
Econometrica Supplementary Material

SUPPLEMENT TO “ON COMPLETENESS AND CONSISTENCY IN
NONPARAMETRIC INSTRUMENTAL VARIABLE MODELS”

(Econometrica, Vol. 85, No. 5, September 2017, 1629–1644)

JOACHIM FREYBERGER
Department of Economics, University of Wisconsin–Madison

This supplement contains additional material to accompany the main text. First, I
show that the results in Theorem 1 also hold as ε → 0 and I informally outline a boot-
strap procedure to select the critical value. I then provide additional explanations for
the main assumptions as well as extensions of the main results.

S.1. RESULTS WHEN ε → 0

IN THIS SECTION, I SHOW THAT THE RESULTS in Theorem 1 also hold as ε → 0. To do so,
define

κJ(P�ε) = inf
g∈ḠJ (ε):‖g‖c=1

∫ (∫
g(x)fJ(x� z)dx

)2

dz�

We now obtain the following result.

THEOREM A1: Suppose Assumptions 1–5 hold.
1. If J

cnε2 → 0, nJ−2r

cn
→ 0, and Js̄ε → ∞, then

sup
P∈P:diam(I0(P))≥ε

P(nT̂ ≥ cn)→ 0�

1. For any Pn ∈P with nκJ(Pn�ε)

cn
→ ∞ and J2

nκJ(Pn�ε)
→ 0,

Pn(nT̂ ≥ cn)→ 1�

1. If J
cnε2 → 0 and nJ−2s̄

cnε2 → 0, and Js̄ε → ∞, then

sup
P∈P

P
(‖ĝ − g0‖c ≥ ε�nT̂ ≥ cn

) → 0�

Since ε → 0, the last part now implies that for any sequence of distributions for which
the test rejects with probability larger than δ, ĝ will be consistent for g0. To highlight that
Pn(nT̂ ≥ cn) → 1, and thus ‖ĝ−g0‖ p→ 0, not only for fixed complete distributions but also
for certain sequences of incomplete distributions, the second part is now stated in terms
of sequences of distributions. A simple example of a sequence where these results hold is
a sequence where the density is a series approximation fJ of a density fXZ corresponding
to a complete distribution. The first and third parts of Theorem A1 show size control over
distributions which do not yield consistency, among others all fixed distributions for which
diam(I0(P)) > 0.
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For a fixed ε, the rate conditions of parts 1–3 of Theorem 1 are satisfied if(
J

cn
�
cn

n

)
→ 0 and

(
n

J2r+1 �
n

J2s̄+1 �
J2

n

)
→ 0� (S1)

and if r ≥ 2, feasible choices are cn = J ln(n) and J = na, where a ∈ (1/5�1/2). In this
case, P(nT̂ ≥ cn) → 1 for any complete distribution. Thus, as long as ε converges to
0 slowly enough, the rate conditions in (S1) together with Assumptions 1–5 imply that
supP∈P P(‖ĝ − g0‖c ≥ ε�nT̂ ≥ cn) → 0 and P(nT̂ ≥ cn) → 1 for a large class of complete
distributions. The only complete distributions for which the test then does not reject with
probability approaching 1 are the ones for which ajk → 0 as j�k → ∞ extremely rapidly.
For those distributions, ‖ĝ−g0‖c

p→ 0 very slowly, and if the rate of convergence is slower
than ε, the test rejects with probability approaching 0.

S.1.1. Proof of Theorem A1

For all P ∈ P with diam(I0(P)) ≥ ε, there exists a function g with S0(g) = 0, ‖g‖c = 1,
and ‖g‖s ≤ (2C/ε). Let gJ be the series approximation of such a function. Assumption 5
implies that gJ/‖gJ‖c ∈ ḠJ(ε). Now from arguments analogous to those in the proof of the
first part of Theorem 1, it follows that for all n large enough,

sup
P∈P0:diam(I0(P))≥ε

P(nT̂ ≥ cn) ≤ sup
P∈P0:diam(I0(P))≥ε

P
(
2
∥∥√

n(Â−A)h
∥∥2 + 4C2

fConJ
−2r ≥ cn

)

≤ sup
P∈P0:diam(I0(P))≥ε

P

(∥∥√
n(Â−A)h

∥∥2 ≥ 1
4
cn

)

