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We study the design of optimal mechanisms when the designer is uncertain both
about the form of information held by the agents and also about which equilibrium will
be played. The guarantee of a mechanism is its worst performance across all informa-
tion structures and equilibria. The potential of an information structure is its best per-
formance across all mechanisms and equilibria. We formulate a pair of linear programs,
one of which is a lower bound on the maximum guarantee across all mechanisms, and
the other of which is an upper bound on the minimum potential across all information
structures. In applications to public expenditure, bilateral trade, and optimal auctions,
we use the bounding programs to characterize guarantee-maximizing mechanisms and
potential-minimizing information structures and show that the max guarantee is equal
to the min potential.

KEYWORDS: Mechanism design, information design, public expenditure, optimal
auctions, max-min, Bayes correlated equilibrium, robustness.

1. INTRODUCTION

1.1. Motivation

IN THE STANDARD MODEL OF BAYESIAN MECHANISM DESIGN, the designer is assumed
to know the precise form of the agents’ private information about payoff-relevant states
of the world, specified as an information structure. As is well known, the predictions of
the model may depend on fine details of the information structure.1 There are settings in
which the information structure corresponds to objects in the world that an analyst could
conceivably observe and measure. But more often, the information structure is an abstract
“as-if” representation of agents’ thought processes and preferences. This representation
is conceptually appealing and also disciplines our modeling of behavior under incomplete
information. But the abstract and artificial nature of the information structure is problem-
atic, insofar as it is not something that we should expect a real-world mechanism designer
to know with any confidence, and the dependence of the theory on the particulars of the
information structure limit its practical usefulness.

A distinct issue is that many theories of Bayesian mechanism design assume that the de-
signer can coordinate the agents on the designer’s preferred equilibrium. In some cases,
the mechanisms suggested by the theory have equilibria that are both normatively de-
sirable and compelling as a positive prediction. But in other cases, the theory leads to
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mechanisms that are vulnerable to the agents coordinating on equilibria that are bad for
the designer (such as low revenue “bidding ring” equilibria of second-price auctions). Ex-
isting methodologies for ruling out such undesirable equilibria often involve theoretically
valid but impracticable constructions, such as integer games.

In this paper, we propose a new framework for informationally-robust mechanism de-
sign that does not depend on the precise structure of agents’ private information or on
which equilibrium will be played. The designer only specifies the distribution of the un-
derlying payoff-relevant states. The guarantee of a mechanism is its lowest performance
across all equilibria and all common prior information structures for which the marginal
on states matches the designer’s prior. We characterize mechanisms that maximize the
guarantee. Such mechanisms provide the best possible lower bound on performance,
given these minimal assumptions about information and behavior.

In parallel, we also study information structures that are especially challenging for the
designer: The potential of an information structure is maximum performance across all
mechanisms and equilibria. We characterize information structures that minimize the po-
tential. Such information structures can be used to certify that a mechanism maximizes
the guarantee. In particular, given a mechanism and information structure, if the associ-
ated guarantee and potential are equal, then they are also equal to the max guarantee and
the min potential. A further reason for analyzing potential-minimizing information struc-
tures is that they represent the environments that guarantee-maximizing mechanisms are
guarding against. The plausibility of these environments is important for assessing the
value of this particular kind of robustness.

1.2. Results

Our first main result, Theorem 1, describes a pair of bounding linear programs, one of
which lower bounds the max guarantee, and the other of which upper bounds the min po-
tential. The programs are parameterized by a finite number of actions in the mechanism
or signals in the information structure. The bounds are obtained from the max guarantee
and min potential programs by fixing an arbitrary order on actions or signals, dropping
equilibrium constraints that are non-local with respect to that order, and choosing units
for actions or signals so that the Lagrange multiplier on local constraints is normalized
to 1. The interest in these programs stems primarily from the fact that for a number of
applications, the bounds turn out to be tight, in the sense that difference between the op-
timal value of the bounding programs goes to zero as the number of actions and signals
grows large. A fortiori, for these applications, max guarantee is equal to min potential.
Moreover, whenever the bounds are tight, the solutions to the bounding programs are
approximate guarantee maximizers and approximate potential minimizers.

The structure of the bounding programs also sheds light on the essential properties
of guarantee-maximizing mechanisms and potential-minimizing information structures.
Given an information structure, we define a new object associated with each signal pro-
file and outcome, which we term the informational virtual objective. This is the designer’s
objective less information rents accruing to the agents’ from the ability to mimic nearby
(lower) types. In the special case of revenue maximization from the sale of private goods,
the informational virtual objective coincides with the “virtual value” familiar from the
theory of optimal auctions (Myerson (1981)). The upper bounding program is simply
choosing the information structure to minimize the expectation (across signals) of the
highest (across outcomes) informational virtual objective.
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Analogously, given a mechanism, an action profile, and a payoff-relevant state, the
strategic virtual objective is the designer’s objective plus a strategic adjustment term com-
ing from the agents’ ability to deviate to nearby (higher) actions. The lower bounding
program is simply choosing the mechanism to maximize the expectation (across states) of
the lowest (across action profiles) strategic virtual objective.

The upshot is that when the bounding programs are tight, what makes a mechanism
robust in terms of the guarantee is that it achieves a favorable expected lowest strategic
virtual objective, and what makes an information structure unfavorable in terms of the
potential is that it depresses the expected highest informational virtual objective.

An issue that is of fundamental importance to this theory is whether or not the bounds
are tight. We show that the bounding programs are “almost” a dual pair, in the sense that
the dual of the upper bound program has the same form as the lower bound program, but
with a subtly modified virtual objective. The key differences are that in the lower bound,
the relevant equilibrium constraints point away from the action with the relevant partici-
pation constraint, whereas in the upper bound, the relevant equilibrium constraints point
towards the type with the relevant participation constraint. Also, there is an important
difference in how we model participation: in the lower bound, we impose a novel condi-
tion on mechanisms that we call participation security—each agent must have an action
that guarantees them a payoff greater than their outside option, analogous to bidding
zero in an auction—whereas for the upper bound, we impose the usual constraint that in-
terim utility is greater than the outside option. Thus, whether or not the bounds are tight
is related to whether the solutions are sufficiently smooth—so that the direction of local
equilibrium constraints is immaterial—and whether or not the two forms of participation
constraint are equivalent.

We apply our framework to two classic problems in mechanism design: public goods
provision and optimal auctions. The application to public goods is fully developed in
Brooks and Du (2023); in the present paper, we simply outline the results, as they relate
to the bounding programs. In the public goods problem, the mechanism determines ex-
penditure on a public good, subject to budget balance and participation constraints. The
designer’s goal is to maximize social surplus. (The two-agent version of this model can
be reinterpreted as a model of bilateral trade, thus showing that our methodology can be
fruitfully applied to that problem as well.) We use the bounding programs to construct a
saddle point consisting of a guarantee-maximizing mechanism and a potential-minimizing
information structure.

We then turn attention to revenue maximization in multi-good auctions. Our main re-
sult for that section, Theorem 2, shows that for this class of problems, the bounds are
always tight. Theorem 2 also reveals additional structure of the bounding programs, in
particular why it is suboptimal for the designer to use mechanisms that are discontinu-
ous in the limit infinitely many actions. Theorem 2 is a kind of strong duality theorem:
Even though the argument is non-constructive, it gives us assurance that the bounds are
tight, thereby motivating us to solve for solutions to the bounding programs. We also ap-
ply the bounding programs to characterize revenue guarantee-maximizing mechanisms
for a new class of environments, where the designer knows the empirical distribution of
agents’ values, but does not know which agent has which value. Collectively, these appli-
cations and our prior work demonstrate the utility of the bounding programs for solving
informationally-robust mechanism design problems.
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1.3. Related Literature

This paper builds on prior work on revenue maximization from the sale of a single good
(Bergemann, Brooks, and Morris (2016), Du (2018), Brooks and Du (2021a,b)). These
papers used similar bounding methodology to solve for guarantee-maximizing mecha-
nisms and potential-minimizing information structures. The contribution of this paper is
to explicitly describe and to generalize the bounding methodology, to show that it can be
fruitfully applied in diverse applications, and to prove non-constructively that the bounds
are tight for optimal auction design with multiple goods and interdependent values.2

We also contribute to the large literature on robust mechanism design. Much of this lit-
erature has attempted to relax the assumption of common knowledge of the information
structure on the part of the agents by adopting stronger implementation concepts, most
prominently ex post implementation. When restricting to direct mechanisms, this requires
truthful reporting to be optimal regardless of agents’ beliefs.3 Ex post implementation
does not address our primary concern, which is that the standard model requires the de-
signer to have an implausibly detailed description of the informational environment. In
particular, to provide ex post incentives, the designer still has to know the possible signals
of the agents and how they are related to the agents’ and designer’s preferences.4 More-
over, ex post implementation entails the restrictive assumption that the outcome of the
mechanism cannot vary with agents’ beliefs, even when such variation might be acceptable
or even desirable.5

Our work is also related to the literature on full implementation, pioneered by Maskin
(1999). Serrano and Vohra (2010) provided necessary and sufficient conditions for full
implementation in mixed-strategy Bayes Nash equilibrium, meaning that there exists a
mechanism for which a given social choice set is precisely the set of social choice func-
tions that are induced in some equilibrium.6 This approach may be contrasted with partial

2He and Li (2022) also studied robust revenue maximization in private value auctions, but looked for ro-
bustness with respect to the correlation between agents’ values rather than information per se. In contrast,
the application of our framework to auctions allows for values to be interdependent, and we hold the joint
distribution of values fixed throughout (although it is straightforward to extend our theory to one where the
guarantee is over a set of value distributions).

3Ex post implementation is equivalent to dominant strategy implementation when values are private (Das-
gupta, Hammond, and Maskin (1979), Chung and Ely (2007), Yamashita (2016), Chen and Li (2018), Che
(2020), Bachrach, Chen, Talgam-Cohen, Yang, and Zhang (2022)).

4For example, in their classic paper on ex post implementation, Bergemann and Morris (2005) restricted
attention to a class of information structures parameterized by a collection of “payoff types.” They assumed
that agents know their own payoff types, which collectively capture everything about the environment that is
payoff-relevant to the agents and the designer.

5Chung and Ely (2007) and Bergemann and Morris (2005) gave conditions under which a designer would
not benefit from having the implemented outcome depend on agents’ beliefs. Our view is that these conditions
are quite demanding, and they suggest that the range of applications to which ex post implementation can be
fruitfully applied may be quite limited. In the auction context, Chung and Ely (2007) required a generalized
form of regularity à la Myerson (1981). Yamashita and Zhu (2018) and Chen and Li (2018) provided analogous
conditions for more general environments. Bergemann and Morris’s (2005) result relies on a “separability”
condition: the designer is flexible only with respect to agent-specific dimensions of the outcome (e.g., transfers),
there are no joint feasibility restrictions across agents, and each agent cares only about their own dimension.
Relatedly, Jehiel, Meyer-ter-Vehn, Moldovanu, and Zame (2006) showed that in generic environments with
multidimensional types, only constant mechanisms are ex post implementable.

6A superficial difference between our model and the Bayesian full implementation literature is that the
latter typically considers a single information structure, with a fixed set of signals. Only interim beliefs are
specified, and the prior over the whole information structure plays no role in the question of which social
choice sets can be fully implemented. Setting significant technical details aside, we can view this single “grand”
information structure as the disjoint union of the information structures considered in our model.
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implementation, described in our opening paragraphs, where the designer only asks for
a given social choice function to be implemented in one equilibrium. The mechanisms
that we construct are, of course, implementing some social choice set, which must satisfy
the conditions of Serrano and Vohra (2010). Moreover, the mechanism’s guarantee is the
minimum expected payoff over all elements of the social choice set and common priors
with the correct marginal over states.

Our approach represents a middle ground between the literatures on full implemen-
tation and partial implementation. We share the concern that is central in the full im-
plementation literature about how performance varies across environments and equi-
libria. But like the partial implementation literature, we derive the implemented social
choice set from primitive preferences of the designer, under the retained assumption of
a common prior that is shared between the designer and the agents. Also, the guarantee-
maximizing mechanisms end up being tailored to the potential-minimizing information
structures, which often have a great deal of structure that is inherited by the mechanism,
and vice versa. In deriving mechanisms that are optimal at the potential minimizer, we
obtain relatively natural looking mechanisms, with meaningfully ordered actions, remi-
niscent of classical results in partial implementation, such as Myerson (1981). However,
the mechanisms that we derive are not tied to an exogenously given language for types,
nor do they require the agents to explicitly report their higher-order beliefs or the infor-
mation structure itself (even though this is allowed in our model). This is a desirable and
emergent feature of our theory.7 But in spite of the focus on potential minimizers, we can
still partially characterize the performance of these mechanisms in other environments
and equilibria.

The rest of this paper proceeds as follows. Section 2 describes our model. Section 3
presents our main results on the bounding linear programs. Section 4 is an application to
the public expenditure problem and bilateral trade. Section 5 develops our tightness re-
sults for revenue maximization with multiple private goods. Section 6 solves a special case
of revenue maximization with a single good where the empirical distribution of values is
known. Section 7 concludes the paper with a discussion of our assumptions and direc-
tions for future research. Appendix A contains additional theoretical results and omitted
proofs, and Supplemental Appendix B (Brooks and Du (2024)) contains further results
and numerical examples.

2. MODEL

There is a mechanism designer and a finite group of agents indexed by i ∈ {1� � � � �N}.
The designer controls an outcome ω ∈ �, where � is finite. The designer and the agents
have expected utility preferences over outcomes. In particular, the preferences of agent
i = 1� � � � �N over outcomes and states are represented by the utility index ui(ω�θ), which
depends on a payoff-relevant state of the world θ ∈ �, where � is also finite. The de-
signer’s preferences are similarly represented by the utility index w(ω�θ). The designer
has a prior belief about θ, denoted μ ∈ �(�), which is held fixed throughout our analysis.8

7The focus on potential-minimizing information structures also means that the guarantee-maximizing mech-
anisms that we describe look very different from the mechanisms used in the full implementation literature,
which generally require the agents to report their signals in a grand information structure, in addition to send-
ing auxiliary messages that are used to kill off undesirable mixed equilibria, for example, integer games. The
reporting of signals in a grand information structure is antithetical to our goal of building a theory of mecha-
nism design that is not dependent on a complex and artificial language for private information.

8We do not assume that μ(θ) > 0 for all θ ∈ �, although this assumption will later be imposed for The-
orem 2. The distinction between � and the support of μ allows the participation security condition to be
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Each agent could choose not to participate in the designer’s mechanism and receive a
certain state-dependent payoff. We normalize this outside option to zero and interpret
agent i’s utility as their payoff net of the outside option.

The agents’ private information about θ is described by an information structure, which
consists of: a finite product set of signal profiles S = ∏

i Si,9 where Si is agent i’s set of
signals, and a joint distribution σ ∈ �(S ×�) for which the marginal on � is μ. An infor-
mation structure is denoted I = (S�σ), and I is the set of information structures.10

The designer commits to a mechanism, which consists of: a finite product set of ac-
tion profiles A = ∏

i Ai, where Ai is agent i’s set of actions, and an outcome function
m : A → �(�) that maps action profiles to lotteries over outcomes. An action ai ∈ Ai is
participation secure if

∑
ω ui(ω�θ)m(ω|ai� a−i) ≥ 0 for all a−i and θ. A mechanism is par-

ticipation secure if every agent has an action that is participation secure. We will restrict the
mechanism designer to use only mechanisms that are participation secure. This ensures
that, regardless of the information structure and other agents’ strategies, no agent will
have a strict incentive to exit the mechanism, since they can always play a participation-
secure action and receive a weakly higher payoff than their outside option. A mechanism
is denoted by M = (A�m), the set of all mechanisms is M, and the set of participation-
secure mechanisms are M∗. We assume that a participation-secure mechanism exists.

