P$

t (H)

−Et

[
Q$

t+1(H)M$
t+1P

$
t+1(H)

]+Q$
t (H + 1)P$

t (H + 1)�

where we use the asset pricing equations Et[M$
t+1] = P$

t (1), Et[M$
t+1P

$
t+1(1)] = P$

t (2), · · · ,
Et[M$

t+1P
$
t+1(H − 1)] = P$

t (H), and Et[M$
t+1P

$
t+1(H)] = P$

t (H + 1).
Consider the period t + 2 constraint, multiplied by M$

t+1M
$
t+2 and take time-t expecta-

tions:

Et

[
M$

t+1M
$
t+2(Tt+2 −Gt+2)

]
= Et

[
Q$

t+1(1)M$
t+1P

$
t+1(1)

]−Et

[
Q$

t+2(1)M$
t+1M

$
t+2P

$
t+2(1)

]+Et

[
Q$

t+1(2)M$
t+1P

$
t+1(2)

]
−Et

[
Q$

t+2(2)M$
t+1M

$
t+2P

$
t+2(2)

]+Et

[
Q$

t+1(3)M$
t+1P

$
t+1(3)

]− · · ·
+Et

[
Q$

t+1(H)M$
t+1P

$
t+1(H)

]−Et

[
Q$

t+2(H)M$
t+1M

$
t+2P

$
t+2(H)

]
+Et

[
Q$

t+1(H + 1)M$
t+1P

$
t+1(H + 1)

]
�

where we used the law of iterated expectations and Et+1[M$
t+2] = P$

t+1(1), Et+1[M$
t+2 ×

P$
t+2(1)] = P$

t+1(2), etc.
Note how identical terms with opposite signs appear on the right-hand side of the last

two equations. Adding up the expected discounted surpluses at t, t + 1, and t + 2, we get

Tt −Gt +Et

[
M$

t+1(Tt+1 −Gt+1)
]+Et

[
M$

t+1M
$
t+2(Tt+2 −Gt+2)

]
=

H∑
h=0

Q$
t−1(h+ 1)P$

t (h) −Et

[
Q$

t+2(1)M$
t+1M

$
t+2P

$
t+2(1)

]
−Et

[
Q$

t+2(2)M$
t+1M

$
t+2P

$
t+2(2)

]− · · · −Et

[
Q$

t+2(H)M$
t+1M

$
t+2P

$
t+2(H)

]
�

Similarly, consider the one-period government budget constraints at times t + 3, t + 4,
etc. Then add up all one-period budget constraints. Again, the identical terms appear with
opposite signs in adjacent budget constraints. These terms cancel out upon adding up the
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budget constraints. Adding up all the one-period budget constraints until horizon t + J,
we get

H∑
h=0

Q$
t−1(h+ 1)P$

t (h) = Et

[
J∑

j=0

M$
t�t+j(Tt+j −Gt+j)

]

+Et

[
M$

t�t+J

H∑
h=1

Q$
t+J(h)P$

t+J(h)

]
�

where we used the cumulative SDF notation M$
t�t+j =∏j

i=0 M
$
t+i and by convention M$

t�t =
M$

t = 1 and P$
t (0) = 1. The market value of the outstanding government bond portfolio

equals the expected present discount value of the surpluses over the next J years plus the
present value of the government bond portfolio that will be outstanding at time t + J.
The latter is the cost the government will face at time t + J to finance its debt, seen from
today’s vantage point.

We can now take the limit as J → ∞:

H∑
h=0

Q$
t−1(h+ 1)P$

t (h) = Et

[ ∞∑
j=0

M$
t�t+j(Tt+j −Gt+j)

]

+ lim
J→∞

Et

[
M$

t�t+J

H∑
h=1

Q$
t+J(h)P$

t+J(h)

]
�

We obtain that the market value of the outstanding debt inherited from the previous
period equals the expected present-discounted value of the primary surplus stream {Tt+j −
Gt+j} plus the discounted market value of the debt outstanding in the infinite future.

Consider the transversality condition:

lim
J→∞

Et

[
M$

t�t+J

H∑
h=1

Q$
t+J(h)P$

t+J(h)

]
= 0�

which says that while the market value of the outstanding debt may be growing as time
goes on, it cannot be growing faster than the stochastic discount factor. Otherwise, there
is a government debt bubble.

If the transversality condition is satisfied, the outstanding debt at the beginning of pe-
riod t reflects the expected present-discounted value of the current and all future primary
surpluses:

H∑
h=0

Q$
t−1(h+ 1)P$

t (h) = Et

[ ∞∑
j=0

M$
t�t+j(Tt+j −Gt+j)

]
�

Finally, using the one-period budget constraint (A.1) again, we obtain the end-of-period
market value of government debt, Dt , defined in equation (1) in the main text:

Dt =
H∑
h=1

Q$
t (h)P$

t (h) = Et

[ ∞∑
j=1

M$
t�t+j(Tt+j −Gt+j)

]
�
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Case With Default.

PROOF: We consider only full default, without loss of generality. Alternatively, we can
write the budget constraint that obtains in case of no default at t:

Gt +Q$
t−1(1) +

H∑
h=1

Q$
t−1(h+ 1)P$

t (h) = Tt +
H∑
h=1

Q$
t (h)P$

t (h)�

and, in case of default at t, the one-period budget constraint is given by

Gt = Tt +
H∑
h=1

Q$
t (h)P$

t (h)�

We can now iterate the budget constraint forward. In case of no default, the period t
constraint is given by

Tt −Gt = Q$
t−1(1) −Q$

t (1)P$
t (1) +Q$

t−1(2)P$
t (1) −Q$

t (2)P$
t (2) +Q$

t−1(3)P$
t (2)

−Q$
t (3)P$

t (3) + · · · −Q$
t (H)P$

t (H) +Q$
t−1(H + 1)P$

t (H)�

In case of default, the period t constraint is given by

Tt −Gt = −Q$
t (1)P$

t (1) −Q$
t (2)P$

t (2) −Q$
t (3)P$

t (3) −Q$
t (H)P$

t (H)�

First, consider the period-t + 1 constraint in case of no default,

Tt+1 −Gt+1 =Q$
t (1) −Q$

t+1(1)P$
t+1(1) +Q$

t (2)P$
t+1(1) −Q$

t+1(2)P$
t+1(2) +Q$

t (3)P$
t+1(2)

−Q$
t+1(3)P$

t+1(3) + · · · −Q$
t+1(H)P$

t+1(H) +Q$
t (H + 1)P$

t+1(H)�

Second, consider the period-t + 1 constraint in case of default,

Tt+1 −Gt+1 = −Q$
t+1(1)P$

t+1(1) −Q$
t+1(2)P$

t+1(2) −Q$
t+1(3)P$

t+1(3)

− · · · −Q$
t+1(H)P$

t+1(H)�

We use χt as an indicator variable for default. To simplify, we consider only full default
with zero recovery. This is without loss of generality. Next, multiply both sides of the no
default constraint by (1 −χt+1)M$

t+1, and take expectations conditional on time t:

Et

[
M$

t+1(1 −χt+1)(Tt+1 −Gt+1)
]

=Q$
t (1)Et

[
M$

t+1(1 −χt+1)
]−Et

[
Q$

t+1(1)(1 −χt+1)M$
t+1P

$
t+1(1)

]
+Et

[
(1 −χt+1)M$

t+1P
$
t+1(1)

]
Q$

t (2)

−Et

[
Q$

t+1(2)(1 −χt+1)M$
t+1P

$
t+1(2)

]+Et

[
M$

t+1(1 −χt+1)P$
t+1(2)

]
Q$

t (3)

−Et

[
Q$

t+1(3)(1 −χt+1)M$
t+1P

$
t+1(3)

]+ · · · +Q$
t (H)Et

[
M$

t+1(1 −χ)P$
t+1(H − 1)

]
−Et

[
Q$

t+1(H)(1 −χt+1)M$
t+1P

$
t+1(H)

]+Q$
t (H + 1)Et

[
M$

t+1(1 −χt+1)P$
t+1(H)

]
�
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and multiply both sides of the default constraint by M$
t+1χt+1,

Et

[
M$

t+1χt+1(Tt+1 −Gt+1)
]

= −Et

[
Q$

t+1(1)χt+1M
$
t+1P

$
t+1(1)

]−Et

[
Q$

t+1(2)χt+1M
$
t+1P

$
t+1(2)

]
−Et

[
Q$

t+1(3)χt+1M
$
t+1P

$
t+1(3)

]− · · · −Et

[
Q$

t+1(H)χt+1M
$
t+1P

$
t+1(H)

]
�

By adding these two constraints, we obtain the following expression:

Et

[
M$

t+1(Tt+1 −Gt+1)
]

=Q$
t (1)Et

[
M$

t+1(1 −χt+1)
]−Et

[
Q$

t+1(1)M$
t+1P

$
t+1(1)

]
+Et

[
(1 −χt+1)M$

t+1P
$
t+1(1)

]
Q$

t (2)

−Et

[
Q$

t+1(2)M$
t+1P

$
t+1(2)

]+Et

[
M$

t+1(1 −χt+1)P$
t+1(2)

]
Q$

t (3)

−Et

[
Q$

t+1(3)M$
t+1P

$
t+1(3)

]+ · · · +Q$
t (H)Et

[
Mt+1(1 −χ)P$

t+1(H − 1)
]

−Et

[
Q$

t+1(H)Mt+1P
$
t+1(H)

]+Q$
t (H + 1)Et

[
M$

t+1(1 −χt+1)P$
t+1(H)

]
�

This can be restated as

Et

[
M$

t+1(Tt+1 −Gt+1)
]=Q$

t (1)P$
t (1) −Et

[
Q$

t+1(1)M$
t+1P

$
t+1(1)

]+Q$
t (2)P$

t (2)

−Et

[
Q$

t+1(2)M$
t+1P

$
t+1(2)

]+Q$
t (3)P$

t (3)

−Et

[
Q$

t+1(3)M$
t+1P

$
t+1(3)

]+ · · · +Q$
t (H)P$

t (H)

−Et

[
Q$

t+1(H)M$
t+1P

$
t+1(H)

]+Q$
t (H + 1)P$

t (H + 1)�

where we use the asset pricing equations Et[M$
t+1(1 − χt+1)] = P$

t (1), Et[M$
t+1(1 −

χt+1)P$
t+1(1)] = P$

t (2), · · · , Et[M$
t+1(1 − χt+1)P$

t+1(H − 1)] = P$
t (H), and Et[M$

t+1(1 −
χt+1)P$

t+1(H)] = P$
t (H + 1).

The rest of the proof is essentially unchanged. Consider the period t+2 constraint, mul-
tiplied by M$

t+1M
$
t+2(1 − χt+2) in the no-default case, and M$

t+1M
$
t+2(χt+2) for the default

case, and take time-t expectations (after adding default and no-default states):

Et

[
M$

t+1M
$
t+2(Tt+2 −Gt+2)

]
= Et

[
Q$

t+1(1)M$
t+1P

$
t+1(1)

]−Et

[
Q$

t+2(1)M$
t+1M

$
t+2P

$
t+2(1)

]
+Et

[
Q$

t+1(2)M$
t+1P

$
t+1(2)

]−Et

[
Q$

t+2(2)M$
t+1M

$
t+2P

$
t+2(2)

]
+Et

[
Q$

t+1(3)M$
t+1P

$
t+1(3)

]− · · · +Et

[
Q$

t+1(H)M$
t+1P

$
t+1(H)

]
−Et

[
Q$

t+2(H)M$
t+1M

$
t+2P

$
t+2(H)

]+Et

[
Q$

t+1(H + 1)M$
t+1P

$
t+1(H + 1)

]
�

where we used the law of iterated expectations and Et+1[M$
t+2(1 − χt+2)] = P$

t+1(1),
Et+1[M$

t+2(1 −χt+2)P$
t+2(1)] = P$

t+1(2), etc.
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Note how identical terms with opposite signs appear on the right-hand side of the last
two equations. Adding up the expected discounted surpluses at t, t + 1, and t + 2, we get

Tt −Gt +Et

[
M$

t+1(Tt+1 −Gt+1)
]+Et

[
M$

t+1M
$
t+2(Tt+2 −Gt+2)

]
=

H∑
h=0

Q$
t−1(h+ 1)P$

t (h) −Et

[
Q$

t+2(1)M$
t+1M

$
t+2P

$
t+2(1)

]
−Et

[
Q$

t+2(2)M$
t+1M

$
t+2P

$
t+2(2)

]− · · · −Et

[
Q$

t+2(H)M$
t+1M

$
t+2P

$
t+2(H)

]
�

Similarly, consider the one-period government budget constraints at times t + 3, t + 4,
etc. Then add up all one-period budget constraints. Again, the identical terms appear with
opposite signs in adjacent budget constraints. These terms cancel out upon adding up the
budget constraints. Adding up all the one-period budget constraints until horizon t + J,
we get

H∑
h=0

Q$
t−1(h+ 1)P$

t (h) = Et

[
J∑

j=0

M$
t�t+j(Tt+j −Gt+j)

]
+Et

[
M$

t�t+J

H∑
h=1

Q$
t+J(h)P$

t+J(h)

]
�

where we used the cumulative SDF notation M$
t�t+j =∏j

i=0 M
$
t+i and by convention M$

t�t =
M$

t = 1 and P$
t (0) = 1. The market value of the outstanding government bond portfolio

equals the expected present discount value of the surpluses over the next J years plus the
present value of the government bond portfolio that will be outstanding at time t + J.
The latter is the cost the government will face at time t + J to finance its debt, seen from
today’s vantage point.