≤ 4Jσ2

ε2cn
�

For the second part, let h ∈ R
J be the coefficients of the series expansion of a gJ ∈ ḠJ(ε)

with ‖gJ‖c = 1 and notice that ‖Âh‖2 ≥ 3
4‖Ah‖2 − 3‖(Â−A)h‖2. Also

‖Ah‖2 =
(∫

fJ(x� z)gJ(x)

)2

dz ≥ κJ(P�ε)�

For Pn, there exists n large enough such that 1
4nκJ(Pn�ε) ≥ cn. Thus, very similarly as in

the proof of Theorem 1, for all n large enough,

Pn(nT̂ ≥ cn) ≥ Pn

(
3
4
nκJ(Pn�ε)− 3Co

J∑
j=1

J∑
k=1

(√
n(âjk − ajk)

)2 ≥ cn

)

≥ Pn

(
1
2
nκJ(Pn�ε)≥ 3Co

J∑
j=1

J∑
k=1

(√
n(âjk − ajk)

)2

)

≥ 1 − 6J2CoCd

nκJ(Pn�ε)
�

The last part follows identical arguments as the ones in the proof of Theorem 1.
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S.2. CONSERVATIVE BOOTSTRAP TO SELECT cn

In this section, I informally outline a bootstrap procedure, which is conservative, but
also uniformly valid, and it yields consistency against fixed alternatives under suitable
assumptions. This result provides guidance about how cn could be chosen in practice.
Let H0 : diam(I0(P)) ≥ ε for a fixed ε > 0. For all P ∈ P0, there exists a function g with
S0(g) = 0, ‖g‖c = 1, and ‖g‖s ≤ (2C/ε). Let gJ be the series approximation of such a
function. Assumption 5 implies that gJ/‖gJ‖c ∈ ḠJ(ε). Let h̄ ∈ R

J be the vector contain-
ing the coefficients of this normalized series approximation and let ĥ ∈ R

J be the vector
corresponding to the minimizer of the test statistic. Then, under assumptions similar to
those in Sections 3, the arguments of the proof of Theorem 1 imply that

sup
P∈P0

P
(
n‖Âh̄‖2 ≤ C̄J2 ln

(
ln(n)

)) → 1�

Moreover, since n‖Ah̄‖ → 0, we then get, that uniformly over P ∈P0 and for all t > 0,

P(nT̂ ≤ t)≥ P
(
n‖Âh̄‖2 ≤ t

) = P
(
n
∥∥(Â−A)h̄

∥∥2 ≤ t
) + o(1)�

Let A∗ be the bootstrap analog of Â. The proposed conservative critical value tα is the
number that satisfies

min
gJ∈ḠJ (ε):‖gJ‖c=1�n‖Âh‖2≤n‖Âĥ‖2+C̄J2 ln(ln(n))

P∗(n∥∥(
A∗ − Â

)
h
∥∥2 ≤ tα

) = 1 − α�

The intuition for this procedure is that the test statistic is the minimum of some objec-
tive function over a class of functions and the population minimizer might not be unique.
If we knew one of the minimizers, namely h̄ above, then a conservative critical value
could be constructed based on the 1 − α quantile of n‖(A∗ − Â)h̄‖2. While h̄ is un-
known, we know that it satisfies n‖Âh̄‖2 ≤ C̄J2 ln(ln(n)) with probability approaching 1.
Hence, taking the largest 1 − α quantiles of n‖(A∗ − Â)h‖2 for all suitable h such that
n‖Âh‖2 ≤ C̄J2 ln(ln(n)) yields a (larger) conservative critical value as well. A remaining
complication is now that under a fixed alternative, there might not exist a vector h with
n‖Âh‖2 ≤ C̄J2 ln(ln(n)). Contrarily, the constraint n‖Âh‖2 ≤ n‖Âĥ‖2 + C̄J2 ln(ln(n)) is
always satisfied for h = ĥ and hence a feasible solution always exists. Finally, notice that
tα is smaller than the 1 −α quantile of maxgJ∈ḠJ (ε):‖gJ‖c=1 n‖(Â−A)h‖2. The arguments in
the proof of Theorem 1 imply that this quantile is bounded above by tα�uJ2, where tα�u does
not depend on P . These arguments also show that nT̂ diverges at rate n when κ(P�ε) > 0.
When J2/n→ 0, the bootstrap critical value therefore still yields consistency against fixed
alternatives with κ(P�ε) > 0.

