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APPENDIX D: PROOF OF THEOREM 2

THE PROOF IS CONSIDERABLY MORE COMPLEX THAN the proof of Theorem 1, so we break
it into several steps below.

D.1. Step 1: Catalytic Order on LM

We first establish a generalization of Theorem 6 to unbounded random variables. For
two random variables X and Y with c.d.f. F and G respectively, we say that X dominates
Y in both tails if there exists a positive number N with the property that

G(x) >F (x) for all |x| ≥ N�

In particular, X needs to be unbounded from above, and Y unbounded from below.

LEMMA D.1: Suppose X�Y ∈ LM satisfy Ka(X) > Ka(Y ) for every a ∈ R. Suppose fur-
ther that X dominates Y in both tails. Then there exists an independent random variable
Z ∈ LM such that X +Z ≥1 Y +Z.

PROOF: We will take Z to have a normal distribution, which does belong to LM . Fol-
lowing the proof of Theorem 6, we let σ (x) = G(x) − F (x), and seek to show that
[σ ∗ h](y) ≥ 0 for every y when h is a Gaussian density with sufficiently large variance.
By assumption, σ (x) is strictly positive for |x| ≥ N . Thus, there exists δ > 0 such that∫ N+2
N+1 σ (x) dx > δ, as well as

∫ −N−1
−N−2 σ (x) dx > δ. We fix A> 0 that satisfies eA ≥ 4N

δ
.

Similarly to (9), we have for h(x) = e− x2
2V that

e
y2
2V

∫
σ (x)h(y − x) dx=

∫ ∞

−∞
σ (x) · e

y
V ·x · e− x2

2V dx� (S1)

The variance V is to be determined below.
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We first show that the right-hand side is positive if V ≥ (N + 2)2 and y

V
≥ A. Indeed,

since σ (x) > 0 for |x| ≥ N , this integral is bounded from below by
∫ N

−N

σ (x) · e
y
V ·x · e− x2

2V dx+
∫ N+2

N+1
σ (x) · e

y
V ·x · e− x2

2V dx

≥ −2N · e
y
V ·N + δ · e

y
V ·(N+1) · e− (N+2)2

2V

= e
y
V ·N · (−2N + δ · e

y
V · e− (N+2)2

2V
)

> 0�

where the last inequality uses e
y
V ≥ eA ≥ 4N

δ
and e− (N+2)2

2V ≥ e− 1
2 > 1

2 . By a symmetric argu-
ment, we can show that the right-hand side of (S1) is also positive when y

V
≤ −A.

It remains to consider the case where y

V
∈ [−A�A]. Here we rewrite the integral on the

right-hand side of (S1) as
∫ ∞

−∞
σ (x) · e

y
V ·x · e− x2

2V dx= Mσ

(
y

V

)
−

∫ ∞

−∞
σ (x) · e

y
V ·x · (1 − e− x2

2V
)

dx�

where Mσ (a) = ∫ ∞
−∞ σ (x) · eax dx = 1

a
E[eaX] − 1

a
E[eaY ] is by assumption strictly positive

for all a. By continuity, there exists some ε > 0 such that Mσ (a) > ε for all |a| ≤ A. So it
only remains to show that when V is sufficiently large,

∫ ∞

−∞
σ (x) · eax · (1 − e− x2

2V
)

dx < ε for all |a| ≤A� (S2)

To estimate this integral, note that Mσ (A) = ∫ ∞
−∞ σ (x) · eAx dx is finite. Since σ (x) >

0 for |x| sufficiently large, we deduce from the Monotone Convergence theorem that∫ T

−∞ σ (x) · eAx dx converges to Mσ (A) as T → ∞. In other words,
∫ ∞
T

σ (x) · eAx dx → 0.
We can thus find a sufficiently large T > N such that

∫ ∞
T

σ (x) · eAx dx < ε
4 , and likewise∫ −T

−∞ σ (x) · e−Ax dx < ε
4 .

As 1 − e− x2
2V ≥ 0 and eax ≤ eA|x| when |a| ≤A, we deduce that∫

|x|≥T

σ (x) · eax · (1 − e− x2
2V

)
dx <

ε

2
for all |a| ≤A�

Moreover, for this fixed T , we have e− T2
2V → 1 when V is large, and thus

∫
|x|≤T

σ (x) · eax · (1 − e− x2
2V

)
dx < 2TeAT

(
1 − e− T2

2V
)
<

ε

2
for all |a| ≤A�

These estimates together imply that (S2) holds for sufficiently large V . This completes the
proof. Q.E.D.

D.2. Step 2: A Perturbation Argument

With Lemma D.1, we know that if � is a monotone additive statistic defined on LM ,
then Ka(X) ≥ Ka(Y ) for all a ∈ R implies �(X) ≥ �(Y ) under the additional assumption
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that X dominates Y in both tails (same proof as for Lemma 1). Below, we deduce the
same result without this extra assumption. To make the argument simpler, assume X
and Y are unbounded both from above and from below; otherwise, we can add to them
an independent Gaussian random variable without changing either the assumption or
the conclusion. In doing so, we can further assume X and Y admit probability density
functions.