A mechanism and an information structure (M�I) together define a Bayesian game,
in which a (behavioral) strategy for agent i is a mapping bi : Si → �(Ai). A strategy pro-
file b = (b1� � � � � bN) is identified with the function from S to �(A) defined by b(a|s) =∏

i bi(ai|si). Expected utility for agent i is

Ui(M�I�b) =
∑

θ�s�a�ω

ui(ω�θ)m(ω|a)b(a|s)σ (s� θ)�

and the designer’s welfare is

W (M�I�b) =
∑

θ�s�a�ω

w(ω�θ)m(ω|a)b(a|s)σ (s� θ)�

A strategy profile b is a (Bayes Nash) equilibrium of (M�I) if Ui(M�I�b) ≥ Ui(M�I�b′
i�

b−i) for all i = 1� � � � �N and b′
i. The set of equilibria is E (M�I), which we note is always

non-empty, since the mechanism and information structure are both finite.
The guarantee of a mechanism M is

G(M) = inf
I∈I

inf
b∈E(M�I)

W (M�I�b)�

that is, the infimum welfare of the designer across all information structures and equilib-
ria. The potential of an information structure I is

P(I) = sup
M∈M∗

sup
b∈E(M�I)

W (M�I�b)�

formulated independently of the prior. In Brooks and Du (2023), we allow for the designer to have a set of
priors, which need not all have the same support.

9Throughout our exposition, a sum or a product with respect to a variable without qualification means that
the operation should be applied for all values of the variable. In this case, the product is over all i, that is,
i = 1� � � � �N .

10The set of (finite) information structures is defined by identifying finite sets of signals with finite subsets
of the natural numbers. Likewise for the set of (finite) mechanisms.
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that is, the supremum welfare of the designer across all participation-secure mechanisms
and equilibria. It is immediate that for any M ∈ M∗ and I ∈ I , G(M) ≤ P(I). The pur-
pose of this paper is to study mechanisms that maximize the guarantee and information
structures that minimize the potential, that is, solutions to the programs

sup
M∈M∗

G(M) = sup
M∈M∗

inf
I∈I

inf
b∈E(M�I)

W (M�I�b)� (MAX-G)

inf
I∈I

P(I) = inf
I∈I

sup
M∈M∗

sup
b∈E(M�I)

W (M�I�b)� (MIN-P)

We illustrate these definitions with an application to the public expenditure problem:
Designer chooses the total expenditure E ∈ [0�1] on a public good. The designer must
balance the budget, and therefore chooses the contribution ei ≥ 0 of each agent i, with∑

i ei = E. Agent i’s value from a unit of expenditure is θi ≥ 0, and the utility index
of agent i is ui = θiE − ei. The designer’s objective is to maximize utilitarian welfare:
w = (

∑
i θi − 1)E. The designer can choose any participation-secure mechanism, which

maps actions to individual contributions. We can embed this problem in our framework by
setting � ⊂ R

N
+ and � ={0�1� � � � �N}, where ω = 0 is the outcome that E = 0, and ω 	= 0

is the outcome that eω = E = 1, that is, agent ω contributes the full expenditure. Thus,
we can interpret E(a) = 1 − m(0|a) as the (expected) total expenditure implemented by
the designer, and ei(a) = m(i|a) is agent i’s (expected) contribution. We assume that for
every i there exists a θ ∈ � such that θi = 0, so that participation security is equivalent to
the existence of an action 0 for which ei(0� a−i) = 0 for all a−i, that is, the good may be
produced but agent i refuses to bear any part of the cost. We return to this application in
Section 4, where we informally derive guarantee-maximizing mechanisms and potential-
minimizing information structures. (The problem is treated rigorously in Brooks and Du
(2023).)

Another application is the optimal auctions problem: There are L goods for sale, in-
dexed by l = 1� � � � �L. The set of value profiles is given by a finite set � ⊂ R

NL
+ , with θi�l

being agent i’s value for good l. We further assume that μ(θ) > 0 for all θ ∈ �, and for
every i, there is a θ ∈ � with θi�l = 0 for all l. The outcome consists of an allocation of each
good to one of the agents (or withholding the good) and also a transfer that each agent
i pays to the mechanism. We write qi�l for the likelihood that agent i is allocated good
l and ti for agent i’s transfer. The allocation satisfies qi�l ≥ 0 for all i, l and

∑
i qi�l ≤ 1

for all l, and the transfers are unrestricted. Each agent i has quasilinear-additive utility
ui = ∑

l θi�lqi�l − ti, and the designer’s payoff is revenue w = ∑
i ti. In the special case

where L = 1, we will drop the l subscript on the values and allocations. Because of our
assumption that values could be zero for all goods, participation security is equivalent to
requiring that each agent i has an action 0 such that ti(0� a−i) ≤ 0 for all a−i.11

The allocation q can be mapped into our formalism in a similar manner as with the
public expenditure problem, where the designer chooses between the finitely many al-
ternatives of whether to withhold the good or to allocate to one of the agents. We can
also embed the transfers by fixing a large maximum transfer t and interpreting ti as the
expectation of a lottery on {−t� t}. Our analysis in Section 5 will in fact work with the
cleaner limit model where ti is unrestricted, to which our main results readily generalize
(and which we prove formally in Supplemental Appendix B.2).

11In Section 5, we will actually work with an even stronger form of participation security that requires
ti(0� a−i) = 0 for all a−i , which makes our tightness result Theorem 2 even stronger as well.
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The single-good version of the optimal auctions problem was studied by Bergemann,
Brooks, and Morris (2016), Du (2018), and Brooks and Du (2021b) in the case of common
values (where θ1�1 = · · · = θN�1) and by Brooks and Du (2021a) where each agent has a
known expected value for the good. In Section 6, we solve the single-good problem when
the empirical distribution of the agents’ values is known, but it is unknown which agent
has which value.

3. THE BOUNDING PROGRAMS

We now derive the bounding linear programs and state our first result, Theorem 1,
which asserts that these programs do indeed provide a lower bound on the max guarantee
and an upper bound on the min potential. A discussion follows.

3.1. Deriving the Bounding Programs

3.1.1. Preliminaries

The bounding programs are parameterized by a set which will represent actions in a
mechanism for the lower bound and signals in an information structure for the upper
bound. Specifically, for each i and k ∈ N, the set of actions/signals of a given agent is

Xi(k) =
{
l

k

∣∣∣0 ≤ l ≤ k2� l ∈ N

}
�

and X(k) = ∏
i Xi(k) is the set of action/signal profiles. Note that Xi(k) has k2 + 1 ele-

ments. As k goes to infinity, the number of actions and signals becomes arbitrarily large,
and “fills in” the non-negative real line.

At this point, the labels for actions/signals are completely arbitrary. But they will ac-
quire a meaning when we use the natural order on Xi(k) to construct a particular lower
bound on the guarantee for a mechanism and a particular upper bound on the potential
for the information structure.

3.1.2. The Lower Bound

We first describe how this works for the lower bound. To start, we will lower bound the
max guarantee by constraining the designer to only use mechanisms for which X(k) is the
message space and for which the lowest action 0 ∈ Xi(k) is participation secure. Let Mk

be the set of mechanisms defined on the action space X(k), and let M0
k be the subset of

Mk that satisfy ∑
ω

ui(ω�θ)m(ω|0�x−i) ≥ 0 ∀i� θ�x−i�

In words, M0
k is the set of mechanisms defined on X(k) for which the action 0 ∈Xi(k) is

participation secure for each agent i. With a slight abuse of the notation, we identify Mk

with the associated set of outcome functions m :X(k) → �(�), and and likewise for M0
k.

In the lower bound program, the designer can only use mechanisms in M0
k. By itself,

this is only a substantive restriction in that it bounds the cardinality of the action space.
Now, the guarantee of such a mechanism is the minimum welfare of the designer across all
information structures and equilibria. As is well known, in computing the optimal value
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of this information design problem, it is without loss to restrict attention to Bayes cor-
related equilibria (Bergemann and Morris (2016)): These are “direct recommendation”
information structures, in which each agent’s signal is a recommended action, and the
joint distribution of actions and states is such that playing the recommended actions is an
equilibrium. Let Ik be the set of information structures on X(k), which (again, slightly
abusing notation) we identify with the subset of �(X(k) ×�) such that the marginal on �
is the prior μ. To compute the guarantee, we minimize over σ ∈ Ik, subject to obedience
constraints: For every agent i and “recommended” action xi ∈ Xi(k), xi must be a best
response to the conditional distribution of (x−i� θ).

Next, to obtain an even more permissive lower bound, we will make the problem of
minimizing the designer’s welfare easier by dropping all obedience constraints except
for those that are associated with deviating from an action xi to the next higher action
xi + 1/k (as long as xi < k).12 In fact, we will go one step further: rather than imposing
local upward equilibrium constraints, we minimize a Lagrangian formed by adding the
slack in the obedience constraints into the objective, weighted by a particular choice of
Lagrange multipliers. The following multipliers may seem arbitrary, but as we elaborate
on in Section 3.3.2 below, they are essentially a normalization of the units for actions in
the mechanism (given our focus on local upward obedience constraints).

To be more precise, given a function f : X(k) → R, we define the discrete upward
partial derivative ∇+

i f (x) by13

∇+
i f (x) =

{
(k− 1)

[
f (xi + 1/k�x−i) − f (x)

]
if xi < k�

0 if xi = k�
(1)

In this notation, the obedience constraint that agent i not benefit by deviating to the next
higher action is equivalent to, for all xi,∑

ω�θ�x−i

σ (xi�x−i� θ)ui(ω�θ)∇+
i m(ω|xi�x−i) ≤ 0� (2)

Adding these constraints to the designer’s objective yields the Lagrangian∑
x�θ

σ (x�θ)
∑
ω

[
w(ω�θ)m(ω|x) +

∑
i

ui(ω�θ)∇+
i m(ω|x)

]
� (3)

Thus, for any m ∈ M0
k, the minimum of (3) across all σ ∈ Ik is a lower bound on the

guarantee of (X(k)�m). But notice that the only remaining restriction on the joint distri-
bution σ is that the marginal over θ has to be μ. Hence, the σ that minimizes (3) will, for
each θ, put probability 1 on an action profile x that minimizes the inner sum over ω. We
refer to this minimand as the strategic virtual objective:∑

ω

[
w(ω�θ)m(ω|x) +

∑
i

ui(ω�θ)∇+
i m(ω|x)

]
� (4)

12In the interest of arriving at Theorem 1 sooner, we have not yet given any intuition for why this particular
relaxation should give a tight lower bound. Such an intuition is given below in Section 3.3.2.

13Given that the increment between elements in Xi(k) is 1/k, a seemingly more natural definition of a
discrete derivative would have a factor k rather than k − 1. Of course, these definitions are equivalent in the
limit as k tends to infinity, and by using k − 1 rather than k, we simplify the arguments for Theorem 2. See
Footnote 28 below.
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This is the welfare of the designer plus the sum of the agents’ gains from local upward
deviations. The lower bounding program is simply maximizing the minimum value of (3)
across all m ∈M0

k:

max
m∈M0

k

∑
θ

μ(θ) min
x

∑
ω

[
w(ω�θ)m(ω|x)

+
∑
i

ui(ω�θ)∇+
i m(ω|x)

]
� (LB-G-k)

In words, the lower bounding program is to maximize (over m ∈M0
k) the expected (over

θ) lowest (over x) strategic virtual objective. In effect, the concern is that information
could coordinate the agents on actions with a low strategic virtual objective (which may be
dependent on the state θ), and the designer chooses the mechanism in order to guarantee
that this kind of coordination will not be too harmful.

3.1.3. The Upper Bound

A parallel approach leads us to the upper bounding program. We first restrict the set
of information structures over which we minimize to those of the form (X(k)�σ) for
σ ∈ Ik. In addition, we obtain an upper bound on the potential by relaxing constraints
on the mechanism designer. In particular, we first relax participation security by only
requiring that interim expected utilities in equilibrium are non-negative, that is, interim
individual rationality. Then, by the revelation principle, it is without loss for the designer
to restrict attention to direct mechanisms, in which each agent’s action is a report of
their signal, truthful reporting is an equilibrium, and interim utilities are non-negative.
We then obtain even more permissive upper bound by dropping all individual rationality
constraints except for the lowest signal xi = 0, and by dropping all truthtelling constraints
except for those associated with a type xi > 0 mimicking the next lower type xi − 1/k.

The remaining individual rationality and truthtelling constraints can be represented
concisely by introducing a discrete downward derivative: for f :X(k) → R, we define

∇−
i f (x) =

⎧⎪⎨⎪⎩
f (k�x−i) − f (k− 1/k�x−i) if xi = k�

k
[
f (xi�x−i) − f (xi − 1/k�x−i)

]
if 0 < xi < k�

kf (0�x−i) if xi = 0�

Then individual rationality for the lowest type and local downward truthtelling constraints
are equivalent to, for all i and xi,∑

ω�θ�x−i

σ (xi�x−i� θ)ui(ω�θ)∇−
i m(ω|xi�x−i) ≥ 0� (5)

As a final step, we relax the mechanism designer’s problem even further by adding these
constraints to the objective and letting the designer maximize a Lagrangian:∑

x�θ

σ (x�θ)
∑
ω

[
w(ω�θ)m(ω|x) +

∑
i

ui(ω�θ)∇−
i m(ω|x)

]
� (6)

Again, implicit in the definition of ∇−
i is a particular choice of Lagrange multipliers, which

essentially fixes the units for signals in the information structure. Thus, an upper bound
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on the potential of an information structure of the form (X(k)�σ) is the maximum of (6)
over all m ∈Mk.

To see this maximum a bit more clearly, it is helpful to sum (6) by parts, move the
discrete downward derivative off of m, and replace it with a discrete upward derivative on
σ (the only other term that involves x). As Lemma 2 in Appendix A.1 shows, the correct
discrete upward derivative is not given by ∇+

i , but rather has a slightly different definition,
primarily regarding the boundary cases:

∇̃+
i f (x) =

⎧⎪⎨⎪⎩
−f (k�x−i) if xi = k�

f (k�x−i) − kf (k− 1/k�x−i) if xi = k− 1/k�
k
[
f (xi + 1/k�x−i) − f (x)

]
� otherwise�

(7)

Applying the summation-by-parts formula of Lemma 2, we rewrite Lagrangian (6) as

∑
x�ω

m(ω|x)
∑
θ

[
w(ω�θ)σ (x�θ) −

∑
i

ui(ω�θ)∇̃+
i σ (x�θ)

]
�

But notice that the mechanism can depend arbitrarily on x, so that the optimum will, for
each x, put probability 1 on an outcome ω that maximizes inner sum over θ. We refer to
the inner maximand as the informational virtual objective:

∑
θ

[
w(ω�θ)σ (x�θ) −

∑
i

ui(ω�θ)∇̃+
i σ (x�θ)

]
� (8)

This is welfare of the designer plus the sum of the agents’ gains from local downward
misreports, as well as the payoffs for the lowest type. The upper bounding program is
simply minimizing the maximum value of (6) over all σ ∈ Ik:

min
σ∈Ik

∑
x

max
ω

∑
θ

[
w(ω�θ)σ (x�θ)

−
∑
i

ui(ω�θ)∇̃+
i σ (x�θ)

]
� (UB-P-k)

In words, the upper bounding program is to minimize (over σ ∈ Ik) the expectation (over
x) of the highest (over ω) informational virtual objective. In effect, the designer uses
the agents’ information to select the outcome that maximizes the informational virtual
objective, and the information structure is chosen in order to limit the potential benefits
from this selection.14

3.2. Main Result

We are now ready to state the main result of this section. Given an optimization pro-
gram P , let W (P) denote its optimal value.