We can now take the limit as J → ∞:
H∑
h=0

Q$
t−1(h+ 1)P$

t (h) = Et

[ ∞∑
j=0

M$
t�t+j(Tt+j −Gt+j)

]

+ lim
J→∞

Et

[
M$

t�t+J

H∑
h=1

Q$
t+J(h)P$

t+J(h)

]
�

We obtain that the market value of the outstanding debt inherited from the previous
period equals the expected present-discounted value of the primary surplus stream {Tt+j −
Gt+j} plus the discounted market value of the debt outstanding in the infinite future.

Consider the transversality condition:

lim
J→∞

Et

[
M$

t�t+J

H∑
h=1

Q$
t+J(h)P$

t+J(h)

]
= 0�

which says that while the market value of the outstanding debt may be growing as time
goes on, it cannot be growing faster than the stochastic discount factor. Otherwise, there
is a government debt bubble.

If the transversality condition is satisfied, the outstanding debt today,

H∑
h=0

Q$
t−1(h+ 1)P$

t (h) = Et

[ ∞∑
j=0

M$
t�t+j(Tt+j −Gt+j)

]
�
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Using the one-period budget constraint (A.1) again, we obtain the expression for the
end-of-period market value of government debt, Dt , in equation (1):

Dt =
H∑
h=1

Q$
t (h)P$

t (h) = Et

[ ∞∑
j=1

M$
t�t+j(Tt+j −Gt+j)

]
�

Q.E.D.

Proposition 2. Since

Dt =
H∑
h=1

Q$
t (h)P$

t (h)�

we have

RD
t+1Dt =

∞∑
h=0

Q$
t (h+ 1)P$

t+1(h) = (PT
t+1 + Tt+1

)− (PG
t+1 +Gt+1

)
= PT

t R
T
t+1 − PG

t R
G
t+1�

Taking expectations, we obtain equation (3) in the main text. Q.E.D.

Proposition 3.

PROOF: We follow the proof in the working paper version of Backus, Boyarchenko, and
Chernov (2018) (Appendix A: Long Horizons). For a given pricing kernel Mt�t+1, Hansen
and Scheinkman (2009) consider the problem of finding a positive dominant eigenvalue
ν and associated positive eigenfunction vt satisfying

Et[Mt�t+1vt+1] = νvt� (A.2)

The dominant eigenvalue of a matrix is real (not complex) and is strictly greater in abso-
lute values than all other eigenvalues. This gives rise to the following decomposition of
the pricing kernel: Mt�t+1 = M1

t�t+1M
2
t�t+1:

M1
t�t+1 =Mt�t+1vt+1/νvt�

M2
t�t+1 = νvt/vt+1�

By construction, M1
t�t+1 is the martingale component with Et[M1

t�t+1] = 1. Backus, Bo-
yarchenko, and Chernov (2018) show that the long bond yields converge to − logν, the
long bond one-period bond return converges to limn→∞ Rn

t�t+1 = 1
M2

t�t+1
= vt+1/νvt , and its

expected value to E[logR∞
t�t+1] = − logν.

Next, we value claims to uncertain cash flows. We first consider the GDP claim. Let
Gt�t+1 denote its one-period growth rate, with G0 = 1. Let ξ and ut be the dominant
eigenvalue and eigenfunction of Gt�t+1, respectively, satisfying

Et[Gt�t+1ut+1] = ξut�

Following Backus, Boyarchenko, and Chernov (2018), we define the transformed pricing
kernel M̂t�t+1 =Mt�t+1Gt�t+1, and consider the problem of finding its dominant eigenvalue:

Et[M̂t�t+1v̂t+1] = Et[Mt�t+1Gt�t+1v̂t+1] = ν̂v̂t � (A.3)
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Define the entropy of a positive random variable x as Lt (x) = logEt (x)−Et (logx). The
entropy of the SDF is a generalized version of its volatility. Define the coentropy of two
positive random variables x1 and x2 as the difference between the entropy of their product
and the sum of their entropies (Backus, Boyarchenko, and Chernov (2018)): Ct (x1�x2) =
Lt (x1x2) −Lt (x1) −Lt (x2). This measure of dependence is the analog of a covariance. By
Hansen (2012), the n-period risk premium is implied from the coentropy. Formally, the
risk premium on a claim to this cash flow over holding period n in excess of the return on
a risk-free bond with maturity n is given by

1
n

logEt[Gt�t+n] − 1
n

logEt[Mt�t+nGt�t+n] + 1
n

logEt[Mt�t+n]

= 1
n
Lt (Gt�t+n) − 1

n
Lt (Mt�t+nGt�t+n) + 1

n
Lt (Mt�t+n)

= −1
n
Ct (Gt�t+n�Mt�t+n)� (A.4)

Using the definition of coentropy, we obtain the following expression for the long-run risk
premium:

lim
n→∞

−1
n
Ct (Mt�t+n�Gt�t+n) = logν + logξ − log ν̂�

In the case of a stationary cash flow, the martingale component of the cash flow G1
t�t+1 = 1.

Therefore, ν̂ = νξ, M1
t�t+1 = M̂1

t�t+1, and the risk premium over long horizons is zero.
Now, consider the tax claim with a cash flow process GT

t , which satisfies GT
0 = cT and

whose one-period growth rate solves the eigenvalue problem:

Et

[
GT

t�t+1u
T
t+1

]= ξTuT
t �

and

Et

[
Mt�t+1G

T
t�t+1v̂

T
t+1

]= ν̂T v̂Tt �

Then the risk premium on the long-run tax strip is implied from the coentropy:

lim
n→∞

−1
n
Ct

(
Mt�t+n�G

T
t�t+n

)= logν + logξT − log ν̂T �

As the tax cash flow is cointegrated with the GDP cash flow, the two processes have
identical martingale components. Then ν̂T = ν̂ and ξT = ξ, implying that the two claims
must have the same risk premium in the long run. The same argument applies to the
government spending cash flow.

The long-term real bond is the highest-return asset in a model where the SDF only
contains a transitory component (Alvarez and Jermann (2005)). Conversely, Alvarez and
Jermann (2005) show that when the SDF contains a permanent component, assets whose
cash-flows are subject to permanent shocks, such as the GDP, tax, or spending claims, have
long-run expected returns that exceed the yield on the long-term real bond: logξ− log ν̂ >
− logν. Q.E.D.
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Proposition 4.

PROOF: Start from the government budget constraint,

Tt −Gt =Q$
t−1(1) +

H−1∑
h=1

Q$
t−1(h+ 1)P$

t (h) −
H∑
h=1

Q$
t (h)P$

t (h)�

which is the same as (A.1) because Q$
t−1(H + 1) = 0. We present the proof for the general

case with default. Consider the period-(t + 1) constraint, multiplied by M$
t+1(1 − χt+1)

and by M$
t+1(χt+1), respectively, and take expectations conditional at time t. The first

component is

Et

[
M$

t�t+1(Tt+1 −Gt+1)(1 −χt+1)
]

= Et

[
M$

t�t+1(1 −χt+1)Q$
t (1) +

H−1∑
h=1

M$
t�t+1(1 −χt+1)Q$

t (h+ 1)P$
t+1(h)

−
H∑
h=1

M$
t�t+1(1 −χt+1)Q$

t+1(h)P$
t+1(h)

]

=Q$
t (1)P$

t (1)e−λt (1) +
H−1∑
h=1

Q$
t (h+ 1)P$

t (h+ 1)e−λt (h+1)

−Et

[
H∑
h=1

M$
t�t+1(1 −χt+1)Q$

t+1(h)P$
t+1(h)

]
�

The second component is

Et

[
M$

t�t+1(Tt+1 −Gt+1)χt+1

]= Et

[
−

H∑
h=1

χt+1M
$
t�t+1Q

$
t+1(h)P$

t+1(h)

]
�

assuming no recovery in case of default. Combining the two components, we obtain

Et

[
M$

t�t+1(Tt+1 −Gt+1)
]= Q$

t (1)P1
t e

−λt (1) +
H−1∑
h=1

Q$
t (h+ 1)P$

t (h+ 1)e−λt (h+1)

−Et

[
H∑
h=1

M$
t�t+1Q

$
t+1(h)P$

t+1(h)

]
�

Combining the period-t and period-t + 1 constraints, we get

(Tt −Gt) +Et

[
M$

t�t+1(Tt+1 −Gt+1)
]

=Q$
t−1(1) +

H−1∑
h=1

Q$
t−1(h+ 1)P$

t (h) −
H∑
h=1

Q$
t (h)P$

t (h)
(
1 − e−λ

(h)
t
)
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−Et

[
H∑
h=1

M$
t�t+1Q

$
t+1(h)P$

t+1(h)

]
�

This expression can be written more compactly as

H−1∑
h=0

Q$
t−1(h+ 1)P$

t (h) −Et

[
M$

t�t+1

H∑
h=1

Q$
t+1(h)P$

t+1(h)

]

= Et

[
1∑

j=0

M$
t�t+j(Tt+j −Gt+j)

]
+

H∑
h=1

Q$
t (h)P$

t (h)
(
1 − e−λ

(h)
t
)
�

We can iterate this expression to the infinite horizon. If the TVC condition

lim
k→∞

Et

[
M$

t�t+k

H∑
h=1

Q$
t+k(h)P$

t+k(h)

]
= 0�

holds, then the debt value is the present value of current and future surpluses and
seigniorage revenues from issuing bonds that earn convenience yields

H−1∑
h=0

Q$
t−1(h+ 1)P$

t (h) = Et

[ ∞∑
j=0

M$
t�t+j(Tt+j −Gt+j)

]

+Et

[ ∞∑
j=0

M$
t�t+j

H∑
h=1

Q$
t+j(h)P$

t+j(h)
(
1 − e−λt+j (h)

)]
�

Using the one-period budget constraint (A.1), we obtain the end-of-period market value
of debt Dt :

Dt =
H∑
h=1

Q$
t (h)P$

t (h)

= Et

[ ∞∑
j=1

M$
t�t+j(Tt+j −Gt+j)

]

+Et

[ ∞∑
j=0

M$
t�t+j

H∑
h=1

Q$
t+j(h)P$

t+j(h)
(
1 − e−λt+j (h)

)]
� (A.5)

Q.E.D.

Proof of Convenience Yield Differentiation.

PROOF:

∂
PV

S

t

Yt

(z = 0)

∂λ0
= ∂exp

(
pdY

0

)
∂λ0

(τ0 + k0 − g0) + exp
(
pdY

0

)∂k0

∂λ0
+ ∂k0

∂λ0
(A.6)
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Note

pdY
0 = −

(
y$

0 (1) + yspr$
0 + rpY

0

)− (x0 +π0)(
1 − κY

1

) + κY
0(

1 − κY
1

) � (A.7)

κY
1 = epd

Y
0

epd
Y
0 + 1

� κY
0 = log

(
1 + exp

(
pdY

0

))− κY
1 pd

Y
0 � (A.8)

Substitute in κY
1 and κY

0 ,

pdY
0 = (x0 +π0) − (y$

0 (1) + yspr$
0 + rpY

0

)+ log
(
1 + exp

(
pdY

0

))
� (A.9)

The true risk-free rate y$
0 (1) moves one-for-one with λ0: ∂y$

0 (1)/∂λ0 = 1. The GDP risk
premium is allowed to change with the convenience yield: ∂rpY

0 /∂λ0 ≤ 0. In the stark form
of broad convenience yields ∂rpY

0 /∂λ0 = 0. In the other extreme of narrow convenience
yields ∂rpY

0 /∂λ0 = −1. In the intermediate cases, 0 ≤ 1 + ∂rpY
0 /∂λ0 ≤ 1.