We first construct a heavy right-tailed random variable as follows:

LEMMA D.2: For any Y ∈ LM that is unbounded from above and admits densities, there
exists Z ∈ LM such that Z ≥ 0 and P[Z>x]

P[Y>x] → ∞ as x→ ∞.

PROOF: For this result, it is without loss to assume Y ≥ 0 because we can replace Y by
|Y | and only strengthen the conclusion. Let g(x) be the probability density function of Y .
We consider a random variable Z whose p.d.f. is given by cxg(x) for all x ≥ 0, where c > 0
is a normalizing constant to ensure

∫
x≥0 cxg(x) dx= 1. Since the likelihood ratio between

Z = x and Y = x is cx, it is easy to see that the ratio of tail probabilities also diverges.
Thus, it only remains to check Z ∈ LM . This is because

E
[
eaZ

] = c

∫
x≥0

xg(x)eax dx�

which is simply c times the derivative of E[eaY ] with respect to a. It is well known that
the moment generating function is smooth whenever it is finite. So this derivative is finite,
and Z ∈ LM . Q.E.D.

In the same way, we can construct heavy left-tailed distributions:

LEMMA D.3: For any X ∈ LM that is unbounded from below and admits densities, there
exists W ∈ LM such that W ≤ 0 and P[W ≤x]

P[X≤x] → ∞ as x→ −∞.

With these technical lemmata, we now construct “perturbed” versions of any two ran-
dom variables X and Y to achieve dominance in both tails. For any random variable
Z ∈ LM and every ε > 0, let Zε be the random variable that equals Z with probability ε,
and 0 with probability 1 − ε. Note that Zε also belongs to LM .

LEMMA D.4: Given any two random variables X�Y ∈ LM that are unbounded on both
sides and admit densities. Let Z ≥ 0 and W ≤ 0 be constructed from the above two lemmata.
Then for every ε > 0, X +Zε dominates Y +Wε in both tails.

PROOF: For the right tail, we need P[X +Zε > x] > P[Y +Wε > x] for all x ≥N . Note
that Wε ≤ 0, so P[Y +Wε > x] ≤ P[Y > x]. On the other hand,

P[X +Zε > x] ≥ P[X ≥ 0] · P[Zε > x] = P[X ≥ 0] · ε · P[Z > x]�

Since by assumption X is unbounded from above, the term P[X ≥ 0] ·ε is a strictly positive
constant that does not depend on x. Thus, for sufficiently large x, we have

P[X ≥ 0] · ε · P[Z > x] > P[Y > x]

by the construction of Z. This gives dominance in the right tail. The left tail is similar.
Q.E.D.
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D.3. Step 3: Monotonicity w.r.t. Ka

The next result generalizes the key Lemma 1 to our current setting:

LEMMA D.5: Let � : LM → R be a monotone additive statistic. If Ka(X) ≥Ka(Y ) for all
a ∈ R, then �(X) ≥ �(Y ).

PROOF: As discussed, we can without loss assume X , Y are unbounded on both sides,
and admit densities. Let Z and W be constructed as above; then, for each ε > 0, X +Zε

dominates Y + Wε in both tails, and Ka(X + Zε) > Ka(X) ≥ Ka(Y ) > Ka(Y + Wε) for
every a ∈ R, where the inequalities are strict as Z, W are not identically zero.

Thus, the pair X +Zε and Y +Wε satisfy the assumptions in Lemma D.1. We can then
find an independent random variable V ∈LM (depending on ε), such that

X +Zε + V ≥1 Y +Wε + V �

Monotonicity and additivity of � then imply �(X) +�(Zε) ≥ �(Y ) +�(Wε), after can-
celing out �(V ). The desired result �(X) ≥ �(Y ) follows from the lemma below, which
shows that our perturbations only slightly affect the statistic value. Q.E.D.

LEMMA D.6: For any Z ∈ LM with Z ≥ 0, it holds that �(Zε) → 0 as ε → 0. Similarly,
�(Wε) → 0 for any W ∈ LM with W ≤ 0.

PROOF: We focus on the case for Zε. Suppose for contradiction that �(Zε) does not
converge to zero. Note that as ε decreases, Zε decreases in first-order stochastic domi-
nance. So �(Zε) ≥ 0 also decreases, and non-convergence must imply there exists some
δ > 0 such that �(Zε) > δ for every ε > 0. Let με be image measure of Zε. We now
choose a sequence εn that decreases to zero very fast, and consider the measures

νn = μ∗n
εn
�

which is the nth convolution power of μεn . Thus, the sum of n i.i.d. copies of Zεn is a
random variable whose image measure is νn. We denote this sum by Un.

For each n, we choose εn sufficiently small to satisfy two properties: (i) εn ≤ 1
n2 , and (ii)

it holds that

E
[
enUn − 1

] ≤ 2−n�

This latter inequality can be achieved because E[enUn] = (E[enZεn ])n, and as εn → 0 we
also have E[enZεn ] = 1 − εn + εnE[enZ] → 1 since Z ∈ LM .