14In the optimal auctions problem, the informational virtual objective reduces to an interdependent values
analogue of the virtual value of Myerson (1981). See Remark 5 below.
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THEOREM 1: For all k ∈ N, we have

W (UB-P-k) ≥W (MIN-P) ≥W (MAX-G) ≥W (LB-G-k)�

Moreover,
• If m solves (LB-G-k), then G(X(k)�m) ≥W (LB-G-k).
• If σ solves (UB-P-k), then P(X(k)�σ) ≤W (UB-P-k).

The formal proof of Theorem 1 is in Appendix A.1. The steps are the same as in the
preceding derivation, but we fully write out the programs that are referenced along the
way, and we are more explicit in our invocations of duality.

REMARK 1: The programs (LB-G-k) and (UB-P-k) are presented as saddle point prob-
lems, but they are easily converted into linear programs by introducing auxiliary variables.
In particular, (LB-G-k) is equivalent to the linear program

max
m:X(k)×�→R+�

λ:�→R

∑
θ

μ(θ)λ(θ)

s.t. λ(θ) ≤
∑
ω

[
w(ω�θ)m(ω|x) +

∑
i

ui(ω�θ)∇+
i m(ω|x)

]
∀θ�x�

∑
ω

ui(ω�θ)m(ω|0�x−i) ≥ 0 ∀i� x−i� θ�

∑
ω

m(ω|x) = 1 ∀x�

(9)

Similarly, (UB-P-k) is equivalent to

min
σ :X(k)×�→R+�

γ:X(k)→R

∑
x

γ(x)

s.t. γ(x) ≥
∑
θ

[
w(ω�θ)σ (x�θ) −

∑
i

ui(ω�θ)∇̃+
i σ (x�θ)

]
∀x�ω�

∑
x

σ (x�θ) = μ(θ) ∀θ�

(10)

REMARK 2: The prior μ captures all of the designer’s uncertainty about the economy.
In our view, asking the designer to specify μ is a much more reasonable task than spec-
ifying an entire information structure. Even so, a designer may be concerned about mis-
specification of μ. Proposition 4 in Supplemental Appendix B.1.2 shows that if we fix
a mechanism M = (X(k)�m) and λ that solve (9) at μ and then change the prior to
μ′, then the associated lower bound on the guarantee for M can decrease by at most∑

θ λ(θ)[μ(θ) −μ′(θ)]. In that sense, the model is robust to misspecification of the prior.

3.3. Discussion

The remainder of this section provides further results and commentary on the bounding
programs. In particular, we discuss whether and when the bounding programs will be
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tight, a deeper explanation of why we focus on local equilibrium constraints, and the
connection to the literature. This material is not necessary to understand our subsequent
applications.

3.3.1. Tightness of the Bounds and Approximate Duality

We say that the bounds are tight if

lim
k→∞

W (UB-P-k) −W (LB-G-k) = 0�

There is a duality gap if W (MIN-P) > W (MAX-G). Importantly, while Theorem 1 as-
serts that the bounding programs are in fact bounds for the max guarantee and the min
potential, it does not assert that the bounds are tight. But if the bounds are tight, then
there is no duality gap, and max guarantee is equal to min potential. In that case, by
solving (LB-G-k) and (UB-P-k) for k sufficiently large, one can obtain arbitrarily good
approximations of the max guarantee and min potential, and associated almost guarantee-
maximizing mechanisms and almost potential-minimizing information structures. More-
over, these approximate solutions have the property that there is a linear order on actions
and signals, and the only relevant equilibrium constraints are those that are local in that
order. Also, participation security is imposed only on the lowest action, and participation
constraints are imposed only on the lowest type. We will give examples where the bounds
are tight in Sections 4 and 6, and sufficient conditions for the bounds to be tight in Sec-
tion 5. In these applications, the one-dimensionality of actions/signals is associated with
very particular forms for guarantee-maximizing mechanisms and potential-minimizing in-
formation structures. We also give an example where there is a duality gap in Section 4.

To obtain more intuition for why we might expect the bounds to be tight, consider again
the Lagrangian (6). This was an intermediate step in upper bounding the potential for an
information structure of the form (X(k)�σ), and before we summed by parts and solved
out the mechanism. But we could have stayed with the saddle point problem in which σ
is chosen first and m is chosen second. This is a zero-sum game, where the actions σ and
m are elements of compact and convex sets, and the objective is bilinear. By the minimax
theorem, the optimal value does not depend on the order of moves. If we reverse the
order and choose m first, then we can solve out σ—as we did in deriving (LB-G-k)—to
conclude that the value of (UB-P-k) is

max
m∈Mk

∑
θ

μ(θ) min
x

∑
ω

[
w(ω�θ)m(ω|x) +

∑
i

ui(ω�θ)∇−
i m(ω|x)

]
� (11)

This program is almost the same as (LB-G-k), except that instead of imposing participa-
tion security as a constraint on the designer, we have priced individual rationality into the
Lagrangian, as part of the definition of ∇−

i . Also, the local equilibrium constraints point
towards the types with the binding participation constraints, rather than pointing away
from the participation-secure actions. This leads to a modified strategic virtual objective
as the minimand in (11).
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Indeed, as in Remark 1, we can formulate (11) as the linear program

max
m:X(k)×�→R+�

λ:�→R

∑
θ

μ(θ)λ(θ)

s.t. λ(θ) ≤
∑
ω

[
w(ω�θ)m(ω|x) +

∑
i

ui(ω�θ)∇−
i m(ω|x)

]
∀θ�x�

∑
ω

m(ω|x) = 1 ∀x�

(12)

This is precisely the dual linear program to (10) (and hence (UB-P-k) as well), where
m(ω|x) is the Lagrange multiplier on the constraint that the maximum informational vir-
tual objective at x is at least that obtained at the outcome ω, and σ (x�ω) is the Lagrange
multiplier on the constraint that the minimum (modified) strategic virtual objective at ω
is at least that obtained at the action profile x. Indeed, this linear program has almost the
same form as (9), except for the aforementioned differences regarding participation con-
straints and the direction of local equilibrium constraints. It is in this sense that (LB-G-k)
and (UB-P-k) are “almost” a dual pair of linear programs.

Intuitively, the gap between (LB-G-k) and (UB-P-k) should disappear in the limit as
k goes to infinity, as long as there are solutions (11) that converge to a differentiable
function m :RN

+ → �(�) and for which the actions 0 are participation secure. In this case,
we can approximate that limit with feasible solutions to (LB-G-k) that have a similar
value, and hence the bounds will be tight. This observation is formalized as Proposition 6
in Supplemental Appendix B.1.4.

When the bounds are tight, one also has the intuition that this approximate duality be-
comes exact in the limit as k goes to infinity. If we make the conceptual leap from approx-
imate to exact duality, then the usual properties of saddle points of linear programming
problems would apply, and a feasible pair (m�σ) are optimal if and only if they satisfy
complementary slackness: σ (x�θ) > 0 only if x minimizes the strategic virtual value for m
at θ, and m(ω|x) > 0 only if ω maximizes the informational virtual objective for σ at x.
Moreover, the upper bound on the potential is exactly equal to the lower bound on the
guarantee. To be clear: we do not formally establish that this exact complementary slack-
ness is either necessary or sufficient for (σ�m) to be optimal for (LB-G-k) and (UB-P-k),
nor do we think it is true for any finite k. Nonetheless, this form of complementary slack-
ness is present in the limiting solutions that we have constructed thus far in cases where
the bounds are tight, including in Brooks and Du (2021a,b, 2023). It has also proven to be
a useful heuristic for deriving the analytical solution, as we will demonstrate with examples
in Sections 4 and 6.

In light of this somewhat speculative discussion, we feel compelled to briefly mention a
related phenomenon. When complementary slackness is exactly satisfied, the mechanism
M that solves (LB-G-k) maximizes the informational virtual objective for the information
structure I that solves (UB-P-k). As a result, if we were to view M as a direct mechanism
on I, we know that no agent has an incentive to misreport as the next lower type. But in
fact, for the solutions constructed for optimal auctions (Bergemann, Brooks, and Morris
(2016), Brooks and Du (2021a,b)) and for public goods and bilateral trade (Brooks and
Du (2023)), the mechanism turns out to be globally incentive compatible, meaning that
truthful reporting is an equilibrium of the game (M�I). Flipping the interpretation, we
can also view I as a direct recommendation information structure on M , and obeying the
recommendation is also an equilibrium. We have previously referred to this phenomenon
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as the double revelation principle. While we do not yet have a general explanation for
why global constraints are implied by local at the saddle point, the fact that this rather
mysterious structure has manifested itself in both of these applications suggests that it
is more than a coincidence. This phenomenon, that truthful/obedient strategies are an
equilibrium at the saddle point, is addressed in greater detail in our related work.

Finally, we note that the solutions to the bounding programs need not be unique. More-
over, even when the bounds are tight, there may be solutions to (MAX-G) and (MIN-P)
that are not solutions to the bounding programs. For example, it is in principle possible
that the designer could maximize the guarantee by asking the agents to report the infor-
mation structure itself. Such solutions would be more in the spirit of the literature on full
implementation that we referenced in the Introduction. However, such solutions are im-
plicitly ruled out by the focus on the bounding program (LB-G-k) and mechanisms that
admit a tight lower bound on welfare derived from local obedience constraints.

3.3.2. Further Explanation of the Bounding Programs

We now give a heuristic explanation for why one-dimensional equilibrium constraints
should naturally appear in the bounding programs. At a key step in the derivation of the
lower bounding program, we formulated the Lagrangian (3) by adding to the designer’s
objective the slack in local upward obedience constraints, formulated as (2). Similarly,
in deriving the upper bounding program, we formulated the Lagrangian (6) by subtract-
ing from the designer’s objective the slack in local downward truthtelling constraints and
individual rationality for the lowest type, formulated as (5). Implicit in these steps is a
particular choice of Lagrange multipliers on obedience, truthtelling, and individual ra-
tionality constraints. The logic behind these multipliers can be understood by examining
more general Lagrangian relaxations of the potential and the guarantee, where we allow
an arbitrary choice of multipliers.

Consider first the lower bound. The full set of obedience constraints is∑
x−i�θ�ω

σ (x�θ)ui(ω�θ)
[
m(ω|xi�x−i) −m

(
ω|x′

i� x−i

)] ≥ 0 (13)

for all i, xi, and x′
i. For any choice of non-negative multipliers αobed

i (xi�x
′
i) on these con-

straints, we can subtract the product of multipliers and the non-negative left-hand side of
the obedience constraints from the objective to obtain a saddle point problem that lower
bounds the max guarantee:

max
m∈Mk
s.t. p.s.

min
σ∈Ik

∑
x�θ�ω

σ (x�θ)
[
w(ω�θ)m(ω|x)

−
∑
i�x′

i

αobed
i

(
xi�x

′
i

)
ui(ω�θ)

[
m(ω|x) −m

(
ω|x′

i� x−i

)]]
� (14)

In the outer maximization, we have restricted to mechanisms in Mk that are participation
secure (but not necessarily with 0 being the participation-secure action).

Consider next the upper bound. Truthtelling constraints can be written in precisely the
same manner as obedience in (13), and individual rationality requires that∑

x−i�θ�ω

σ (xi�x−i� θ)ui(ω�θ)m(ω|xi�x−i) ≥ 0
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for all i and xi. For any choice of non-negative multipliers αtruth
i (xi�x

′
i) and βi(xi) on

truthtelling and individual rationality constraints, we can add the product of multipliers
and non-negative left-hand sides to the objective to obtain a saddle point problem that
upper bounds the min potential:

min
σ∈Ik

max
m∈Mk

∑
x�θ�ω

σ (x�θ)
[
w(ω�θ)m(ω|x)

+
∑
i�x′

i

αtruth
i

(
xi�x

′
i

)
ui(ω�θ)

[
m(ω|x) −m

(
ω|x′

i� x−i

)]
+

∑
i

βi(xi)ui(ω�θ)m(ω|x)
]
�

We emphasize that these bounds are valid for any choice of multipliers.
The generalized bounds differ from one another in three key respects: (i) the order

of moves is reversed, (ii) the lower bound imposes participation security on the mecha-
nism, whereas the upper bound prices individual rationality into the objective, and (iii)
the programs have different signs on equilibrium constraints.

As mentioned above, the minimax theorem implies that (i) is not an issue: For any
choice of multipliers, these are compact finite-dimensional bilinear saddle point prob-
lems, and we can reverse the order of moves without changing the value.

The differences (ii) and (iii) are more substantive. In formulating (LB-G-k) and
(UB-P-k), we engineered the multipliers and the choice of participation-secure action
to make the two bounds as “similar as possible.” To finesse (ii), we fixed a particular ac-
tion/signal for each agent (labeled as zero) to be the one which is participation secure/has
a positive multiplier on individual rationality. To finesse (iii), we have reversed the sign
on the equilibrium constraints by linearly ordering actions and signals, dropping non-local
constraints, and flipping the direction of binding constraints between the two programs.
Specifically, in the lower bound, the binding local obedience constraints point away from
the participation-secure action, and in the upper bound, the binding local truthtelling
constraints point towards the type with a binding individual rationality constraint. Up to
rescaling the multipliers, the resulting programs are simply

max
m∈M0

k

min
σ∈Ik

∑
x�θ�ω

σ (x�θ)
[
w(ω�θ)m(ω|x) +

∑
i

αobed
i (xi)ui(ω�θ)∇+

i m(ω|x)
]
�

max
m∈Mk

min
σ∈Ik

∑
x�θ�ω

σ (x�θ)
[
w(ω�θ)m(ω|x) +

∑
i

αtruth
i (xi)ui(ω�θ)∇−

i m(ω|x)
]
�

where we write αobed
i (xi) for the rescaled multipliers on local upward obedience and

αtruth
i (xi) for the rescaled multipliers on local downward truthtelling and individual ra-

tionality for the lowest type.15

These steps get us almost to (LB-G-k) and (UB-P-k) (and more specifically, the latter’s
dual program (11)). To get the rest of the way, we set αobed

i (xi) = αtruth
i (xi) = 1 for all i and

15Note that these local multipliers are rescaled from the general multipliers, in order to align with the
definitions of ∇+

i and ∇−
i . For example, when xi < k, αobed

i (xi) = (k − 1)αobed
i (xi�xi + 1/k), and αtruth

i (0) =
kβi(0).
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xi. This choice of multipliers may seem arbitrary, but there is a sense in which it is without
loss when k is large. This can be seen most clearly in the continuous limit.16 Suppose that
the action/signal space is all of R+, and m(ω|x) is differentiable in xi for all i. Then the
continuous analogue of the strategic virtual objective is∑

θ

[
w(ω�θ)m(ω|x) +

∑
i

ui(ω�θ)αi(xi)
∂

∂xi

m(ω|x)
]
�

where αi(xi) is the Lagrange multiplier on local equilibrium constraints. Suppose further
that αi is bounded away from zero. Then we can change units so that an action xi ∈ R+ is
mapped to an action gi(xi), where

gi(xi) =
∫ xi

y=0

1
αi(yi)

dyi�

With these new units, the mechanism becomes

m̃(ω|y) =m
(
ω|g−1

1 (y1)� � � � � g−1
N (yN)

)
�

and hence, by the inverse function theorem, we have that at y = g(x),

∂

∂yi
m̃(ω|y)

∣∣∣∣
yj=gj (xj)∀j

= ∂

∂xi

m
(
ω

∣∣g−1(y)
) 1
g′
i

(
g−1
i (yi)

) ∣∣∣∣
yj=gj (xj)∀j

= αi(xi)
∂

∂xi

m(ω|x)�

The strategic virtual objective in the new units is therefore∑
θ

[
w(ω�θ)m̃(ω|y) +

∑
i

ui(ω�θ)
∂

∂yi
m̃(ω|y)

]
�

In effect, the change in units for actions rescales the “size” of a local deviation, so that a
unit deviation in the new units is equivalent to a deviation of 1/αi(xi) in the original units.