Then

∂pdY
0

∂λ0
= −

(
1 + ∂rpY

0

∂λ0

)
+ exp

(
pdY

0

)
1 + exp

(
pdY

0

) ∂pdY
0

∂λ0

= −
(

1 + ∂rpY
0

∂λ0

)
+ κY

1

∂pdY
0

∂λ0
= −

(
1 + ∂rpY

0

∂λ0

)
1 − κY

1

� (A.10)

Since k0 ≈ d0λ0,

∂
PV

S

t

Yt

(z= 0)

∂λ0
= −exp

(
pdY

0

) (τ0 + k0 − g0)(
1 − κY

1

) (
1 + ∂rpY

0

∂λ0

)
+ exp

(
pdY

0

)
d0 + d0 (A.11)

so that

∂
PV

S

t

Yt

(z= 0)

∂λ0
≥ 0 iff

(τ0 + k0 − g0)(
1 − κY

1

) (
1 + ∂rpY

0

∂λ0

)
≤ d0

(
1 + exp

(−pdY
0

))
� (A.12)

Q.E.D.

APPENDIX B: VAR ESTIMATION

B.1. Cointegration Tests

We perform a Johansen cointegration test by first estimating the vector error correction
model:

�wt =A
(
B′wt−1 + c

)+D�wt−1 + εt � where wt =
⎛⎝ logTt

logGt

log GDPt

⎞⎠ �
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Both the trace test and the max eigenvalue test do not reject the null of cointegration
rank 2 (with p-values of 0.96) or rank 1 (with p-values of 0.11), but reject the null of
cointegration rank 0 (with p-values of 0.01). These results are in favor of cointegration
relationships between variables in wt . We also conduct the Phillips–Ouliaris cointegration
test on {wt} with a truncation lag parameter of 2, and reject the null hypothesis that w is
not cointegrated with a p-value of 0.012.

B.2. The � Matrix

Table B.1 reports the estimated � matrix.

TABLE B.1

VAR ESTIMATES.

1 2 3 4 5 6 7 8 9 10 11

Panel (A) �

πt−1 y$
t−1(1) yspr$

t−1 xt−1 �dt−1 dt pdt−1 � logτt−1 logτt−1 � loggt−1 loggt−1

1 πt 0.48 0.20 −0.52 −0.03 0.02 −0.01 0.00 0.11 −0.07 −0.01 0.05
2 y$

t (1) 0.04 0.86 −0.06 0.16 0.07 −0.01 0.01 −0.03 −0.01 0.01 0.07
3 yspr$

t −0.06 −0.04 0.40 −0.12 −0.03 −0.01 −0.01 0.02 0.02 0.00 −0.02
4 xt −0.19 0.38 0.97 0.21 0.09 0.03 0.02 −0.07 −0.09 −0.02 0.07
5 � logdt −0.13 −0.80 −2.35 0.35 0.28 −0.12 −0.00 −0.31 −0.21 −0.18 0.19
6 logdt −0.13 −0.80 −2.35 0.35 0.28 0.88 −0.00 −0.31 −0.21 −0.18 0.19
7 pdM

t −2.66 −0.43 −0.31 −1.35 −0.35 −0.11 0.68 0.06 0.40 0.34 −0.54
8 � logτt −0.71 0.76 −0.97 0.02 0.12 −0.03 0.04 0.35 −0.61 0.08 0.11
9 logτt −0.71 0.76 −0.97 0.02 0.12 −0.03 0.04 0.35 0.39 0.08 0.11
10 � loggt 1.05 −0.25 0.15 −0.18 −0.31 0.05 −0.04 0.36 −0.19 0.38 −0.60
11 loggt 1.05 −0.25 0.15 −0.18 −0.31 0.05 −0.04 0.36 −0.19 0.38 0.40

Panel (B) 100 ×�
1
2

επ
t εY

t (1) ε
Yspr
t εx

t ε�d
t ε

pd
t ε

� logτ
t ε� loggt

1 πt 1.06 0 0 0 0 0 0 0 0 0 0
2 y$

t (1) 0.34 1.21 0 0 0 0 0 0 0 0 0
3 yspr$

t −0.06 −0.32 0.41 0 0 0 0 0 0 0 0
4 xt 0.18 0.80 −0.14 1.83 0 0 0 0 0 0 0
5 � logdt −1.54 0.36 −0.74 −0.65 4.54 0 0 0 0 0 0
6 logdt −1.54 0.36 −0.74 −0.65 4.54 0 0 0 0 0 0
7 pdM

t −2.49 0.29 0.23 −2.70 −3.94 0 14.14 0 0 0 0
8 � logτt 0.34 0.77 −0.19 1.55 0.65 0 0.35 2.92 0 0 0
9 logτt 0.34 0.77 −0.19 1.55 0.65 0 0.35 2.92 0 0 0
10 � loggt 0.30 −1.35 0.17 −2.95 −1.22 0 0.18 0.56 0 4.13 0
11 loggt 0.30 −1.35 0.17 −2.95 −1.22 0 0.18 0.56 0 4.13 0

Note: Panel (a) reports our estimate of the VAR transition matrix �. Numbers in bold have t-statistics in excess of 1.96 in absolute
value. Numbers in italics have t-statistics in excess of 1.645 but below 1.96. Panel (b) reports our estimate of the VAR innovation matrix

�
1
2 , multiplied by 100 for readability.
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FIGURE B.1.—Time Series of Convenience Yield and Seigniorage Revenue. The figure plots the conve-
nience yield cyt and the seigniorage revenue/GDP ratio. The sample is annual, 1947–2020.

B.3. Convenience Yield and Seigniorage Revenue

Figure B.1 plots the time series of the convenience yield cyt in the left-hand side panel
and the time series of the seigniorage revenue-to-GDP kt in the right-hand side panel.
Both objects are defined in the main text.

APPENDIX C: DERIVATION OF THE UPPER BOUND

This section derives the Campbell and Shiller (1988) decomposition for the spending
and the tax claim, which is used in the derivation of the upper bound.

C.1. Campbell–Shiller Decomposition of Tax and Spending Claims

Consider the return on a claim to the government’s tax revenue:

rTt+1 = log
PT
t+1 + Tt+1

PT
t

= log
Tt+1

Tt

(
1 + exp

(
pdT

t+1

))
exp

(
pdT

t

) �

We use pdT
t to denote the log price-dividend ratio on the tax revenue claim: pdT

t =
logPT

t − logTt , where price is measured at the end of the period and the dividend flow
is over the same period. Campbell and Shiller (1988) log-linearize the return equation
around the mean log price/dividend ratio to derive the following expression for log re-
turns on the tax claim:

rTt+1 = � logTt+1 + κT
1 pd

T
t+1 + κT

0 −pdT
t �

with linearization coefficients as functions of the mean of the log price/dividend ratio pdT
0 :

κT
1 = epd

T
0

epd
T
0 + 1

< 1� κT
0 = log

(
1 + exp

(
pdT

0

))− κT
1 pd

T
0 �

By iterating forward on the linearized return equation, imposing a no-bubble condition:
limj→∞(κT

1 )jpdT
t+j = 0, and taking expectations, we derive the following expression for the
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log price/dividend ratio of the tax claim:

pdT
t = κT

0

1 − κT
1

+Et

[ ∞∑
j=1

(
κT

1

)j−1
� logTt+j

]
−Et

[ ∞∑
j=1

(
κT

1

)j−1
rTt+j

]
�

We use rpT
t to denote the risk premium on tax claims relative to the long bond:

Et

[
rTt+1

]= yspr$
t + y$

t (1) + rpT
t �

We assume constant risk premia on the tax and spending claims, which we denote as rpT
0

and rpG
0 . We use ey1 and eyspr to denote the column vectors that select the short rate and

the yield spread. Because the state vector follows VAR(1) dynamics, we can compute the
expected return as follows:

Et

[
rTt+j

]= y$
0 (1) + yspr$

0 + rpT
0 + (ey1 + eyspr)′�j−1zt (C.1)

The DR (discount rate) term is given by the following expression:

DRT
t

def= Et

[ ∞∑
j=1

(
κT

1

)j−1
rTt+j

]
= y$

0 (1) + yspr$
0 + rpT

0

1 − κT
1

+ (ey1 + eyspr)′(I − κT
1 �
)−1

zt �

The CF (cash flow) term is given by the following expression:

CFT
t

def= Et

[ ∞∑
j=1

(
κT

1

)j−1
� logTt+j

]
= x0 +π0

1 − κT
1

+ (eπ + ex + e�τ)′�
(
I − κT

1 �
)−1

zt �

We end up with the following expressions for the price/dividend ratio on the tax and
spending claims:

pdT
t = pdT

0 + [(eπ + ex + e�τ)′�− (ey1 + eyspr)′](I − κT
1 �
)−1

zt � (C.2)

where e�τ selects the tax-to-GDP growth rate in the state vector, and (pdT
0 �κ

T
0 �κ

T
1 ) solve

pdT
0 = x0 +π0 − y$

0 (1) − yspr$
0 − rpT

0(
1 − κT

1

) + κT
0(

1 − κT
1

) �
κT

1 = epd
T
0

epd
T
0 + 1

� κT
0 = log

(
1 + exp

(
pdT

0

))− κT
1 pd

T
0 �

(C.3)

Similarly, the log price/dividend ratio of the spending claim:

pdG
t = κG

0

1 − κG
1

+Et

[ ∞∑
j=1

(
κG

1

)j−1
� logGt+j

]
−Et

[ ∞∑
j=1

(
κG

1

)j−1
rGt+j

]
�

We can derive a similar expression for the spending claim.
We use C̃F

i

t and D̃R
i

t to denote the mean-zero time-varying components of the cash
flow and discount rate terms. The implied present value of surpluses/GDP ratio is given
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by

PV S
t

Yt

= τt exp
(
pdT

0 + C̃F
T

t − D̃R
T

t

)− gt exp
(
pdG

0 + C̃F
G

t − D̃R
G

t

)
�

To derive some intuition, we can evaluate the expression at z = 0, that is, when all vari-
ables are at their unconditional mean. In this case, the present value of surpluses/GDP
ratio is given by

PV S
t

Yt

(z= 0) = τ0 exp
(
pdT

0

)− g0 exp
(
pdG

0

)
�

Upper Bound on Debt Valuation. To derive an upper bound, we equate the expected
returns on taxes and spending to the expected return on GDP: rpY

0 = rpG
0 = rpT

0 . This
delivers an upper bound on the valuation of future surpluses, because it maximizes the
value of the tax claim, and minimizes the value of the spending claim. Given these two
assumptions, we derive the following expression for the implied log price/dividend ratio
on the tax claim and the spending claim:

pdT
t = pdY

0 +Et

[ ∞∑
j=1

(
κY

1

)j−1(
� logTt+j − (x0 +π0)

)]

−Et

[ ∞∑
j=1

(
κY

1

)j−1(
rYt+j − (yspr$

0 + y$
0 (1) + rpY

0

))]
�

pdG
t = pdY

0 +Et

[ ∞∑
j=1

(
κY

1

)j−1(
� logGt+j − (x0 +π0)

)]

−Et

[ ∞∑
j=1

(
κY

1

)j−1(
rYt+j − (yspr$

0 + y$
0 (1) + rpY

0

))]
�

(C.4)

The long-run growth rate of tax and spending equals the long-run growth rate of output:
x0 +π0. That follows directly from co-integration. We use a constant GDP risk premium
rpY

0 . We can back this number out of the unconditional equity risk premium by unlevering
the equity premium. We use eπ to denote a column vector of zero with a 1 as the first
element. The DR (discount rate) term is defined by

DRT
t =DRG

t =DRY
t = y$

0 (1) + yspr$
0 + rpY

0

1 − κY
1

+ (ey1 + eyspr)′(I − κY
1 �

)−1
zt �

The CF (cash flow) term for the tax claim is defined by

CFT
t = Et

[ ∞∑
j=1

(
κY

1

)j−1
� logTt+j

]
= x0 +π0

1 − κY
1

+ (eπ + ex + e�τ)′�
(
I − κY

1 �
)−1

zt �
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The CF (cash flow) term for the spending claim is defined by

CFG
t = Et

[ ∞∑
j=1

(
κY

1

)j−1
� logGt+j

]
= x0 +π0

1 − κY
1

+ (eπ + ex + e�g)′�
(
I − κY

1 �
)−1

zt �

We use C̃F
i

t and D̃R
i

t to denote the time-varying components. Hence, we end up with the
following expressions for the price/dividend ratio on the tax and spending claims:

pdT
t = pdY

0 + [(eπ + ex + e�τ)′�− (ey1 + eyspr)′](I − κY
1 �

)−1
zt �

pdG
t = pdY

0 + [(eπ + ex + e�g)′�− (ey1 + eyspr)′](I − κY
1 �

)−1
zt �

(C.5)

A first-order Taylor expansion yields the following expression:

PV
S

t

Yt

≈ (τt − gt) exp
(
pdY

0

)+ τt
(
C̃F

T

t − D̃R
T

t

)
exp

(
pdY

0

)− gt exp
(
pdY

0

)(
C̃F

G

t − D̃R
G

t

)
�

This expression can be simplified. We obtain the following intuitive expression for an
upper bound on the PDV of surpluses:

PV
S

t

Yt

≈ exp
(
pdY

0

)(
(τt − gt)

(
1 − D̃R

Y

t

)+ τtC̃F
T

t − gtC̃F
G

t

)
�

Suppose the country currently runs a primary surplus of zero. The discount rate effects
cancel out, again to a first-order approximation. When the country runs a zero primary
surplus, the upper bound on the value of debt/GDP is positive only if the expected tax
revenue growth exceeds expected spending growth:

PV
S

t

Yt

≈ exp
(
pdY

0

)
τt
(
C̃F

T

t − C̃F
G

t

)
> 0 iff C̃F

T

t > C̃F
G

t �

This can be further simplified to yield the following expression:

PV
S

t

Yt

≈ exp
(
pdY

0

)
τt (e�τ − e�g)′�

(
I − κY

1 �
)−1

zt �

The discount rate dynamics and the dynamics of GDP growth are irrelevant (to a first-
order approximation) for the upper bound. What matters is the dynamics in tax/GDP and
spending/GDP. In other words, the expected cumulative effect of mean reversion in taxes
has to outweigh the expected cumulative effect of mean-reversion in spending.