For these choices of εn and corresponding Un, let Hn(x) denote the c.d.f. of Un, and
define H(x) = infn Hn(x) for each x ∈ R. Since Hn(x) = 0 for x < 0, the same is true for
H(x). Also note that each Hn(x) is a non-decreasing and right-continuous function in x,
and so is H(x).

We claim that limx→∞ H(x) = 1. Indeed, recall that Un is the n-fold sum of Zεn ,
which has mass 1 − εn at zero. So Un has mass at least (1 − εn)n ≥ (1 − 1

n2 )n ≥
1 − 1

n
at zero. In other words, Hn(0) ≥ 1 − 1

n
. By considering the finitely many c.d.f.s

H1(x)�H2(x)� � � � �Hn−1(x), we can find N such that Hi(x) ≥ 1 − 1
n

for every i < n

and x ≥ N . Together with Hi(x) ≥ Hi(0) ≥ 1 − 1
i
≥ 1 − 1

n
for i ≥ n, we conclude that

Hi(x) ≥ 1 − 1
n

whenever x ≥ N , and so H(x) ≥ 1 − 1
n
. Since n is arbitrary, the claim fol-

lows. The fact that Hn(x) ≥ 1 − 1
n

also shows that in the definition H(x) = infn Hn(x), the
“inf” is actually achieved as the minimum.
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These properties of H(x) imply that it is the c.d.f. of some non-negative random vari-
able U . We next show U ∈ LM , that is, E[eaU ] < ∞ for every a ∈ R. Since U ≥ 0, we only
need to consider a ≥ 0. To do this, we take advantage of the following identity based on
integration by parts:

E
[
eaUn − 1

] = −
∫
x≥0

(
eax − 1

)
d
(
1 −Hn(x)

) = a

∫
x≥0

eax
(
1 −Hn(x)

)
dx�

Now recall that we chose Un so that E[enUn − 1] ≤ 2−n. So E[eaUn − 1] ≤ 2−n for every
positive integer n ≥ a. It follows that the sum

∑∞
n=1 E[eaUn − 1] is finite for every a ≥ 0.

Using the above identity, we deduce that

a

∫
x≥0

eax

∞∑
n=1

(
1 −Hn(x)

)
dx < ∞�

where we have switched the order of summation and integration by the Monotone Con-
vergence theorem. Since H(x) = minn Hn(x), it holds that 1 − H(x) ≤ ∑∞

n=1(1 − Hn(x))
for every x. And thus

E
[
eaU − 1

] = a

∫
x≥0

eax
(
1 −H(x)

)
dx < ∞

also holds. This proves U ∈ LM .
We are finally in a position to deduce a contradiction. Since by construction the c.d.f.

of U is no larger than the c.d.f. of each Un, we have U ≥1 Un and �(U) ≥ �(Un) by
monotonicity of �. But �(Un) = n�(Zεn) > nδ by additivity, so this leads to �(U) being
infinite. This contradiction proves the desired result. Q.E.D.

D.4. Step 4: Functional Analysis

To complete the proof of Theorem 2, we also need to modify the functional analysis step
in our earlier proof of Theorem 1. One difficulty is that for an unbounded random variable
X , Ka(X) takes the value ∞ as a→ ∞. Thus, we can no longer think of KX (a) =Ka(X)
as a real-valued continuous function on R.

We remedy this as follows. Note first that if � is a monotone additive statistic defined
on LM , then it is also monotone and additive when restricted to the smaller domain of
bounded random variables. Thus, Theorem 1 gives a probability measure μ on R∪{±∞}
such that

�(X) =
∫
R

Ka(X) dμ(a)

for all X ∈ L∞. In what follows, μ is fixed. We just need to show that this representation
also holds for X ∈ LM .

As a first step, we show μ does not put any mass on ±∞. Indeed, if μ({∞}) = ε > 0,
then for any bounded random variable X ≥ 0, the above integral gives �(X) ≥ ε ·max[X].
Take any Y ∈ LM such that Y ≥ 0 and Y is unbounded from above. Then monotonicity
of � gives �(Y ) ≥ �(min{Y�n}) ≥ ε · n for each n. This contradicts �(Y ) being finite.
Similarly, we can rule out any mass at −∞.

The next lemma gives a way to extend the representation to certain unbounded random
variables.
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LEMMA D.7: Suppose Z ∈ LM is bounded from below by 1 and unbounded from above,
while Y ∈ LM is bounded from below and satisfies lima→∞

Ka(Y )
Ka(Z) = 0; then,

�(Y ) =
∫

(−∞�∞)
Ka(Y ) dμ(a)�

PROOF: Given the assumptions, Ka(Z) ≥ 1 for all a ∈ R, with lima→∞ Ka(Z) = ∞.
Let LZ

M be the collection of random variables X ∈ LM such that X is bounded from
below, and lima→∞

Ka(X)
Ka(Z) exists and is finite. LZ

M includes all bounded X (in which case

lima→∞
Ka(X)
Ka(Z) = 0), as well as Y and Z itself. LZ

M is also closed under adding independent
random variables.