The point is that given any mechanism and optimal local multipliers, as long as that
mechanism is sufficiently well behaved when k is large, we can adjust the units for actions
so that the same mechanism (under the new units) would have exactly the same strategic
virtual objective, except that the multipliers are normalized to 1. In applications, we have
found this to be a natural choice of units, but it is not a theoretical necessity.

3.3.3. Context Within the Literature

The fact that local constraints appear so prominently in our theory is not entirely sur-
prising. The pattern of binding local truthtelling constraints that point to a lone type with
a binding participation constraint is familiar from the analysis of optimal auctions in My-
erson (1981). And yet, strong assumptions on primitives are usually needed for these
constraints to be the only ones that bind at the optimum, such as independence, private
values, and concavity of the revenue curve (i.e., regularity). An important distinction is
that in the classical analysis, the optimal multipliers and mechanism are derived from

16A precise formulation of convergence to a continuous limit is given before Proposition 6 in Supplemental
Appendix B.1.4.
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primitive assumptions about information, whereas in the present model, the multipliers
and mechanism and information are all jointly determined.

Still, it is far from obvious that the local structure would emerge as optimal for the
applications we describe, and with minimal assumptions on primitives. This structure is,
however, suggested by prior work on guarantees and potentials in the optimal auctions
problem (Bergemann, Brooks, and Morris (2016, 2017, 2019, 2020), Du (2018), Brooks
and Du (2021a,b)). To begin with, Bergemann, Brooks, and Morris (2017) computed the
guarantee of the first-price auction and showed that the optimal multipliers on obedience
constraints, denoted αFPA, have a particular form: All upward constraints bind, and the
multiplier depends only on the deviation, and not the recommendation.17 Recall the gen-
eral lower bound program (14), and consider that lower bound applied to the guarantee
for revenue in the auction setting. Further suppose we set αobed = αFPA (in lieu of the local
upward multipliers used to obtain (LB-G-k)). We do not know what is the mechanism
that maximizes (14) given these multipliers, but one feasible choice is the first-price auc-
tion itself, and for that mechanism, the optimal value of (14) with the multipliers αFPA is
precisely the guarantee of the first-price auction. Thus, the value of (14) with αobed = αFPA

and optimized over all participation-secure mechanisms must be even higher.
This example shows that imposing a seemingly arbitrary order on actions and an as-

sociated pattern on multipliers αobed can yield non-trivial lower bounds on the maximum
guarantee. And yet, there were reasons to think that the particular multipliers αFPA would
not maximize the lower bound. In particular, in the limit where the number of bidders
becomes large, the guarantee of the first-price auction is generally bounded away from
total surplus. But Du (2018) showed that when values are common, there is a sequence
of mechanisms whose guarantees converge to total surplus when the number of bidders
goes to infinity. This is demonstrated using lower bounds on the mechanisms’ guaran-
tees which are derived from local obedience constraints that point away from an action
which is participation secure.18,19 Thus, for revenue maximization in common value auc-
tions, this pattern of obedience constraints is approximately optimal with many bidders.
Brooks and Du (2021b) pursued this logic even further in the context of common value
auction, and showed that max guarantee equals min potential for any fixed number of
bidders, and they proved it using the pattern of constraints underlying the bounding pro-
grams (LB-G-k) and (UB-P-k), specialized to that setting, and in the continuum limit.
Our Theorem 1 distills and extends this logic to more general environments.

We conclude this section with two other comments on the literature. In contrast to
the discrete model studied here, Brooks and Du (2021b) allowed for mechanisms and
information structures that have arbitrary measurable spaces of actions and signals. As
alluded to previously, this appears to be necessary in order to exactly attain the max guar-
antee and min potential. Moreover, the critical action and signal spaces end up being the
non-negative real line, and the optimal mechanism and information structures are almost

17Here, “upward” is with respect to the natural order on bids, and the lowest action in the first-price auction,
a bid of zero, is participation secure.

18Further evidence that αFPA are not the optimal multipliers came from Bergemann, Brooks, and Morris
(2020), who calculated the potential of information structure that minimizes expected revenue for the first-
price auction. That potential turns out to be strictly greater than the first-price auction’s revenue guarantee.
Thus, the pair of the first-price auction and its own worst-case information structure is not a saddle point,
even though a potential-minimizing information structure necessarily minimizes the welfare of the guarantee-
maximizing mechanism (i.e., when the duality gap is zero).

19The working paper version of Du (2018) used discrete actions, whereas the published version worked in
the continuum limit.
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everywhere differentiable. The obvious advantage of working directly in the continuum
limit is that it allows one to use calculus in deriving and characterizing solutions. In our
applications below, we will often work in the continuum limit, guided by the discrete
bounding programs (LB-G-k) and (UB-P-k) as a heuristic. On the other hand, the dis-
crete model allows us to rely on the elementary but powerful theory of finite-dimensional
linear programming. Also, the restriction to finite mechanisms and information structures
dispels any concerns that the desirable properties of our solutions might be due to a con-
troversial use of infinite action or signal spaces, as in the integer games commonly used
in full implementation with mixed strategies.

Finally, when working directly with infinite mechanisms and information structures,
Brooks and Du (2021b) finessed the issue of equilibrium existence by employing a novel
solution concept called a strong maxmin solution, which is a triple (M�I�b), where
b ∈ E (M�I), and G(M) = P(I). In Supplemental Appendix B.1.3, we define an analo-
gous ε-strong maxmin solution, appropriate to the discrete setting where the optimum
may only be attained in the large k limit. Proposition 5 shows the equivalence between
“max guarantee equals min potential” and the existence of ε-strong maxmin solutions for
arbitrary ε.

4. SOCIAL WELFARE AND PUBLIC EXPENDITURE

4.1. Setup

We now describe an application of our methodology to the public expenditure prob-
lem (Samuelson (1954), Güth and Hellwig (1986)). This application was developed in
full rigor and greater generality in Brooks and Du (2023). Here we present an informal
overview of the solution, in a special case where the social value of the good is known.
Afterwards, we reinterpret the case of N = 2 as a model of bilateral trade.

The model, previously introduced in Section 2, has the agents’ contributions to the
public expenditure represented by e ∈R

N
+ such that E = ∑

i ei ≤ 1. Each agent has a value
θi from the public expenditure, and hence a utility ui = θiE − ei. The designer wants to
maximize the social welfare w = ∑

i ui = (
∑

i θi − 1)E. We further assume that the set
of value profiles � consists of the vectors θ ∈ R

N , where for some i, θi = θ and θ−i = 0,
and the prior μ is uniform on �. Thus, there is common knowledge that values are non-
negative and the social value is

∑
i θi = θ.20 We further assume that θ ≥ 1, so that the

socially efficient outcome is full expenditure. While the social value of expenditure is
known, what is unknown is the agents’ idiosyncratic values. Moreover, each agent can opt
out of the mechanism and pay nothing. This gives rise to a free-rider problem: Agents
have the option of behaving as if their value is low, so as to avoid paying for the public
good, while still enjoying its benefits.

4.2. Evidence From Simulations

In Figure 1, we plot features of numerical solutions to the bounding programs
(LB-G-k) and (UB-P-k) when N = 2, θ = 3, and k = 30. Figure 1 reveals some strik-
ing structures, and clearly suggests the functional form of the saddle point. We use E and

20Our results would remain the same if we relaxed the symmetry assumption and instead just assumed that
values are positive and the social value is at least θ. This is the formulation adopted in Brooks and Du (2023).
That paper also considers an extension where there are lower and upper bounds on the social value of the
good, and a lower bound on the expectation.



1410 B. BROOKS AND S. DU

FIGURE 1.—Numerical solutions for public goods when N = 2, θ = 3, and k = 30.

ei, and σ to denote the mechanism and information structure from the numerical solution
(and subsequently the optimal mechanism and information structure at the saddle point).

To start, the top-left panel is a contour plot of the total expenditure function E(x) =
1−m(0|x) from (LB-G-k). It is clear that total expenditure depends only on the aggregate
action �x ≡ ∑

i xi. The middle-left panel shows that E is increasing and concave in �x,
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and hits 1 at a finite level, which we denote by y . Finally, the bottom-left panel shows
agent 1’s expenditure share e1(x)/E(x) as a function of x1, holding fixed �x at various
levels. The expenditure share is clearly linear in x1, interpolating from 0 to 1, meaning
that e1(x)/E(x) the proportional fraction x1/�x. We refer to a mechanism of this form
as a proportional cost-sharing mechanism.

Turning now to the information structure, the top-right panel is a contour plot of the log
of the probability mass function of signals ρ(x) = ∑

θ∈� σ (x�θ) from (UB-P-k). Clearly,
ρ depends only on the aggregate signal �x. The middle-right panel shows that ρ discon-
tinuously drops to near zero when the aggregate signal �x exceeds a certain threshold,
which is close to the point where E hits 1.21 The bottom-right panel shows agent 1’s in-
terim value v1(x) = ∑

θ θ1σ (x�θ)/ρ(x). Again, this function is linear in x1, holding �x

fixed, indicating that it also has a proportional form: v1(x) = θx1/�x.
We will presently use these functional forms and the complementary-slackness heuris-

tic discussed in Section 3.3.1 to deduce the functional forms of E and ρ and the threshold
y . We will also sketch the argument for why the bounds are tight. The heuristic argument
will appeal to a continuous approximation when k is large, and supposes that the total ex-
penditure and signal density functions converge to limits that are differentiable functions
on the action/signal space R

N
+ .

4.2.1. Guarantee-Maximizing Mechanism

The logic behind the proportional cost-sharing mechanism can be understood by exam-
ining its strategic virtual objective. First observe that social welfare is∑

ω

w(ω�θ)m(ω|x) = (θ− 1)E(x)�

where we allow total expenditure to be an arbitrary function of x ∈ R
N
+ . Moreover, the

strategic adjustment is∑
ω

ui(ω�θ)∇im(ω|x) = θi∇iE(x) − ∇iei(x)�

where ∇i = ∂/∂xi is the partial derivative with respect to xi. (To reiterate, in this heuristic
derivation, we substitute the partial derivative ∇i for the discrete upward derivative ∇+

i .)
Hence, the strategic virtual objective (4) is

(θ− 1)E(x) +
∑
i

(
θi∇iE(x) − ∇iei(x)

)
�

Now, if E(x) = Ê(�x) and ei(x) = (xi/�x)Ê(�x), then (4) further reduces to

(θ− 1)
(
Ê(�x) + Ê′(�x)

) − (N − 1)Ê(�x)
�x

�

21In the simulations, the density is never exactly zero. One reason is that the barrier algorithm used to
compute the solution approaches the optimum from the interior of the feasible set. But more generally, one
of the criteria used for convergence by numerical algorithms is that the duality gap is below a certain strictly
positive threshold. For action/signal profiles above the boundary where the allocation hits 1 and the density
drops discontinuously, the likelihood is so small that the associated violation of complementary slackness (and
the corresponding contribution to the duality gap) is negligible.
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In other words, the strategic virtual objective depends only on the aggregate action and
the social value. As a result, the scope for information to depress welfare is limited to its
effect on the aggregate action. Note that participation security of xi = 0 is satisfied only if
Ê(0) = 0, which is a feature of the solution we now derive.

In fact, the functional form for E is obtained by pursing this logic one step further, and
making the strategic virtual objective independent of the aggregate action as well. This is
also suggested by the complementary slackness heuristic of Section 3.3.1: the simulations
indicate that σ (x�θ) > 0 for all θ and all x for which �x ≤ y , and hence all such x must
minimize the strategic virtual objective. Thus, for some constant λ ≥ 0, Ê must solve the
following linear first-order ODE:

(θ− 1)
(
Ê(y) + Ê′(y)

) − N − 1
y

Ê(y) = λ�

The solution, subject to the initial condition that Ê = 0 when y = 0, is

Ê(y;λ) ≡ λ

θ− 1

∫ y

z=0
exp(z − y)

(
z

y

)−(N−1)/(θ−1)

dz� (15)

The integral converges as long as θ/N > 1. We now maintain this as an assumption on
parameters, which will be discussed further below.

In order for the mechanism to be feasible, we can only use this functional form until the
total expenditure hits 1. This occurs at a boundary which we implicitly define as ŷ(λ). For
λ sufficiently small, ŷ(λ) is infinite (the expenditure never hits 1), but for λ sufficiently
large, the boundary is finite. For y > ŷ(λ), we set Ê(y;λ) = 1, so that the strategic virtual
objective for y > ŷ(λ) is

(θ− 1) − N − 1
y

�

Since this expression is increasing in y , the minimum strategic virtual objective for y ≥
ŷ(λ) is attained at y = ŷ(λ), at a value of

λ̂(λ) ≡ (θ− 1) − N − 1
ŷ(λ)

�

This is again consistent with complementary slackness: for the information structure sug-
gested by the simulations, there is zero probability of �x > ŷ(λ), and hence these action
profiles need not minimize the strategic virtual objective.

By construction, the strategic virtual objective below the boundary ŷ(λ) is constant and
equal to λ. Therefore, the overall minimum strategic virtual objective is min{λ� λ̂(λ)}.
Note that Ê(y;λ) is increasing pointwise in λ, so that both ŷ(λ) and λ̂(λ) are decreasing
in λ. Hence, the expected minimum strategic virtual objective is maximized by choosing λ
as large as possible subject to λ≤ λ̂(λ). This is achieved by the λ that solves λ= λ̂(λ), the
optimal boundary is y = ŷ(λ), and the optimal aggregate expenditure function is E(y) =
Ê(y;λ). Finally, we note that the boundary condition E(y) = 1 implies that the guarantee
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of this mechanism is

λ = (θ− 1)
exp(y)y−(N−1)/(θ−1)∫ y

z=0
exp(z)z−(N−1)/(θ−1) dz

�

This formula will be useful for comparing this guarantee with the potential of the infor-
mation structure that we construct in the next subsection.