Upper Bound With Convenience Yields. We can write the intertemporal budget con-
straint with convenience yield seigniorage revenue in (A.5) as

Dt = Et

[ ∞∑
j=1

M$
t�t+j(Tt+j +Kt+j)

]
+Kt −Et

[ ∞∑
j=1

M$
t�t+jGt+j

]
�
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where

Kt+j
def=

H∑
h=1

Q$
t+j(h)P$

t+j(h)
(
1 − e−λt+j (h)

)
� ∀j ≥ 0�

We use the variable TK to represent the combined tax and seigniorage revenues as a
fraction of the current tax revenue.

Next, we include the seigniorage revenue from the convenience yields in the govern-
ment revenue. The observed nominal Treasury yield y$

t (1) is given by the following ex-
pression:

y$
t (1) = ρ$

t (1) − λt�

where ρ$
t (1) is the one-period nominal risk-free rate. We include the one-period nominal

risk-free rate in the VAR:

e′
y1zt

def= ρ$
t (1) = y$

t (1) + λt�

The DR (discount rate) term is defined by

DRi
t =

y$
0 (1) + λ0 + yspr$

0 + rpi
0

1 − κi
1

+ (ey1 + eyspr)′(I − κi
1�
)−1

zt �

where i ∈{TK�G}. The implied upper bound is given by

PV
S

t

Yt

= kt + (τt + kt) exp
(
pdT

0 + C̃F
TK

t − D̃R
TK

t

)− gt exp
(
pdG

0 + C̃F
G

t − D̃R
G

t

)
�

Alternatively, we can evaluate the expression at z = 0, that is, when all variables are at
their unconditional mean:

PV
S

t

Yt

(z = 0) = k0 + (τ0 + k0) exp
(
pdT

0

)− g0 exp
(
pdG

0

)
�

where pdi
0, κi

0, κi
1 solve

pdi
0 = −

(
y$

0 (1) + λ0 + yspr$
0 + rpi

0

)− (x0 +π0)(
1 − κi

1

) + κi
0(

1 − κi
1

) �
κi

1 = epd
i
0

epd
i
0 + 1

� κi
0 = log

(
1 + exp

(
pdi

0

))− κi
1pd

i
0�

Reverse-Engineering. Finally, we could also reverse-engineer the discount rate for the
tax claim that would imply the value of the debt/output ratio equal to the debt/output
ratio. Suppose we fix the risk premium on the spending claim. Then we can determine
rpT

t such that it solves the following equation:

Dt

Yt

= τt exp
(
pdT

0 − rpT
t

1 − κT
1

+CFT
t −DRT

t

)
− gt exp

(
pdY

0 − rpY
t

1 − κY
1

+CFG
t −DRG

t

)
�
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FIGURE C.1.—Cyclicality of the Innovation in the PDV of Surpluses and Debt. The figure plots the inno-
vation in PV

S
to GDP ratio, and the innovation in debt to GDP ratio. The sample period is from 1947 to

2020.

C.2. Additional Upper Bound Results

This section reports additional results for the upper bound calculation.

C.2.1. Cyclicality of the Upper Bound

To study the cyclical behavior of the PDV of surpluses, we calculate the innovation in
the expected present discounted value of the surplus, scaled by GDP:

PV
S

t+1

Yt+1
−Et

[
PV

S

t+1

Yt+1

]
=
(
PT
t+1

Yt+1
−Et

[
PT
t+1

Yt+1

])
−
(
PG
t+1

Yt+1
−Et

[
PG
t+1

Yt+1

])
�

The above innovation can be constructed from our estimated VAR model (equation (13)
in the paper). We compare it to that of the market value of debt:

Dt+1

Yt+1
−Et

[
Dt+1

Yt+1

]
�

The latter can be constructed by estimating an equation for debt/GDP, which depends on
its own lag and the lagged state variables in the VAR.

Figure C.1 shows the results. NBER recessions periods are shaded in gray. The blue
line shows that, in recessions, fiscal fundamentals deteriorate and result in a downward
shock to our measure of fiscal backing, even relative to a falling GDP. At the same time,
the market value of debt increases (red line). The wedge between the two increases in
recessions.

C.2.2. Varying the Level of the GDP Risk Premium

Figure C.2 plots the upper bound when the GDP risk premium is set to 2.5%. Lower-
ing the risk premium mainly increases the confidence intervals, because occasionally the
valuation ratios become much larger. As a result, the upper bound is mostly just outside
the 95% confidence interval, until the GFC. Starting with the GFC, the debt/output ratio
is comfortably outside of the 95% confidence interval.
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FIGURE C.2.—Upper Bound on the Value of Surpluses/GDP. The figure plots the upper bound on the
present value of government surpluses in equation (14), the steady-state upper bound evaluated at z = 0 in
equation (15), and the actual debt/output ratio. We report the benchmark case with a GDP risk premium of
2.5%. The sample period is from 1947 to 2020.

Figure C.3 plots the upper bound on the PDV of surpluses relative to GDP for values
of the GDP risk premium ranging from 1.5% to 6% per year. As in the benchmark upper
bound exercise, we set the risk premia on tax and spending claims equal to that on the
GDP claim for this calculation. As we lower the GDP risk premium, the present value
of government surpluses increases. Government surpluses are a risky cash flow stream
whose present value increases as we lower the risk premium. When the risk premium is
very low at 1.5% per year, the average upper bound is about 70% of GDP, which is higher
than the average debt/GDP ratio in the post-war period. While this result may lead one
to think that a low risk premium resolves the puzzle, the right panel of Figure C.3 shows
that this low risk premium setting generates a very high price/dividend ratio for the GDP
claim. Since the price of the GDP claim is the value of total wealth in the economy, this

FIGURE C.3.—Upper Bound Fiscal Backing as we Vary GDP Risk Premium. The left panel plots the average
upper-bound estimate of the present value of surpluses as a function of the GDP risk premium rpY

0 . The right
panel plots the price-dividend ratio of the GDP claim when the risk premium is 1.5% (blue line). It also plots
the price-dividend ratio on equity (red line), using an equity risk premium equal to the assumed GDP risk
premium scaled by the inverse of the leverage ratio.
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low risk premium implies an implausible amount of wealth of about 450 times GDP.22 It
also generates a very high stock price/dividend ratio, plotted in red. The price/dividend
ratio of 150 is more than 4 times higher than the observed price/dividend ratio in the data,
which averages 35 for the post-war period.

C.2.3. Time-Varying GDP Risk Premium

We use ˜̃DR
Y

t to denote the discount rate component on the GDP claim with time-
varying GDP risk premia. We use D̃R

Y

t to denote the discount rate component obtained
with constant GDP risk premia, the measure computed in the main text. We seek to char-
acterize the gap between the time-varying measure of the upper bound and the measure
computed using the constant risk premium. Below is an ex-expression for the upper bound
with time-varying GDP risk premia minus the upper bound with constant GDP risk pre-
mia:

E
[(
τt exp

(
pdY

0 + C̃F
T

t

)− gt exp
(
pdY

0 + C̃F
G

t

))(
exp

(−˜̃DR
Y

t

)− exp
(−D̃R

Y

t

))]
= Cov

(
τt exp

(
pdY

0 + C̃F
T

t

)− gt exp
(
pdY

0 + C̃F
G

t

)
�exp

(−˜̃DR
Y

t

)− exp
(−D̃R

Y

t

))
�

where the second equality follows if E(exp(˜̃DR
Y

t )) = E(exp(D̃R
Y

t )). The upper-bound
measure with constant GDP risk premium equals the upper-bound measure with time-
varying GDP risk premium only if the GDP risk premium and the primary surplus are
orthogonal. Given the countercyclical nature of the output risk premium and the procycli-
cal nature of the surplus process, we expect this covariance term to be positive, because
higher than average valuation ratios would coincide with higher than average surpluses.
This implies that our baseline measure understates the true upper bound. We show now
that this understatement is quantitatively small.

Using the log-linearized expression for the returns, the log of the valuation ratio for the
tax claim is given by the following expression:

pdT
t = κT

0

1 − κT
1

+Et

[ ∞∑
j=1

(
κT

1

)j−1
� logTt+j

]
−Et

[ ∞∑
j=1

(
κT

1

)j−1
rTt+j

]
�

When the (GDP) risk premia are constant, we obtain the expression using the VAR in
equations (C.2) and (C.3). The expression for the spending claim is analogous. To com-
pute the upper bound, we set rpT

0 = rpG
0 = rpY

0 .
Next, we allow for time-varying GDP risk premia. In each period t, we infer the risk

premium rpY
t from the equity P/D ratio and the leverage ratio, assuming the term struc-

ture of GDP risk premium is flat. Recall that the log of the equity P/D ratio can be stated

22Since the price of the GDP claim is the value of total wealth in the economy, this low risk premium
implies an implausible amount of wealth of about 450 times GDP. Most of this is human wealth. In a similar
no-arbitrage model, Lustig, Van Nieuwerburgh, and Verdelhan (2013) estimate that only 8% of total wealth is
financial wealth. Using that conservative number produces per capita financial wealth of around $916 trillion
or around $2.7 million per household. According to the U.S. Flow of Funds, U.S. household wealth excluding
human wealth is only $167 trillion (including real estate) in 2022 Q.4. (Table B.101 in Flow of Funds.) This
low risk premium and high multiple produces 5.5 times too much nonhuman wealth. We have now effectively
replaced the bond valuation puzzle with another puzzle: the missing wealth puzzle. The GDP multiple of 450
is much higher than the multiple of 85 estimated by Lustig, Van Nieuwerburgh, and Verdelhan (2013) for the
total wealth/consumption ratio, a closely related concept.
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as

pdM
t −pdM

0

= [(eπ + ex + e�d)′�− (ey1 + eyspr)′](I − κM
1 �

)−1
zt −

∞∑
j=1

(
κM

1

)j−1(
rpM

t − rpM
0

)
= [(eπ + ex + e�d)′�− (ey1 + eyspr)′](I − κM

1 �
)−1

zt − 1
1 − κM

1

(
rpM

t − rpM
0

)
�

where rpM
0 is given by the following expression, obtained by rearranging the expression

for pdM
0 :

rpM
0 = x0 +π0 − y$

0 (1) − yspr$
0 − (pdM

0

(
1 − κM

1

)− κM
0

)
�

We can back out the following expression for the risk premium on the stock market:(
rpM

t − rpM
0

)= (1 − κM
1

){[
(eπ + ex + e�d)′�− (ey1 + eyspr)′](I − κM

1 �
)−1

zt − e′
pdzt

}
�

With leverage ratio �t =firm debt/firm asset, we obtain the GDP risk premium as rpY
t =

rpM
t (1 − �t). We obtain a new formula for the log valuation ratios:

pdT
t = pdT

0 + [(eπ + ex + e�τ)′�− (ey1 + eyspr)′](I − κT
1 �
)−1

zt

− 1
1 − κY

1

(
rpY

t − rpY
0

)
� (C.6)

We assume that the average unlevered equity premium is the GDP risk premium: rpY
0 =

rpM
0 (1 − �0).
The true upper bound on the present value of government surplus is given by

PV
S

t

Yt

= τt exp
(
pdY

0 + C̃F
T

t − ˜̃DR
Y

t

)− gt exp
(
pdY

0 + C̃F
G

t − ˜̃DR
Y

t

)
� (C.7)

where the unconditional valuation ratios and the linearization constants pdY
0 = pdT

0 =
pdG

0 , κY
0 = κT

0 = κG
0 , and κY

1 = κT
1 = κG

1 solve the system of equations in (C.3), where the
discount rate component with time-varying GDP risk premia is given by

˜̃DR
Y

t = (ey1 + eyspr)′(I − κY
1 �

)−1
zt + 1

1 − κY
1

(
rpY

t − rpY
0

)
�

The measure in the paper uses the constant GDP risk premium when to evaluate this
discount rate component:

D̃R
Y

t = (ey1 + eyspr)′(I − κY
1 �

)−1
zt �

The left panel in Figure C.4 plots the upper bound with time-varying risk premia against
the upper bound with the constant GDP risk premium. With the exception of the late
90s, the two measures are quite close. However, in the late 90s, the upper bound with the
time-varying GDP risk premium spikes.
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FIGURE C.4.—Upper Bound. The left panel of the figure plots the upper bound with the time-varying risk
premium in equation (C.7) and the constant GDP risk premium. The right panel of the figure plots the � in
equation (C.8).