Now, for each X ∈ LZ
M , we can define

KX|Z(a) = Ka(X)
Ka(Z)

�

which reduces to our previous definition of KX (a) when Z is the constant 1. This function
KX|Z(a) extends by continuity to a= −∞, where its value is min[X]

min[Z] , as well as to a= ∞ by
definition of LZ

M . Thus, KX|Z(·) is a continuous function on R.
Since � induces an additive statistic when restricted to LZ

M , and KX|Z +KY |Z =KX+Y |Z ,
we have an additive functional F defined on L={KX|Z :X ∈LZ

M}, given by

F (KX|Z) = �(X)
�(Z)

�

Because Z ≥ 1 implies �(Z) ≥ 1, F is well-defined, and F (1) = 1. By Lemma D.5, F is
also monotone in the sense that KX|Z(a) ≥ KY |Z(a) for each a ∈ R implies F (KX|Z) ≥
F (KY |Z).

Likewise, we can show F is 1-Lipschitz. Note that KX|Z(a) ≤ KY |Z(a) + m
n

is equivalent
to Ka(X) ≤Ka(Y ) + m

n
Ka(Z) and equivalent to Ka(X∗n) ≤ Ka(Y ∗n +Z∗m), where we use

the notation X∗n to denote the sum of n i.i.d. copies of X . If this holds for all a, then by
Lemma D.5, we also have �(X∗n) ≤ �(Y ∗n +Z∗m), and thus �(X) ≤ �(Y ) + m

n
�(Z) by

additivity. An approximation argument shows that for any real number ε > 0, KX|Z(a) ≤
KY |Z(a)+ε for all a implies �(X) ≤ �(Y )+ε�(Z). Thus, the functional F is 1-Lipschitz.

Given these properties, we can exactly follow the proof of Theorem 1 to extend the
functional F to be a positive linear functional on the space of all continuous functions
over R (the majorization condition is again satisfied by constant functions, as KZ|Z = 1).
Therefore, by the Riesz Representation theorem, we obtain a probability measure μZ on
R such that, for all X ∈ LZ

M ,

�(X)
�(Z)

=
∫
R

Ka(X)
Ka(Z)

dμZ(a)�

In particular, for any X bounded from below such that lima→∞
Ka(X)
Ka(Z) = 0, it holds that

�(X) =
∫

[−∞�∞)
Ka(X) · �(Z)

Ka(Z)
dμZ(a)�

where we are able to exclude ∞ from the range of integration (this is useful below).
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If we define the measure μ̂Z by dμ̂Z

dμZ
(a) = �(Z)

Ka(Z) ≤ �(Z), then since Ka(X) is finite for
a <∞, we have

�(X) =
∫

[−∞�∞)
Ka(X) dμ̂Z(a)�

This in particular holds for all bounded X , so plugging in X = 1 gives that μ̂Z is a prob-
ability measure. But now we have two probability measures μ and μ̂Z on R that lead to
the same integral representation for bounded random variables, so Lemma 5 implies that
μ̂Z coincides with μ and is supported on the standard real line. Plugging in X = Y in the
above display then yields the desired result. Q.E.D.

The next lemma further extends the representation:

LEMMA D.8: For every X ∈LM that is bounded from below,

�(X) =
∫

(−∞�∞)
Ka(X) dμ(a)�

PROOF: It suffices to consider X that is unbounded from above. Moreover, without loss
we can assume X ≥ 0, since we can add any constant to X . Given the previous lemma, we
just need to construct Z ≥ 1 such that lima→∞

Ka(X)
Ka(Z) = 0. Note that E[eaX] strictly increases

in a for a≥ 0. This means we can uniquely define a sequence a1 < a2 < · · · by the equation
E[eanX] = en. This sequence diverges as n→ ∞. We then choose any increasing sequence
bn such that bn > n and anbn > 2n2.

Consider the random variable Z that is equal to bn with probability e− anbn
2 for each n,

and equal to 1 with remaining probability. To see that Z ∈ LM , we have

E
[
eaZ

] ≤ ea +
∞∑
n=1

e− anbn
2 · eabn = ea +

∞∑
n=1

e(a− an
2 )·bn �

For any fixed a, an
2 is eventually greater than a+1. This, together with the fact that bn > n,

implies the above sum converges.
Moreover, for any a ∈ [an�an+1), we have

E
[
eaZ

] ≥ E
[
eanZ

] ≥ P[Z = bn] · eanbn ≥ e
anbn

2 > en2
�

whereas E[eaX] ≤ E[ean+1X] ≤ en+1. Thus,

Ka(X)
Ka(Z)

= logE
[
eaX

]
logE

[
eaZ

] ≤ n+ 1
n2 �

which converges to zero as a (and thus n) approaches infinity. Q.E.D.

D.5. Step 5: Wrapping up

By a symmetric argument, the representation �(X) = ∫
(−∞�∞) Ka(X) dμ(a) also holds

for all X bounded from above. In the remainder of the proof, we will use an approxima-
tion argument to generalize this to all X ∈ LM . We first show a technical lemma:



8 MU, POMATTO, STRACK, AND TAMUZ

LEMMA D.9: The measure μ is supported on a compact interval of R.

