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CONTRACTUAL CHAINS

JOEL WATSON
Department of Economics, UC San Diego

This paper develops a model of private bilateral contracting, in which an exoge-
nous network determines the pairs of players who can communicate and contract with
each other. After contracting, the players interact in an underlying game with globally
verifiable productive actions and externally enforced transfers. The paper investigates
whether such decentralized contracting can internalize externalities that arise due to
parties being unable to contract directly with others whose productive actions affect
their payoffs. The contract-formation protocol, called the “contracting institution,” is
treated as a design element. The main result is positive: There is a contracting insti-
tution that supports efficient equilibria for any underlying game and connected net-
work. A critical property is that the institution allows for sequential contract formation
or revision. The equilibrium construction features assurance contracts and cancellation
penalties.

KEYWORDS: Efficient decentralize contracting, moral hazard, Coase theorem, con-
tracting institution, cancellation penalties, assurance penalties.

1. INTRODUCTION

IN MANY CONTRACTUAL SETTINGS, there is multilateral productive interaction but barri-
ers prevent the parties from contracting all together. Instead, contracting is possible only
in certain small groups that are exogenously specified. These settings often feature exter-
nalities due to lack of direct links (LDL), in which agents are unable to contract directly
with others whose productive actions they care about. A fundamental issue is whether
LDL externalities can be internalized through such decentralized contracting, leading to
efficient outcomes.

In this paper, I develop a noncooperative game-theoretic model to study the efficiency
issue. Efficiency is defined in the Pareto sense. The model has the following structure:

• Players interact in the contracting phase followed by the production phase, the lat-
ter a commonly known underlying game in which the players simultaneously choose
productive actions.

• Only bilateral contracting is possible. An exogenous network describes the pairs of
players who can communicate and establish contracts. Contracting is private and in-
dependent across these contractual relationships.

• A contract specifies an externally enforced monetary transfer between the contract-
ing parties as a function of the outcome of the underlying game, which is verifiable
by everyone (global verifiability). Payoffs are linear in money.
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FIGURE 1.—A network of contractual relationships.

An illustration of the set of players and network is shown in Figure 1, where each node
is a player and edges of the graph denote the pairs of players who can contract. As an
example of an LDL externality, player i’s and player k’s payoffs in the underlying game
may depend on each other’s productive actions, and yet these players are unable to con-
tract together. The pair (i� j) can establish a contract, and so can the pair (j�k), implying
that a chain of contractual relationships can, in principle, arise endogenously to indirectly
connect players i and k. Observe that a more distant LDL externality may exist between,
say, players i′ and k′, and it is possible to indirectly connect them via a longer chain of
contractual relationships.

In this environment, contractual linkages can be made only by specifying transfers in
one contractual relationship as a function of productive actions taken by agents in other
relationships. For instance, the contract between players i and j could specify a transfer
between them contingent on player k’s action in the underlying game. The model rules
out “contracts on contracts,” such as if the contract between players i and j could make
the transfer between these players contingent on the contract formed between players j
and k.

To study the prospect of efficient outcomes without arbitrarily specifying the noncoop-
erative protocol for interaction in the contracting phase (and its idiosyncratic constraints),
I take the novel approach of treating this protocol, which I call the contracting institution,
as a design element. Formally, a contracting institution is an extensive game form in which
the players freely send messages that determine their externally enforced contracts. For a
given contracting institution, the players will play a grand game in which they first interact
in the contracting institution, then simultaneously select their actions in the underlying
game, and finally receive payoffs including the contracted transfers.

Critically, the contracting institution is restricted by the network of links and by assump-
tions that represent the notion of private, independent, and voluntary contracting: First,
each player receives messages from only those to whom she is linked in the network, and
she does not observe messages exchanged between other players. Second, the contract
formed between any pair of players depends on only the messages they exchange, not on
messages sent or received by other players. Thus, third parties cannot dictate the terms
of a contract, and contracts on contracts are not feasible.1 Third, players can reject con-
tracts, which ensures the definition of contract is conventional in that the consent of both
parties is required.

I focus on a “possibility” question: Is there a contracting institution that implements effi-
cient outcomes, meaning that, fixing the contracting institution, for every underlying game

1The second assumption can also be motivated on the basis of contracts being verifiable only locally (when
enforcing a contract between two players, the court does not observe contracts written by others).
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and network in a given class, the grand game has an efficient sequential equilibrium? If so,
then we can say that under the right conditions for contracting, in all productive settings
with global verifiability, LDL externalities can be overcome by decentralized formation of
contractual chains.

Why is the possibility question interesting? First, LDL externalities exist in a plethora of
economic settings, and they often traverse extensive networks and occur bidirectionally,
so the question has practical significance.2 Second, the possibility question does not have
an obvious answer; addressing it requires a novel noncooperative modeling exercise with a
number of subtleties. Third, a positive general result would constitute an extended Coase
theorem that can serve as a useful benchmark for analysis of complex contractual settings.

The theorem presented here answers the possibility question in the affirmative for con-
nected networks, showing that LDL externalities can generally be internalized. The proof
entails an elaborate equilibrium construction, but three essential economic elements can
be easily described. First, the contracting institution allows for sequential contract forma-
tion, with multiple rounds in which contractual arrangements can be made and adjusted.
Second, players coordinate on assurance contracts with penalties, which guarantee that
specified third parties will select their part of an efficient action profile in the underlying
game. Third, the players agree to cancellation penalties that discourage them from can-
celing tentative contracts except in onerous situations.3 In equilibrium, a “core group”
of players, including all whose productive incentives must be managed, endogenously
emerges. Pairs make their initial contractual commitments in sequence, ending with the
core group. In each round, a player’s behavior with one contracting partner depends on
her experience with others.

While the theorem presents as an encouraging result about attaining efficiency, its more
practical use may be as a reference point for applications. The analysis shows that efficient
contracting relies on having the right kind of contracting institution as well as players
coordinating on a socially desired equilibrium, conditions that some real settings may lack.
More generally, by precisely accounting for the contracting institution and enforcement
technology, the modeling framework helps classify methods of establishing contractual
linkages across relationships. The framework can be modified to examine variations in the
fundamentals of contracting, such as the extent of verifiability and the scope of external
enforcement.

Related Literature

As noted, the modeling exercise herein generalizes Coase’s (1960) insight about how
externalities can be circumvented through contracting, regardless of the assignment of

2Examples include (i) collaboration agreements between firms on projects that rely on investments by their
suppliers; (ii) data-transmission networks, where end users contract with local service providers and content
providers but care also about the actions of “Tier-1” firms that transmit data between them; (iii) the internal
organization of a firm, where multiple workers have employment contracts with the firm but care about each
others’ productive actions and may not be able to contract with each other; (iv) sales of goods exhibiting
network externalities, where each consumer cares about the other consumers’ use of the seller’s technology;
(v) platforms that facilitate transactions between buyers and sellers, where agents on one side of the market
care about whether agents on the other side make investments tied to a particular platform intermediary; and
(vi) supply contracting in vertically integrated industries.

3Options to terminate are common in contracts across industries. Assurance arrangements are also com-
mon, particularly with respect to the performance of subcontractors. Contracting partners sometimes develop
detailed criteria for the practices of each others’ employees and suppliers. Such “talent management” is docu-
mented in the World Management Survey data set, as discussed recently by Bernstein and Peterson (2020).
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property rights. Coase’s logic was put forth informally through a discussion of two-party
examples and legal cases. It can be formalized by noting that for two-player settings of
complete information, with full verifiability and enforcement, there exists a noncoop-
erative game of contract negotiation that has an efficient equilibrium regardless of the
economic parameters.

Ellingsen and Paltseva (2016) proved a Coase-style efficiency result for settings with any
number of players. Their model has the same basic structure as mine: players interact in
a contracting phase followed by an underlying game with full verifiability. The key differ-
ence is that Ellingsen and Paltseva examined centralized multilateral contracting, which
allows all of the players to join in a single contract, and there are no LDL externalities.4

A variety of other papers develop game-theoretic models of multiple contractual re-
lationships that share features with the present exercise; some are fully noncooperative
models and others are in the cooperative-theory tradition. Neither strand has examined
the general question posed here regarding internalizing LDL externalities.5 Using a fully
noncooperative model with individual productive actions that fits the framework here,
McAfee and Schwartz (1994) studied private bilateral contracting between a monopoly
supplier and multiple downstream firms. There are LDL externalities because the down-
stream firms are competitors in a market, although the authors restrict the contract be-
tween the supplier and a given downstream firm to condition the transfer on only this
downstream firm’s orders. Other noncooperative models in the related literature focus
on similar applications with specific networks and enforcement mechanisms, most with-
out LDL externalities.6

On the cooperative-theory side, some models of bilateral contracting utilize the Nash-
in-Nash solution, whereby for each relationship, the specified contract maximizes the
Nash product holding fixed the contracts in all other relationships. Crémer and Rior-
dan (1987) in this way examined vertical contracting with a single supplier and no LDL
externalities. Horn and Wolinsky (1988) allowed for LDL externalities but limited atten-
tion to linear contracts that condition a transfer from a firm on only the number of units
delivered to this firm. Collard-Wexler, Gowrisankaram, and Lee (2019) provided a result
in the tradition of the “Nash program” that relates the Nash-in-Nash solution to an equi-
librium of a fully noncooperative model of bargaining in a general public-action setting
with no LDL exernalities.

The line on “matching with contracts” initiated by Hatfield and Milgrom (2005) studies
stability concepts for models in which the fundamentals are feasible contracts available to
subsets of players and payoffs as a function of the contracts chosen. Closest to my model-
ing exercise is the model of Rostek and Yoder (2020, 2022), which allows for multilateral

4Ellingsen and Paltseva (2016) built on the model of Jackson and Wilkie (2005), which examines binding
unilateral promises; also, they assumed a specific contracting institution, described here in Section 3.2. They
consider an equilibrium refinement under which efficiency is not guaranteed when parties can commit to opt
out of contracting.

5An advantage of the noncooperative framework is that it allows for a precise categorization of externalities
and feasible contractual linkages, on the basis of the enforcement technology and the specification of what
is verifiable within and across relationships. A further distinction can be made between models that describe
productive actions as taken by individual players and models that treat productive actions as essentially “pub-
lic” (taken by a third party) and occurring automatically with contract formation. Individual-action modeling
is required to understand the full extent to which a player’s productive action can serve as an option (Watson
(2007)), especially as influenced by contracts with multiple partners.