I next outline why this critical value controls size uniformly. Since

sup
P∈P0

P
(
n‖Âh̄‖2 ≤ CJ2 ln

(
ln(n)

)) → 1�

it follows that

sup
P∈P0

P∗(n∥∥(
A∗ − Â

)
h̄
∥∥2 ≤ tα

) ≥ 1 − α+ op(1)�
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Notice that {M ∈ R
J×J : ‖Mh‖2 ≤ t} is a convex set for all t > 0. The results in Bentkus

(2003) can therefore be used to show that under suitable assumptions,

sup
P∈P0

sup
t≥0

∣∣P∗(n∥∥(
A∗ − Â

)
h̄
∥∥2 ≤ t

) − P
(
n
∥∥(Â−A)h̄

∥∥2 ≤ t
)∣∣ = op(1)�

It follows that uniformly over P ∈P0,

P(nT̂ ≤ tα)≥ P
(
n
∥∥(Â−A)h̄

∥∥2 ≤ tα
) + o(1)≥ 1 − α+ o(1)�

and therefore

lim sup
n→∞

sup
P∈P0

P(nT̂ ≥ tα)≤ α�

Finally, notice that when α→ 0, we obtain a diverging critical value cn = tα and

sup
P∈P0

P(nT̂ ≥ cn)→ 0�

Hence, cn constructed in this way can be used to obtain the results in Theorem 1. While
there is still ambiguity about how to choose a small α for a given sample size, the resulting
critical value has an intuitive interpretation because it provides a uniformly valid upper
bound for the rejection probability under the null. Moreover, the choice also automati-
cally adapts to rescaling the data.

The critical value depends on ε, but the arguments above imply that the critical value
with ε = 0, which can be obtained by simply dropping the constraint gJ ∈ Ḡ(ε), is a valid
and conservative critical value for all ε > 0. This critical value can be used for the proce-
dure suggested in Section 3.5, which discusses the estimator ε̂.

S.3. ADDITIONAL EXPLANATIONS OF ASSUMPTIONS

S.3.1. Compact Function Spaces

The most commonly used consistency norms are the L2-norm, (
∫
g(x)2 dx)1/2, and the

sup-norm, supx |g(x)|. Suppose that the consistency norm is the L2-norm. Then, as shown
in Section 3.2, a convenient choice for the strong norm ‖ · ‖s is the Sobolev norm

‖g‖s =
√ ∑

0≤λ≤m

∫ (
Dλg(x)

)2
dx�

where m ≥ 1 and Dλ denotes the λ weak derivative of the function g(x). If instead the
consistency norm is the sup-norm, one could either use the Sobolev norm above or the
Hölder norm

‖g‖s = max
0≤|λ|≤m

sup
x∈(0�1)

∣∣∇λg(x)
∣∣ + sup

x1�x2∈(0�1)�x1 �=x2

∣∣∇mg(x1)− ∇mg(x2)
∣∣

|x1 − x2|ν �

where ∇λg(x) denotes the λ derivative of the function g(x), and 0 < ν ≤ 1. In the first
case G is a Sobolev space, while in the second case G is a Hölder space. Similarly to the
strong norm, the consistency norm could also be defined using derivatives of higher order.

In all these cases, it can be shown that G is compact under ‖ · ‖c . See Freyberger and
Masten (2015) for an overview of the compactness results. Moreover, it is easy to see that
with these choices, ‖g‖2

c ≥ ∫
g(x)2 dx.
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S.3.2. Example of Norm Bounds

One assumption which is maintained throughout the paper is that ‖g0‖s ≤ C. As a con-
sequence, the test involves a constraint on the strong norm and C needs to be chosen
by the researcher. I now briefly explain how this can be done in two popular examples,
namely estimation of Engel curves and demand functions.