PROOF: Suppose not, and without loss assume the support of μ is unbounded from
above. We will construct a non-negative Y ∈ LM such that �(Y ) = ∞ according to the
integral representation. Indeed, by assumption, we can find a sequence 2 < a1 < a2 < · · ·
such that an → ∞ and μ([an�∞)) ≥ 1

n
for all large n. Let Y be the random variable that

equals n with probability e− an ·n
2 for each n, and equals 0 with remaining probability. Then,

similarly to the above, we can show Y ∈ LM . Moreover, E[eanY ] ≥ e
an ·n

2 , implying that
Kan (Y ) ≥ n

2 . Since Ka(Y ) is increasing in a, we deduce that for each n,

∫
[an�∞)

Ka(Y ) dμ(a) ≥Kan (Y ) ·μ(
[an�∞

)
) ≥ n

2
· 1
n

= 1
2
�

The fact that this holds for an → ∞ contradicts the assumption that �(Y ) =∫
(−∞�∞) Ka(Y ) dμ(a) is finite. Q.E.D.

Thus, we can take N sufficiently large so that μ is supported on [−N�N]. To finish
the proof, consider any X ∈ LM that may be unbounded on both sides. For each positive
integer n, let Xn = min{X�n} denote the truncation of X at n. Since X ≥1 Xn, we have

�(X) ≥�(Xn) =
∫

[−N�N]
Ka(Xn) dμ(a)�

Observe that for each a ∈ [−N�N], Ka(Xn) converges to Ka(X) as n → ∞. Moreover,
the fact that Ka(Xn) increases both in n and in a implies that for all a and all n,

∣∣Ka(Xn)
∣∣ ≤ max

{∣∣Ka(X1)
∣∣� ∣∣Ka(X)

∣∣}
≤ max

{∣∣K−N (X1)
∣∣� ∣∣KN (X1)

∣∣� ∣∣K−N (X)
∣∣� ∣∣KN (X)

∣∣}�
As Ka(Xn) is uniformly bounded, we can apply the Dominated Convergence theorem to
deduce

�(X) ≥ lim
n→∞

∫
[−N�N]

Ka(Xn) dμ(a) =
∫

[−N�N]
Ka(X) dμ(a)�

On the other hand, if we truncate the left tail and consider X−n = max{X�−n}, then a
symmetric argument shows

�(X) ≤ lim
n→∞

∫
[−N�N]

Ka

(
X−n

)
dμ(a) =

∫
[−N�N]

Ka(X) dμ(a)�

Therefore, for all X ∈ LM , it holds that

�(X) =
∫

[−N�N]
Ka(X) dμ(a)�

This completes the entire proof of Theorem 2.



MONOTONE ADDITIVE STATISTICS 9

APPENDIX E: OMITTED PROOFS FOR SECTION 4

E.1. Proof of Proposition 5

The result can be derived as a corollary of Proposition 6 which we prove below, but
we also provide a direct proof here. We focus on the “only if” direction because the “if”
direction follows immediately from the monotonicity of Ka(X) in a. Suppose μ is not
supported on [−∞�0]; we will show that the resulting monotone additive statistic � does
not always exhibit risk aversion. Since μ has positive mass on (0�∞], we can find ε > 0
such that μ assigns mass at least ε to (ε�∞]. Now consider a gamble X which is equal to
0 with probability n−1

n
and equal to n with probability 1

n
, for some large positive integer n.

Then E[X] = 1 and Ka(X) ≥ min[X] = 0 for every a ∈R. Moreover, for a≥ ε, we have

Ka(X) ≥ Kε(X) = 1
ε

log
(
n− 1
n

+ 1
n

eεn

)
≥ n

2

whenever n is sufficient large. Thus,

�(X) =
∫
R

Ka(X) dμ(a) ≥
∫

[ε�∞]
Ka(X) dμ(a) ≥ n

2
ε�

We thus have �(X) > 1 = E[X] for all large n, showing that the preference represented
by � sometimes exhibits risk-seeking.

Symmetrically, if μ is not supported on [0�∞], then � must sometimes exhibit risk
aversion (by considering X equal to 0 with probability 1

n
and equal to n with probability

n−1
n

). This completes the proof.

E.2. Proof of Proposition 6

We first show that conditions (i) and (ii) are necessary for
∫
R
Ka(X) dμ1(a) ≤∫

R
Ka(Y ) dμ2(a) to hold for every X . This part of the argument closely follows the proof

of Lemma 5. Specifically, by considering the same random variables Xn�b as defined there,
we have the key equation (11). Since the limit on the left-hand side is smaller for μ1 than
for μ2, we conclude that for every b > 0,

∫
[b�∞]

a−b
a

dμ1(a) on the right-hand side must be
smaller than the corresponding integral for μ2. Thus, condition (i) holds, and an analo-
gous argument shows condition (ii) also holds.