6Segal’s (1999) model of bilateral contracting between a principal and multiple agents effectively has only
the principal taking an action in the underlying game, so there are no LDL externalities. Galasso (2008)
looked at various bargaining protocols and provided additional references. Bernheim and Whinston (1986a,b)
common-agency framework is similar in this regard, as is Prat and Rustichini’s (2003) setting of multiple agents.
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contracts and LDL externalities directly via contracts. As with cooperative theory gener-
ally, their model abstracts from the details of production and enforcement technology.
They focused on the existence of stable matchings and the characterization of stability
conditions, and did not address conditions for efficiency. Thus, the objectives pursued
and the methods developed herein are complementary to the objectives and methods of
cooperative matching theory. Additional discussion of this and other areas of the litera-
ture, along with notes about the relative advantages of noncooperative modeling, may be
found in Section 5.

Overview

The general model is developed in the next section. Section 3 uses simple examples to
discuss barriers to efficient contracting. Section 4 presents the theorem and describes the
contracting institution and a variety of technical elements used in the proof, the construc-
tive part of which appears in Appendix A. Section 5 discusses the modeling approach,
additional references, tangential results including on the existence of multiple efficient
and inefficient equilibria, and further steps in the research program. Supplemental Ap-
pendix B (Watson (2024)) contains additional discussion and the formalities of results
stated informally in Sections 3 and 5.

2. THE MODEL

2.1. Setting

The set of players is N = {1�2� � � � � n} for some positive integer n. The players inter-
act in two phases of time: the contracting phase followed by the production phase. The
production phase is described by a simultaneous-move underlying game 〈A�u〉, where
A =A1 ×A2 × · · · ×An is the space of action profiles, assumed finite, and u :A→ R

n

is the payoff function. Payoffs are in monetary units. A set G comprises the universe of
underlying games. Let A≡ ⋃

{A|〈A�u〉 ∈G}.
In the contracting phase, players have the opportunity to communicate and form con-

tracts. This interaction is restricted to a set of bilateral relationships given by a fixed undi-
rected and irreflexive network L ⊂N ×N , meaning players i and j can communicate if
and only if (i� j) ∈L. Contracting by larger groups is not possible. Contracting takes place
via a protocol that I call the contracting institution, described formally below.

Contracts specify externally enforced monetary transfers as a function of the action
profile that is played in the underlying game, a ∈A, which is fully verifiable by everyone.7

Realistically, contracting partners can condition transfers between them on the productive
actions taken by third parties in the underlying game, but their contract may not impose
transfers on third parties.

DEFINITION 1: The contract for a pair of players (i� j) is a mapping mij :A→ R
n
0 (i� j),

where R
n
0 (i� j) ≡{t ∈ R

n|ti + tj = 0 and tk = 0 for k 	= i� j} is the set of n-vectors describing
transfers between i and j.

7Although the external enforcer can recognize all elements of A, she does not observe which underlying
game is played and therefore cannot paternalistically impose transfers to induce behavior in furtherance of
any particular welfare objective.
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The grand game comprises interaction in the contracting phase followed by the pro-
duction phase, with common knowledge of the contracting institution, underlying game,
and network. Grand-game payoffs are given by the vector u(a) +M(a), where M(a) ≡∑

i�j∈N;i<j m
ij(a). Restricting to i < j in this expression avoids double counting, since mij

andmji refer to the same contract. Note thatM maps feasible outcomes of the underlying
games, A, to the set of balanced transfers Rn

0 ≡{t ∈ R
n|t1 + t2 + · · · + tn = 0}.

2.2. Contracting Institution and Design Problem

The contracting institution comprises a communication protocol and a description
of how the players’ messages shall be interpreted by the external enforcer as contracts
formed between pairs of players. It can be described formally as an extensive game form
with costless messages that map to a contract mij for every pair of players (i� j).

I consider the problem of designing a contracting institution that, once fixed, must serve
for every underlying game in G and every network in a given set L. The welfare goal is to
achieve efficient outcomes, which means that for any given underlying game 〈A�u〉 and
network L ∈ L, there is a Pareto efficient equilibrium of the grand game. Note that, in
the case of a connected network, where contracted transfers can (in sum) arbitrarily shift
utility between all the players, Pareto efficiency is equivalent to play of an action profile
in the underlying game that maximizes the players’ joint value

∑
i∈N ui(a).

The design problem is constrained in two ways. First, the enforcement system allows
only for contracting that is voluntary and independent across relationships. Second, the
institution is limited to private contracting between only the pairs of players linked in the
network. A novel aspect of the latter constraint is that it varies with the network.

I limit attention to the class of game forms in which the players simultaneously send
messages to each other in discrete rounds r� r+ 1� r+ 2� � � � � r, where r and r are arbitrary
integers.8 There is no discounting. A public random draw φ occurs after round r, and
contracts can be conditioned on φ. Let � denote the space of public draws.

To represent that contracting takes place privately in bilateral relationships, the con-
tracting institution is assumed to have the following structure: For each r ∈ {r� � � � � r}
and i ∈ N , player i’s action in round r of the contracting phase is a vector of messages
dri = (λrij)j 	=i, where λrij is the message player i sends to player j. Each player observes
only the messages she sent to and received from the other individuals, not any messages
exchanged between other players. Denote by hij = (λrij� λ

r+1
ij � � � � � λ

r
ij) the sequence of mes-

sages from player i to player j, and let hrij = (λrij� � � � � λrij) denote the sequence through any
given round r.

To represent that contracting is independent across relationships, we require two things.
First, the set of feasible messages that player i can send to player j in round r depends
only on the messages exchanged earlier between players i and j, and so can be written as
�
r
ij for the first round and �rij(h

r−1
ij � h

r−1
ji ) for r > r. Assume that a special null message λ,

meaning silence, is always feasible.
Second, the recognized contract between players i and j is a function of only the se-

quence of messages sent between them as well as the random draw φ. Thus, letting Hij

denote the feasible sequences (hij�hji) of messages between players i and j, their contract
mij is the output of some function μij : Hij ×�→ Mij , where Mij ≡ {mij : A → R

n
0 (i� j)}

denotes the set of feasible contracts for players i and j. Also, since μij and μji are the
same contract, μij(hij�hji�φ) = μji(hji�hij�φ) is required.

8The general numbering will be convenient for organizing components of the contracting institution later.
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To represent that contracting is voluntary, assume that player i can decline to contract
with player j by sending the null message λ to player j in every round. That is, we have
μij((λ�λ� � � � �λ)�hji�φ) =m for all hji and φ, where m is the null contract that specifies
m(a) = 0 for every a ∈A.

To review, a contracting institution specifies integers r and r; the space of the public
random draw �; the public draw distribution; message spaces �rij for all i� j ∈ N , i 	= j,
and r ∈{r� � � � � r}; and the function μij for each pair of players i� j ∈N , such that μij satis-
fies the assumption regarding voluntary contracting. Note that contracts on contracts are
ruled out by Definition 1 and the independence requirement for the contracting institu-
tion.

Finally, to represent how the contracting institution is constrained by the network L,
we layer on the assumption that, for every pair (i� j) /∈ L, players i and j are restricted to
send each other the null message. In other words, pairs of players that are not linked are
unable to communicate directly, and their contract will be null.

2.3. Equilibrium Concept and Implementation

Because each player does not observe messages sent between pairs of other players in
the contracting phase, there is a great deal of asymmetric information in the grand game.
For instance, at the end of the contracting phase, each player knows only the contracts
he created with his linked partners; he does not observe the contracts formed in other
relationships.

To impose the stringent requirement of full consistency for belief updating on the
plethora of information sets in the grand game, I analyze behavior using the concept of se-
quential equilibrium (Kreps and Wilson (1982)). Beliefs at information sets are expressed
in terms of appraisals (Watson (2017))—probability distributions over strategy profiles—
which is convenient for the kind of game studied here. To keep the grand game finite, as
required to apply sequential equilibrium, I look only at finite contracting institutions and
assume G is finite.9

DEFINITION 2: Fix n, G, and L. A given contracting institution is said to implement
efficient outcomes if, for every underlying game 〈A�u〉 ∈G and every network L ∈L, there
is a sequential equilibrium of the grand game in which the outcome is Pareto efficient.

Our organizing question, on whether LDL externalities can be internalized through ra-
tional decentralized contracting, can be viewed as a policy problem. We have a setting in
which the external enforcement technology can verify messages sent in the contracting
phase, the public draw, and the outcome of the underlying game. The enforcer does not
observe which underlying game is played or the network. The contracting institution is
constrained to allow for only private, independent, and voluntary contracting. Achieving
efficient implementation would allow us to conclude that, with the right kind of contract-
ing institution, LDL externalities can always be internalized, whatever are the underlying
game and network.

9One can allow G to be infinite by still requiring A to be finite and imposing bounds on underlying-game
payoffs, but extending the analysis in this way does not generate further insights.
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3. BARRIERS ILLUSTRATED BY SIMPLE EXAMPLES

It is clear that, regardless of the underlying game and network, if every player has at
least one link (so everyone can be bound by at least one contract), then there exist feasible
contracts for the linked pairs of players such that the “induced game” 〈A�u+M〉 has a
Nash equilibrium a∗, and play of a∗ with the contracted transfers is Pareto efficient.10

However, it is another matter as to whether the players would, in equilibrium, actually
settle on these contracts and choose a∗ in the underlying game.

This section provides examples that illustrate barriers to efficient contracting. I show
first that it is impossible to implement efficient outcomes with disconnected networks,
which motivates the focus hereinafter on connected networks. I then demonstrate that
various significant barriers exist with connected networks.

Before proceeding, let me comment on the assumption that productive actions are fully
verifiable. A more general model would allow for partial verifiability, described by a parti-
tion ofA with respect to which contracts must be measurable. For some underlying games
and networks, partial verifiability is sufficient for the existence of contracts that support
efficient production, in the sense of 〈A�u+M〉 having a Nash equilibrium that, with the
contracted transfers, is Pareto efficient. However, Supplemental Appendix B.1 reaches
a negative conclusion, illustrated by a team-production example and stated generally as
Result 1: For any given n≥ 3, there exists an underlying game with partial verifiability and a
connected network such that (i) feasible contracts exist to support efficient production, and
yet (ii) regardless of the contracting institution, there is no sequential equilibrium of the grand
game in which an efficient productive action profile is played with positive probability. This
motivates the assumption of fully verifiable productive actions maintained in this paper.