Let X∗ be total household expenditure and let X = log(X∗). Let Y ∗ be the total ex-
penditure on a certain good, such as food, and define Y = Y ∗

X∗ , which is the expenditure
share. Let Z be the gross earnings of the head of the household. This setup was studied
by Blundell, Chen, and Kristensen (2007) and Santos (2012), among others. A reasonable
assumption is that if a household increases total expenditure by $δ, the total expendi-
ture on food does not increase by more than $δ and it does not decrease. If X∗ = X̄∗

and if we want to increase log(X̄∗) to log(X̄∗) + δ, then we need to increase X∗ by
X̄∗(exp(δ) − 1). Then the total expenditure is X̄∗ exp(δ) and expenditure on food is not
more than Y ∗ + X̄∗(exp(δ)− 1) and not less than Y ∗. Therefore, it can be shown that the
derivative of the Engel curve is bounded in absolute value by 1.

If X ∈ [a�b], we can use the regressor (X−a)/(b−a) ∈ [0�1]. Then supx |g′
0(x)| ≤ b−a

and clearly supx |g0(x)| ≤ 1. Let

‖g0‖s = sup
x∈(0�1)

∣∣g0(x)
∣∣ + sup

x1�x2∈(0�1)�x1 �=x2

∣∣g0(x1)− g0(x2)
∣∣

|x1 − x2| �

Then ‖g0‖s ≤ 1 + b− a and we can choose C = 1 + b− a. If instead

‖g0‖s =
(∫ (

g0(x)
2 + g′

0(x)
2
)
dx

)1/2

�

we get ‖g0‖s ≤ √
1 + (b− a)2.

If g0(x) is a demand function, then one can use bounds on price elasticities, and bounds
on the support of quantity and price. In this way, one can obtain bounds on the derivatives
and function values of the demand function using similar arguments as above.

S.3.3. Examples Illustrating Assumptions

Assumption 1 is easy to interpret, while Assumption 2 can be verified with popular
parameter spaces, including Sobolev spaces, as shown in Section S.3.1. Assumptions 3
and 4 are discussed in Chen (2007) and hold for many popular basis functions as long
as sufficient smoothness is imposed. Notice that Assumptions 2 and 4 imply that for all
functions g ∈ G,

∞∑
j=J+1

h2
j =

∫ (
g(x)− gJ(x)

)2
dx≤ CoC

2
bJ

−2s̄ �

It follows that

h2
J+1 ≤ CoC

2
bJ

−2s̄ ≤ CoC
2
b22s̄(J + 1)−2s̄ �

In other words, since the approximation error converges to 0 quickly, the coefficients of
the series approximation have to converge to 0 quickly. Moreover, for all g with ‖g‖s ≤
(2C)/ε, we have ε

2g ∈ G and thus, ε2

4 h
2
J+1 ≤ CoC

2
b22s̄(J + 1)−2s̄.
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Finally, to obtain more intuition for Assumption 5, suppose that ‖gJ‖2
c = ∑J

j=1 h
2
j and

‖gJ‖2
s = ∑J

j=1 h
2
j (1 + bj), where bj > 0 is increasing and bj → ∞ as j → ∞. For example,

when ‖ · ‖s is the Sobolev norm, orthonormal trigonometric polynomials have this struc-
ture. Assumption 5, which could be relaxed at the expense of additional notation, says
that if ‖g‖2

s = ∑∞
j=1 h

2
j (1 + bj)≤ C2, then

J∑
j=1

h2
j (1 + bj)≤ C2 and

∞∑
j=1

h2
j

J∑
j=1

h2
j

J∑
k=1

h2
k(1 + bk)≤ C2�

The first inequality clearly holds because bj > 0. Intuitively, the series truncation leaves
out the very wiggly part of g and thus, the truncation has a smaller strong norm. The
second inequality says that this is true even after normalizing by the consistency norm. To
see why this is true, write

∞∑
j=1

h2
j

J∑
j=1

h2
j

J∑
j=1

h2
k(1 + bk) ≤

∞∑
j=1

h2
j

J∑
j=1

h2
j

J∑
k=1

h2
k(1 + bk)

∞∑
k=1

h2
k(1 + bk)

C2

=

J∑
j=1

J∑
k=1

h2
j h

2
k(1 + bk)+

∞∑
j=J+1

J∑
k=1

h2
j h

2
k(1 + bk)

J∑
j=1

J∑
k=1

h2
j h

2
k(1 + bk)+

∞∑
j=J+1

J∑
k=1

h2
j h

2
k(1 + bj)

C2

≤ C2

because bj is an increasing sequence, which implies that Assumption 5 holds.