To complete the proof, it remains to show that when conditions (i) and (ii) are satisfied,
∫
R

Ka(X) dμ1(a) ≤
∫
R

Ka(X) dμ2(a)

holds for every X . Since μ1 and μ2 are both probability measures, we can subtract E[X]
from both sides and arrive at the equivalent inequality∫

R	=0

(
Ka(X) −E[X]

)
dμ1(a) ≤

∫
R 	=0

(
Ka(X) −E[X]

)
dμ2(a)� (S3)

Note that we can exclude a = 0 from the range of integration because Ka(X) = E[X]
there. Below, we show that condition (i) implies

∫
(0�∞]

(
Ka(X) −E[X]

)
dμ1(a) ≤

∫
(0�∞]

(
Ka(X) −E[X]

)
dμ2(a)� (S4)
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Similarly, condition (ii) gives the same inequality when the range of integration is
[−∞�0). Adding these two inequalities would yield the desired comparison in (S3).

To prove (S4), we let LX (a) = a · Ka(X) = logE[eaX] be the cumulant generating
function of X . It is well known that LX (a) is convex in a, with L′

X (0) = E[X] and
lima→∞ L′

X (a) = max[X]. Then the integral on the left-hand side of (S4) can be calcu-
lated as follows:∫

(0�∞]

(
Ka(X) −E[X]

)
dμ1(a)

=
∫

(0�∞)

(
Ka(X) −E[X]

)
dμ1(a) + (

max[X] −E[X]
) ·μ1

(
{∞}

)

=
∫

(0�∞)

(
LX (a) − aE[X]

)
d
μ1(a)
a

+ (
max[X] −E[X]

) ·μ1

(
{∞}

)
�

Note that since the function g(a) = LX (a) − aE[X] satisfies g(0) = g′(0) = 0, it can be
written as

g(a) =
∫ a

0
g′(t) dt =

∫ a

0

∫ t

0
g′′(b) dbdt =

∫ a

0
g′′(b) · (a− b) db�

Plugging back to the previous identity, we obtain
∫

(0�∞]

(
Ka(X) −E[X]

)
dμ1(a)

=
∫

(0�∞)

∫ a

0
L′′

X (b) · (a− b) dbd
μ1(a)
a

+ (
max[X] −E[X]

) ·μ1

(
{∞}

)

=
∫ ∞

0
L′′

X (b)
∫

[b�∞)
(a− b) d

μ1(a)
a

db+ (
L′

X (∞) −L′
X (0)

) ·μ1

(
{∞}

)

=
∫ ∞

0
L′′

X (b)
∫

[b�∞)

a− b

a
dμ1(a) db+

∫ ∞

0
L′′

X (b) ·μ1

(
{∞}

)
db

=
∫ ∞

0
L′′

X (b)
∫

[b�∞]

a− b

a
dμ1(a) db�

where the last step uses a−b
a

= 1 when a= ∞ > b.
The above identity also holds when μ1 is replaced by μ2. We then see that (S4) follows

from condition (i) and L′′
X (b) ≥ 0 for all b. This completes the proof.

E.3. Proof of Theorem 5

The “if” direction is straightforward: if �1 and �2 are both represented by a monotone
additive statistic �, then they satisfy responsiveness and continuity. In addition, com-
bined choices are not stochastically dominated because if X �1 X

′ and Y �2 Y
′, then

�(X) >�(X ′) and �(Y ) >�(Y ′). Thus, �(X + Y ) >�(X ′ + Y ′) and X ′ + Y ′ cannot
stochastically dominate X +Y .

Turning to the “only if” direction, we suppose �1 and �2 satisfy the axioms. We first
show that these preferences are the same. Suppose for the sake of contradiction that
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X �1 Y but Y �2 X for some X , Y . Then, by continuity, there exists ε > 0 such that Y �2

X + ε. By responsiveness, we also have X �1 Y � Y − ε
2 . Thus, X �1 Y − ε

2 , Y �2 X + ε,
but X+Y is strictly stochastically dominated by Y − ε

2 +X+ε =X+Y + ε
2 , contradicting

Axiom 7.
Henceforth, we denote both �1 and �2 by �. We next show that for any X and any

ε > 0, max[X] + ε � X � min[X] − ε. To see why, suppose for contradiction that X
is weakly preferred to max[X] + ε (the other case can be handled similarly). Then we
obtain a contradiction to Axiom 7 by observing that X � max[X] + ε

2 , ε
4 � 0 but X + ε

4 <1

max[X] + ε
2 + 0.

Given these upper and lower bounds for X , we can define �(X) = sup{c ∈R : c  X},
which is well-defined and finite. By definition of the supremum and responsiveness, for
any ε > 0 it holds that �(X) − ε ≺ X ≺ �(X) + ε. Thus, by continuity, �(X) ∼ X is the
(unique) certainty equivalent of X .