3.1. Disconnected Networks

Consider a setting with two information-technology firms, called players 2 and 3, whose
operations have potential synergies. Player 2 has an existing supplier called player 1, and
player 3 has an existing supplier called player 4. Players 2 and 3 would jointly benefit if
their suppliers create specialized inputs in service of the synergy, but this would require
the suppliers to divert resources from other projects and reduce their ability to compete
in an unrelated market.

Only players 1 and 4 have choices to make in the underlying game and they both have
action space {0�1}. The actions of players 2 and 3 are fixed at a2 = a3 = 1. Assume that
players 2 and 3 each can contract with its supplier, but there are no other network links.
Payoffs in the underlying game are given by the table on the right side of Figure 2, and
the network is shown on the left. Note that every player is in at least one contractual
relationship, but the network is disconnected.

FIGURE 2.—Example of two firms with suppliers, disconnected network.

10Because of private contracting, the induced game would not be common knowledge at the end of the
contracting phase, but if each player i believes that the prescribed contracts have been formed and the others
will choose a∗

−i , then player i would optimally choose a∗
i given the contracts to which player i is a party.
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In this example, Pareto efficiency does not equate to maximizing the sum of the players’
payoffs, since transfers cannot be made between the two disconnected components of the
network. Yet any outcome in which action profile (0�1�1�0) is played in the production
phase is inefficient, because we can find contracts m12 and m34 that, along with the choice
of action profile (1�1�1�1), would give every player a strictly higher payoff in the grand
game. Unfortunately, regardless of the contracting institution, action profile (0�1�1�0) is
chosen with certainty in every sequential equilibrium of the grand game.

To see why, consider the incentives of players 1 and 2. Because there is no communi-
cation between them and the other players, whether they deviate from equilibrium in the
contracting phase will not affect player 4’s choice of a4 in the production phase. Under
the null contract with player 2, player 1 rationally must choose a1 = 0 in the productive
phase, for it dominates a1 = 1 in the underlying game. Since the joint payoff for players
1 and 2 is strictly higher with a1 = 0 than with a1 = 1, at least one of these players strictly
prefers to deviate from an equilibrium that would have player 1 choose a1 = 1 with posi-
tive probability, by being silent throughout the contracting phase to get the null contract.

The following, more general, statement is Result 2 in Supplemental Appendix B.1: For
any given n ≥ 4, there exists an underlying game and a network in which every player has
a link and, regardless of the contracting institution, there is no sequential equilibrium of the
grand game in which an efficient productive action profile is played with positive probability.
Hereinafter, I limit attention to settings in which network L is connected.

3.2. Collaboration Agreement

Next consider a case with four players in the same roles as in the previous example, but
suppose that players 2 and 3 can communicate and contract, in addition to each contract-
ing with her supplier. Now players 2 and 3 may seek to exploit their operational synergies
by forming a collaboration agreement—a contract that governs their interaction and may
also contain provisions having to do with their suppliers’ productive actions.11 As before,
only players 1 and 4 have choices to make in the underlying game. Assume they both have
action space {0�1�2}. The actions of players 2 and 3 are fixed at a2 = a3 = 1. Payoffs in the
underlying game are given by the table in Figure 3, and the network is shown on the left.

Because the network is connected, Pareto efficiency requires play of an action pro-
file in the underlying game that maximizes the sum of the players’ payoffs. The effi-
cient action profile is a∗ = (1�1�1�1) and the Nash equilibrium of the underlying game is
a = (0�1�1�0). Since each supplier’s productive action affects the payoff of every other
player, LDL externalities extend throughout the network.

FIGURE 3.—A collaboration-agreement example.

11Collaboration agreements are common in high-tech industries, as evidenced by primary and secondary
documents found in the U.S. Securities and Exchange Commission’s Edgar Database of required SEC filings.
A recent example in the pharmaceutical industry is a research collaboration agreement between Jounce Ther-
apeutics and Celgene to design and test cancer therapies. An example in IT is an agreement between Bsquare
and Amazon Web Services to collaborate on “Internet of Things” technology and standards.
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Let us explore what might be needed for efficient contracting. First note that, regardless
of the contracting institution, efficiency requires transfers in the collaboration agreement
between players 2 and 3 to depend on their suppliers’ productive actions. Suppose, to the
contrary, that the contract between players 2 and 3 does not condition their transfer on
player 1’s action a1. In an efficient equilibrium, contract m12 must specify a payment of at
least 2 to player 1 conditional on a1 = 1, for player 1 can guarantee a payoff of at least 4 by
refusing to contract and by choosing a1 = 0. But then player 2 can strictly gain by declining
to contract with player 1 while forming the equilibrium contract with player 3. Player 1
will select either a1 = 0 or a1 = 2 in the underlying game (a1 = 1 is dominated) and player
4 will select a4 = 1 because, having not observed that player 2 deviated in the contracting
phase with player 1, players 3 and 4 still believe that they are on the equilibrium path.
Player 2’s payoff increases by at least 1 when deviating in this way.

Therefore, to obtain an efficient outcome, it is essential for the players to form contracts
that condition transfers in a given relationship on productive actions taken outside this
relationship. Do the players have incentives to create such contracts in equilibrium and,
further, in such a complementary form that would motivate them to choose a∗ in the
underlying game? A look at some contracting institutions suggests perhaps not.

Consider the two-round contracting institution studied by Ellingsen and Paltseva
(2016), with private contracting required here. In the first round, players simultaneously
offer contracts separately to each of their linked partners. In the second round, players
simultaneously choose at most one contract to accept in each of their relationships, select-
ing between the contracts offered by the two linked players. If, in a given relationship, the
same contract is accepted by both players, then this contract goes into force; otherwise,
they have the null contract specifying zero transfers.

With this contracting institution, the grand game has no efficient equilibrium. To see
why, presume there is an efficient equilibrium, and we will find a contradiction. Pairs
(1�2) and (3�4) must form contracts that induce players 1 and 4 to select a1 = a4 = 1.
Suppose player 1 were to deviate in the second round by declining to accept any contract
with player 2 and then choose a1 = 2. This deviation is not observed by player 4, who still
forms a contract with player 3 and selects a4 = 1. The deviation gives player 1 a payoff
of 9, which becomes a lower bound on player 1’s equilibrium payoff. Similar logic implies
the same lower bound on player 4’s equilibrium payoff. Likewise, players 2 and 3 can
each guarantee themselves a payoff of at least 2 by refusing to contract. These bounds
contradict that the sum of payoffs is 16 in the efficient outcome.

Similar logic holds for contracting institutions with more rounds and where players
must solidify contracts on specified dates. Say that a given contracting institution exhibits
dated commitment if, for every pair (i� j), there is a round r̂ ij such that these players can
communicate through round r̂ ij only, and their contract is null if either sends message λ
to the other in round r̂ ij . A special case allows all players to decline contracts in round r.
Result 3 in Supplemental Appendix B.1 states that, for any given n≥ 4, there exists an un-
derlying game and a connected network such that, for every contracting institution exhibiting
dated commitment, sequential equilibrium outcomes of the grand game are bounded away
from efficient.

Hence, to implement efficient outcomes, a contracting institution must give each linked
pair of players the opportunity to make a contractual commitment and then continue to
communicate and possibly modify the contract. Further, enough time is needed for play-
ers to make adjustments in response to their experiences in other relationships, as stated
as Result 4 in Supplemental Appendix B.1: For any given n ≥ 3, there exists an underly-
ing game and a connected network such that, for every contracting institution with strictly
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FIGURE 4.—An example with a peripheral beneficiary.

fewer than n− 1 contracting rounds, sequential equilibrium outcomes of the grand game are
bounded away from efficient.

3.3. Collaboration and a Peripheral Beneficiary

The next example adds an element to the incentive issues discussed in the previous sub-
section: contracting with a beneficiary at the periphery of the network who is not active
in the underlying game. Consider a variant of the collaboration-agreement example with
the same connected network but in which only players 1 and 3 take actions in the under-
lying game. The actions of players 2 and 4 are fixed at 1. Player 1 is a supplier for player
2, as before. Player 4 is now a beneficiary of successful collaboration between the others.
Payoffs in the underlying game are given by the table on the right side of Figure 4. The
efficient action profile is a∗ = (1�1�1�1) and the Nash equilibrium of the underlying game
is a= (0�1�0�1).

Player 1 can guarantee herself a payoff of at least 4 by refusing to contract with player
2. Therefore, achieving the efficient action profile a∗ must involve a contracted transfer
of at least 4 from player 2 to player 1 in equilibrium. Such a transfer implies that player
2’s equilibrium payoff would be nonpositive unless this player receives a transfer from
player 3. Because player 2 can guarantee a payoff of at least 2 by refusing to contract,
the equilibrium contract for the pair (2�3) must specify a transfer to player 2 of at least
2 when a∗ is chosen. Likewise, the equilibrium contract for the pair (3�4) must specify a
transfer of at least 2 to player 3 when a∗ is played. For efficiency, the players must have
the incentive to establish contracts with these properties and which motivate players 1
and 3 to choose the high action in the production phase. It remains to be seen whether,
depending on the contracting institution, there is an equilibrium of the grand game in
which such contracts are written.

4. EFFICIENT IMPLEMENTATION

The examples and results presented in the previous section suggest that, to achieve effi-
cient implementation through decentralized, private contracting, a successful contracting
institution must facilitate sequential contracting, in some manner encouraging players to
initiate their contractual commitments early in the contracting phase while also allowing
them to later adjust the contracts with some partners in response to their experience with
other partners. Moreover, it must be flexible, giving the players sufficient scope to handle
any network and underlying game. The implementation problem is therefore nontrivial.
Despite the hurdles, the answer to our possibility question is positive. The main result is
stated next.

THEOREM: Take as given any integer n ≥ 2 and any finite set G of finite n-player under-
lying games. Let L be the set of all connected networks in N ×N . There exists a contracting
institution (representing private, independent, and voluntary contracting) that implements ef-
ficient outcomes.
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The proof of the theorem has two parts. The first is to identify a contracting institution
that will implement efficient outcomes. This is done in Section 4.1, except for specifying a
probability number ε and set of feasible contracts Mij

for every pair of players (i� j). The
second part is to construct an efficient equilibrium of the grand game for every connected
network and underlying game. This part involves organizing classes of personal histories,
specifying strategies and beliefs, and checking sequential rationality. Sections 4.2–4.4 de-
velop key elements of the equilibrium construction and also derive ε and the contracts
Mij

is assumed to contain. Section 4.5 provides an overview of the construction, explain-
ing what happens on the equilibrium path and after two sample deviations. The precise
details of the construction are laid out in Appendix A.3. Appendix A.2 provides proofs of
lemmas presented in Sections 4.2 and 4.3.