We can also derive the following expression for the gap between the two upper-bound
measures:

�t =
(
τt exp

(
pdY

0 + C̃F
T

t

)− gt exp
(
pdY

0 + C̃F
G

t

))(
exp

(−˜̃DR
Y

t

)− exp
(−D̃R

Y

t

))
� (C.8)

As a result, we obtain the following expression for the gap between the two measures:

�t =
(
τt exp

(
pdY

0 + C̃F
T

t

)− gt exp
(
pdY

0 + C̃F
G

t

))
exp

(−D̃R
Y

t

)
×
[

exp
(

− 1
1 − κY

1

(
rpY

t − rpY
0

))− 1
]
�

where rpY
t = rpM

t (1−�t), and (rpM
t − rpM

0 ) = (1−κM
1 ){[�′(eπ +ex+e�d)−ey1 −eyspr]′(I−

κM
1 �)−1zt − e′

pdzt}.
The right panel in Figure C.4 plots the gap �t . The average gap is 5.67% of GDP. While

introducing time-varying risk premia does increase the upper bound, it does not materially
change our quantitative conclusions.

C.2.4. Including the Debt/Output Ratio in the State Vector

Table C.1 lists all the state variables in the VAR for the case with the debt/output
ratio included in the state vector. Figure C.5 plots upper bound for the case with the
debt/output ratio in the VAR. In the left (right) panel, we plot the case with rpY

0 = 3%
(rpY

0 = 2�5%).

C.2.5. Longer Sample

As the average growth rates of tax and spending were very different before and after
1947, we demean the tax and spending growth rates by the subsample means in 1930–1946
and in 1947–2020 before we estimate the VAR.

Figure C.6 plots the upper bound constructed in the longer sample for the case of
rpY

0 = 3% and the case of rpY
0 = 2�5%. Lowering the risk premium does not have a first-

order effect on the upper bound itself, but it widens the size of the confidence interval.



THE U.S. PUBLIC DEBT VALUATION PUZZLE 23

TABLE C.1

STATE VARIABLES.

Position Variable Mean Description

1 πt π0 Log Inflation
2 y$

t (1) y$
0 (1) Log 1-Year Nominal Yield

3 yspr$
t yspr$

0 Log 5-Year Minus Log 1-Year Nominal Yield Spread
4 xt x0 Log Real GDP Growth
5 � logdt μd Log Stock Dividend-to-GDP Growth
6 logdt logd0 Log Stock Dividend-to-GDP Level
7 pdM

t pdM
0 Log Stock Price-to-Dividend Ratio

8 � logτt μτ Log Tax Revenue-to-GDP Growth
9 logτt logτ0 Log Tax Revenue-to-GDP Level
10 � loggt μg Log Spending-to-GDP Growth
11 loggt logg0 Log Spending-to-GDP Level
12 � log debtt μdebt Log Debt-to-GDP Growth
13 log debtt log debt0 Log Debt-to-GDP Level

FIGURE C.5.—Upper Bound on the Value of Surpluses/GDP with Debt in the VAR. The figure plots the
upper bound on the present value of government surpluses in equation (14), the steady-state upper bound
evaluated at z = 0 in equation (15), and the actual debt/output ratio. We report the benchmark case with a
GDP risk premium of 3% and 2.5%. The sample period is from 1947 to 2020.

FIGURE C.6.—Upper Bound on the Value of Surpluses/GDP: Longer Sample. The figure plots the upper
bound on PDV of surpluses/GDP in equation (14), the steady-state upper bound evaluated at z= 0 in equation
(15) and the actual debt/output ratio. The GDP risk premium is set to 3% or 2.5%. The sample period is from
1947 to 2020.



24 JIANG, LUSTIG, VAN NIEUWERBURGH, AND XIAOLAN

FIGURE C.7.—Upper Bound on the Value of Surpluses/GDP with Convenience Yields. The figure plots the
upper bound on PDV of surpluses/GDP in equation (14), the steady-state upper bound evaluated at z = 0 in
equation (15) and the actual debt/output ratio. The GDP risk premium is set to 2.7% to maintain the same
discount rate on the GDP claim despite a higher risk-free rate without convenience yield. The sample period
is from 1947 to 2020.

C.2.6. Convenience Yields

Figure C.7 plots upper bound for the case of convenience yields with rpY
0 = 3%. Over

the sample period from 1947 to 2020, the average convenience yield λ0 is 0.56% per year.

APPENDIX D: DYNAMIC ASSET PRICING MODEL

This section derives the expression for equilibrium asset prices in the dynamic asset
pricing model.

D.1. Risk-Free Rate

The real short yield yt(1), or risk-free rate, satisfies Et[exp{mt+1 + yt (1)}] = 1. Solving
out this Euler equation, we get

yt(1) = y$
t (1) −Et[πt+1] − 1

2
(eπ)′�eπ + (eπ)′�

1
2 �t

= y0(1) + [(eyn)′ − (eπ)′�+ (eπ)′�
1
2 �1

]
zt �

(D.1)

y0(1) def= y$
0 (1) −π0 − 1

2
(eπ)′�eπ + (eπ)′�

1
2 �0� (D.2)

where we used the expression for the real SDF,

mt+1 = m$
t+1 +πt+1 = −y$

t (1) − 1
2
�′

t�t −�′
tεt+1 +π0 + (eπ)′�zt + (eπ)′�

1
2 εt+1

= −yt (1) − 1
2

(eπ)′�eπ + (eπ)′�
1
2 �t − 1

2
�′

t�t −
(
�′

t − (eπ)′�
1
2
)
εt+1�

The real short yield is the nominal short yield minus expected inflation minus a Jensen
adjustment minus the inflation risk premium.
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D.2. Nominal and Real Term Structure

PROPOSITION 1: Nominal bond yields are affine in the state vector:

y$
t (h) = −A$(h)

h
− B$(h)′

h
zt �

where the coefficients A$(h) and B$(h) satisfy the following recursions:

A$(h+ 1) = −y$
0 (1) +A$(h) + 1

2
B$(h)′�B$(h) −B$(h)′�

1
2 �0� (D.3)

B$(h+ 1)′ =B$(h)′�− (eyn)′ −B$(h)′�
1
2 �1� (D.4)

initialized at A$(0) = 0 and B$(0) = 0.

PROOF: We conjecture that the t + 1-price of a τ-period bond is exponentially affine in
the state:

log
(
P$
t+1(h)

)=A$(h) +B$(h)′zt+1�

and solve for the coefficients A$(h + 1) and B$(h + 1) in the process of verifying this
conjecture using the Euler equation:

P$
t (h+ 1) = Et

[
exp

{
m$

t+1 + log
(
P$
t+1(h)

)}]
= Et

[
exp

{
−y$

t (1) − 1
2
�′

t�t −�′
tεt+1 +A$(h) +B$(h)′zt+1

}]
= exp

{
−y$

0 (1) − (eyn)′zt − 1
2
�′

t�t +A$(h) +B$(h)′�zt

}
×Et

[
exp

{−�′
tεt+1 +B$(h)′�

1
2 εt+1

}]
�

We use the log-normality of εt+1 and substitute for the affine expression for �t to get

P$
t (h+ 1) = exp

{
−y$

0 (1) − (eyn)′zt +A$(h) +B$(h)′�zt

+ 1
2
B$(h)′�B$(h) −B$(h)′�

1
2 (�0 +�1zt)

}
�

Taking logs and collecting terms, we obtain a linear equation for log(pt(h+ 1)):

log
(
P$
t (h+ 1)

)=A$(h+ 1) +B$(h+ 1)′zt �

where A$(h + 1) satisfies (D.3) and B$(h + 1) satisfies (D.4). The relationship between
log bond prices and bond yields is given by − log(P$

t (h))/h= y$
t (h). Q.E.D.

Define the one-period return on a nominal zero-coupon bond as

r$
t+1(h) = log

(
P$
t+1(h)

)− log
(
P$
t (h+ 1)

)
�
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The nominal bond risk premium on a bond of maturity h is the expected excess return
corrected for a Jensen term, and equals negative the conditional covariance between that
bond return and the nominal SDF:

Et

[
r$
t+1(h)

]− y$
t (1) + 1

2
Vart

[
r$
t+1(h)

]= −Covt

[
m$

t+1�r
$
t+1(h)

]
= B$(h)′�

1
2 �t �

Real bond yields, yt(h), denoted without the $ superscript, are affine as well with coef-
ficients that follow similar recursions:

A(h+ 1) = −y0(1) +A(h) + 1
2
(
B(h)

)′
�
(
B(h)

)− (B(h)
)′
�

1
2
(
�0 −�

1
2 ′
eπ
)
� (D.5)

B(h+ 1)′ = −(eyn)′ + (eπ +B(h)
)′(

�−�
1
2 �1

)
� (D.6)

For h= 1, we recover the expression for the risk-free rate in (D.1)–(D.2).

D.3. Stocks

D.3.1. Aggregate Stock Market

We define the real return on the aggregate stock market as RM
t+1 = PM

t+1+DM
t+1

PM
t

, where PM
t

is the ex-dividend price on the equity market. A log-linearization delivers

rMt+1 = κM
0 + xt+1 +�dt+1 + κM

1 pdM
t+1 −pdM

t � (D.7)

The unconditional mean log real stock return is rM0 = E[rMt ], the unconditional mean real
dividend growth rate is x0 + μd , and pdM

0 = E[pdM
t ] is the unconditional average log

price-dividend ratio on equity. The linearization constants κM
0 and κM

1 are defined as

κM
1 = epd

M
0

epd
M
0 + 1

< 1 and κM
0 = log

(
epd

M
0 + 1

)− epd
M
0

epd
M
0 + 1

pdM
0 � (D.8)

Our state vector z contains the (demeaned) log real dividend-to-GDP ratio growth rate
on the stock market, �dt+1 −μd , and the (demeaned) log price-dividend ratio pdM −pdM

0 .

pdM
t (h) = pdM

0 + (epd)′zt �

xt +�dt = x0 +μd + (edivm)′zt �

where edivm = e�d + ex, and epd , e�d , and ex select the log pd ratio, the log dividend/GDP
ratio growth rate, and the real GDP growth rate in the state vector, respectively.

