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APPENDIX SA.1: BELIEF CONVERGENCE

THIS SECTION elaborates on Remark 3. Our discussion in this section focuses on deter-
ministic networks.

One may expect the social belief to be eventually close to the stationary set with high
probability: after all, when an agent’s social belief is not close to the stationary set, her
private information gives her a welfare improvement bounded away from zero; expand-
ing observations should propagate these improvements, which implies (since utility is
bounded) that they must eventually vanish. However, the following is a counterexample.1

EXAMPLE SA.1: Consider binary states with a uniform prior, binary signals with sym-
metric precision (less than 1), and binary actions with simple utility. The network is as
follows: agents 1 and 2 observe no one; for odd n ≥ 3, agent n observes agent n − 2; for
even n > 3, agent n observes agent n− 1 and agent 2. So there is expanding observations.
In this network, the odd agents form an immediate-predecessor network and there is an
equilibrium where a cascade along this subsequence starts from agent 3.

Now consider even agents. Consider the positive-probability event in which agents 1
and 2 take different actions. An even agent n > 3 observes agents n − 1 and 2, which,
given the equilibrium behavior of odd agents, is equivalent to observing agents 1 and 2.
So the social belief of every even agent n > 3 equals the prior, which is bounded away
from the stationary set.2
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1Absent expanding observations, there are trivial counterexamples using the empty network.
2The example illustrates that, with positive probability, social beliefs may not eventually converge to the

set of stationary beliefs. But the point also holds for posterior beliefs, not just social beliefs. For simplicity,
consider the same example but with an additional signal that is uninformative. Call the two actions a and b.
Consider an equilibrium in which the first agent plays a upon receiving the uninformative signal, while the
second agent plays b upon receiving the uninformative signal. Then, in the event that the first agent plays b
and the second agent plays a, the path of social beliefs for agents n ≥ 3 is identical to the example above: odd
agents are in a cascade, while even agents’ social belief is just the prior. With positive probability, an even agent
will now receive an uninformative signal, whereafter her posterior belief lies outside the stationary set.
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The “problem” in Example SA.1 is that even though each of the even agents (n > 3)
is getting a welfare improvement bounded away from zero, these improvements are not
passed on to any future agents, and all future even agents continue to have social be-
liefs bounded away from the stationary set. In other words, expanding observations is not
enough to validate the intuition described before the example. The following proposition
identifies a reasonable condition on the network that is sufficient.

PROPOSITION SA.1: Assume there exist finitely many subsequences of agents {nk�j}
Nj

k=1 (j =
1� � � � � J < ∞, 1 ≤ Nj ≤ ∞) such that agent nk�j observes nk−1�j , and every agent in society is
in at least one of the subsequences. Then, for all ε > 0, limn→∞ ϕn(μn ∈ Sε) = 1.

The proposition’s assumption encompasses canonical examples like the complete net-
work and the k-immediate-predecessor networks (i.e., every agent observes the last k
agents) for any k ≥ 1. But it rules out any network in which infinite number of agents
are not observed by any of their successors, which explains why it does not apply to
Example SA.1.

PROOF OF PROPOSITION SA.1: Along any subsequence j, u(ϕnk�j ) ≥ u(ϕnk−1�j ) +
I(ϕnk−1�j ) by the improvement principle, given that nk−1�j is observable to nk�j . It follows

that
∑Nj

k=1 I(ϕnk�j ) ≤ 2u. Hence, society’s total improvement is bounded:
∑

n I(ϕn) ≤ 2uJ.
Now fix any ε�δ > 0. Consider Vδ/2 defined in Lemma 3. The lemma established that Vδ/2

is compact and ϕ(μ /∈ Vδ/2) < δ/2�∀ϕ ∈ �BP. Since Sε is open, K := (Sε)c ∩Vδ/2 is compact.
Next, we argue P(μn ∈ K i�o�) = 0. Suppose, to contradiction, P(μn ∈ K i�o�) > 0. Then∑

n P(μn ∈ K) = ∞ by the Borel–Cantelli lemma. Since K is compact and I(·) > 0 on K,
I(·) achieves its minimum in K at some μ ∈ K with I(μ) > 0. So the total improvement is∑

n I(ϕn) ≥ I(μ)
∑

n P(μn ∈ K) = ∞, which contradicts
∑

n I(ϕn) ≤ 2uJ.
Observe that P(μn ∈ K i�o�) = 0 implies ϕn(μn ∈ K) < δ/2 for all large n. Therefore,

for all large n, ϕn(μn ∈ (Sε)c) ≤ ϕn(μn ∈ K) +ϕn(μn /∈ Vδ/2) < δ. We conclude that for all
ε > 0, limn→∞ ϕn(μn ∈ Sε) = 1. Q.E.D.

REMARK 1: If �	 is compact (e.g., 	 itself is compact), we can replace Vδ/2 in the
proof with �	, so that K = (Sε)c . Then the argument in the proof’s second paragraph
shows that P(μn ∈ (Sε)c i�o�) = 0, that is, the social belief converges to the stationary set
almost surely rather than only in probability.

APPENDIX SA.2: ε-EXCLUDABILITY

This section elaborates on Remark 4. Say that for any ε ∈ (0�1/2) a set of states
	′ is ε-distinguishable from 	′′ if, for any μ ∈ �(	′ ∪ 	′′) with μ(	′) > ε, there is a
positive-measure set of signals S′ such that μ(	′|s) > 1 − ε for all s ∈ S′. A utility func-
tion and an information structure jointly satisfy ε-excludability if 	a1�a2 and 	a2�a1 are ε-
distinguishable from each other, for any pair of actions a1� a2. Note that ε-excludability
implies ε′-excludability for all ε′ > ε, and excludability is equivalent to ε-excludability for
all ε > 0.