The equilibrium construction is formidable because of the large number of informa-
tion sets in the grand game and because players have distinctly different information
about actions taken previously. Further, the construction must be done generically, re-
quiring numerous organizational steps. In fact, a full equilibrium construction is not un-
dertaken. Rather, existence is established using a novel partial-construction method, spec-
ifying strategies and beliefs for a subset of information sets. An existence result, reported
in Watson (2023), then guarantees that the partial construction extends to a fully specified
sequential equilibrium.

Before proceeding to the technical details, it may be helpful to preview some features
of the proof. In equilibrium, the players are endogenously partitioned into a core group,
containing all active players whose incentives in the production phase require shaping by
external enforcement, and a set of peripheral passive players, together forming a mini-
mally connected subnetwork. The players coordinate to make contractual arrangements
sequentially, starting in the periphery and working toward the core. Not all linked pairs
form contracts. Players also have the opportunity to send cancellation messages in later
rounds.

Contractual arrangements provide for primary contracts formed on the equilibrium
path, as well as secondary contracts triggered by unilateral cancellations. Primary con-
tracts work together to force play of an efficient action profile a∗ in the underlying game,
and the primary contract chosen by a pair (i� j) has assurance penalties by which player i
guarantees that others on her side of the network will do their part. Cancellation either
discharges a player from her contractual obligations or forces play of a particular action
in the underlying game, depending on the random draw φ, resulting in an active player
departing from a∗ in the underlying game with positive probability under equilibrium be-
liefs.

Thus, if player j cancels or otherwise disrupts contracting with player i, then player
i expects players on j’s side of the network to depart from a∗, making player i liable
to pay assurance penalties in her other contractual arrangements, which she then has
the incentive to cancel because cancellation penalties are small compared to assurance
penalties. Escalating cancellation penalties deter late cancellations.

Finally, no player wants to be the first to disrupt a contractual relationship because
doing so leads to a wave of cancellations and eventual play of an inferior action profile
in the underlying game. In fact, after such a deviation, in a high-probability realization
of φ, in the production phase players end up coordinating on a Nash equilibrium of the
underlying game. By construction, this makes any deviating player worse off.
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4.1. Featured Contracting Institution

The proof features what I shall call the SCO contracting institution, where SCO stands
for Sequential Contracting and Options. The institution is defined as follows.

Let r = 1 − n and r = n − 2, so that there are 2n − 2 rounds of messages. Set � =
{0�1� � � � � n}. The probability ofφ= 0 is set to 1−nε, and for each i ∈N the probability of
φ= i is set to ε, where ε is specified in Section 4.2 below. In rounds r through 0, each pair
of contracting partners engages in a recurring Nash-demand protocol (simultaneously
sending offers to each other) to determine what I call their conditional arrangement, which
specifies their contract for the underlying game as a function of φ and whether either
player cancels in rounds 1 through r.

Consider any pair of players (i� j). The feasible conditional arrangements for this pair,
denoted byCij , is the set of functions mapping {0� (1� i)� � � � � (r� i)� (1� j)� � � � � (r� j)}×� to
Mij

, where Mij
is a finite subset of Mij that is assumed to contain the contracts identified

in Section 4.3 below and includes the null contract, but is otherwise arbitrary. For a given
sequence (hrij� h

r
ji), if there is a round 	≤ r in which λ	ij = λ	ji = cij for some cij ∈ Cij , then

let us say (hrij� h
r
ji) records that players i and j made conditional arrangement cij .

Here is an inductive definition of the set of feasible messages from player i to player
j in each round: In round r, the set is defined as �rij ≡ Cij ∪ {λ}. For r ∈ {r + 1� � � � �0},
if (hr−1

ij � h
r−1
ji ) records that players i and j made a conditional arrangement in an earlier

round, then �rij(h
r−1
ij � h

r−1
ji ) ≡ {λ}. Otherwise, �rij(h

r−1
ij � h

r−1
ji ) ≡ Cij ∪{λ}. That is, in words,

once these players have made a conditional arrangement, then they are restricted to si-
lence with each other until round 1.

For r ∈{1� � � � � r}, if (hr−1
ij � h

r−1
ji ) records that players i and j made a conditional arrange-

ment earlier, and if λ	ij = λ	ji = λ for 	 ∈{1� � � � � r− 1}, then �rij(h
r−1
ij � h

r−1
ji ) ≡{“cancel”�λ}.

Otherwise, �rij(h
r−1
ij � h

r−1
ji ) ≡ {λ}. That is, if players i and j did not make a conditional

arrangement, then they are restricted to silence in rounds 1 through r. If they made a
conditional arrangement, then they each have the option of sending the cancel message
to the other, until one or both of them do so.

For any given sequence (hij�hji) of messages between players i and j through round
r, if there is a round 	 at which λ	ij = “cancel” and λ	ji = λ, then let us say that (hrij� h

r
ji)

records player i canceling with player j in round 	.
The function μij is defined next. Consider any cij ∈ Cij and any sequence (hij�hji). If

(hij�hji) records that players i and j made conditional arrangement cij and does not
record either player canceling, then let μij(hij�hji�φ) ≡ cij(0�φ) for every φ ∈ �. If
(hij�hji) records that players i and j made conditional arrangement cij and records player
i canceling in some round 	, then define μij(hij�hji�φ) ≡ cij((	� i)�φ) for every φ ∈ �.
Otherwise, let μij(hij�hji�φ) ≡m for every φ ∈�. Note that in the case of cancellation,
the resulting contract can depend on the identity of the canceling player and the round in
which it occurred, as specified by the conditional arrangement.

4.2. Organizing Elements of Underlying Games and Networks

To specify ε along with various elements that will appear in the equilibrium construc-
tions, a few special actions and subsets of players must be identified for each underlying
game in G. Also, for every combination of a connected network and underlying game,
a special subnetwork and payoffs will be identified. This subsection presents the rele-
vant definitions. I use the following standard notation: For a subset of players J ⊂ N ,
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FIGURE 5.—Generic example, active and passive players.

aJ ≡ (ai)i∈J denotes the vector of actions for these players, and −i ≡N \ {i}. Every net-
work in N ×N considered hereinafter is assumed to be undirected and irreflexive, as we
have assumed for L.

Focal Elements for a Given Underlying Game

For each underlying game 〈A�u〉 ∈ G, we must identify special action profiles a∗, α,
and ai, and player subsets N and N . These are defined as follows.

Let a∗ ∈A be any efficient action profile, which maximizes the joint value
∑

i∈N ui(a),
and let α ∈ �A be any Nash equilibrium of the underlying game. Call the underlying game
nontrivial if its associated profile α is inefficient, and trivial if it is efficient. We can restrict
attention to the nontrivial case, for the trivial case is easy to handle as explained later.

Define the sets of passive players N and active players N as follows. For any J ⊂N , let
�(J) contain each player i for whom a∗

i is a weakly dominant action in the underlying
game, conditional on every player j ∈ J \{i} choosing a∗

j :

�(J) ≡ {
i ∈N|ui

(
a∗
i � a−i

) ≥ ui
(
a′
i� a−i

)
for every a′

i ∈Ai

and a−i ∈A−i satisfying aJ\{i} = a∗
J\{i}

}
�

Then N is defined as the largest set satisfying N = �(N), and N ≡ N \ N .12 Figure 5
illustrates how, for a given underlying game, the set of players may be partitioned into
the active and passive subsets, shown for the generic example of a network pictured in
Figure 1 in the Introduction. In this example, there are four active players, represented
by filled nodes in the right diagram; the passive players are depicted by open nodes.

In the underlying game, each passive player i optimally chooses a∗
i if she believes that

the other passive players also select their efficient actions, regardless of what the active
players select. For every active player i, we can find a profile ai ∈A such that aiN = a∗

N ,
aii 	= a∗

i , and aii is a best response to ai−i in the underlying game. For each passive player i,
let ai ≡ a∗.

For example, consider the four-player setting shown in Figure 6, where players 2 and 3
are restricted to actions a2 = a3 = 1 in the underlying game and the payoffs, as a function
of player 1’s and player 4’s actions, are shown in the table on the right. For this underlying
game, players 2 and 3 are trivially passive, players 1 and 4 are active, a∗ = (0�1�1�1), α is
the pure-strategy profile (0�1�1�0), and a1 = (2�1�1�1).

Keep in mind that a∗, α, N , N , and ai for every i ∈ N all depend on the underlying
game. For ease of notation, this dependence will not be made explicit hereinafter.

12� is monotone, so one can calculate N inductively by �1 ≡�(∅), �	+1 ≡�(�	), and N ≡�n.
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FIGURE 6.—Example of focal elements for an underlying game.

Global Parameters

I next define two global parameters. Let γ be an arbitrary number satisfying γ >
2|ui(a)| for every i ∈ N , a ∈ A, and 〈A�u〉 ∈ G. Let ε be any strictly positive number
satisfying

∑
i∈N
ui

(
a∗)>

∑
i∈N

[
(1 − nε)ui(α) + nεγ]

� (1)

and also ε < 1 − αi(a∗
i ) for each player i for whom αi(a

∗
i ) < 1, for every nontrivial under-

lying game in G. These numbers, which exist because A, G, and n are finite, will be used
to define penalties in the equilibrium contracts.

Definitions Pertaining to Subnetworks

For any network K ⊂N ×N , let the set of players with links be given by

NK ≡ {
i|(i� j) ∈K for some j

}
�

For players i and j, a path from i to j, if one exists, is given by a sequence (kt)Tt=0 ⊂N in
which no player appears multiple times and that satisfies k0 = i, kT = j, and (kt−1�kt) ∈K
for all t = 1�2� � � � � T . Players k0�k1� � � � �kT are then said to be on this path from i to j,
and T is called the path length. We allow for T = 0, the trivial path from player i to
herself.

A network K is called minimally connected (a tree) if, for i� j ∈NK , there is exactly one
path from i to j. Then, for each (i� j) ∈K, we can define

β(i� j�K) ≡ {
k ∈NK|i is on the path from j to k

}
�

In words, β(i� j�K) is the set of players that are on “i’s side of network K” relative to
player j, and this includes player i. Note that “minimally connected” does not imply “con-
nected,” because NK 	= N is allowed. Let us say that a minimally connected network K
includes all players if NK =N .