It remains to show that � is a monotone additive statistic. For this, we show that X ∼ Y
implies X + Z ∼ Y + Z for any independent Z. Suppose for contradiction that X +
Z � Y + Z. Then, by continuity, we can find ε > 0 such that X + Z � Y + Z + ε. By
responsiveness, it also holds that Y + ε

2 � Y ∼ X . But the sum (X + Z) + (Y + ε
2 ) is

stochastically dominated by (Y +Z + ε) +X , contradicting Axiom 7.
Therefore, from X ∼ �(X) and Y ∼ �(Y ) we can apply the preceding result twice to

obtain X + Y ∼ �(X) + Y ∼ �(X) + �(Y ) whenever X , Y are independent, so that
�(X + Y ) = �(X) + �(Y ) is additive. Finally, we show � is monotone. Consider any
Y ≥1 X , and suppose for contradiction that X � Y . Then there exists ε > 0 such that
X � Y +ε. This leads to a contradiction since X � Y +ε, ε

2 � 0, but X+ ε
2 is stochastically

dominated by Y + ε+ 0.
This completes the proof that both preferences �1 and �2 are represented by the same

certainty equivalent �(X), which is a monotone additive statistic.

APPENDIX F: MONOTONE ADDITIVE STATISTICS AND THE INDEPENDENCE AXIOM

In this Appendix, we discuss the classic independence axiom and what it implies for
preferences represented by monotone additive statistics.

AXIOM F.1—Independence: For all X , Y , Z and all λ ∈ (0�1), X � Y implies XλZ �
YλZ.

PROPOSITION F.1: Suppose a preference � is represented by a monotone additive statistic
�(X) = ∫

R
Ka(X) dμ(a). Then � satisfies the independence axiom if and only if μ is a point

mass at some a ∈R.

PROOF: The “if” direction is relatively straightforward. If a= 0, then �(X) = E[X]. In
this case, E[X] ≥ E[Y ] does imply

E[XλZ] = λE[X] + (1 − λ)E[Z] ≥ λE[Y ] + (1 − λ)E[Z] = E[YλZ]�

If a > 0, then �(X) ≥�(Y ) implies E[eaX] ≥ E[eaY ] and thus

λE
[
eaX

] + (1 − λ)E
[
eaZ

] ≥ λE
[
eaY

] + (1 − λ)E
[
eaZ

]
�
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so that �(XλZ) ≥ �(YλZ). A similar argument applies to the case of a < 0. Finally, it is
easy to see that max[X] ≥ max[Y ] implies max[XλZ] ≥ max[YλZ] and the same holds for
the minimum. So the above independence axiom holds for a= ±∞ as well.1

We turn to the “only if” direction of the result. By the independence axiom, whenever
c is a constant we have X � c implies Xλc � c and c � X implies c � Xλc. Therefore,
X ∼ c implies Xλc ∼ c, which allows us to directly apply Lemma 7 from before. It remains
to show that independence rules out �(X) = βK−aβ(X) + (1 − β)Ka(1−β)(X) for some
β ∈ (0�1) and a ∈ (0�∞].

Suppose � takes the above form. If a = ∞, then �(X) = βmin[X] + (1 − β) max[X]
for some β ∈ (0�1). To see that it violates independence, choose X supported on 0 and

1
1−β

, and Y = 1 so that �(X) = �(Y ). But with Z being a sufficiently large constant, we
see that XλZ has the same maximum as YλZ, but a strictly smaller minimum. Hence,
�(XλZ) <�(YλZ), contradicting independence.

If instead a ∈ (0�∞), then we can do a similar construction by choosing X and Y such
that �(X) > �(Y ) but K−aβ(X) < K−aβ(Y ). For example, let Y = 1, and let X be sup-
ported on {0�k}, with P[X = k] = 1

k
. Then

Kb(X) = 1
b

logE
[

1 − 1
k

+ ebk

k

]
�

For k tending to infinity, Kb(X) tends to zero if b < 0, and to infinity if b > 0. Hence, for
k large enough, X and Y will have the desired property.

Now let Z = n where n is a large positive integer. Then

Kb(Yλn) = 1
b

logE
[
λE

[
ebY

] + (1 − λ)ebn
]
�

Kb(Xλn) = 1
b

logE
[
λE

[
ebX

] + (1 − λ)ebn
]
�

and so

Kb(Yλn) −Kb(Xλn) = 1
b

log
(
λE

[
ebY

] + (1 − λ)ebn

λE
[
ebX

] + (1 − λ)ebn

)
�

It easily follows that for fixed λ ∈ (0�1) and b,

lim
n→∞

Kb(Yλn) −Kb(Xλn) = 0 if b > 0;
lim
n→∞

Kb(Yλn) −Kb(Xλn) =Kb(Y ) −Kb(X) if b < 0�

Thus, as n tends to infinity,

lim
n
�(Yλn) −�(Xλn)

= lim
n
β

[
K−aβ(Yλn) −K−aβ(Xλn)

] + (1 −β)
[
Ka(1−β) (Yλn) −Ka(1−β) (Xλn)

]

= β
[
K−aβ(Yλn) −K−aβ(Xλn)

]
> 0�

1Note, however, that �(X) = max[X] or min[X] would violate a stronger form of independence that ad-
ditionally requires X � Y to imply XλZ � YλZ with strict preferences. This is related to the fact that these
extreme monotone additive statistics do not satisfy mixture continuity.
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Therefore, for n large enough, we have found X and Y such that �(X) > �(Y ) but
�(Xλn) < �(Yλn). This implies X � Y but Xλn ≺ Yλn, which contradicts the indepen-
dence axiom and completes the proof of Proposition F.1. Q.E.D.