4.2.2. Potential-Minimizing Information Structure

Just as with the guarantee-maximizing mechanism, we can understand the information
structure in the simulations by examining the informational virtual objective. Let ρ(x)
denote the density of the signal profile x and let vi(x) denote the conditional expectation
of θi given x. Again, supposing that these are differentiable functions on R

N
+ , we have∑

θ

w(ω�θ)σ (x�θ) = Iω	=0(θ− 1)ρ(x)

and ∑
θ

ui(ω�θ)∇iσ (x�θ) = ∇i

[(
vi(x)Iω	=0 − Iω=i

)
ρ(x)

]
�

Hence, the informational virtual objective (8) at the outcome ω is

Iω	=0(θ− 1)ρ(x) −
∑
i

∇i

[(
vi(x)Iω	=0 − Iω=i

)
ρ(x)

]
�

Now, with the functional forms ρ(x) = ρ̂(�x) and vi(x) = θxi/�x suggested by the
simulations, the informational virtual objective further reduces to

Iω	=0

(
(θ− 1)

(
ρ̂(�x) − ρ̂′(�x)

) − θ
N − 1
�x

ρ̂(�x)
)
�

In other words, the informational virtual objective only depends whether full expenditure
is implemented, and not on how the cost is shared. This limits the mechanism designer’s
ability to increase welfare by controlling the agents’ individual shares.

The optimal ρ̂ can be deduced by pursuing this logic one step further, and making the
informational virtual objective independent of ω. This is again suggested by the comple-
mentary slackness heuristic: the optimal expenditure is interior when �x ≤ y , meaning
that at such signal profiles, all ω are implemented with positive probability. Hence, the
informational virtual objective must be equal for all ω, and therefore it is exactly zero.
This is equivalent to the first-order linear ODE

(θ− 1)
(
ρ̂(y) − ρ̂′(y)

) − θ
N − 1

y
ρ̂(y) = 0�
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whose solution is

ρ(y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp(y)y−(N−1)θ/(θ−1)∫ y

z=0
exp(z)z−(N−1)θ/(θ−1) zN−1

(N − 1)! dz
if y ≤ y�

0 if y > y�

(16)

Note that the constant of integration is determined so that ρ integrates to 1 on the simplex
{x ∈R

M
+|x ≤ y}. Again, the integrals in this expression converge as long as θ/N > 1.

Equation (16) ensures that the informational virtual objective is zero for every outcome
when �x< y . Moreover, when �x> y , the density and the informational virtual objective
are both zero. But this leads to a minor paradox: If the informational virtual objective
is zero everywhere, then it seems that the potential is zero as well. However, we must
keep in mind that when �x = y , the density ρ drops discontinuously to zero, and so the
corresponding informational virtual objective is infinite. Thus, in order to calculate the
contribution of the boundary to the potential, we have to reintroduce a discrete upward
deviation of size 1/k, for which the associated informational virtual objective at �x= y is

Iω	=0(θ− 1)ρ(�x) −
∑
i

∇̃+
i

[(
θ
xi

�x
Iω	=0 − Iω=i

)
ρ(�x)

]
≈ Iω	=0(θ− 1)ρ(y)k�

since the left-hand side is dominated by ∇̃+
i ρ(y) = (0 − ρ(y))k.22 In particular, the in-

formational virtual objective is positive when ω 	= 0 and blows up as k goes to infinity.
As a result, the optimal outcome at the boundary �x = y is full expenditure, just as we
constructed in the previous subsection and also just as we observed in the simulations.

At the same time, as k goes to infinity, the mass on the boundary goes to zero, and is ap-
proximately yN−1/(k(N − 1)!). The boundary’s overall contribution to the informational
virtual objective is therefore approximately

(θ− 1)ρ(y)
yN−1

(N − 1)! = (θ− 1)
exp(y)y−(N−1)/(θ−1)∫ y

z=0
exp(z)z−(N−1)/(θ−1) dz

= λ� (17)

Thus, the boundary’s contribution to the potential does not vanish in the limit as k goes to
infinity. Moreover, this expression for the potential exactly coincides with the guarantee
constructed in the previous subsection. A fortiori, λ is both the max guarantee and the
min potential, and moreover, the bounds in Theorem 1 coincide. See Brooks and Du
(2023) for a rigorous proof.

4.3. Discussion

To our knowledge, the proportional cost-sharing mechanisms are new to the literature.
In mitigating free riding, it is natural to consider agents’ marginal incentives to move

22The discrete derivative here can be interpreted as a deviation in the continuous mechanism, wherein an
agent increases their reported signal by 1/k. Such deviations are needed to obtain a tight upper bound on the
potential, given the discontinuity in ρ at the upper bound of the support. See Brooks and Du (2023) for details.
The public expenditure problem thus demonstrates that discrete local equilibrium constraints are not the same
as first-order conditions, and the former may be needed to pin down the value when utilities are not smooth.
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FIGURE 2.—Optimal guarantee as a fraction of the efficient surplus, N = 2.

their actions in a direction that reduces their contribution. The strategic virtual objec-
tive is precisely the sum of welfare and the agents’ marginal utilities with respect to their
own actions. By making the strategic virtual objective invariant to who pays for the good,
these mechanisms are resistant to adverse outcomes in which funding disproportionately
depends on agents who have an outsized marginal incentive to free ride, due to the partic-
ulars of the information structure or equilibrium. Moreover, the form of the expenditure
function exactly balances welfare against the aggregate marginal incentive. As a result, if
expected total welfare were too low, then the expected aggregate marginal utility would
be too high, and some agent would benefit by increasing their action. This is the logic that
sustains the welfare guarantee.

For the case of N = 2, Figure 2 depicts the max guarantee as a fraction of the efficient
welfare, λ/(θ− 1), as we vary θ. For θ > 2, the guarantee starts near zero, increases, and
eventually converges to the efficient surplus. This is the range satisfying our parametric
assumption that θ/N > 1, which we adopted after equation (15). When θ ≤ 2, the max
guarantee is zero. This is not surprising when θ ≤ 1, since in this case production is in-
efficient. But when θ ∈ [1�2], the max guarantee is zero, even though there is common
knowledge that full expenditure is efficient.

Indeed, if θ/N ≤ 1, then the guarantee of any participation-secure mechanism is zero:
Suppose the agents have no information, so that each agent’s interim expected value is
θ/N . Under such information, it is an equilibrium for all agents to play the participation-
secure action with probability 1. To see why, suppose agent i deviates and induces total
expenditure E. The other agents’ actions are participation secure, so ej = 0 for all j 	= i.
Hence, ei = E, and agent i’s payoff is (θ/N − 1)E ≤ 0. In effect, any agent who deviates
has to provide all of the funds, which may not be worthwhile when the social value per
capita is less than 1.

A naïve reaction might be that the issue is equilibrium selection: Under no informa-
tion, there are obviously alternative mechanisms and equilibria under which there is full
expenditure.23 However, it turns out that when θ/N ≤ 1, there are information structures

23For example, consider the mechanism in which agents can either opt out or opt in; there is full expenditure
only if all agents opt in, in which case they share the cost equally, and otherwise the total expenditure is zero.
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for which the potential is arbitrarily close to zero, meaning that all mechanisms and all
equilibria generate negligible surplus.24

These perverse information structures sometimes involve large differences in the
agents’ interim values. In the most extreme cases, the value is zero for all but one of
the agents. One way to forestall the collapse to zero potential would be to limit the
heterogeneity in values. For example, suppose � = {(0� � � � �0)� (θ/N� � � � � θ/N)} and
μ({(θ/N� � � � � θ/N)}) = 1, where θ ∈ (1�N). Then the potential is the efficient surplus
θ − 1, and it can be achieved by the binary-action mechanism described in Footnote 23.
However, since � contains a state with θi = 0 for every i, any participation-secure mech-
anism will still have an equilibrium with zero expenditure, so that the max guarantee is
zero, and the duality gap is positive.25

That the potential may be zero even though there is common knowledge that full ex-
penditure is efficient indicates how demanding participation security is, and it may be
deemed too demanding, depending on the circumstances. Even so, as long as the social
value is relatively large, proportional cost-sharing mechanisms attain non-trivial guaran-
tees, even when there can be extreme heterogeneity across agents and even with such a
strong assurance that agents will be willing to participate.

As mentioned above, Brooks and Du (2023) rigorously developed the public expendi-
ture application. The analysis is unchanged if we regard θ as only a lower bound on the
social value. They also showed that proportional cost-sharing maximizes the guarantee
when θ has a known expectation and known bounds on the support.

Finally, Brooks and Du (2023) showed that the model with N = 2 can be reinterpreted
as a model of bilateral trade, in which the seller’s value is θ1 ∈ {0� θ}, both equally likely,
and the buyer’s value is θ1 + θ− 1. Whether or not the good is produced is reinterpreted
as whether or not trade occurs, and the sharing of the cost corresponds to the terms of
trade. The proportional cost-sharing mechanism is reinterpreted as a proportional-price
trading mechanism, where trade occurs with probability E(x1 + x2) at the price

p(x) = θ− x1

x1 + x2
�

This mechanism is participation secure, because if x1 = 0, trade only occurs at a price
equal to the highest value of the seller, and if x2 = 0, then trade only occurs at a price
equal to the lowest value of the buyer. The results on the public expenditure problem
imply that the min potential for gains from trade is zero when 1 < θ < 2, even though it
is common knowledge that trade is efficient. This illustrates that welfare maximization in
bilateral trade may be even more challenging than suggested by either the lemons market

Under this mechanism and no information, it is an equilibrium for all agents to opt in (under the hypothesis
that full expenditure is socially efficient).

24Such is the case for information structures of the same form as in (16) but with a positive lower bound for
the signals. The resulting potential would be the same as (17), but the integral in the denominator would range
from z = y > 0 to y . As y → 0, the denominator blows up, and the potential converges to zero. See Brooks and
Du (2023) for details.

25In this example, � is a strict superset of the support of the prior. But it is straightforward to enrich the
example so that � is equal to the support of the prior. Suppose that μ puts probability 1 − ε on all agents
having a value of θ/N ∈ (1/N�1) and probability ε that all agents have a value zero. For any information
structure consistent with this prior, consider the direct mechanism that implements full expenditure if and only
if the expected social value given the reported signal profile is greater than 1. Clearly, the probability that full
expenditure is interim efficient converges to 1 as ε→ 0, so the potential converges to the efficient surplus, even
though the max guarantee is zero.
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of Akerlof (1970) or the low-welfare information structures constructed by Carroll (2016)
in the context of posted price mechanisms.

5. OPTIMAL MULTI-GOOD AUCTIONS

We next consider the optimal auctions problem introduced in Section 2 and prove non-
constructively that the bounds are tight. In this section, we maintain the full support as-
sumption of μ(θ) > 0 for every θ ∈ �.

5.1. Solving out Transfers

As a preliminary step, we solve out the transfers from the bounding programs, and
replace them with a simpler object, the aggregate excess growth.26 In a slight abuse of no-
tation, we define M0

k to be the set of allocation and transfer rules (q� t) defined on the
action profile space X(k), and for which ti(0� a−i) = 0 for all i and a−i. Using the func-
tional forms for the agents’ and the designer’s preferences, the bounding programs are

max
(q(·)�t(·))∈M0

k

∑
θ

μ(θ) min
x

[∑
i

ti(x)

+
∑
i

(∑
l

θi�l∇+
i qi�l(x) − ∇+

i ti(x)
)]

� (18)

min
σ∈Ik

∑
x

max
(q̃�t̃)∈(�{0�����N})L×RN

∑
θ

[∑
i

t̃iσ (x�θ)

−
∑
i

(∑
l

θi�lq̃i�l − t̃i

)
∇̃+

i σ (x�θ)
]
� (19)

In writing the programs in this manner, we have simply integrated out ω and replaced
the terms corresponding to m with q and t, which are the allocation probabilities and
expected transfers, respectively.

Because the transfers are allowed to be unbounded, the bounding programs (18) and
(19) are not a special case of (LB-G-k) and (UB-P-k). However, it is straightforward
to extend the proof of Theorem 1 to cover the case of unbounded transfers. For com-
pleteness, we have included a statement and proof of the analogue of Theorem 1 for the
optimal auctions problem in Supplemental Appendix B.2. A difference with the analy-
sis in Section 3 is that it is no longer immediate the upper bound on min potential is
bounded. But as we prove shortly, there is a choice of σ that causes transfers to drop out
and be replaced by a simpler object, the aggregate excess growth (following terminology
established in Brooks and Du (2021b)). This reduction is the main advantage of working
with unbounded transfers. Moreover, it will be self-evident that the reduced program has
a finite value.

26In Supplemental Appendix B.3, we prove several further results about transfers. In particular, we con-
struct “canonical” transfers associated with balanced aggregate excess growth functions, and we characterize
all transfer rules with a given aggregate excess growth.
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To that end, observe that the coefficient on t̃i in (19) is

ξi(x) ≡
∑
θ

[
σ (x�θ) + ∇̃+

i σ (x�θ)
]
�

If σ is such that ξi(x) is non-zero for some x, then the designer can take t̃i to be a large
number with the same sign as ξi(x) and make the inner maximum arbitrarily large. Thus,
in order for the value of the inner program to be finite, it must be that ξi(x) = 0. This
yields a difference equation for σ , for which the solution is∑

θ

σ (x�θ) = ρi(xi)
∑
θ

σ (0�x−i� θ)�

where

ρi(xi) ≡
(

1 − 1
k

)kxi 1
kIxi<k

�

Iterating over i, and using the fact that
∑

xi
ρi(xi) = 1, we conclude that∑

θ

σ (x�θ) =
∏
i

ρi(xi) ≡ ρ�

We have proven the following:

PROPOSITION 1: The value of the inner program of (19) is finite only if the marginal of σ
on x is ρ.

REMARK 3: This result relies on the fact that the designer places positive weight on
transfers. It would remain true if, say, the designer’s objective were a weighted sum of
revenue and social welfare, with the weight on revenue normalized to be 1. At a higher
level, it is not surprising that the potential-minimizing signals should be independent when
the objective is revenue maximization, because of the well-known result that correlation
between signals can be exploited to make participation constraints bind (Myerson (1981),
Crémer and McLean (1988), Luz (2013)). Note that independence of signals is not a
general property of potential-minimizing information: in the public expenditure problem
studied in Section 4, where the objective is social welfare maximization and transfers have
to satisfy ex post budget balance, the potential-minimizing signal distribution is actually
correlated.

REMARK 4: There is a curious connection between Proposition 1 and the characteri-
zation of revenue-maximizing mechanisms in the independent private value model due
to Myerson (1981). As mentioned above in Section 3.3.3, in that model, all of the local
downward incentive constraints and the lowest participation constraint bind. Moreover,
in the regular case, the optimal multiplier on the local downward constraint is the inverse
hazard rate of the marginal distribution of the signal.27 (See also discussions in Vohra
(2011), Cai, Devanur, and Weinberg (2019).) Proposition 1 provides a partial converse: If
these are the binding constraints at the optimum, then signals must be independent, with
the multiplier being the inverse hazard rate of the marginal.

27For this result, it is necessary to formulate the truthtelling constraint in ex ante probability units. Other-
wise, the optimal multiplier is the upward cumulative distribution.
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Continuing with our analysis, in light of Proposition 1, any optimal solution σ of (19)
must be such that the marginal on x is ρ, and t̃i drops out of the inner program. Moreover,
the optimal q̃ will simply allocate good l to whichever bidder maximizes the informational
virtual objective, −∑

θ θi�l∇̃+
i σ (x�θ), as long as the maximum is positive, and otherwise

the good will not be sold. We can therefore rewrite (19) as the linear program

min
σ :X(k)×�→R+�

γ:X(k)→R
L+

∑
x�l

γl(x)

s.t. γl(x) ≥ −
∑
θ

θi�l∇̃+
i σ (x�θ) ∀x� i� l�

∑
θ

σ (x�θ) = ρ(x) ∀x�
∑
x

σ (x�θ) = μ(θ) ∀θ�

(20)

It is evident that (20) has a finite value, and therefore so does (19).