For a given underlying game and any given minimally connected network K satisfying
N ⊂NK , let N̂K denote the set of core players, defined as the set of all active players and
those passive players that reside between active players in the network. Call each player
i ∈NK \ N̂K peripheral. Let us also define β̂(j� i�K) ≡ β(j� i�K) ∩ N̂K .

Figure 7 illustrates a minimally connected network K containing the active players,
for our running generic example of a network and underlying game. The left diagram
repeats the illustration of active and passive players in Figure 5. The right diagram shows
a minimally connected subnetworkK linking players numbered 1–11, including the active
players 2, 5, 7, and 8. In this example, the core group is N̂K = {2�5�6�7�8}. Players 1,
3, 4, 9, 10, and 11 are peripheral. Note that, for instance, β(5�6�K) = {1�2�4�5} and
β̂(6�5�K) ={6�7�8}.
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FIGURE 7.—Generic example, minimally connected subnetwork K linking all active players.

Focal Elements for a Given Underlying Game and Network

For each combination of an underlying game 〈A�u〉 ∈G and network L ∈ L, we must
define a special subnetwork K and a default value wi for every i ∈NK . In the equilibrium
construction, K will be the pairs of players who form contracts, and wi will be player i’s
expected payoff of deviating by refusing to contract with everyone.

The first step, performed in Appendix A.1, is to define a vectorw ∈R
n in relation to any

arbitrarily selected, minimally connected network L′ that includes all players. For each
player i, wi is a weighted average of ui(α) and payoffs from action profiles in which some
players are induced to select their part of ak identified earlier, for each k, and it satisfies
wi ≤ (1 − nε)ui(α) + nεγ. The second step uses w to determine the special subnetwork
K according to the following criteria, among which are that all active players are included
and, collectively, the connected players are better off cooperating on play of a∗.

DEFINITION 3: Take as given any 〈A�u〉 ∈G, a minimally connected network L′ that
includes all players, and a vector w ∈ R

n. Call a network K adequate if it is a minimally
connected subnetwork of L′, N ⊂NK , and

∑
i∈NK ui(a

∗) >
∑

i∈NK wi. Call K essential if it
is adequate and no proper subset of K is also adequate.

LEMMA 1: Take as given 〈A�u〉 ∈G, a minimally connected network L′ that includes all
players, and a vector w ∈ R

n satisfying wi ≤ (1 −nε)ui(α) +nεγ for every i ∈N . There exists
an essential network.

For a given underlying game in G and connected network L, let L′ be an arbitrarily
selected, minimally connected subnetwork that includes all players, and let w be the as-
sociated vector defined in Appendix A.1. Select arbitrarily any essential subnetwork of
L′ and refer to it as K, now fixed in relation to 〈A�u〉 and L. Lemma 1 guarantees exis-
tence. The default values for the equilibrium construction are the components of w for
the players in NK .

Summary

In this subsection, we have defined global parameters γ and ε, the latter included in
the specification of the SCO contracting institution. For each underlying game, we have
identified action profiles and player sets a∗, α, N , N , and ai for i ∈N . Further, for every
underlying game and connected network, we have identified an essential subnetwork K
and default values wi for every i ∈ NK . All of these selections shall be fixed throughout
the analysis hereinafter; their dependence on 〈A�u〉 and L will not be made explicit in
the notation. Likewise, let us write β(j� i) and β̂(j� i) in reference to essential subnetwork
K, dropping K as an explicit argument.



CONTRACTUAL CHAINS 1751

4.3. Feasible and Featured Contracts

I next specify contracts that will be featured in the equilibrium constructions and that
M is assumed to contain. An ã-forcing contract imposes a large penalty on a contract-
ing partner who deviates from ã in the production phase. An ã-assurance contract goes
further by requiring a contracting partner to pay a large penalty for every deviation from
ã that takes place on this player’s side of network K. For convenience, penalties will be
sufficiently large for use with all of the underlying games in G and all networks. One of
the penalties is

ψ≡ γmax
{

(n− 1)�1/ε
}
�

and others are multiples of γ. Denote by eij the vector in R
n
0 (i� j) giving −1 to player i and

1 to player j.
The following definitions and constructive elements all are specific to a given underlying

game 〈A�u〉 ∈G, connected network L, and their associated essential subnetwork K.

DEFINITION 4: Consider any (i� j) ∈ K. The ã-forcing contract with baseline transfer
τ ∈ R

n
0 (i� j) is given by

m(a) =

⎧⎪⎨
⎪⎩
τ+ eijψ if ai 	= ãi and aj = ãj;
τ+ ejiψ if ai = ãi and aj 	= ãj;
τ otherwise.

The ã-assurance contract with baseline transfer τ ∈R
n
0 (i� j) specifies

m(a) = τ+ eijψ#
{
k ∈ β(i� j)|ak 	= ãk

} + ejiψ#
{
k ∈ β(j� i)|ak 	= ãk

}
�

In the equilibrium constructions, contracting partners will make conditional arrange-
ments that commit them to a∗-assurance contracts if neither sends the cancel message to
the other in rounds 1 through r of the contracting phase. Various forcing contracts will be
triggered by the cancel message, depending on who sends it and in what round. The next
lemma identifies the assurance contracts that the players will coordinate on.

Define for each i ∈NK the periphery index for this player, denoted by ρ(i), as the length
of the path from i to the closest core player. For example, in Figure 7, we have ρ(5) = 0
because player 5 is a core player, ρ(3) = 1 because player 3 is one link away from nearest
core player 6, and ρ(11) = 2 because player 11 is two links away from nearest core player
8.

LEMMA 2: Take as given a nontrivial underlying game 〈A�u〉 ∈G, its essential networkK,
and its default values (wi)i∈K . There exist contracts m̆ij for (i� j) ∈K, with m̆ij = m̆ji for i 	= j,
such that the following conditions hold, where M̆ ≡ ∑

(i�j)∈K�i<j m̆
ij .

(a) For each pair (i� j) ∈K, m̆ij = m̆ji is an a∗-assurance contract.
(b) For each player i ∈NK , ui(a∗) + M̆i(a∗) >wi.
(c) For each pair (i� j) ∈K satisfying ρ(j) = ρ(i) + 1, ui(a∗) + M̆i(a∗) − m̆ij

i (a∗) <wi.

An implication of the first condition is the following for every player i in the production
phase: Suppose that player i believes that the relationships in K have established these
assurance contracts, the other relationships have the null contract, and a∗

−i will be chosen
by the other players in the underlying game. Then player i rationally selects a∗

i . The second
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condition ensures that this outcome, with a∗ played in the production phase, gives player
i a higher payoff than her default payoff. The third condition states that the inequality is
reversed for a player who, all else held fixed, would lose the contracted transfer from a
peripheral partner who is further from the core group.

4.4. Target Conditional Arrangements

In the sequential equilibrium to be constructed for any given underlying game and net-
work, a pair of players (i� j) will make a conditional arrangement, and therefore form a
contract, if and only if (i� j) ∈ K. I denote by c̆ij the conditional arrangement that they
will coordinate on. The next definition identifies these equilibrium conditional arrange-
ments. For accounting purposes, c̆ij and c̆ji refer to the same conditional arrangement,
so statements about players i and j as pair (i� j) also apply as pair (j� i). Recall that
hij = (λrij� � � � � λrij) denotes the sequence of messages sent from player i to player j in
the contracting phase.

DEFINITION 5: The target conditional arrangements, denoted by (c̆ij)(i�j)∈K , are defined
as follows.

• c̆ij(0�φ) = m̆ij for every φ ∈�.
• If ρ(i) = ρ(j) = 0, then c̆ij((r� i)�0) = m + rγeij and, for every φ ∈ {1�2� � � � � n},
c̆ij((r� i)�φ) is the aφ-forcing contract with baseline transfer rγeij .

• If ρ(i) = ρ(j) − 1, then c̆ij((r� i)�φ) =m+ (r − 1)γeij for every φ ∈�.
• If ρ(i) = ρ(j) + 1, then c̆ij((r� i)�φ) =m+ rγeij for every φ ∈�.

The meaning of the target provisional arrangements is straightforward. Every contract-
ing pair arranges to form an a∗-assurance contract if neither cancels. If a core player
cancels with another core player, then a penalty is paid by the first player, the players
are otherwise released from their obligations in the high-probability event of φ= 0, and
they get the ak-forcing contract in the low-probability event that φ ∈N . These provisions
ensure that these players depart from action profile a∗ with positive probability following
a cancellation. The cancellation penalty increases in r. If a cancellation occurs in a pair
that includes a peripheral player, then a penalty is paid and the players are otherwise re-
leased from their obligations regardless of φ; further, the penalty is zero in round 1 for a
cancellation made “outward,” away from the core group.13

4.5. Overview of the Equilibrium Construction

The task from here is to show that an efficient sequential equilibrium of the grand game
exists, for any given underlying game and connected network. This is accomplished in four
steps. First, I define a subset of information sets in the grand game, denoted by �, that
includes the personal histories that will be on the equilibrium path as well as a number of
critical off-path information sets. Second, I partially construct the sequential equilibrium
by specifying the players’ beliefs at, and prescribed actions for, the information sets in �.
Each belief is also partial, describing what the player thinks has or will happen at only

13I thank Gorm Grønnevet for suggesting a version of the analysis in which cancellation penalties are used in
the equilibrium construction. The statements in the definition above cover all of the possibilities for contracting
partners and messages in rounds 1 through r, so the target provisional arrangements are well defined. On
network locations, the only possibilities are ρ(i) = ρ(j) + 1, ρ(i) = ρ(j) − 1, and ρ(i) = ρ(j) = 0.
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FIGURE 8.—Generic example, adequate subnetwork K, equilibrium construction.

the information sets in �. Third, I verify that the prescribed actions at the information
sets in � are optimal given the beliefs, regardless of the actions taken at the other infor-
mation sets. Fourth, I apply the theorem of Watson (2023) to establish the existence of a
sequential equilibrium that in an appropriate sense agrees with the partial construction.

The full-blown equilibrium construction is presented in Appendix A.3. In this subsec-
tion, I provide intuition by highlighting aspects of the construction. Specifically, I describe
the equilibrium path of play, as well as paths induced by two sample deviations, using as
an illustration the generic example discussed before and reproduced in Figure 8. Recall
that the figure shows, for a given underlying game and network L, the role of each player
as either active or passive and an essential subnetwork K.