F.1. Proof of Proposition 1

We now prove Proposition 1 as a corollary of Proposition F.1. The first observation is
that, under time invariance, strong stochastic dynamic consistency is equivalent to the
following property of the preference �:

AXIOM F.2—Strong Stochastic Stationarity: For every pair of time lotteries (x�T ), (y�S)
and every D ∈ L∞

+ not necessarily independent, if (x�Td) � (y�Sd) for almost every realization
d of D, then (x�T +D) � (y�S +D).

Indeed, suppose strong stochastic dynamic consistency is satisfied, and (x�Td) � (y�Sd)
holds for almost every realization d of D. Then, by time invariance, (x�Td) �t+d (y�Sd)
also holds for almost every d. Strong stochastic dynamic consistency thus implies (x�T +
D) �t (y�S + D) and therefore strong stochastic stationarity. A similar argument shows
that conversely, strong stochastic stationarity also implies strong stochastic dynamic con-
sistency.

For the “only if” direction of Proposition 1, suppose that � is an MSTP that satisfies
strong stochastic stationarity. Let �∗ denote the preference over random times induced
by � when fixing the payoff. That is, T �∗ S if and only if (x�T ) � (x�S) for any and every
x > 0.

Fix any X �∗ Y and any Z ∈ L∞
+ , which can be considered as random times. For a given

λ ∈ (0�1), choose D to be a random variable that is equal to either 0 or 1, with probability
λ and 1 − λ, respectively. Let X̃ be a random variable that, conditioned on D = 0, has
the same distribution as X + 1, and conditioned on D= 1, has the same distribution as Z.
Likewise, let Ỹ be a random variable that, conditioned on D= 0, has the same distribution
as Y + 1, and conditioned on D= 1, has the same distribution as Z.

By construction, X̃D �∗ ỸD for every possible value of D, so by strong stochastic sta-
tionarity, X̃ +D�∗ Ỹ +D must hold. But X̃ +D has the same distribution as (XλZ) + 1
while Ỹ + D has the same distribution as (YλZ) + 1, so (XλZ) + 1 �∗ (YλZ) + 1. Since
this is an MSTP, we deduce XλZ �∗ YλZ as the independence axiom requires.

Note that even though �∗ and the associated monotone additive statistic � are defined
only for non-negative bounded random variables, it can be extended to all of L∞ as shown
in the proof of Proposition 7. Given additivity, it is easy to see that the extension preserves
independence. So we can assume �∗ and � satisfy independence on L∞. This allows us
to apply Proposition F.1 and deduce that � must have a point-mass mixing measure μ,
which proves the “only if” direction of Proposition 1.

As for the “if” direction, we need to verify that an MSTP represented by V (x�T ) =
u(x) ·e−rKa(T ) does satisfy strong stochastic stationarity. First consider a= 0, in which case
the representation simplifies to u(x) · e−E[T ] with the normalization r = 1. If (x�Td) �
(y�Sd) for almost every d, then u(x) · e−E[Td ] ≥ u(y) · e−E[Sd ], which can be rewritten as
E[Sd] − E[Td] ≥ log(u(y)/u(x)). Averaging across different realizations d, this implies
E[S] − E[T ] ≥ log(u(y)/u(x)), and thus E[S +D] − E[T +D] ≥ log(u(y)/u(x)). After
rearranging, this yields u(x) · e−E[T+D] ≥ u(y) · e−E[S+D]. So (x�T + D) � (y�S + D) as
demanded by strong stochastic stationarity.
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Next, consider a > 0. In this case, we normalize r = a and adjust u accordingly, to arrive
at an equivalent representation V (x�T ) = u(x)/E[eaT ]. From (x�Td) � (y�Sd), we obtain
u(x) ·E[eaSd ] ≥ u(y) ·E[eaTd ] and thus

u(x) ·E[
ea(Sd+d)

] ≥ u(y) ·E[
ea(Td+d)

]
�

Averaging across different realizations d then yields u(x) · E[ea(S+D)] ≥ u(y) · E[ea(T+D)],
which after rearranging gives the desired conclusion V (x�T +D) ≥ V (y�S +D).

If instead a < 0, then we normalize r = −a and recover the usual EDU representation
V (x�T ) = u(x) ·E[eaT ]. Essentially the same argument as above applies to this case.

Finally, consider a = ∞, so that V (x�T ) = u(x) · e−max[T ] after normalizing r = 1. In
this case, (x�Td) � (y�Sd) implies max[Sd] − max[Td] ≥ log(u(y)/u(x)), and thus

max[Sd + d] − max[Td + d] ≥ log
(
u(y)/u(x)

)
�

Let α = max[S + D] and c = log(u(y)/u(x)) be constants. Then the above implies that
for almost every realization d of D, Td + d ≤ α − c. Thus, T + D ≤ α − c almost surely,
which gives max[S + D] − max[T + D] ≥ c. This implies V (x�T + D) ≥ V (y�S + D) as
desired.

A similar argument applies to the case of a= −∞, completing the proof.
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