PROPOSITION SA.2: Let 	 be finite. For all ε ∈ (0�1/2), ε-excludability implies that in
any equilibrium σ , lim infnEσ�μ0 [un] ≥ u∗(μ0) − 2u ε

1−ε
|	|.

Before proving Proposition SA.2, we give an example illustrating the result’s use.
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EXAMPLE SA.2: There are three states, ω ∈ {1�2�3}, SCD preferences, and Laplace
information:

f (s|ω) = 1
2b

exp
(

−|s −ω|
b

)
�

where b > 0 is a scale parameter; a smaller b corresponds to more precise information.
It is straightforward to verify that no two states can be distinguished from each other.3

Therefore, not every stationary belief has adequate knowledge (so long as preferences
are nontrivial), and by Theorem 1 there is inadequate learning.

Nonetheless, we claim that ε-excludability holds for any ε such that ε > 1
1+exp( 1

2b )
. To see

this, observe that since the information structure has MLRP and preferences satisfy SCD,
we can focus on ε-distinguishing state 3 from 2 (or, equally, 2 from 1).4 When ε > 1

1+exp( 1
2b )

,

we have ε
1−ε

exp(1/b) > 1−ε
ε

, so there exist signals that move the prior (0�1 − ε�ε) to a
posterior of at least 1 − ε on state 3, which implies ε-distinguishability of state 3 from 2.

Proposition SA.2 implies that in any equilibrium, lim infEσ�μ0 [un] ≥ u∗(μ0) −
6uexp(− 1

2b). This quantitative welfare bound yields, in particular, convergence to the
full-information utility u∗(μ0) as b→ 0.

PROOF OF PROPOSITION SA.2: Take any stationary belief μ, and let a be an optimal
action at belief μ. For each state ω, take any aω ∈ c(ω), and consider μω(·) := μ(·|{ω}∪
	a�aω). If μω(ω) ≤ ε, then μ(ω) ≤ ε, so (u(aω�ω) − u(a�ω))μ(ω) ≤ 2uε.

Consider the other case of μω(ω) > ε. For any s ∈ S, because u(a�ω′) − u(aω�ω
′) ≤ 0

for each ω′ /∈	a�aω , and μ is stationary,
∑

ω′∈{ω}∪	a�aω

(
u
(
a�ω′) − u

(
aω�ω

′))μ(
ω′|s

) ≥
∑
ω′∈	

(
u
(
a�ω′) − u

(
aω�ω

′))μ(
ω′|s

) ≥ 0�

Then,

(
u(aω�ω) − u(a�ω)

)
μω(ω|s) ≤

∑
ω′∈	a�aω

(
u
(
a�ω′) − u

(
aω�ω

′))μω

(
ω′|s

)

≤ 2u
( ∑

ω′∈	a�aω

μω

(
ω′|s

)) = 2u
(
1 −μω(ω|s)

)
�

By ε-excludability, there exists a positive-measure set of signals S′ such that, for any s ∈ S′,
μω(ω|s) > 1 − ε, which implies that u(aω�ω) − u(a�ω) ≤ 2u ε

1−ε
.

In either case (μω(ω) ≤ ε or μω(ω) > ε), we have (u(aω�ω) − u(a�ω))μ(ω) ≤ 2u ε
1−ε

.
Since 	 is finite, ∑

ω∈	

(
u(aω�ω) − u(a�ω)

)
μ(ω) ≤ 2u

ε

1 − ε
|	|�

Namely, the utility gap u∗(μ) − u(μ) ≤ 2u ε
1−ε

|	|, for any stationary belief μ.

3For any pair of states ω �=ω′, and any signal s, the likelihood ratio f (s|ω)/f (s|ω′) ≤ exp(2/b).
4By MLRP, only arbitrarily large signals can distinguish a state from a lower state, and for large s the likeli-

hood ratio f (s|3)/f (s|2) < f (s|3)/f (s|1), so considering adjacent states is sufficient for ε-excludability.
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Finally, for any ϕ ∈ �S ,

u∗(μ0) − u(ϕ) = Eϕ

[
u∗(μ) − u(μ)

] ≤ 2u
ε

1 − ε
|	|�

By taking infimum of u(ϕ) across ϕ ∈ �S , we obtain u∗(μ0) ≥ u∗(μ0) − 2u ε
1−ε

|	|,
and subsequently by invoking Theorem 3, we conclude that in any equilibrium σ ,
lim infnEσ�μ0 [un] ≥ u∗(μ0) − 2u ε

1−ε
|	|. Q.E.D.

APPENDIX SA.3: DETAILS ON EXAMPLE 2

For Example 2, we show here how to construct a full-support prior such that the pos-
terior probability is uniformly bounded away from 1 across signals and states. Take any
prior μ such that, for some c > 0, min{μ(n−1)

μ(n) � μ(n+1)
μ(n) }> c for all n (e.g., a double-sided ge-

ometric distribution). Denoting the posterior after signal s by μs , the posterior likelihood
ratio satisfies

μs

(
{n− 1� n+ 1}

)
μs(n)

= f (s|n− 1)
f (s|n)

μ(n− 1)
μ(n)

+ f (s|n+ 1)
f (s|n)

μ(n+ 1)
μ(n)

> c

(
f (s|n− 1)
f (s|n)

+ f (s|n+ 1)
f (s|n)

)
�

As the last expression is the sum of a strictly positive decreasing function of s and a strictly
positive increasing function of s, it is bounded away from 0 in s. The bound is independent
of n because normal information is a location-shift family of distributions. Therefore, the
posterior likelihood ratio is uniformly bounded away from 0, and hence, the posterior
μs(n) is uniformly bounded away from 1.
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