Play on the Equilibrium Path

On the equilibrium path, conditional arrangements are formed sequentially, starting
at the extreme of network K and working inward to the core group. Specifically, pair
(i� j) ∈ K forms its conditional arrangement in round −max{ρ(i)�ρ(j)}. There are no
cancellations, and each player selects her part of a∗ in the underlying game.

For example, in a case illustrated by Figure 8, the following occurs on the equilibrium
path, where unspecified actions are prescribed to be the default message λ (silence):

• In rounds 1 − n through −3, all players are silent.
• In round −2, players 9 and 11 send message c̆9�11 to each other, and players 9 and 10

send message c̆9�10 to each other, forming these conditional arrangements. Note that
in these relationships, the outer peripheral player has periphery index 2.

• In round −1, players 1 and 2 send message c̆1�2 to each other, players 4 and 5 send
message c̆4�5 to each other, players 3 and 6 send message c̆3�6 to each other, and play-
ers 8 and 9 send message c̆8�9 to each other, forming these conditional arrangements.
In these relationships, the outer peripheral player has periphery index 1.

• In round 0, players 2 and 5 send message c̆2�5 to each other, players 5 and 6 send
message c̆5�6 to each other, players 6 and 7 send message c̆6�7 to each other, and play-
ers 6 and 8 send message c̆6�8 to each other, forming these conditional arrangements.
These are relationships between core players, with periphery index 0.

• In rounds 1 through n− 2, players are silent, so there are no cancellations.
• In the production phase, a∗ is played regardless of the random draw φ.
It should be clear that if play in the contracting phase proceeds as just described, then

in the production phase each player i has the incentive to select a∗
i if she believes that

the others will choose a∗
−i. Passive players have this incentive based on believing other

passive players act the same way. Active players are bound by assurance contracts that
penalize them heavily if they would deviate from a∗. Therefore, on-path incentives in the
production phase are set, subject to working out the details of the beliefs.
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Likewise, if upon reaching some round r ≥ 1 the personal history of a player i ∈NK is
exactly as expected on the equilibrium path, then player i prefers not to cancel any con-
tracts. For example, suppose players i and j formed their target conditional arrangement,
and ρ(i) ≥ ρ(j). If player i were to cancel the contract formed with player j, then she
must pay a cancellation penalty of at least γ, which exceeds any gain in the underlying
game that the cancellation might induce. In the case of ρ(i) < ρ(j), player i could cancel
for free in round 1, but it will turn out that this also is of no benefit.

First Sample Deviation

Next, I describe two examples of equilibrium play in the continuation after a unilateral
deviation. In the first scenario, play occurs as on the equilibrium path until round 0, at
which point player 5 sends message λ to every other player, effectively declining to form
the target conditional arrangements with players 2 and 6. All other players choose their
equilibrium actions in round 0. Here is what happens from round 1 in the continuation of
the game:

Player 6, having observed the failure of player 5 to make the conditional arrangement
with her, will believe that this was the only deviation. Thus, player 6 believes that player 5
formed his target conditional arrangements with players 2 and 4. Player 6 further believes
that player 5 will cancel with players 2 and 4 in round 1, and that in the production phase
player 5 will therefore be forced to select a5

5 	= a∗
5 in the event ofφ= 5, putting player 6 on

the hook for the huge assurance penalty in her contracts with players 3, 7, and 8. Because
the cancellation penalty is much lower than the expected assurance penalty, and because
cancellation penalties increase over the rounds, in round 1 player 6 cancels with players
3, 7, and 8. Then player 8 is induced to have a similar belief and cancels with player 9 in
round 2, and player 9 cancels with players 10 and 11 in round 3.

Likewise, following player 5’s initial deviation, player 2 believes that player 5 formed his
target conditional arrangements with players 4 and 6, will cancel these in round 1, and in
the production phase will be forced to select a5

5 	= a∗
5 when φ= 5. Liable for an assurance

penalty in her contract with player 1, in round 1 player 2 cancels with player 1.
Thus, player 5’s initial deviation leads to a wave of cancellations though the network,

resulting in cancelled or null contracts in all relationships (player 5 will also cancel with
player 2 in round 1). Although the players observe different things and have different
beliefs about what happened in the contracting phase, in the production phase the players
in NK all think (correctly) that every relationship has either a cancelled or null contract.
Recall that cancellations lead to contracts that specify only transfers that are constant
in a in the high-probability event that φ = 0. In the production phase in event φ = 0,
every player i believes that α−i will be chosen by the other players and player i rationally
responds by choosing αi. We see that by deviating in round 0, player 5’s expected payoff
becomes w5, which from Lemma 2(b) is strictly less than what player 5 would get by
adhering to the prescribed path.

Second Sample Deviation

In the second scenario, play occurs as on the equilibrium path until round −2, at which
point player 10 sends message λ to every other player, effectively declining to form the
target conditional arrangement with player 9. All other players choose their equilibrium
actions in round −2, implying that players 9 and 11 formed their target conditional ar-
rangement. Here is what happens from round −1 in the continuation of the game:
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Having made the target conditional arrangement with player 11 but not with player 10,
player 9 realizes that by ignoring player 10’s deviation (forming the conditional arrange-
ment with player 8 in round −1, and continuing as on the equilibrium path), his payoff
will be strictly less than w9. This follows from Lemma 2(c) and that all players other than
himself and player 10 will not detect any deviation from the prescribed path. Player 9
instead sends message λ to player 8 in round −1, effectively declining to form the target
conditional arrangement with her, and player 9 plans to cancel his contract with player 11
in round 1 when doing so is free. In turn, player 8 is put in the same position and in round
0 sends message λ to player 6, declining to establish their target conditional arrangement.

Players 1–6 played as though on the equilibrium path through round 0. Player 6, upon
receiving the default message from player 8 in round 0, believes that this message was the
first and only deviation from the equilibrium path. Player 6 believes further that player
8 will cancel her contract with player 9 and will choose a8

8 	= a∗
8 in the production phase

when φ = 8. This makes player 6 liable for an assurance penalty in her contracts with
players 3, 5, and 7. As in the first scenario, in round 1 player 6 then cancels her contracts
with these players, leading to a wave of cancellations that flows across the network.

At the end of the contracting phase, every contract is cancelled or null, the players in
NK all correctly think as much, and α is played in the high-probability event of φ = 0.
Thus, by declining to contract with player 9 in round −2, player 10’s expected payoff
becomes w10 rather than the equilibrium value u10(a∗) + M̆10(a∗). From Lemma 2(b), she
prefers not to deviate. Likewise, the other choices described above are rational, such as
player 6 canceling contracts in round 1.

Additional Notes

The logic given in the two scenarios above is incomplete. The formal constructive proof
provides the precise beliefs and behavior, and verifies sequential rationality, for all of the
personal histories that would be encountered in the two scenarios above and all others
that compose �. Also included are information sets in which players have observed uni-
lateral deviations that I will classify as insignificant variations. These are departures from
the prescribed equilibrium-path actions that would have no material effect if the players
ignore them and continue as on the equilibrium path.

Note also that the examples discussed in Section 3 present particularly simple versions
of the construction sketched above. In the collaboration-agreement setting shown in Fig-
ure 3, players 1 and 4 are active, K = L, and all players are in the core group N̂K . In
equilibrium, each of the three contractual relationships establishes its target conditional
arrangement in round 0.

In the setting with a peripheral beneficiary shown in Figure 4, players 1 and 3 are active
and therefore the core group is N̂K = {1�2�3}. A monetary contribution from player 4 is
needed to provide incentives to the others, so the essential network K is the same as L.
In equilibrium, players 3 and 4 form their conditional arrangement in round −1, whereas
the pairs (1�2) and (2�3) form theirs in round 0.

5. ELABORATION AND DISCUSSION

5.1. Two Extensions

We observed the importance of sequential contracting, with Result 4 showing that at
least n − 1 rounds of contracting are generally needed for efficient implementation. If
we restrict attention to networks with bounded diameter (defined as the greatest distance
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between any two players), then a shorter contracting phase suffices if the bound is small
enough. Result 5 in Supplemental Appendix B.1 states that given n ≥ 3, any finite set of
underlying games, and any integer κ ∈ [2� n], and letting L be the set of all connected networks
of diameter weakly less than κ, there is a contracting institution satisfying r − r ≤ 2κ− 2 that
implements efficient outcomes.

Although an efficient equilibrium is featured in the theorem, one might expect other
equilibria to exist, achieving a variety of different outcomes, and this is indeed the case.
Result 6 in Supplemental Appendix B.1 is analogous to folk theorems in repeated games.
Stating the result requires additional terminology and definitions that are not repeated
here. Essentially the result shows that the SCO contracting institution with suitably
large contract spaces supports multiple equilibria with a range of payoff vectors above
underlying-game Nash-equilibrium values for core players. In the special case of no pe-
ripheral players, as illustrated in Figure 3, all feasible payoff vectors above u(α) can be
approximately achieved by equilibria of the grand game. Thus, the present modeling exer-
cise shares a theme of prior models of interactive contracts that produce folk-style results
(for instance, Peters and Szentes (2012)).

5.2. Notes About Option Contracts and Penalties

I next comment on the interpretation of the SCO contracting institution. As defined,
the institution has 2n− 2 rounds of messages in the contracting phase and, following the
exogenous random draw φ, the output of the institution for a pair of players (i� j) is their
“contract” mij . A different, perhaps more realistic, interpretation is that the contracting
phase comprises just the first n rounds of messages (rounds r through 0) and the con-
ditional arrangements are interpreted as contracts. The later rounds are then dates at
which the players can exercise options in their individual contracts, through their contin-
ued communication along edges of the network. That is, the contract for a pair of players
specifies a transfer as a function of communication in rounds 0 to r, the random draw φ,
and the verifiable action profile a.

On a related note, in the proof of the theorem, penalties γ and ψ were chosen for
convenience to suffice for all contracting pairs and underlying games, and therefore are
large. This is not necessary, for one could find workable penalties for each relationship
that match with the magnitude of the two players’ possible deviation gains in the under-
lying game. It is not clear whether penalties that real courts would call excessive would
be needed. Real courts are, for example, not as sensitive to probabilistic gains (requiring
penalties to be scaled up) as the theory requires, but this practical issue goes beyond the
present modeling exercise.