We define the log return on the stock market so that the log return equation holds
exactly, given the time series for {�dM

t �pdM
t }. Rewriting (D.7),

rMt+1 − rM0 = [(edivm + κM
1 epd

)′
�− (epd)′]zt + (edivm + κM

1 epd
)′
�

1
2 εt+1�

rM0 = x0 +μd + κM
0 −pdM

0

(
1 − κM

1

)
�
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The equity risk premium is the expected excess return on the stock market corrected for
a Jensen term. By the Euler equation, it equals minus the conditional covariance between
the log SDF and the log return:

1 = Et

[
Mt+1

PM
t+1 +DM

t+1

PM
t

]
= Et

[
exp

{
m$

t+1 +πt+1 + rMt+1

}]
= Et

[
exp

{
−y$

t�1 − 1
2
�′

t�t −�′
tεt+1 +π0 + (eπ)′zt+1 + rM0

+ (edivm + κM
1 epd

)′
zt+1 − (epd)′zt

}]
= exp

{
−y$

0 (1) − 1
2
�′

t�t +π0 + rM0 + [(edivm + κM
1 epd + eπ

)′
�− (epd)′ − (eyn)′]zt}

×Et

[
exp

{−�′
tεt+1 + (edivm + κM

1 epd + eπ
)′
�

1
2 εt+1

}]
= exp

{
rM0 +π0 − y$

0 (1) + [(edivm + κM
1 epd + eπ

)′
�− (epd)′ − (eyn)′]zt}

× exp
{

1
2
(
edivm + κM

1 epd + eπ
)′
�
(
edivm + κM

1 epd + eπ
)− (edivm + κM

1 epd + eπ
)′
�

1
2 �t

}
�

Taking logs on both sides delivers

rM0 +π0 − y$
0 (1) + [(edivm + κM

1 epd + eπ
)′
�− (epd)′ − (eyn)′]zt

+ 1
2
(
edivm + κM

1 epd + eπ
)′
�
(
edivm + κM

1 epd + eπ
)= (edivm + κM

1 epd + eπ
)′
�

1
2 �t � (D.9)

Et

[
rm�$
t+1

]− y$
t�1 + 1

2
Vart

[
rm�$
t+1

]= −Covt

[
m$

t+1�r
m�$
t+1

]
�

The left-hand side is the expected excess return on the stock market, corrected for a
Jensen term, while the right-hand side is the negative of the conditional covariance be-
tween the (nominal) log stock return and the nominal log SDF. We refer to the left-hand
side as the equity risk premium in the data, since it is implied directly by the VAR. We
refer to the right-hand side as the equity risk premium in the model, since it requires
knowledge of the market prices of risk.

Note that we can obtain the same expression using the log real SDF and log real stock
return:

Et

[
rMt+1

]− yt�1 + 1
2

Vart
[
rMt+1

]= −Covt

[
mt+1�r

M
t+1

]
�

rM0 − y0(1) + [(edivm + κM
1 epd + eπ

)′
�− (epd)′ − (eyn)′ − (eπ)′�1/2

�1

]
zt

+ 1
2
(
edivm + κM

1 epd
)′
�
(
edivm + κM

1 epd
)= (edivm + κM

1 epd
)′
�

1/2(
�t −

(
�

1/2)′
eπ
)
�



28 JIANG, LUSTIG, VAN NIEUWERBURGH, AND XIAOLAN

We combine the terms in �0 and �1 on the right-hand side and plug in for y0(1) from
(D.2) to get

rM0 +π0 − y$
0�1 + 1

2
(eπ)′�eπ + 1

2
(
edivm + κM

1 epd
)′
�
(
edivm + κM

1 epd
)+ (eπ)′�

(
edivm + κM

1 epd
)

+ [(edivm + κM
1 epd + eπ

)′
�− (epd)′ − (eyn)′]zt

= (edivm + κM
1 epd

)′
�

1/2
�t + (eπ)′�

1
2 �0 + (eπ)′�1/2

�1zt �

This recovers equation (D.9).

D.3.2. Dividend Strips

Price-Dividend Ratios of Dividend Strips.

PROPOSITION 2: Log price-dividend ratios on dividend strips are affine in the state vector:

pdM
t (h) =AM (h) +BM (h)′zt �

where the coefficients AM (h) and BM (h) follow recursions:

AM (h+ 1) = AM (h) + x0 +μd − y$
0 (1) +π0

+ 1
2
(
edivm + eπ +BM (h)

)′
�
(
edivm + eπ +BM (h)

)
− (edivm + eπ +BM (h)

)′
�

1
2 �0� (D.10)

BM (h+ 1)′ = (
edivm + eπ +BM (h)

)′
�− (eyn)′ − (edivm + eπ +BM (h)

)′
�

1
2 �1� (D.11)

initialized at AM
0 = 0 and BM

0 = 0.

PROOF: We conjecture the affine structure and solve for the coefficients AM (h + 1)
and BM (h+ 1) in the process of verifying this conjecture using the Euler equation:

exp
(
pdM

t (h+ 1)
)= Et

[
Mt+1 exp

(
pdM

t+1(h)
)DM

t+1

DM
t

]
= Et

[
exp

{
m$

t+1 +πt+1 + xt+1 +�dt+1 +pdM
t+1(h)

}]
= Et

[
exp

{
−y$

t�1 − 1
2
�′

t�t −�′
tεt+1 +π0 + (eπ)′zt+1 + x0 +μd

+ (edivm)′zt+1 +AM (h) +B(h)m′zt+1

}]
= exp

{
−y$

0 (1) − (eyn)′zt − 1
2
�′

t�t +π0 + (eπ)′�zt + x0 +μd

+ (edivm)′�zt +AM (h) +B(h)m′�zt

}
×Et

[
exp

{−�′
tεt+1 + (edivm + eπ +BM (h)

)′
�

1
2 εt+1

}]
�
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We use the log-normality of εt+1 and substitute for the affine expression for �t to get

pdM
t (h+ 1) = −y$

0 (1) +π0 + x0 +μd +AM (h) + [(edivm + eπ +BM (h)
)′
�− (eyn)′]zt

+ 1
2
(
edivm + eπ +BM (h)

)′
�
(
edivm + eπ +BM (h)

)
− (edivm + eπ +BM (h)

)′
�

1
2 (�0 +�1zt)�

Taking logs and collecting terms, we obtain a log-linear expression for pD
t (h+ 1):

pdM
t (h+ 1) = AM (h+ 1) +BM (h+ 1)′zt �

where

AM (h+ 1) = AM (h) + x0 +μd − y$
0 (1) +π0

+ 1
2
(
edivm + eπ +BM (h)

)′
�
(
edivm + eπ +BM (h)

)
− (edivm + eπ +BM (h)

)′
�

1
2 �0�

BM (h+ 1)′ = (edivm + eπ +BM (h)
)′
�− (eyn)′ − (edivm + eπ +BM (h)

)′
�

1
2 �1�

We recover the recursions in (D.10) and (D.11) after using equation (D.2). Q.E.D.

We define the dividend strip risk premium as

Et

[
rMt+1(h)

]− y$
t�1 + 1

2
Vart

[
rMt+1(h)

]= −Covt

(
m$

t+1� r
M
t+1(h)

)
= (edivm + eπ +BM (h)

)′
�

1
2 �t �

Dividend Futures: Price and Return. The price of a dividend futures contract that deliv-
ers one year’s worth of nominal dividends at time t + h, divided by the current dividend,
is equal to

FM
t (h)
DM

t

= exp
(
pdM

t (h) + hy$
t (h)

)
�

where pdM
t (h) is the log spot price-dividend ratio on the dividend strip of maturity h.

Using the affine expressions for the strip price-dividend ratio and the nominal bond price,
it can be written as

FM
t (h)
DM

t

= exp
(
AM (h) −A$(h) + (BM (h) −B$(h)

)′
zt
)
�

The one-period holding period return on the dividend future of maturity h is

RFut�M
t+1 (h) = FM

t+1(h− 1)
FM
t (h)

− 1 = FM
t+1(h− 1)/DM

t+1

FM
t (h)/DM

t

DM
t+1

DM
t

− 1�
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It can be written as

log
(
1 +RFut�M

t+1 (h)
)= AM (h− 1) −A$(h− 1) −AM (h) +A$(h) + x0 +μd +π0

+ (BM (h− 1) −B$(h− 1) + edivm + eπ
)′
zt+1 − (BM (h) −B$(h)

)′
zt �

The expected log return, which is already a risk premium on account of the fact that the
dividend future takes out the return on an equal-maturity nominal Treasury bond, equals

Et

[
log
(
1 +RFut�M

t+1 (h)
)]

=AM (h− 1) −A$(h− 1) −AM (h) +A$(h) + x0 +μd +π0

+ [(BM (h− 1) −B$(h− 1) + edivm + eπ
)′
�− (BM (h) −B$(h)

)′]
zt �

Given that the state variable zt is mean-zero, the first row denotes the unconditional
dividend futures risk premium.

D.4. Government Spending and Tax Revenue Claims

This Supplemental Appendix computes PT
t , the value of a claim to future tax revenues,

and PG
t , the value of a claim to future government spending. It contains the proof for

Proposition 5.

D.4.1. Spending Claim

Nominal government spending growth equals

� logGt+1 = � loggt+1 + xt+1 +πt+1 = x0 +π0 +μG
0 + (e�g + ex + eπ)′zt+1� (D.12)

We conjecture the log price-dividend ratios on spending strips are affine in the state
vector:

log
(
pdG

t (h)
)= AG(h) +BG(h)′zt �

We solve for the coefficients AG(h + 1) and BG(h + 1) in the process of verifying this
conjecture using the Euler equation:

exp
(
pdG

t (h+ 1)
)= Et

[
Mt+1 exp

(
pdG

t+1(h)
)Gt+1

Gt

]
= Et

[
exp

{
m$

t+1 +� loggt+1 + xt+1 +πt+1 +pdG
t+1(h)

}]
= exp

{
−y$

0 (1) − (eyn)′zt − 1
2
�′

t�t +μG + x0 +π0

+ (e�g + ex + eπ +BG(h)
)′
�zt +AG(h)

}
×Et

[
exp

{−�′
tεt+1 + (e�g + ex + eπ +BG(h)

)′
�

1
2 εt+1

}]
�
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We use the log-normality of εt+1 and substitute for the affine expression for �t to get

exp
(
pdG

t (h+ 1)
)

= exp
{
−y$

0 (1) +μG + x0 +π0 + ((e�g + ex + eπ +BG(h)
)′
�− (eyn)′)zt

+AG(h) + 1
2
(
e�g + ex + eπ +BG(h)

)′
�
(
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�

1
2 (�0 +�1zt)

}
�

Taking logs and collecting terms, we obtain

AG(h+ 1) = −y$
0 (1) +μG + x0 +π0 +AG(h)

+ 1
2
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e�g + ex + eπ +BG(h)

)′
�
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)
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BG(h+ 1)′ = (e�g + ex + eπ +BG(h)
)′
�− (eyn)′ − (e�g + ex + eπ +BG(h)

)′
�

1
2 �1�

and the price-dividend ratio of the ex-dividend spending claim is

∞∑
h=1

exp
(
AG(h+ 1) +BG(h+ 1)′zt

)
�

Derivation of Risk Premium. We note that the 1-period holding return on a spending
strip is

exp
(
rGt+1(h)

)= exp
{
� loggt+1 + xt+1 +πt+1 +pdG

t+1(h) −pdG
t (h+ 1)

}
so that the Euler equation is Et[exp(m$

t+1 + rGt+1(h))] = 1.
We can express the expected return as
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[
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]= −Et

[
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2

Vart
(
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t+1
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2
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(
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(
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)
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2
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(
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)− Covt

(
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t+1� r
G
t+1(h)

)
and the risk premium is
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[
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2
Vart

(
rGt+1(h)

)+ Covt

(
�′
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G
t+1(h)

)
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)′
�

1
2 (�0 +�1zt)

− 1
2
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)′
�
(
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)
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To evaluate the risk premium for the entire duration of the strip, we define the holding-
period risk premium as

1
h

h−1∑
k=0

Et

[
rGt+k+1(h− k) − y$

t+k(1)
]

when the state variable is at zt = 0, the expected holding-period risk premium simplifies
to

1
h

h−1∑
k=0

(e�g + ex + eπ)′�
1
2 �0

− 1
2
(
e�g + ex + eπ +BG(h− k)

)′
�
(
e�g + ex + eπ +BG(h− k)

)
� (D.13)

Entire Spending Claim. Next, we define the nominal holding period return on the claim

as RG
t+1 = Gt+1+PG

t+1
PG
t

. We log-linearize the return around zt = 0:

rGt+1 = κG
0 +� logGt+1 + κG

1 pd
G
t+1 −pdG

t � (D.14)

where pdG
t

def= logPG
t − logGt . The unconditional mean log return of the spending claim

is rG0 = E[rGt ].
We obtain pdG

0 from the precise valuation formula at zt = 0. We define linearization
constants κG

0 and κG
1 as

κG
1 = epd

G
0

epd
G
0 + 1

< 1 and κG
0 = log

(
epd

G
0 + 1

)− epd
G
0

epd
G
0 + 1

pdG
0 � (D.15)

Then, under a log-linear approximation, the unconditional expected return is

rG0 = x0 +π0 + κG
0 −pdG

0

(
1 − κG

1

)
� (D.16)

The log ex-dividend price-dividend ratio on the entire spending claim is affine in the
state vector and verify the conjecture by solving the Euler equation for the claim:

pdG
t = pdG

0 + (B̄G)′
zt (D.17)

This allows us to write the return as

rGt+1 = rG0 + (e�g + ex + eπ + κG
1 B̄

G)′
zt+1 − (B̄G)′

zt � (D.18)

PROOF: Starting from the Euler equation,

1 = Et

[
exp

{
m$

t+1 + rGt+1

}]
= exp

{
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0 (1) − (eyn)′zt − 1
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}
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�
1
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}]
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We use the log-normality of εt+1 and substitute for the affine expression for �t to get

1 = exp
{
rG0 − y$

0 (1) + [(e�g + ex + eπ + κG
1 B̄

G)′
�− (B̄G)′ − (eyn)′]zt

+ 1
2
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�
(
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G)︸ ︷︷ ︸

Jensen
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G)′
�

1
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}
�

Taking logs and collecting terms, we obtain the following system of equations:

rG0 − y$
0 (1) + Jensen = (e�g + ex + eπ + κG

1 B̄
G)′

�
1
2 �0 (D.19)

and(
e�g + ex + eπ + κG

1 B̄
G)′

�− (B̄G)′ − (eyn)′ = (e�g + ex + eπ + κG
1 B̄

G)′
�

1
2 �1� (D.20)

The left-hand side of this equation is the unconditional expected excess log return with
Jensen adjustment. The right-hand side is the unconditional covariance of the log SDF
with the log return. This equation describes the unconditional risk premium on the claim
to government spending. Equation (D.20) describes the time-varying component of the
government spending risk premium. Given �1, the system of N equations (D.20) can be
solved for the vector B̄

G
:

B̄
G = (I − κG

1

(
�−�

1
2 �1

)′)−1[(
�−�

1
2 �1

)′
(e�g + ex + eπ) − eyn

]
� (D.21)

Q.E.D.