S.4. EXTENSIONS

S.4.1. Extension to “Over-Identified” Estimation and Random Vectors

As explained in Section 3.3, the estimator is a constrained version of the “just identi-
fied” two stage least squares estimator, with regressors φj(Xi) and instruments φj(Zi) for
j = 1� � � � � J. Hence, the number of instruments is equal to the number of regressors. I now
explain that the results can easily be extended to an “over-identified” setting. Specifically,
the density could be estimated by

f̃XZ(x� z)=
J∑

j=1

K∑
k=1

âjkφj(z)φk(x)�
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where J ≥ K. Then Â becomes a J × K matrix, m̂ is a J × 1 vector, and we estimate the
K × 1 vector h by solving

ĥ= arg min
h∈RK :‖gK‖s≤C

‖Âh− m̂‖2
W �

where W is a positive definite weight matrix and ‖ · ‖W is the weighted Euclidean norm.
The corresponding test statistic is then a scaled version of

min
h∈RK :‖gK‖s≤2C�‖gK‖c=ε

‖Âh‖2
W �

Analogous results to the ones in this paper using identical arguments can be derived in
this setting as well.

Similarly, it is easy to allow for non-scalar X and Z. Returning to the “just identified”
setting with X ∈ R

d and Z ∈ R
d , φj can denote basis functions for functions in L2[0�1]d .

For example, when d = 2 and the basis functions are polynomials, φ1(x) is the constant
function, φ2(x) a linear function of x1, φ3(x) a linear function of x2, φ4(x) a linear func-
tion of x1x2, etc. Then, using the same arguments, the results in the paper still hold under
the assumptions imposed.

S.4.2. Extension to Functions on R

The analysis could be extended to functions on R by using weighted norms. In this
section, I provide the main ideas, including specific examples of norms which satisfy com-
pactness, and the test statistic. Let w(x)= e−x2 and let φj(x) be Hermite polynomials (see
e.g., Chen (2007)) so that ∫

φj(x)
2w(x)dx= 1�

and for j �= k, ∫
φk(x)φj(x)w(x)dx= 0�

Let the consistency norm be the weighted L2-norm

‖g‖c =
√∫

g(x)2w(x)dx�

Then, for every function g for which
∫
g(x)2w(x)dx <∞, we can write

g(x) =
∞∑
j=1

hjφj(x)�

where hj ≡ ∫
g(x)φj(x)w(x)dx. Moreover, if fXZ(x� z) is square integrable, we can write

fXZ(x� z)=
∞∑
j=1

∞∑
k=1

ajkφj(z)φk(x)�
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where ajk = ∫
fXZ(x� z)φj(z)φk(x)w(x)w(z)dx. Hence, we can estimate ajk by

âjk = 1
n

n∑
i=1

φj(Zi)φk(Xi)w(Zi)w(Xi)

and fXZ by

f̂XZ(x� z)=
J∑

j=1

J∑
k=1

âjkφj(z)φk(x)�

Now let

S0(g) =
∫ (∫

g(x)fXZ(x� z)w(x)dx

)2

w(z)dz

=
∫ (∫

g(x)w(x)1/2fXZ(x� z)w(x)1/2w(z)1/2 dx

)2

dz�

It can be shown that S0(g) is continuous in g under ‖ · ‖c as long as fXZ(x� z) is bounded.
With this choice of the consistency norm, we get a compact parameter space for example
if

‖g‖s =
√∫ ∑

0≤λ≤m

(
Dλg(x)

)2
w̃(x)dx�

where w̃(x)= (1+x2)−δ for any δ > 0 and Dλg(x) denotes the λ weak derivative of g. See
Freyberger and Masten (2015) for the formal compactness result, which builds on results
of Gallant and Nychka (1987). With these norms, we can define the parameter space just
as before. Since we would assume that ‖g0‖s ≤ C, g0 could be unbounded and it could
have unbounded derivatives.

Due to continuity of S0(g) and compactness of the parameter space, it again holds
that κ(P�ε) > 0 for every complete distribution and all ε > 0. This result, combined with
similar assumptions as those in this paper, can be used to link the outcome of the test to
properties of the estimator.
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