5.3. Summary of Technical and Conceptual Contributions

Presented here is the first general analysis of technological and institutional require-
ments for internalizing LDL externalities. The model’s noncooperative game-theoretic
structure allows for a precise account of the production and enforcement technologies.
Treating the contracting institution as a payoff-irrelevant design component allows one
to identify properties of the underlying game, the degree of verifiability, and the set of
feasible contracting partners that are sufficient for efficiency in a best-case scenario re-
garding equilibrium selection. The theorem shows that, in the setting of private bilateral
contracting, global verifiability of productive actions and a connected network of feasible
contracting partners is enough.
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The theorem gives a distinctly different message than do prior analyses of specific appli-
cations featuring bilateral contracting in settings with multilateral productive interaction.
For instance, inefficient outcomes are in some cases predicted by McAfee and Schwartz’s
(1994) analysis of contracting in a star network, Segal’s (1999) study of similar settings,
Prat and Rustichini’s (2003) analysis of games played through agents, and De Fontenay
and Gans’s (2014) model of contracting on a network with LDL externalities. The analy-
sis here helps to show why efficiency is not reached in these other models. The first three
assume a contracting institution with only one or two rounds, not allowing for sequential
contract formation. Also, all but Prat and Rustichini (2003) effectively disallow contract-
ing parties to condition transfers on others’ productive actions.14

The modeling exercise features novel steps to deal with significant analytical challenges.
The design problem and equilibrium constructions are complex because both contracting
and productive actions are modeled noncooperatively, there are many information sets
and asymmetric information throughout the grand game, and the stringent requirements
of sequential equilibrium are imposed. The general modeling framework is new to the
literature, requiring fresh analysis including how elements of the equilibrium construction
are organizing generically. Further, this paper is the first to employ the partial-equilibrium
construction method for sequential equilibrium utilizing the theorem of Watson (2023).

It is worth expounding on the strengths of the fully noncooperative modeling approach
taken herein, in comparison to the approach of cooperative matching theory and coali-
tional bargaining theory.15 By specifying payoffs as a function of an abstract set of con-
tracts that the players form, these two other lines of research account for productive ac-
tions as though taken by an external enforcer. Further, contracting is analyzed using a
cooperative stability concept. Without an explicit account of the player’s inalienable pro-
ductive actions, one cannot distinguish various ways in which linkages may occur across
contractual relationships, such as between “contracts on contracts” and contracting on
only others’ productive actions. The distinctions have practical importance, for these link-
ages differ in terms of expression, interpretation, enforcement, and verification require-
ments. The noncooperative approach provides a foundation for distinguishing types of
externalities and understanding what is required to internalize them. These points are
elaborated with an example in Section B.2.

5.4. Implications for Applications

The analysis herein does not exactly pin down either the manner in which contracting
must take place to achieve efficient outcomes or the precise form of equilibrium con-
tracts. However, the results presented in Supplemental Appendix B.1 identify some of
the necessary ingredients, namely: (a) a connected network of contractual relationships,
(b) contractual linkages in the form of transfers conditioned on the productive actions of

14McAfee and Schwartz (1994) looked at both private contracting and public contracting. De Fontenay
and Gans (2014) assumed that disagreement between two parties induces their link to break, rendering them
unable to contract, and that this is publicly observed (thus contracting is not entirely private). The other two
technically do not have LDL externalities.

15In coalitional bargaining models, centralized contracting is possible because the grand coalition can form
a contract. Subgroups can shape the final agreement by first making agreements in their smaller coalitions. The
incentives of coalitions to manipulate in this way sometimes preclude the attainment of an efficient outcome. A
representative sample of contributions is: Chatterjee, Dutta, Ray, and Sengupta (1993), Seidmann and Winter
(1998), Gomes (2005), Gomes and Jehiel (2005), Bloch and Gomes (2006), Hafalir (2007), and Hyndman and
Ray (2007).
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third parties, (c) endogenous sequential contracting, and (d) commitment with opportu-
nities for parties to adjust contracts based on their personal experience.

The theorem identifies additional elements that can be successfully employed, such as
(a) endogenous sequencing of contractual commitments starting with passive, peripheral
parties and ending with the core group of active parties; (b) limited options to cancel
contracts; (c) assurance penalties that motivate play of efficient productive actions and
engender waves of cancellation following disruptions; and (d) cancellation penalties that
encourage parties to cancel contracts when vulnerable and discourage them from cancel-
ing late.16

The modeling exercise may help us recognize elements that support or deter efficient
contracting in real settings. For example, in many collaboration agreements (as illustrated
in Section 3.2), performance guarantees and cross-firm management arrangements estab-
lish linkages across contractual relationships (Bernstein and Peterson (2020)). Sequential
contract formation and option contracts are ubiquitous, notably in procurement and sup-
ply chains. For instance, in design-build competitions, bidders are typically teams of com-
panies that will provide complementary products and services (such as architectural and
construction firms), and a preliminary agreement is formed within each team before the
eventual winning team negotiates a contract with the buyer. Supplemental Appendix B.2
contains additional notes.

5.5. Variations for Further Study

The general modeling platform may provide a good foundation for exploring theoreti-
cal variations. One category is to characterize the performance of alternative contracting
institutions, such as ones that appear in real settings but may not implement efficient
outcomes. We could also ask whether there is a contracting institution that performs bet-
ter than the one described here, by more strongly implementing efficient outcomes or by
achieving distributional goals. Another question is whether bargaining power would inter-
fere with attainment of efficient outcomes. The SCO institution gives individual players
no appreciable bargaining power because negotiation takes place through simultaneous
demands. A related practical issue to explore further is whether efficient contracting re-
quires options to adjust externally enforced transfers, as the SCO institution facilitates in
rounds 1 through r, or could be accomplished with a simpler institution. This is discussed
in Supplemental Appendix B.2, where I conclude that dynamic adjustment of externally
enforced contracts appears to be needed in general.

A second category of conceptual variation relates to the technologies of production
and external enforcement. One could consider partial verifiability, including in the form
of local rather than global verifiability—for example, where contracting parties can pro-
vide evidence of the productive actions that they and their contracting partners take, but
not the actions that others choose. One can also explore settings in which aspects of con-
tracts can be verified across contractual relationships, allowing some form of contracts on
contracts, which may ameliorate limited verifiability of productive actions. Further, one
could look at variations regarding observability, such as publicly observed contracting
rather than private.

16Cancellation waves may remind one of contagious punishments in socially repeated games (Kandori
(1992)), but they have a different structure. In the latter, a player participates in a contagious punishment
due to a shift in intertemporal trade-offs and expectations about play in future matches. A player is motivated
to participate in an out-of-equilibrium cancellation wave because her contracts contain a “poison pill” that
makes her vulnerable when others on her side of the network will depart from a∗ in the production phase.
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Additional directions for further research on the technical front include modeling alien-
able (contractually assigned) productive actions; dynamic production; multilateral con-
tracting, as in Ellingsen and Paltseva (2016) in the noncooperative arena and Rostek and
Yoder (2022) on the cooperative side; the Nash program; enforcement constraints; and
endogenous contracting networks, where players invest to establish links.17

6. CONCLUSION

The modeling exercise herein offers a benchmark result on how LDL externalities can
be internalized through endogenously formed chains of independent bilateral contracts,
assuming connected networks and globally verifiable productive actions. The model helps
to sort out barriers to inefficiency in practice, such as contracting institutions that do not
provide players with the opportunity to make or adjust contracts in sequence.

This paper has followed Hurwicz’s (1994) prescription of incorporating “natural” con-
straints into problems of institutional design, in contrast to the perspective that posits a
centralized policymaker with complete control over the design of the game form in which
economic agents will be engaged. Natural constraints include the nature of productive
actions (as defined by an underlying game), limitations on communication channels (as
a contractual network may represent), and societal principles that dictate allowing the
players to design aspects of what is to be enforced (such as freedom to contract). By pre-
cisely accounting for the productive technology, enforcement technology, and contracting
institution in a general way, the modeling platform developed here lends itself to further
exploration in both abstract and applied directions.

APPENDIX A

A.1. Default Payoff Vector Construction

Recall that in Section 4.2 we defined a∗, α, N , N , and ai for i ∈N , for each underlying
game 〈A�u〉 ∈G. Let us now define an additional element, an action âji for every i� j ∈N .
Specifically, let âji be any best response for player i to aj−i in the underlying game, with
âii ≡ aii specified in the case of j = i and âji = a∗

i in the case of i passive.

DEFINITION 6: Take as given an underlying game 〈A�u〉 ∈ G and a minimally con-
nected network K satisfying N ⊂NK . For every i ∈ N̂K and k ∈N , the ik-default profile
aik(A�u�K) is constructed as follows:

• For each j such that (i� j) ∈K and|β̂(j� i�K)|> 1, specify aikj′ (A�u�K) = akj′ for every
j′ ∈ β̂(j� i�K).

• For j such that (i� j) ∈K and |β̂(j� i�K)|= 1, specify aikj (A�u�K) = âkj .
• For j /∈ N̂K , specify aikj (A�u�K) = a∗

j , completing the description of aik−i(A�u�K).
• Finally, let aiki (A�u�K) be any best response for player i to aik−i(A�u�K) in the un-

derlying game, subject to aiki (A�u�K) ≡ âki in every case in which âki is a best re-
sponse.18

17The last topic overlaps with the literature on network-based production and games played on endogenous
networks (surveys include Jackson and Zenou (2014) and Bramoullé and Kranton (2016)). One could examine
whether incentives to isolate and free-ride can be overcome by pressure to join a chain of relationships.

18Thus, aiki (A�u�K) = a∗
i is specified in the case of i ∈ N . Further, aiki (A�u�K) = âki if there is a player

j for which (i� j) ∈ K and β̂(j� i�K) contains all active players except player i (which means all other active
players choose their part of ak). Also, recall that âii = aii in the case of k= i.
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For example, consider Figure 7 with i = 5 and k = 8. Then aik6 (A�u�K) = ak6 = a∗
6,

aik7 (A�u�K) = ak7 , and aik8 (A�u�K) = ak8 , because β̂(6�5�K) = {6�7�8} contains more
than one active player. Likewise, aik2 (A�u�K) = âk2 because β̂(2�5�K) = {2} contains ex-
actly one active player. Every other player j 	= i is passive and has aikj (A�u�K) = a∗

j .
In some of the equilibrium constructions, where K is the set of pairs that are supposed

to establish non-null contracts, if a player i ∈ N̂K deviates by refusing to contract with
everyone, then later in the event of φ= k, player i will believe that the other players will
choose profile aik−i(A�u�K) in the underlying game. Player i will choose aiki (A�u�K) to
best respond. If player i is passive, his choice will be a∗

i .