D.4.2. Revenue Claim

Nominal government revenue growth equals

� logTt+1 = � logτt+1 + xt+1 +πt+1 = x0 +π0 +μT
0 + (e�τ + ex + eπ)′zt+1� (D.22)

where τt = Tt/GDPt is the ratio of government revenue to GDP. Note that this ratio
is assumed to have a long-run growth rate of zero. This imposes cointegration between
government revenue and GDP. The growth ratio in this ratio can only temporarily deviate
from zero. The remaining proof exactly mirrors the proof for government spending with

pdT
t

def= log
(
PT
t

Tt

)
= pdT

0 + (BT
)′
zt (D.23)

rTt+1 = rT0 + (e�τ + ex + eπ + κG
1 B

T
)′
zt+1 − (BT

)′
zt � (D.24)

and

rT0 = x0 +π0 + κT
0 −pdT
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(
1 − κT

1

)
�

rT0 − y$
0 (1) + Jensen = (e�τ + ex + eπ + κT

1 B
T
)′
�

1
2 �0�

(D.25)
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D.5. Peso Exercise

Baseline Case. To compute the implied probability of the peso event that justifies the
valuation gap, we need to price a claim to the government spending in the presence of
such peso probability. We use PG�Peso

t to denote its valuation. Then

PG�Peso
t

def= (1 −φt)Et

[
M$

t+1

(
Gt+1 + PG�Peso

t+1

)]+φt (1 − �)PG
t �

and our objective is to find the probability of the peso event, φt , such that

Dt = PT
t − PG�Peso

t �

We assume that in period t, agents expect the same probability φt for peso events in
all future periods: Et[φt+j] = φt . To solve PG�Peso

t , we define an auxiliary variable PCut�Peso
t ,

which denotes the present value of the spending cut:

PCut�Peso
t
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t − PG�Peso
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(
� · (Gt+1 + PG
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))+ (1 −φt)P
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t+1

)]
�

Since PCut�Peso
t does not have a simple affine form, it is easier to express it explicitly as

an infinite sum of discounted future cash flows:

PCut�Peso
t =φtEt

[
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Countercyclical Peso Probability. We also consider the peso exercise in which the prob-
ability of spending cut is decreasing in the GDP growth shock:

P(Pesot+k|εt+k) def= φ̃t+k = 1 − (1 −φt) exp
(

−1
2
ν2 + νεx

t+k

)
� ∀k≥ 1�

In this case, the present value of the spending cut is
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Then
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Conjecture and verify
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which can be solved recursively by
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Gt exp
(
APeso(1) +BPeso(1)′zt

)= Et

[
(1 − φ̃t+1)M$

t�t+1Gt+1

]
= (1 −φt)Et

[
exp

(
−1

2
ν2 + νεx

t+1

)
M$

t�t+1Gt+1

]
�

The recursion can be simplified as
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APeso(h+ 1) +BPeso(h+ 1)′zt

)
= (1 −φt) exp

{
−1

2
ν2 − y$

0 (1) − (eyn)′zt − 1
2
�′

t�t +μG + x0 +π0

+ (e�g + ex + eπ +BG(h)
)′
�zt +APeso(h)

}
×Et

[
exp

{−�′
tεt+1 + (e�g + ex + eπ +BPeso(h)

)′
�

1
2 εt+1 + νe′

xεt+1

}]
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= (1 −φt) exp
{
−y$

0 (1) +μG + x0 +π0 + ((e�g + ex + eπ +BG(h)
)′
�− (eyn)′)zt

+APeso(h) + 1
2
(
e�g + ex + eπ +BPeso(h)

)′
�
(
e�g + ex + eπ +BG(h)

)
− (e�g + ex + eπ +BG(h)

)′
�

1
2 (�0 +�1zt)

+ (−(�0 +�1zt)′ + (e�g + ex + eπ +BPeso(h)
)′
�

1
2
)
νex

}
�

Matching terms, we obtain

APeso(h+ 1) = log(1 −φt) − y$
0 (1) +μG + x0 +π0 +APeso(h)

+ 1
2
(
e�g + ex + eπ +BPeso(h)

)′
�
(
e�g + ex + eπ +BPeso(h)

)
− (e�g + ex + eπ +BPeso(h)

)′
�

1
2 �0 + (−(�0)′

+ (e�g + ex + eπ +BPeso(h)
)′
�

1
2
)
νex�

BPeso(h+ 1)′ = (e�g + ex + eπ +BPeso(h)
)′
�− (eyn)′

− (e�g + ex + eπ +BPeso(h)
)′
�

1
2 �1 − νe′

x�1�

Finally, the risk premia of the V G
t�t+h claims can be expressed as

rpPeso(h+ 1) = −1
2
(
e�g + ex + eπ +BPeso(h)

)′
�
(
e�g + ex + eπ +BPeso(h)

)
+ (e�g + ex + eπ +BPeso(h)

)′
�

1
2 �0 + ((�0)′

− (e�g + ex + eπ +BPeso(h)
)′
�

1
2
)
νex�

To understand this risk premium, note that the present value of the spending claim in
the presence of peso probability can be expressed as

PG�Peso
t

def= PG
t − PCut�Peso

t

= PG
t − (�PG

t − �Et

[
V G
t�t+1 + V G

t�t+2 + V G
t�t+3 + · · · ])

= (1 − �)PG
t + �Et

[
V G
t�t+1 + V G

t�t+2 + V G
t�t+3 + · · · ]�

So, effectively the peso exercise partially replaces PG
t , the spending claim without possible

cuts, with Et[V G
t�t+1 +V G

t�t+2 +V G
t�t+3 + · · · ] to generate the spending claim in the presence of

possible cuts.
We report the term structure of the risk premium rpPeso(h+ 1) for V G

t�t+h in Figure D.1.
We can see that the presence of the countercyclical spending cut significantly raises the
risk premium on the spending claim, and hence lowers its valuation.
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FIGURE D.1.—Term Structure of Risk Premia on the T-Claim and the G-Claim. This figure plots the cumu-
lative risk premia on the spending strips, the spending strips with possible cuts, the tax strips, and the GDP
strips in our benchmark model against the holding period.

APPENDIX E: ESTIMATION OF MARKET PRICES OF RISK

This Supplemental Appendix contains the details on the moments we use to estimate
the market price of risk parameters and the resulting parameter estimates. Our estimation
procedure proceeds in two steps. In the first step, we shut down time variation in the
risk prices by setting all entries in the �1 matrix to zero. We estimate the �0 vector that
generates the best fit for the asset pricing moments that we describe below. Given the
small dimension of the �0 vector, this first step is fast. In the second step, we introduce
time-varying risk prices by allowing nonzero values in the �1 matrix. In this step, we adjust
the moments we use slightly. As the �1 matrix is two-dimensional, this step is slower. We
run the estimation code until the value function converges. We describe the two steps in
detail below.

E.1. The Constant Risk Price Model

First, we consider a model with constant risk prices. Then SDF can be written as

m$
t+1 = −y$

t (1) − 1
2
�′

0�0 −�′
0εt+1�

We estimate this model using the following moments:
1. No arbitrage restriction on the 5-year bond: Given that the observed 5-year nominal

bond yield is one of the elements of the state vector, we insist that the 5-year term
nominal yield implied by the asset pricing model matches the 5-year bond yield in
the data (in the state space) closely. In this first step with constant risk prices, we
only consider the unconditional moment:

−A$(5)/5 = y$
0 (5)� (E.1)

2. Nominal and real yield curve: We match nominal yields for tenors τ = 1, 2, 5, 10, 20,
30 years and real yields for tenors τ = 5, 7, 10, 20, 30 years. We only consider the
unconditional moments, which are the average differences between the observed
and the model-implied yields for each tenor.
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3. No arbitrage restriction on stock market: Given that the price-dividend ratio and the
dividend growth rate of the aggregate stock market portfolio are in the state space,
the state implies a time series for the stock return. Therefore, we insist that the
model-implied stock return matches the VAR-implied stock return. In this first step,
we only consider the unconditional moment, matching the model-implied uncondi-
tional equity risk premium (left-hand side) to its empirical counterpart (right-hand
side):

(
e�d + ex + eπ + κM

1 epd
)′
�

1
2 �0 = rM0 +π0 − y$

0 (1) + 1
2

Jensen� (E.2)

4. Equity price-dividend ratio: We match the average equity price/dividend ratio in
model and data.

5. Equity term structure: We match the 1-year and 2-year dividend strips’ price/divi-
dend ratios, the ratio of the sum of the one and 2-year dividend strips values to the
aggregate equity claim’s valuation, as well as the unconditional risk premium on the
dividend futures averaged across the first 7 annual strips. The model-implied expres-
sions for the dividend strip price-dividend ratios and the risk premium on dividend
futures are derived in Supplemental Appendix D.3.2. The empirical counterparts for
the strip price-dividend ratios are available for the period 1996–2009 from van Bins-
bergen, Brandt, and Koijen (2012) while the dividend futures returns are available
for the period 2002–2014 from van Binsbergen and Koijen (2017).

6. GDP risk premium: The price of risk for the GDP shocks is the key variable in our
model, which drives the risk premia of tax and spending claims. We assume that the
GDP claim is equivalent to an unlevered equity claim. We compute the unlevered
corporate asset excess return by multiplying the equity excess return with one minus
the aggregate corporate leverage ratio. In our sample, the average leverage ratio
(i.e., debt/total asset) from the flow of funds is 21%. We match the GDP strip’s risk
premium to the equity strip’s risk premium times one minus the leverage ratio for
strip tenors 1–10, 20, 30, . . . , 90 years.

7. Good deal bound: We compute the realized nominal pricing kernel in our sample. In
the spirit of Cochrane and Saa-Requejo (2000), we impose a penalty for its standard
deviation in excess of 2.

8. Regularity conditions: For tenors 100, 200, 400, 700, 1000, 2000, 3000, 4000 years,
we add penalties to (i) force the GDP strip’s nominal discount rate to stay above the
average nominal GDP growth, (ii) force the nominal-real spread to stay above aver-
age inflation, (iii) force the bond risk premium to stay below the GDP risk premium,
(iv) force bond return volatility to be bounded below 30%, and (v) force bond risk
premium to stay below 2%.

The risk price estimates �0 are given by

�0 = [0�52 0 −1�25 2�07 0�64 0 0�48 0 0 0 0
]′

and �1 is all zero.
Figure E.1 plots the observed and model-implied 1-, 2-, 5-, 10-, 20-, and 30-year nominal

Treasury bond yields. Figure E.2 plots the observed and model-implied 5-, 7-, 10-, 20-, and
30-year real Treasury bond yields (Treasury Inflation Indexed securities).