REMARK 5: There is a close connection between the informational virtual objective
and the classical virtual value. Let

vi�l(x) ≡ 1
ρ(x)

∑
θ

θi�lσ (x�θ)

denote agent i’s interim value for good l. Hence, for xi < k− 1/k,

−
∑
θ

θi�l∇̃+
i σ (x�θ) = k

[
vi�l(x)ρ(x) − vi�l(xi + 1/k�x−i)ρ(xi + 1/k�x−i)

]
=

[
vi�l(x) − k− 1

k
∇̃+

i vi�l(x)
]
ρ(x)�

The term in brackets is no more than agent i’s virtual value for good l. This is a discrete
analogue of the virtual value derived in Bulow and Klemperer (1996) in a continuous and
differentiable independent-signal interdependent-values model:

vi�l(x) − 1 − Fi(xi)
fi(xi)

∇ivi�l(x)�

where Fi is the cumulative distribution of i’s signal and fi is the density. This formula
reduces to that of Myerson (1981) in the special case of private values and a single good,
and under the normalization that vi(x) = xi. Note that for the distribution ρi, the discrete
inverse hazard rate is precisely (k − 1)/k. Thus, in the optimal auctions problem, the
upper bounding program reduces to choosing an independent-signal information struc-
ture to minimize the classical Myersonian upper bound on revenue, that is, the expected
highest virtual value for each good.
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We now complete the task of solving out transfers. The dual of (20) is

max
q:X(k)→R

NL+ �

�:X(k)→R�λ:�→R

∑
θ

μ(θ)λ(θ) +
∑
x

ρ(x)�(x)

s.t. λ(θ) +�(x) ≤
∑
i�l

θi�l∇−
i qi�l(x) ∀θ�x�

∑
i

qi�l(x) ≤ 1 ∀x� l�

(21)

The last step is to manipulate (18) into a form that is comparable to (21). Let

�(x) ≡
∑
i

[∇+
i ti(x) − ti(x)

]
� (22)

Clearly, � is the only feature of the transfer that matters for the value of (18). So, we
could substitute � for the transfers, but we have to restrict ourselves to � that satisfy
(22) for some participation-secure transfer rule. The following lemma reformulates that
constraint without the existential quantifier, where ∇+ · t(x) = ∑

i ∇+
i ti(x) (cf. equation

(1)):28

LEMMA 1: Given � :X(k) →R, there exists a t :X(k) → R
N that solves

�(x) = ∇+ · t(x) −�t(x) ∀x� (23)

ti(0�x−i) = 0 ∀i� x−i (24)

if and only if ∑
x

ρ(x)�(x) = 0� (25)

PROOF: By Fredholm’s alternative, there exists a t that solves (23) and (24) if and only
if there does not exist a ρ̃ such that∑

x

ρ̃(x)�(x) 	= 0�

ρ̃(x) =
⎧⎨⎩
k− 1
k

ρ̃(xi − 1/k�x−i) if 0 < xi < k�

(k− 1)ρ̃(k− 1/k�x−i) if xi = k�

(26)

Thus, the choice of ρ̃(0) pins down the rest of ρ̃, and in fact

ρ̃(x) = ρ(x)
ρ̃(0)
ρ(0)

�

28We defined ∇+
i to be scaled by (k − 1) rather than k so that the distribution that appears in the balance

condition (25) is precisely ρ, which also appears independently in Proposition 1. By defining ∇+
i so that these

two distributions are the same, the only remaining difference between the upper and lower bounds is the
direction of discrete derivatives on the allocation rule.
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As a result, (26) holds if and only if
∑

x ρ(x)�(x) 	= 0, and therefore (23)–(24) has a
solution if and only if � satisfies (25). Q.E.D.

We refer to aggregate excess growth functions that satisfy (25) as balanced. This condi-
tion appeared in earlier work on the optimal auctions problem (Brooks and Du (2021b)).
We comment more on the connection in Supplemental Appendix B.3.

By Lemma 1, program (18) is equivalent to the following:

max
q:X(k)→R

NL+ �

�:X(k)→R�λ:�→R

∑
θ

μ(θ)λ(θ)

s.t. λ(θ) +�(x) ≤
∑
i�l

θi�l∇+
i qi�l(x) ∀θ�x�

∑
x

ρ(x)�(x) = 0�

∑
i

qi�l(x) ≤ 1 ∀x� l�

(27)

Here we have substituted � according to (22), and added the balance constraint (25).
Alternatively, we can just add the expectation of � to the objective, to obtain a program
that is still equivalent to (18) but is closer in form to (21):

max
q:X(k)→R

NL+ �

�:X(k)→R�λ:�→R

∑
θ

μ(θ)λ(θ) +
∑
x

ρ(x)�(x)

s.t. λ(θ) +�(x) ≤
∑
i�l

θi�l∇+
i qi�l(x) ∀θ�x�

∑
i

qi�l(x) ≤ 1 ∀x� l�

(28)

To see why adding the expectation of � under ρ to the objective is equivalent to imposing
the balance condition (25), note that if (λ��) is feasible for (27), then it is also feasible for
(28) with the same objective value. On the other hand, if we take (λ��) that are feasible
for (28), then we can define

λ̂(θ) ≡ λ(θ) +
∑
x′

ρ
(
x′)�(

x′)� �̂(x) ≡�(x) −
∑
x′

ρ
(
x′)�(

x′)�
Then �̂ is balanced, so that (̂λ� �̂) is feasible for (27), and∑

θ

μ(θ)̂λ(θ) =
∑
θ

μ(θ)λ(θ) +
∑
x

ρ(x)�(x)�

We have proven the following:

PROPOSITION 2: The program (18) has the same value as (28). The program (19) has the
same value as (21).

Thus, the task of showing the bounds are tight is reduced to showing that (21) and (28)
have approximately the same value, in the limit as k becomes large.
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5.2. Tightness of the Bounds

We now arrive at the main result for this section:

THEOREM 2: For the optimal auctions problem,

lim
k→∞

W (19) = W (MIN-P) =W (MAX-G) = lim
k→∞

W (18)�

The formal proof appears in Appendix A.2. Here we sketch the argument. In light of
Proposition 2, it suffices to show that (21) has the same value as (28), in the limit as
k goes to infinity. The only difference between these two programs is the direction of
local derivatives. We show that there is an optimal solution (λ���q) to (21) that can be
manipulated into a feasible solution (λ′��′� q′) of (28), such that the difference in value
is small when k is large. In fact, this is easy to do when q is non-decreasing, in which case
we can set λ′ = λ k

k−1 and �′ =� k
k−1 and define, for 0 < xi < k,

q′
i�l(x) = qi�l(xi − 1/k�x−i)� (29)

As a result,

∇−
i qi�l = k

k− 1
∇+

i q
′
i�l�

and (setting aside delicate boundary cases) the values of the two solutions in their respec-
tive programs will be close as k becomes large. But if q decreases at x, then it could be
that the “shifted” allocation q′ defined by (29) is infeasible, because

∑
i q

′
i�l(x) > 1. How-

ever, as long as the absolute decrease in q is small when k is large, we can simply rescale
q′ so that it is feasible, without significantly changing the discrete upward derivative.

In fact, we establish an even stronger property: Lemma 4 in Appendix A.2 shows that
for every ε > 0, we can find a k large enough so that there is an allocation q̃ that is ε-
optimal for (21) and for which∣∣q̃i�l(xi + 1/k�x−i) − q̃i�l(x)

∣∣ ≤ ε

for every i, l, and x. Thus, the allocation q̃ is approximately optimal and almost continu-
ous.

At a high level, the argument is as follows. Let (λ∗��∗� q∗) be optimal for (21). Suppose
we change the allocation to q, hold fixed (λ∗� q), and partially optimize the value of (21)
over �. This gives us a value, denoted W (q), which is clearly concave in q.29 We can use
this fact to “smooth out” q∗ to produce the desired q̃.30

In particular, given y ∈ X(k), define

qy (x) =
{
q∗(x− y) if xi ≥ yi ∀i�
0� otherwise�

29To see that W is concave, suppose (λ∗���q) and (λ∗��′� q′) are both feasible, with values W (q) and
W (q′). Then for any α ∈ [0�1], the mixture (λ∗�α�+ (1 −α)�′�αq+ (1 −α)q) is also feasible and has a value
αW (q) + (1 − α)W (q′), which is a lower bound on the value W (αq+ (1 − α)q′).

30A previous version of this paper contained an erroneous proof of the smoothness of optimal solutions to
(21). We are grateful to Gabriel Carroll for suggesting this correct proof strategy.
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This is the allocation in which all actions are translated down by the vector y (and the
allocation is zero if any of the translated actions are negative). Lemma 4 shows that each
qy is almost optimal, as long as yi is small relative to k. In particular, if yi is less than

√
k,

then the approximate optimality result holds, as we now explain. Except at the boundaries,
the term in W (q∗) that involves ∇−

i q
∗
i�l(x) also appears in the calculation of W (qy), except

that the probability weighting changes from ρ(x) to ρ(x + y). The likelihood ratio is on
the order of (1 − 1/k)

√
k ≈ exp(−1/

√
k), which converges to 1 as k goes to infinity, so

that for k large, the contribution of these terms is essentially the same. There are also
terms that appear in W (qy) but have no counterpart in W (q∗), which are when xi < yi for
some i, so qy is zero. But these terms have vanishingly small probability weight according
to ρ, on the order of 1 − exp(−1/

√
k). Moreover, we show that the optimal λ∗ must be

bounded uniformly in k. This result crucially relies on the full support hypothesis (which
we assumed at the beginning of this section) that μ(θ) > 0 for all θ ∈ �. Boundedness of
λ∗ implies that the optimal �(x) is bounded for regions in which qy is zero, and hence
the contribution of these terms is negligible as well. Finally, there are terms in W (q∗),
for xi > k − yi, which have no counterpart in the translated allocation. These terms may
grow on the order of k, but the weight assigned to these terms under ρ is on the order of
exp(−√

k), so that the overall contribution to W (q∗) is again small when k is large.
Hence, we can define a new solution q̃ to be the arithmetic average of the qy for y ∈

X(k) and for which yi ≤
√
k for all i. By concavity, W (q̃) is at least the minimum W (qy)

across y , which is close to W (q∗). Finally, as long as the number of terms that are averaged
in q̃(x) grows without bound as k goes to infinity, very few terms in the average will change
when we increment x, so that q̃ is almost continuous.

Incidentally, this argument also establishes an upper bound on the rate of convergence
of the values of the bounding programs, which is shown to be on the order of 1/

√
k. This

is explained in detail in Proposition 9 in Supplemental Appendix B.4.

5.3. Exchangeable Values

An interesting special case is when the prior is exchangeable across goods, meaning that
if θ′ is obtained from θ by permuting agent i’s values for the different goods, then both
value profiles are equally likely. In this case, it is without loss to restrict attention to mech-
anisms in which the seller only offers the goods as a grand bundle (meaning that probabil-
ities of being allocated each good are the same), and to information structures in which
agents only receive information about the value of the grand bundle. The reason is as
follows. Clearly, if the mechanism only offers the grand bundle, then in computing the
guarantee, it is without loss to consider information structures that are only informative
about the value of the grand bundle. In the other direction, if the prior is exchangeable
across goods and the information structure is only informative about the value of the
grand bundle, then agents will have the same interim expected value for each good, so it
is without loss to restrict attention to mechanisms for which the allocation is the same for
all goods, that is, the mechanism only offers the grand bundle.

In independent and concurrent work, Deb and Roesler (2023) studied information-
ally robust optimal auctions with a single agent.31 They also concluded that when the

31Che and Zhong (2021) studied a related model, but rather than fixing the distribution of ex post values,
they considered value distributions with fixed mean values for each good, where goods are divided into “prod-
uct groups,” and some convex moment is known for the sum of the values within each product group. They
similarly found that the maxmin mechanism involves bundling all of the goods within a product group.
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prior is exchangeable across goods, there is a guarantee-maximizing mechanism in which
the seller only offers the grand bundle. Supplemental Appendix B.5 contains numerical
examples in which the exchangeability condition is violated, and guarantee-maximizing
mechanisms offer more than just the grand bundle. We also report simulations for the
cases where there is a single good and values are either perfectly correlated or indepen-
dently distributed.

6. OPTIMAL AUCTIONS WITH A KNOWN EMPIRICAL DISTRIBUTION

We now apply our theory to the optimal auctions problem when there is a single good
L = 1, and the empirical distribution of the agents’ ex post values for the good is known.32

This assumption is especially natural in a large market, although for ease of analysis, we
will primarily focus on N = 2. We set � ={(1�0)� (0�1)}, with the two value profiles being
equally likely. By Theorem 2, the bounding programs are tight. We will analyze their
solutions when k becomes large.

6.1. Potential-Minimizing Information Structures

If the agents have no information about their values, no mechanism can guarantee
more revenue than 1/2, which is each agent’s ex ante expected value for the good. The
min potential is therefore less than 1/2.

Moreover, the potential of any information structure I = (S�σ) is at least 1/2. To
see why, let vi(s) denote the conditional expectation of θi given s, that is, vi(s) =∑

θ θiσ (s� θ)/
∑

θ σ (s� θ). Note that v1(s) + v2(s) = 1 for all s. Now, consider the direct
mechanism that allocates the good to whichever agent has vi(s) ≥ 1/2 (breaking ties ar-
bitrarily when v1(s) = v2(s) = 1/2), and charge a price of 1/2 to whoever is allocated the
good. This mechanism is clearly incentive compatible and individually rational and it gen-
erates revenue of 1/2. We therefore conclude that the min potential is exactly 1/2, and no
information is a potential minimizer.

6.2. Guarantee-Maximizing Mechanism

Theorem 2 implies that there are mechanisms with profit guarantees arbitrarily close
to 1/2. Constructing such mechanisms turns out to be a subtle matter, as we now explain.
A natural guess is to simply post a price of p = 1/2 − ε for ε small (so as to break ties in
favor of buying). Such mechanisms would be approximately optimal under no informa-
tion. However, the guarantee of such a posted price is actually bounded away from 1/2.
To see why, consider the following information structure: Si = {0�1}, signals are condi-
tionally independent, and si = θi with probability 3/4 conditional on θ. When ε is small,
there is an equilibrium of the posted price mechanism with this information structure in
which agents purchase if and only if si = 1.33 Thus, under this information structure and

32The case of known empirical distribution may be contrasted with the common value model studied by
Brooks and Du (2021b), where there is uncertainty about the empirical distribution, but no uncertainty about
heterogeneity across agents.

33Conditional on a signal si = 0 and asking to purchase the good, the posterior probability that vi = 1 is only
1/4, so that the expected utility from buying the good is

1
4

(
3
4

+ 1
4

1
2

)
(1 −p) + 3

4

(
1
4

+ 3
4

1
2

)
(0 −p) = −1

8
+ 11

16
ε�

which is negative when ε < 2/11.
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equilibrium, a sale occurs only if at least one agent has a signal si = 1, which occurs with
probability 13/16 < 1.