The top panels of Figure E.3 show the model’s implications for the average nominal
(left panel) and real (right panel) yield curves at longer maturities. The bottom left panel
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FIGURE E.1.—Dynamics of the Nominal Term Structure of Interest Rates. The figure plots the observed
and model-implied 1-, 2-, 5-, 10-, 20-, and 30-year nominal Treasury bond yields. Yields are measured at the
end of the year. Data are from FRED and FRASER. The sample is annual, 1947–2020.

of Figure E.3 plots the dynamics of the nominal bond risk premium, defined as the ex-
pected excess return on the 5-year nominal bond. Since there is no time variation in risk
premia in this model, the model’s nominal bond risk premium is zero. The bottom right
panel plots a decomposition of the nominal bond yield on a 5-year bond into the 5-year
real bond yield, annual expected inflation over the next 5 years, and the annualized 5-year
inflation risk premium. Figure E.4 shows the equity risk premium, the expected excess
return on the aggregate stock market portfolio, in the left panel and the corresponding

FIGURE E.2.—Dynamics of the Real Term Structure of Interest Rates. The figure plots the observed and
model-implied 5-, 7-, 10-, 20-, and 30-year real bond yields. Data are from FRED and start in 2003. For ease
of readability, we start the graph in 1990 but the model of course implies a real yield curve for the entire
1947–2020 period.
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FIGURE E.3.—Long-term Yields and Bond Risk Premia. The top panels plot the average bond yield on
nominal (left panel) and real (right panel) bonds for maturities ranging from 1 to 500 years. The bottom left
panel plots the nominal bond risk premium on the 5-year bond in model and data. The nominal bond risk
premium is measured as the 5-year bond yield minus the expected 1-year bond yield over the next 5 years.
The bottom right panel decomposes the model’s 5-year nominal bond yield into the 5-year real bond yield, the
5-year expected inflation, and the 5-year inflation risk premium.

price-dividend ratio in the right panel. Since this model has a homoscedastic SDF, the
equity risk premium is constant.

Figure E.5 plots the model implied present value of government surpluses. Since this
figure is similar to Figure 9, which reports the benchmark case with time-varying market
prices of risk, time variation in the market price of risk is not crucial for the main con-
clusions regarding the bond valuation puzzle. Figure E.6 plots the model-implied term
structure of risk premia. It too is similar to Figure 10, which reports the benchmark case
with time-varying risk premia.

FIGURE E.4.—Equity Risk Premium and Price-Dividend Ratio. The figure plots the observed and mod-
el-implied equity risk premium on the overall stock market in the left panel and the price-dividend ratio in
the right panel. The price-dividend ratio is the price divided by the annualized dividend. Data are 1947–2020.
Monthly stock dividends are seasonally adjusted.
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FIGURE E.5.—Present Value of Government Surpluses. The figure plots the model-implied present value
of primary surpluses to GDP ratio (in blue) in the constant risk price model.

E.2. The Full Model With Time-Varying Risk Price

Next, we consider the full model:

m$
t+1 = −y$

t (1) − 1
2
�′

t�t −�′
tεt+1�

with time-varying risk premium parameters:

�t = �0 +�1zt �

We use moments we used in the first step, plus three additional sets of moments:
1a. No arbitrage restrictions on the 5-year bond: Given that the 5-year nominal yield

is in the state space, we insist that the 5-year term nominal yield from the model
matches the observed yield in the state space closely. In this second step, we also

FIGURE E.6.—Term Structure of Risk Premia. The figure plots the term structure of risk premia for the
government spending claim, the tax revenue claim, the equity claim, the GDP claim, and the nominal bond.
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consider the conditional moment:

−B$(5)/5 = ey1 + eyspr �

Together with equation (E.1), we obtain

(−A$(5) −B$(5)′zt
)
/5 = y$

0 (5) + (ey1 + eyspr)′zt

for arbitrary state variable zt . Similarly, we aim to match the entire time series of
nominal and real bond yields in the model with time-varying risk premia of the
various maturities, rather than just the mean yields.

3a. No arbitrage restriction on the stock: Similarly, given the stock price-dividend
ratio and dividend growth rate are in the state space, we insist that the stock
return from the model matches the VAR-implied stock return closely. In this
second step, we also consider the conditional moment:

(
e�d + ex + eπ + κM

1 epd
)′
�

1
2 �1 = (e�d + ex + eπ + κM

1 epd
)′
�− e′

pd − e′
y1� (E.3)

Together with equation (E.2), we obtain

(
e�d + ex + eπ + κM

1 epd
)′
�

1
2 (�0 +�1zt)

= rM0 +π0 − y$
0 (1) + 1

2
Jensen

+ ((e�d + ex + eπ + κM
1 epd

)′
�− e′

pd − e′
y1

)
zt

for arbitrary state variable zt . The left-hand side and the right-hand side describe
the expected excess return of the equity from the asset pricing model and from
the VAR dynamics, respectively.

8.(vi) We impose restrictions on the eigenvalues of the risk-neutral companion matrix
� − ��1. First, we require the eigenvalues to be below 0.995 to ensure all val-
uation ratios are well-defined in the model. Second, we require the imaginary
parts of the eigenvalues to be below 0.5, which removes oscillatory behavior in
the term structure of risk premia that is not supported by the data. Removing
this restriction does not affect the fit for the asset prices nor the magnitude of
the public debt valuation puzzle.

In a first pass, we fix the elements in �0 from the previous step and estimate the �1

parameters. That is, we fix the unconditional risk prices for inflation, interest spread, and
GDP growth to obtain good starting values for the main estimation. In a second pass, we
reestimate all risk price parameters as free variables, iterating on the moments until the
value function converges.

The risk price estimates �0 and �1 are given by

�0 = [1�11 0 −0�39 1�88 1�14 0 0�76 0 0 0 0]′ �
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�1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

34�89 −24�38 −45�74 18�65 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

−9�98 −11�98 −106�53 −11�19 1�26 −0�64 −0�11 −0�36 6�48 −0�42 5�30
−0�86 62�99 206�10 −18�78 1�64 5�13 3�36 3�68 2�54 4�29 −2�89

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

−11�33 −10�77 −8�48 −4�51 0�63 −0�91 −1�79 −1�17 0�67 1�26 −1�57
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

Figure E.7 shows that the model matches the nominal term structure in the data closely.
The figure plots the observed and model-implied 1-, 2-, 5-, 10-, 20-, and 30-year nominal
Treasury bond yields. In the estimation of the market prices of risk, we overweigh match-
ing the 5-year bond yield since it is included in the VAR and the 30-year bond yield since
the behavior of long-term bond yields is important for the results.

Figure E.8 shows that the model matches the real term structure in the data fairly well.
The figure plots the observed and model-implied 5-, 7-, 10-, 20-, and 30-year real Treasury
bond yields (Treasury Inflation Indexed securities). In the estimation of the market prices
of risk, we overweigh matching the 30-year bond yield since the behavior of long-term
bond yields is important for the results.

The top panels of Figure E.9 show the model’s implications for the average nominal
(left panel) and real (right panel) yield curves at longer maturities. These yields are well
behaved, with very long-run nominal (real) yields stabilizing at around 6.12% (2.20%) per
year.

The bottom left panel of Figure E.9 shows that the model matches the dynamics of the
nominal bond risk premium, reasonably well. Bond risk premia decline in the latter part
of the sample, possibly reflecting the arrival of foreign investors who value U.S. Treasuries
highly. The bottom right panel shows a decomposition of the nominal bond yield on a 5-

FIGURE E.7.—Dynamics of the Nominal Term Structure of Interest Rates. The figure plots the observed
and model-implied 1-, 2-, 5-, 10-, 20-, and 30-year nominal Treasury bond yields. Yields are measured at the
end of the year. Data are from FRED and FRASER. The sample is annual, 1947–2020.
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FIGURE E.8.—Dynamics of the Real Term Structure of Interest Rates. The figure plots the observed and
model-implied 5-, 7-, 10-, 20-, and 30-year real bond yields. Data are from FRED and start in 2003. For ease
of readability, we start the graph in 1990 but the model of course implies a real yield curve for the entire
1947–2020 period.

year bond. On average, the 4.14% nominal bond yield is comprised of a 0�72% real yield,
a 3.16% expected inflation rate, and a 0.26% inflation risk premium. The graph shows
that the importance of these components fluctuates over time.

FIGURE E.9.—Long-term Yields and Bond Risk Premia. The top panels plot the average bond yield on
nominal (left panel) and real (right panel) bonds for maturities ranging from 1 to 500 years. The bottom left
panel plots the nominal bond risk premium on the 5-year bond in model and data. The nominal bond risk
premium is measured as the 5-year bond yield minus the expected 1-year bond yield over the next 5 years.
The bottom right panel decomposes the model’s 5-year nominal bond yield into the 5-year real bond yield, the
five-year expected inflation, and the 5-year inflation risk premium.
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FIGURE E.10.—Equity Risk Premium and Price-Dividend Ratio. The figure plots the observed and mod-
el-implied equity risk premium on the overall stock market in the left panel and the price-dividend ratio in
the right panel. The price-dividend ratio is the price divided by the annualized dividend. Data are 1947–2020.
Monthly stock dividends are seasonally adjusted.

Figure E.10 shows the equity risk premium, the expected excess return, in the left panel
and the price-dividend ratio in the right panel. The risk premium in the data is the ex-
pected equity excess return implied by the VAR. Its dynamics are sensible, with low risk
premia in the dot-com boom of 1999–2000 and high risk premia in the Great Financial
Crisis of 2008–2009. The model matches these equity risk premium dynamics tightly. The
figure’s right panel shows a good fit for equity price-dividend levels. Hence, the model fits
both the behavior of expected returns and stock price levels.

E.3. Extension: Global VAR

As a robustness check, we explore adding additional global state variables, inspired by
Andrews, Colacito, Croce, and Gavazzoni (2023). We construct three time series: global
GDP growth, global inflation, and global stock returns. All three series are the GDP-
weighted averages of the corresponding domestic series for the following 17 countries:
Australia, Belgium, Switzerland, Germany, Denmark, Spain, Finland, France, UK, Italy,
Japan, Netherlands, Norway, Sweden, Canada, Ireland, and Portugal. Since we want data
going back to 1947, we use the global macrofinance database of Jordà-Schularick-Taylor

FIGURE E.11.—PV(Surpluses)/PV(GDP) Ratio. The figure plots the model-implied present value of pri-
mary surpluses to the present value of the GDP ratio (in blue) in the full time-varying risk price model. The
black line is the debt/PV(GDP) ratio.

https://www.macrohistory.net/database/
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FIGURE E.12.—Upper Bounds on U.S. fiscal backing with Global VAR.

Macrohistory Database. We add these three series to the VAR, after the U.S. state vari-
ables, but before the U.S. fiscal cash flows. We refer to this system as the global VAR.

In a first exercise, we redo our upper bound exercise of Section 5 with the global VAR.
Figure E.12 plots the result. The graph shows that our results on the bond valuation puzzle
are robust to including these international state variables. The average wedge is 32.08%
of GDP in the model with global state variables compared to 32.07% in the benchmark
model without global state variables. This exercise shows that global inflation, growth,
and equity market dynamics do not change the U.S. fiscal surplus dynamics much.

In a second exercise, we redo our asset pricing exercise of Section 6 with the global
VAR. We assume that the market prices of global GDP growth risk and global inflation
risk are nonzero but constant. This adds two nonzero elements to �0. We insist that the
global equity risk premium dynamics match the dynamics in the VAR. That is, we free up
the corresponding element in the constant market price of risk vector �0, as well as the
elements of the row corresponding to the global stock return in the time-varying market
price of risk matrix �1. We set the latter elements to match the expected global stock

FIGURE E.13.—Present Value of Surpluses with Global VAR.

https://www.macrohistory.net/database/
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TABLE E.1

RMSE OF KEY ASSET PRICING MOMENTS.

Risk Premium Excess Returns Yield Curve Yield Curve
Equity 5-yr Bond (Nominal) (Real) PD ratio

Global VAR 2.05 7.13 0.61 1.23 6.79
Benchmark VAR 0.70 7.30 0.69 1.14 4.76

return dynamics to those implied by the VAR. Figure E.13 shows that the bond valuation
puzzle remains. The present value of surpluses is similar to that in the domestic bench-
mark model, implying a valuation gap of around 300% of GDP relative to the market
value of government debt. One note of caution is that United States and global inflation
have a time-series correlation of 84%, which complicates the separate identification of
the market prices of domestic and inflation risk. Table E.1 summarizes the RMSE for key
moments for the model with global factors and the benchmark model. We find that this
extended asset pricing model delivers a similar fit to our benchmark model. While the fit
for the bond yield moments is similar, the fit for the domestic equity moments deteriorates
somewhat.
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