We conclude that posted prices do not maximize the guarantee. Intuitively, what is
needed is a mechanism that will aggregate the agents’ private information in order to
determine who has the higher value and should therefore purchase the good. But rather
than proceeding from first principles, we will simply construct feasible solutions to (18)
with value close to 1/2.

To that end, let λ(v) ≡ 1/2 for all v. Motivated by simulations of the sort described in
Section 4, we guess and verify a solution of the following form. Fix a positive integer m,
and define

qi(x) ≡

⎧⎪⎪⎨⎪⎪⎩
1 if xi > xj +m�

0 if xi < xj −m�
xi − xj +m

2m
� otherwise,

and

�(x) ≡ min
v

v · ∇+q(x) − λ(v) = min
i=1�2

∇+
i q(x) − 1/2�

By construction, (λ���q) is feasible for (28). Note that

∇+
i q(x) =

⎧⎨⎩
k− 1
k

1
2m

if m> xi − xj ≥ −m and xi < k�

0� otherwise�

Hence,

�(x) = −1/2 +
⎧⎨⎩
k− 1
k

1
2m

if |x1 − x2|<m and max(x1�x2) <k�

0 otherwise�
(30)

The above construction ensures that the strategic virtual objective is equalized across
bidders for all x.

Now, when k is large, x converges in distribution to independent exponential, so x1 −x2

converges to Laplace, and |x1 − x2| converges to exponential. Thus, when k is large, we
have ∑

x∈X(k)

ρ(x)�(x) ≈ −1/2 + 1
2m

∫ m

y=0
exp(−y) dy

= −1/2 + 1 − exp(−m)
2m

�

The limit profit guarantee associated with this mechanism is therefore arbitrarily close to
(1 − exp(−m))/2m. Using L’Hôpital’s rule, we find that

lim
m→0

1 − exp(−m)
2m

= lim
m→0

exp(−m)
2

= 1
2
�
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Hence, by first taking k large and then m small, the seller can guarantee profit arbitrarily
close to 1/2. In this limit, the good is essentially allocated to whichever agent has the
highest action.

Note that for finite k, the function � given by (30) is not balanced. But it is straightfor-
ward to modify the solution by setting C equal to the expectation of �, replacing λ and
� with λ+ C and �− C, respectively. Then �− C is balanced, and hence by Lemma 1,
there exist participation-secure transfers t with aggregate excess growth � − C, so that
(λ+C�q� t) is feasible for (18) and has value close to 1/2.

Finally, we relate the optimal � to the guarantee-maximizing transfers. Propositions 7
and 8 in Supplemental Appendix B.3 give a general construction of transfers that induce
a given balanced aggregate excess growth. In Supplemental Appendix B.3.4, we show
that applying this construction to the present model leads to fairly complicated transfers,
given in equation (51). However, by leveraging additional results in the Supplemental
Appendix, and Proposition 8 in particular, we constructed an alternative transfer rule
that induces the same aggregate excess growth and is considerably simpler. In the limit
where we first take k → ∞ and then m → 0, these transfers converge to

ti(x) =

⎧⎪⎨⎪⎩
1/2 if xi > xj > 0�
0 if xi < xj or xi = 0�
1/4 if xi = xj > 0 or xi > xj = 0�

Thus, setting aside ties and boundary cases, as m → 0 the good is allocated to the high
bidder for a posted price of 1/2.

The bottom line is that the seller can guarantee revenue of 1/2 with mechanisms that
are, in a sense, discrete approximations of the following enriched posted price mechanism:
the agents bid non-negative real numbers, the high bidder wins, and the winner pays a
posted price of 1/2. The extra actions allow the agents to express intensity of preference
in a manner that aggregates private information and determines which bidder has the
higher expected value. Importantly, though, in the discrete approximations, it is necessary
to smooth out the allocation, so that a change in the bid has negligible effect on the
allocation when k is large.

6.3. Extensions

The construction can be generalized to priors μ supported on value profiles for which
θ1 +θ2 = θ for some constant θ, and the two agents have the same ex ante expected value
θ/2. We can proceed with the same allocation q as before, λ(θ) = θ/2 for all θ,

�(x) = θmin
i=1�2

∇+
i q(x) − θ/2 ≤ min

θ
θ · ∇+q(x) − λ(θ)

for all x, and multiplying the transfers by a factor of θ. Our constructed solution (λ���q)
is still feasible for (28), and the mechanism remains optimal.

The generalization to N > 2 is both more interesting and less straightforward. The
critical step is to construct an allocation that satisfies∑

x∈X(k)

ρ(x) min
i=1�����N

∇+
i q(x) ≈ 1/N�
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Simulations indicate that such an allocation exists for N = 3. If existence of such an allo-
cation can be established theoretically, then it is straightforward to extend the rest of our
construction of feasible solutions to (19) with value that is approximately θ/N .

7. CONCLUSION

This paper has developed new tools for the characterization of guarantee-maximizing
mechanisms and potential-minimizing information structures. The bounding programs we
derived have a natural economic interpretation in terms of the strategic and informational
virtual objectives, which adjust the designer’s welfare to account for agents’ incentives to
deviate to nearby actions or to mimic nearby types. We used the bounding programs to
construct solutions for public expenditure, bilateral trade, and optimal auctions, and we
showed non-constructively that the bounds are tight for optimal auctions with multiple
goods and interdependent values. In all of these cases, we conclude that max guarantee
equals min potential.

There remain many promising applications which we have not yet explored, in differ-
ent environments and under different conditions on primitives. We also suspect that our
non-constructive tightness result can be extended beyond the optimal auctions problem.
In addition, we have gone back and forth between the discrete model for general theory
and the continuous model in applications. It would be useful to formulate the bounding
problems and their duality directly in the continuum limit. Finally, an ambitious and chal-
lenging goal is to incorporate more flexible restrictions on the agents’ information into
the framework.

We conclude by discussing the interpretation of our results. The guarantee-maxi-
mization program literally represents the preferences of a designer who evaluates each
mechanism by its minimum welfare across all information structures and equilibria. We
do not believe that real-world designers generally exhibit such extreme pessimism and
paranoia. At the same time, we suspect that designers in a practical setting may be unable
or unwilling to commit to a single information structure and equilibrium as the correct de-
scription of behavior, as required by the classical Bayesian mechanism design paradigm.
The truth is likely somewhere in between: Designers may know some features of agents’
information without being able to give a complete description. Of course, uncertainty
about agents’ information may be accompanied by distinct concerns about the complexity
of the mechanism or the empirical validity of the equilibrium hypothesis. It is beyond our
present abilities to incorporate all such concerns into the theory of optimal mechanism
design. We can, however, ask which mechanisms are robust to uncertainty about agents’
information and strategies in an extreme sense, provided we are still willing to accept the
common prior and Bayes Nash equilibrium as an “as-if” description of behavior. Our re-
sults show that it is not necessary for the agents to explicitly articulate or communicate
all of their private information in order for a mechanism to attain the optimal guarantee,
and in that sense, the approach does not unduly strain the credulity of our assumptions.

In our view, the greatest promise of this approach is that it may lead to the discovery of
novel mechanisms, such as proportional auctions, proportional cost-sharing mechanisms,
and proportional-price trading mechanisms, that are compelling both for their optimal
worst-case performance as well as for their simplicity.34 The guarantee of a mechanism is,
in a sense, a measure of how “safe” it is. To be sure, it is just one of many criteria that might

34The worst-case analysis naturally leads to a great deal of structure on information and mechanisms, which
we view as being relatively “simple.” This judgment is of course subjective.
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be considered in applied mechanism design. For example, one may also wish to consider
how the mechanism performs in benchmark environments, such as affiliated values in the
auction context. Importantly, these criteria need not conflict: when values are common
and the number of agents is large, the maximum guarantee for profit is approximately
the entire surplus, so that profit-guarantee-maximizing mechanisms are nearly optimal
in all information structures (Du (2018), Brooks and Du (2021b)); and likewise for the
welfare-guarantee-maximizing mechanism in the public expenditure problem when the
social value is large. This will not always be the case, however, and an important task
for future work is to evaluate guarantee-maximizing mechanisms on a variety of informa-
tion structures and under different solution concepts. Such analyses will lead to a more
balanced view of the merits and demerits of these new mechanisms, and of the tradeoff
between informational robustness and Bayesian optimality.

APPENDIX A: OMITTED PROOFS

A.1. Proof of Theorem 1

A.1.1. Summation by Parts Formula

LEMMA 2: For functions f :X(k) → R and g :X(k) →R,∑
x

(∇−
i f (x)

)
g(x) = −

∑
x

f (x)
(∇̃+

i g(x)
)
�

PROOF: Using the definitions, we have∑
x

(∇−
i f (x)

)
g(x)

=
∑
x−i

[
kf (0�x−i)g(0�x−i) +

∑
0<xi<k

k
(
f (x) − f (xi − 1/k�x−i)

)
g(x)

+ (
f (k�x−i) − f (k− 1/k�x−i)

)
g(k�x−i)

]
= −

∑
x−i

[
−kf (0�x−i)g(0�x−i) −

∑
0<xi<k

kf (x)g(x) +
∑

0≤xi<k−1/k

kf (x)g(xi + 1/k�x−i)

− f (k�x−i)g(k�x−i) + f (k− 1/k�x−i)g(k�x−i)
]

= −
∑
x−i

[ ∑
0≤xi<k−1/k

f (x)k
(
g(xi + 1/k�x−i) − g(x)

) + f (k− 1/k�x−i)g(k�x−i)

− kf (k− 1/k�x−i)g(k− 1/k�x−i) − f (k�x−i)g(k�x−i)
]

= −
∑
x

f (x)∇̃+
i g(x)� Q.E.D.
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A.1.2. W (MIN-P) is Greater Than W (MAX-G)

For any M ∈M∗, I ∈ I , and b ∈ E (M�I),

P(I) = sup
M ′∈M∗�b′∈E(M ′�I)

W
(
M ′� I� b′) ≥W (M�I�b) ≥ inf

I′∈I�b′∈E(M�I′)
W

(
M�I ′� b′) =G(M)�

and hence W (MIN-P) = infI∈I P(I) ≥ supM∈M∗ G(M) = W (MAX-G) as desired.

A.1.3. (UB-P-k) is an Upper Bound on (MIN-P)

For each k, an upper bound on W (MIN-P) is the infimum potential across all informa-
tion structures of the form (X(k)�σ) for σ ∈ Ik.

Now, fix I = (X(k)�σ), σ ∈ Ik. For any M ∈M∗ and b ∈ E (M�I), it must be that for all
i and xi, agent i’s interim payoff given a signal xi is non-negative. If not, then agent i could
obtain a higher payoff by playing any participation-secure action with probability 1. Thus,
participation security implies interim individual rationality. An upper bound on P(I) may
therefore be computed by applying the revelation principle and maximizing the designer’s
payoff over all incentive compatible and individually rational direct mechanisms, that is,

max
m:X(k)×�→R+

∑
x�θ�ω

w(ω�θ)m(ω|x)σ (x�θ)

s.t.
∑

x−i�θ�ω

ui(ω�θ)
[
m(ω|xi�x−i) −m

(
ω|x′

i� x−i

)]
σ (xi�x−i� θ)

≥ 0 ∀i� xi� x
′
i� (31a)∑

x−i�θ�ω

ui(ω�θ)m(ω|xi�x−i)σ (xi�x−i� θ) ≥ 0 ∀i� xi� (31b)

∑
ω

m(ω|x) = 1 ∀x� (31c)

This program has a bounded feasible set, and by hypothesis it is non-empty because a
participation-secure mechanism exists. By strong duality, this program and its dual have
the same optimal value.

Let αi(xi�x
′
i) ≥ 0 be the multiplier on the truthtelling constraint (31a), let βi(xi) ≥ 0 be

the multiplier on individual rationality (31b), and let γ(x) be the multiplier on feasibility
(31c). The dual to (31) is

min
α:X1(k)×X1(k)→R

N+ �β:X1(k)→R
N+ �

γ:X(k)→R

∑
x

γ(x)

s.t. γ(x) ≥
∑
θ

w(ω�θ)σ (x�θ)

−
∑
θ�i�x′

i

ui(ω�θ)
[
αi

(
x′
i� xi

)
σ

(
x′
i� x−i� θ

) − αi

(
xi�x

′
i

)
σ (xi�x−i� θ)

]
+

∑
θ�i

ui(ω�θ)βi(xi)σ (x�θ) ∀x�ω� (32)
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We obtain an upper bound on the optimal value of (32) by fixing

αi

(
xi�x

′
i

) =

⎧⎪⎨⎪⎩
1 if xi = x′

i + 1/k= k�

k if xi = x′
i + 1/k < k�

0� otherwise�
βi(xi) =

{
k if xi = 0�
0� otherwise�

and optimizing over γ, that is,

min
γ:X(k)→R

∑
x

γ(x) s.t. γ(x)

≥
∑
θ

[
w(ω�θ)σ (x�θ) −

∑
i

ui(ω�θ)∇̃+
i σ (x�θ)

]
∀x�ω� (33)

where ∇̃+
i is defined in (7). For any σ ∈ Ik, the value of (33) is an upper bound on (32),

which is in turn an upper bound on P(X(k)�σ), which is in turn an upper bound on
W (MIN-P). Minimizing (33) over all σ ∈ Ik is precisely (UB-P-k).

A.1.4. W (LB-G-k) is a Lower Bound on W (MAX-G)

For each k, a lower bound on W (MAX-G) is the supremum guarantee over all mecha-
nisms of the form (X(k)�m) for m ∈M0

k.
For a fixed M = (X(k)�m), m ∈ M0

k, we compute G(M) by applying the revelation
principle for information design and minimizing welfare over BCE, that is,

min
σ :X(k)×�→R+

∑
x�θ�ω

w(ω�θ)m(ω|x)σ (x�θ)

s.t.
∑

x−i�θ�ω

ui(ω�θ)
[
m(ω|xi�x−i) −m

(
ω|x′

i� x−i

)]
σ (xi�x−i� θ)

≥ 0 ∀i� xi� x
′
i� (34a)∑

x

σ (x�θ) = μ(θ) ∀θ� (34b)

This program has a feasible set that is bounded and, by Nash’s theorem, is non-empty. As
a result, by strong duality, it has an optimal value which is equal to the optimal value of its
dual. Let αi(xi�x

′
i) ≥ 0 be the multiplier on (34a), and let λ(θ) be the multiplier on (34b).

Then the dual of (34) is

max
α:X1(k)×X1(k)→R

N+ �
λ:�→R

∑
θ

μ(θ)λ(θ)

s.t. λ(θ) ≤
∑
ω

[
w(ω�θ)m(ω|x) +

∑
i�x′

i

ui(ω�θ)αi

(
xi�x

′
i

)(
m

(
ω|x′

i� x−i

)
−m(ω|xi�x−i)

)] ∀θ�x� (35)
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We obtain a lower bound on (35) by fixing

αi

(
xi�x

′
i

) =
{
k− 1 if xi = x′

i − 1/k�
0� otherwise�

and optimizing over λ, that is,

max
λ:�→R

∑
θ

μ(θ)λ(θ)

s.t. λ(θ) ≤
∑
ω

[
w(ω�θ)m(ω|x) +

∑
i

ui(ω�θ)∇+
i m(ω|x)

]
∀θ�x� (36)

where ∇+
i is defined in (1). For any m ∈ M0

k, the value of (36) is a lower bound on (35),
which is equal to G(X(k)�m), which is in turn a lower bound on (MAX-G). Maximizing
(36) over all m ∈M0

k is precisely (LB-G-k). This concludes the proof of Theorem 1.

A.2. Proof of Theorem 2

A.2.1. Boundedness of Optimal λ

Let θ ≡ maxi�l�θ θi�l.

LEMMA 3: For all k and θ, if (λ∗��∗� q∗) is an optimal solution to (21) such that �∗

satisfies (25), then

∣∣λ∗(θ)
∣∣ ≤ Lθ

min
θ′ μ

(
θ′) ≡ Cλ

for all θ. Hence, the optimal value of (21) is at most Cλ.

PROOF: We first show that λ∗(θ) ≤ Lθ. To obtain a contradiction, suppose there exists
a θ′ such that λ∗(θ′) > Lθ. Consider the program (21) but where we hold fixed λ = λ∗,
which has the same optimal value as (20), equal to

∑
θ μ(θ)λ∗(θ). This program has the

dual

min
σ :X(k)×�→R+�

γ:X(k)→R
L+

∑
x�l

γl(x) −
∑
θ

λ∗(θ)
(∑

x

σ (x�θ) −μ(θ)
)

s.t. γl(x) ≥ −
∑
θ

θi�l∇̃+
i σ (x�θ) ∀i� x� l�

∑
θ

σ (x�θ) = ρ(x) ∀x�

(37)

Note that both (21) with fixed λ∗ and (37) are feasible.35 Hence, by the strong duality
theorem, these two programs must have the same optimal value, equal to

∑
θ μ(θ)λ∗(θ).

35For (21) with fixed λ∗, we can define q = 0 and set �(x) to be the mimimum across θ of∑
i�l

θi�l∇−
i qi�l(x) − λ∗(θ)�
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Let σ (x�θ) = ρ(x)Iθ=θ′ and γl(x) = ρ(x) maxi θ′
i�l (in other words, put probability 1

on θ′, x is distributed according to ρ, and assign good l to whichever agent has the
highest value for good l). It is easy to check that (σ�γ) is feasible for (37) (because
ρ(x) = −∇̃+

i ρ(x)) and the resulting objective is
∑

l maxi θ′
i�l − λ∗(θ′) + ∑

θ μ(θ)λ∗(θ),
which is strictly less than (21) because λ∗(θ′) >Lθ ≥ ∑

l maxi θ′
i�l, which contradicts weak

duality.
Now we show that λ∗(θ) ≥ −Lθ/μ(θ) for all θ. Note that q = � = λ = 0 is always

feasible for (21)), so the optimal value
∑

θ μ(θ)λ∗(θ) must be non-negative. Using that
and the fact that λ∗(θ′) ≤Lθ for all θ, we have

λ∗(θ) =
(∑

θ′
μ

(
θ′)λ∗(θ′) −

∑
θ′ 	=θ

μ
(
θ′)λ∗(θ′))/μ(θ)

≥ −Lθ/μ(θ)�

as desired. Q.E.D.

A.2.2. Continuity

LEMMA 4: Fix a function h : N → N such that limk→∞ h(k) = ∞ and limk→∞ h(k)/k =
0. Then there exists a function ε(k) such that ε(k) → 0 as k → ∞, and with the following
additional property: For any k, there exists a feasible solution (λ���q) to (21) with value at
least W (21) − ε(k), that satisfies |λ(θ)|≤ Cλ for all θ, and

∣∣qi�l(x) − Ixi>0qi�l(xi − 1/k�x−i)
∣∣ ≤ 2

h(k) + 1
∀i� x� l� (38)

PROOF: Fix an optimal solution (λ∗��∗� q∗) to (21). Without loss, we may assume that
�∗ satisfies (25). (If not, we can add and subtract a constant from �∗ and λ∗ so that (25)
is satisfied, and without changing the value of the solution.)

Let W (q) be the value of (21) with fixed (λ∗� q) and under the partially optimal �, that
is,

W (q) ≡
∑
θ

μ(θ)λ∗(θ) +
∑
x

ρ(x) min
θ

{∑
i�l

θi�l∇−
i qi�l(x) − λ∗(θ)

}
�

Note that W (q) is concave (as a minimum of linear functions of ∇−
i qi�l, and as ∇−

i is a
linear operator). Moreover, W (q∗) = W (21).

Let Y ={0�1/k� � � � �h(k)/k}N . For a y ∈ Y , define qy by

qy (x) =
{
q∗(x− y) if xi ≥ yi ∀i�
0� otherwise�

For (37), given an arbitrary choice of σ , we can simply define γl(x) to be the maximum of the right-hand side
across i for each (x� l).
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Hence, if xi < yi for some i, we have ∇−
i q

y
i�l(x) = 0, and if k > xi ≥ yi for all i, we have

∇−
i q

y
i�l(x) = ∇−

i q
∗
i�l(x− y).36 We therefore have

W
(
qy

) =
∑
θ

μ(θ)λ∗(θ) +
∑

x:∃ixi<yi

ρ(x) min
θ

{−λ∗(θ)
}

+
∑

x:∀i yi≤xi<k

ρ(x) min
θ

{∑
i�l

θi�l∇−
i q

∗
i�l(x− y) − λ∗(θ)

}

+
∑
x:x≥y�
∃ixi=k

ρ(x) min
θ

{∑
i�l

θi�l∇−
i q

∗
i�l(x− y)

1
kIxi=k�yi>0

− λ∗(θ)
}
� (39)

(The third line of this equation is adjusting for the fact that a boundary case in ∇−
i q

y
i�l(x)

may not be a boundary case in ∇−
i q

∗
i�l(x− y).) Now,∑

x:∃ixi<yi

ρ(x) min
θ

{−λ∗(θ)
}

≥ −Cλ

∑
x:∃ixi<yi

ρ(x) ≥ −CλN
∑

xi :xi<yi

ρi(xi) ≥ −CλN

[
1 −

(
1 − 1

k

)h(k)]
�

Since h(k)/k → 0, the term in square brackets goes to zero as k → ∞, so that the lower
bound goes to zero.37 Next,

∑
x:∀i

yi≤xi<k

ρ(x) min
θ

{∑
i�l

θi�l∇−
i q

∗
i�l(x− y) − λ∗(θ)

}

=
(

1 − 1
k

)k�y ∑
x:∀iyi≤xi<k

ρ(x− y) min
θ

{∑
i�l

θi�l∇−
i q

∗
i�l(x− y) − λ∗(θ)

}

=
(

1 − 1
k

)k�y(
W

(
q∗) −

∑
θ

μ(θ)λ∗(θ)

−
∑

x:∃ixi≥k−yi

ρ(x) min
θ

{∑
i�l

θi�l∇−
i q

∗
i�l(x) − λ∗(θ)

})

36This second case subtly depends on the definition of ∇−
i . In particular, if xi = yi , then we have

∇−
i q

∗
i�l(x− y) = kq∗

i�l(x− y) = k
(
q
y
i�l(x) − 0

) = k
(
q
y
i�l(x) − q

y
i�l(xi − 1/k�x−i)

) = ∇−
i q

y
i�l(x)�

37One way to see this limit is that

1 ≥
(

1 − 1
k

)h(k)

=
(

1 − h(k)/k
h(k)

)h(k)

≥
(

1 − x

h(k)

)h(k)

→ exp(−x)�

for any x > 0, since h(k)/k → 0. Since exp(−x) → 1 as x→ 0, limk→∞(1 − 1/k)h(k) = 1.



1434 B. BROOKS AND S. DU

≥
(

1 − 1
k

)k�y(
W

(
q∗) −

∑
θ

μ(θ)λ∗(θ) −N

(
1 − 1

k

)k2−h(k)

(kNLθ+Cλ)
)

=W
(
q∗) −

∑
θ

μ(θ)λ∗(θ) −
(

1 −
(

1 − 1
k

)k�y)(
W

(
q∗) −

∑
θ

μ(θ)λ∗(θ)
)

−
(

1 − 1
k

)k�y

N

(
1 − 1

k

)k2−h(k)

(kNLθ+Cλ)

≥W
(
q∗) −

∑
θ

μ(θ)λ∗(θ) −
(

1 −
(

1 − 1
k

)Nh(k))
2Cλ

−N

(
1 − 1

k

)k2−h(k)

(kNLθ+Cλ)�

The last line uses the result of Lemma 3 that |W (q∗)|≤ Cλ and |λ∗(θ)|≤ Cλ. The third
term above goes to zero as k → ∞ (see footnote 37), and the fourth term goes to zero as
well, since (1 − 1/k)k2

k converges to zero.38

Finally, since ρi(k) = (1 − 1
k
)k2 , the third line of (39) is at least −N(1 − 1

k
)k2 (kNLθ +

Cλ), which again converges to zero.
We have proven that for each y ∈ Y , W (qy) ≥W (q∗) − ε(k), where

ε(k) ≡ CλN

[
1 −

(
1 − 1

k

)h(k)]
+N

(
1 − 1

k

)k2

(kNLθ+Cλ)

+
(

1 −
(

1 − 1
k

)Nh(k))
2Cλ +N

(
1 − 1

k

)k2−h(k)

(kNLθ+Cλ)� (40)

and that ε(k) → 0 as k→ ∞.
Now, let q̃(x) ≡ 1

|Y|

∑
y∈Y q

y (x). By concavity of W , we have that

W (q̃) ≥ 1
|Y |

∑
y∈Y

W
(
qy

) ≥W
(
q∗) − ε(k)�

38To see this, first note that for z ∈ (−∞�0), we have log(1/(1 − z)) ≥ z. This follows because the two
expressions are equal when z = 0; the derivative of the left-hand side with respect to z is 1/(1 − z) < 1, which
is the derivative of the right-hand side. As a result,

d

dl

(
1 + x

l

)l

=
(

1 + x

l

)l d

dl

[
log

(
1 + x

l

)
l

]

=
(

1 + x

l

)l[
log

(
1

1 − x

l + x

)
− x

l + x

]
≥ 0�

as long as l ≥ −x. Hence, (1 + x/l)l is less than its limit as l → ∞, which is exp(x), so that(
1 − 1

k

)k2

k=
(

1 − k

k2

)k2

k≤ exp(−k)k�

which converges to zero as k→ ∞.
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Moreover, for each x−i, we have

q̃i�l(x) − Ixi>0q̃i�l(xi − 1/k�x−i)

= 1
|Y |

∑
y∈Y

(
q
y
i (x) − Ixi>0q

y
i�l(xi − 1/k�x−i)

)
= 1

|Y |
∑

y−i∈{0�1/k�����h(k)/k}N−1

(
q

(0�y−i)
i (x) − Ixi>0q

(h(k)/l�y−i)
i�l (xi − 1/k�x−i)

)
�

We therefore have |q̃i�l(x) − Ixi>0q̃i�l(xi − 1/k�x−i)|≤ 2/(h(k) + 1), as desired. Q.E.D.

A.2.3. Shifting

We now complete the proof of Theorem 2:

PROOF OF THEOREM 2: Let h(k) satisfy the hypotheses of Lemma 4 (e.g., h(k) can be
the smallest integer larger than

√
k). Hence, for every k, there exists a feasible solution

(λ���q) to (21) that is within ε(k) of being optimal, satisfies (38) and |λ(θ)| ≤ Cλ. To
simplify expressions, we define ε̃(k) = 2/(h(k) + 1).

We modify (λ���q) to obtain a feasible solution for (28). Define

q′
i�l(x) =

⎧⎨⎩
qi�l(xi − 1/k�x−i)

1 +Nε̃(k)
if 0 < xi < k�

0 if xi = 0 or xi = k�

λ′(θ) = k− 1
k
(
1 +Nε̃(k)

)λ(θ) ∀θ�

�′(x) =

⎧⎪⎨⎪⎩
k− 1

k
(
1 +Nε̃(k)

)�(x) if x /∈ ∂X(k)�

−(k− 1)NLθ− max
θ

λ′(θ) if x ∈ ∂X(k)�

where ∂X(k) ={x ∈X(k)|xi ≥ k− 1/k for some i}.
We claim that (λ′��′� q′) is feasible for (28): First, the constraint on λ′(θ) +�′(x) holds

for all θ and x ∈ ∂X(k) because

�′(x) = −(k− 1)NLθ− max
θ

λ′(θ) ≤
∑
i�l

θi�l∇+
i q

′
l(x) − λ′(θ) ∀θ;

it also holds for x /∈ ∂X(k) because ∇+
i q

′
l(x) = k−1

k(1+Nε̃(k)) ∇−
i ql(x), �′(x) = k−1

k(1+Nε̃(k))�(x),
λ′(θ) = k−1

k(1+Nε̃(k))λ(θ), and �(x) + λ(θ) ≤ ∑
i�l θi�l∇−

i ql(x). Also, q′ is feasible, as

∑
i

q′
i�l(x) ≤

∑
i

qi�l(xi − 1/k�x−i)
1 +Nε̃(k)

I0<xi<k ≤
∑
i

qi�l(x) + ε̃(k)
1 +Nε̃(k)

≤ 1�

Finally, using Lemma 4 and defining ε(k) as in (40), we know that the differ-
ence between the optimal value of (21) and the value of (28) under (λ′��′� q′) is at
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most

ε(k) +
∑
x

ρ(x)
(
�(x) −�′(x)

) +
∑
θ

μ(θ)
(
λ(θ) − λ′(θ)

)
= ε(k) +

(
1 − k− 1

k
(
1 +Nε̃(k)

))[∑
x

ρ(x)�(x) +
∑
θ

μ(θ)λ(θ)
]

+
∑

x∈∂X(k)

ρ(x)
(

k− 1
k
(
1 +Nε̃(k)

)�(x) −�′(x)
)

≤ ε(k) +
(

1 − k− 1
k
(
1 +Nε̃(k)

))
Cλ

+
∑

x∈∂X(k)

ρ(x)
(

k− 1
k
(
1 +Nε̃(k)

)�(x) + (k− 1)NLθ+ max
θ

k− 1
k
(
1 +Nε̃(k)

)λ(θ)
)

≤ ε(k) +
(

1 − k− 1
k
(
1 +Nε̃(k)

))
Cλ

+N(1 − 1/k)k
2−1

(
k− 1

k
(
1 +Nε̃(k)

)kNLθ+ (k− 1)NLθ

)
�

In the first inequality, we have used the result of Lemma 3 that the value of (21) is
at most Cλ. In the last inequality, we use the fact that ρ(∂X(k)) ≤ N(1 − 1/k)k2−1

and �(x) + λ(θ) ≤ ∑
i�l θi�l∇−

i ql(x) ≤ kNLθ. The last line vanishes as k → ∞ because
ε(k) → 0, ε̃(k) → 0, and (1 − 1/k)k2−1k→ 0.

Thus, we conclude that the optimal value of (28) is at least that of (21), minus a
term that converges to zero as k goes to infinity. By Proposition 2, (28) has the same
value as (18). Moreover, by strong duality, (21) has the same value as (20), which
by Proposition 2 has the same value as (19). Hence, the value of (18) is at least the
value of (19), minus a term that goes to zero as k goes to infinity. Moreover, by
Theorem 3 in Supplemental Appendix B.2 (the analogue of Theorem 1 for the op-
timal auctions problem), for all k, the value of (19) is at least the minimum poten-
tial, which is greater than the max guarantee, which is greater than the value of (18).
We conclude that (18) and (19) have the same value in the limit as k → ∞, as de-
sired. Q.E.D.
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