DEFINITION 7: Take as given an underlying game 〈A�u〉 ∈ G and a minimally con-
nected network K satisfying N ⊂NK . For every i ∈NK , let default payoff wi(A�u�K) be
defined as follows:

• If |N̂K|≤ 2, then set wi(A�u�K) ≡ ui(α).
• If |N̂K|> 2 and i ∈ N̂K , set wi(A�u�K) ≡ (1 − nε)ui(α) + ε∑

k∈N ui(a
ik(A�u�K)).

• If |N̂K|> 2 and i /∈ N̂K , set wi(A�u�K) ≡ (1 − nε)ui(α) + ε∑
k∈N ui(a

kk(A�u�K)),
where player k is the closest active player to player i in network K.

Note that each profile aik(A�u�K) has all passive players, including peripheral players
and those outside the network, choosing their part of action profile a∗. By the defini-
tion of bound γ, we have wi(A�u�K) ≤ (1 − nε)ui(α) + nεγ for each i ∈ NK . Further,
aik(A�u�K) depends on K only through the paths between core players. Correspond-
ingly, wi(A�u�K) depends on K only through the paths between core players. Observe
also that if K is a subnetwork of some network L′ that is minimally connected and in-
cludes all active players, then it has exactly the same links among the core players as does
L′. Hence, aik(A�u�K) = aik(A�u�L′) and wi(A�u�K) =wi(A�u�L

′).
For the analysis in Sections 4.2 and 4.3, where the underlying game and network L are

given, we can therefore focus on an arbitrarily selected, minimally connected subnetwork
L′ that includes all players, and define wi to equal wi(A�u�L

′) for every i ∈ N . These
values apply for whatever is found to be the essential network, and they are referenced in
the detailed construction below. Also, I write aik without making explicit the dependence
on 〈A�u〉 and the selected L′.

A.2. Proofs of Lemmas

The lemmas are restated and proved here.

LEMMA 1: Take as given 〈A�u〉 ∈G, a minimally connected network L′ that includes all
players, and a vector w ∈ R

n satisfying wi ≤ (1 −nε)ui(α) +nεγ for every i ∈N . There exists
an essential network.

PROOF: Inequality (1) and that wi ≤ (1 − nε)ui(α) + nεγ for every i ∈ N imply that
L′ is adequate. Because the space of networks is finite and the proper subset relation is
transitive and irreflexive, there must exist a subset ofL′ (possiblyL′ itself) that is essential.

Q.E.D.

LEMMA 2: Take as given a nontrivial underlying game 〈A�u〉 ∈G, its essential networkK,
and its default values (wi)i∈K . There exist contracts m̆ij for (i� j) ∈K, with m̆ij = m̆ji for i 	= j,
such that the following conditions hold, where M̆ ≡ ∑

(i�j)∈K�i<j m̆
ij :
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(a) For each pair (i� j) ∈K, m̆ij = m̆ji is an a∗-assurance contract.
(b) For each player i ∈NK , ui(a∗) + M̆i(a∗) >wi.
(c) For each pair (i� j) ∈K satisfying ρ(j) = ρ(i) + 1, ui(a∗) + M̆i(a∗) − m̆ij

i (a∗) <wi.

PROOF: Because K is essential, it is adequate and therefore satisfies
∑
i∈NK

ui
(
a∗)>

∑
i∈NK

wi� (2)

That K is connected implies the existence of baseline transfers (τij)(i�j)∈K such that
ui(a∗) + ∑

{τjki |(j�k) ∈ K�j < k}> wi for every i ∈ NK . To see this, note that summing
the left-hand side over all i ∈ NK yields the left-hand side of Inequality (2) because the
transfers are balanced in the set of contracting partners. For each pair (i� j) ∈K, let m̆ij

be the a∗-assurance contract with baseline transfer τij . Then conditions (a) and (b) hold.
Condition (c) also must hold. To see why, take any pair (i� j) ∈ K such that ρ(j) =

ρ(i) + 1. Because player j and all other players in β(j� i) are peripheral, we can remove
them from network K to form subnetwork K′ that is minimally connected and contains
every active player. Because K′ is not adequate, we know that

∑
k∈NK′

uk
(
a∗) ≤

∑
k∈NK′

wk� (3)

Because the transfers are balanced and the only contracted transfer between players in
NK′ and players in NK \NK′ is the transfer for pair (i� j), we have that

∑
k∈NK′ M̆k(a∗) =

m̆
ij
i (a∗). Adding

∑
k∈NK′ M̆k(a∗) − m̆

ij
i (a∗) = 0 to the left-hand side of Inequality (3) and

rearranging terms yields

ui
(
a∗) + M̆i

(
a∗) − m̆ij

i

(
a∗) +

∑
k∈NK′ \{i}

[
uk

(
a∗) + M̆k

(
a∗) −wk

] ≤wi� (4)

Condition (b) implies uk(a∗) + M̆k(a∗) >wk for every k ∈NK′ . Therefore, the bracketed
terms on the left-hand side of Inequality (4) are strictly positive, implying condition (c).

Q.E.D.

A.3. Proof of the Theorem: Partial Construction and Existence

Consider any number of players n and finite set G of underlying games. Let the con-
tracting institution be the SCO contracting institution defined in Section 4.1 with the dis-
tribution ofφ as specified in Section 4.2 and where Mij

is a finite subset of Mij containing
the contracts identified in Section 4.3 and the null contract.

To prove the theorem, we must show that, for each underlying game 〈A�u〉 ∈ G and
connected network L, there is an efficient sequential equilibrium of the grand game. This
subsection describes the equilibrium constructions, which will utilize all of the elements
developed in Sections 4.2–4.4 including the essential network K, the featured contracts,
and the target conditional arrangements.

For now, let us leave out the case in which the underlying game is trivial and also leave
out the case in which |N̂K| ≤ 2 (where N = N̂K is implied). The latter case requires a
variation in the equilibrium construction that will be described at the end of this section.
The former case is easy to handle and is also discussed at the end of this section.
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Take as given a finite set of underlying games G and let the contracting institution be
the SCO institution, with ε and γ defined in Section 4.2 and M defined to be any finite
set of contracts that includes those described in Section 4.3 as well as the null contract.
Various other elements defined in Sections 4.2–4.4 will be referenced below.

Let I denote the set of information sets (personal histories) in the grand game. This is
quite a large set, with a lot of overlapping private information. Constructing a sequential
equilibrium requires us to specify the belief and action choice at every information set.
The system of beliefs must be fully consistent and the strategies sequentially rational.19

Rather than describe the complete equilibrium strategies, I will specify the actions to
be taken at a number of key information sets denoted by �, including all that will be on
the equilibrium path and some that will be off the equilibrium path. I also will specify
the beliefs at these information sets about the actions taken at the other information
sets in �. I will show that the actions specified for � are sequentially rational regardless
of choices made at the other information sets. Then I will find a specification of fully
mixed strategies for � that support the specified beliefs and satisfy the conditions needed
to apply the theorem of Watson (2023), which guarantees the existence of a sequential
equilibrium of the entire grand game that coincides on � with the construction here.

For every pair (i� j) ∈ K, define rij ≡ −max{ρ(i)�ρ(j)}. This will be the round in
which the pair (i� j) is supposed to form their conditional arrangement. Recall that
hij = (λrij� � � � � λrij) denotes the sequence of messages that player i sends to player j in
the contracting phase. The equilibrium prescribed path of play is described next.

DEFINITION 8: For each pair of players (i� j) ∈ K, the prescribed message sequence is
defined by λrijij = λrijji = c̆ij , and λrij = λrji = λ for each round r 	= rij . For each pair of players
(i� j) /∈K, the prescribed message sequence is λrij = λrji = λ for every round r ∈{r� � � � � r}.

That is, players i and j who are supposed to contract are prescribed to send each other
the null message until round rij , send each other message c̆ij in round rij to form this
conditional arrangement, and send the null message to each other thereafter. Players who
are supposed to not contract, or who are not linked, are prescribed to send each other the
null message in every round.

DEFINITION 9: The prescribed path of play is for the players to send their prescribed
message sequences to each other in the contracting phase and then select a∗ in the pro-
duction phase regardless of φ.

Note that, in the prescribed path, players linked in K make conditional arrangements
that without cancellation will lead to contracts m̆ij for (i� j) ∈ K identified by Lemma 2.
It is clear that a∗ is a Nash equilibrium of the induced game 〈A�u+ M̆〉, so if the players
reach the production phase on the equilibrium path, then it is rational for each of them to
choose her part of a∗. The difficulty from here is in formulating beliefs and behavior for
off-equilibrium-path contingencies, demonstrating that players do not have the incentive
to deviate, and showing that the beliefs are fully consistent.

19Full consistency rules out a variety of beliefs such as the following. Player i, upon seeing a surprise message
from player j, concludes that player k has deviated, in a setting in which information about k’s supposed
deviation could not have reached player j.
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Terminology for Key Information Sets

To describe the key information sets, some additional terminology will be helpful. We
start with classifications of the sequence of messages sent between a pair of players (i� j) ∈
K. The first definition below describes message sequences that conform to the prescribed
path except for “insignificant” variations, where the target conditional arrangement was
made in round rij , but in at least one earlier round one (at most) of the players sent a
non-null message.

DEFINITION 10: For (i� j) ∈K, say that (hij�hji) is the prescribed message sequence except
for insignificant variations if λrijij = λrijji = c̆ij , for each r < rij either λrij = λ or λrji = λ or both,
and λrij = λrji = λ for each round r > 0. For (i� j) /∈K, say that (hij�hji) is the prescribed
message sequence except for insignificant variations if, for every r < 1, either λrij = λ or
λrji = λ or both.

Note that, in the definition above, it is not necessary to state conditions for r ∈ {rij +
1� � � � �0} in the case of (i� j) ∈K or conditions for r ≥ 1 in the case of (i� j) /∈K because,
given the other conditions, the players would be restricted to silence in these rounds. The
next definition refers to bilateral message sequences in which a player has unilaterally
blocked formation of a target conditional arrangement.

DEFINITION 11: For any ordered pair (i� j) ∈ K, the ij-decline sequence is defined by:
λr

ji

ji = c̆ij , λrijij = λ, and λrij = λrji = λ for every r 	= rij . Say that (hij�hji) is an ij-decline
sequence except for insignificant variations if λrijij 	= c̆ij = λr

ji

ji and, for every r ∈ {r� � � � �0} \
{rij}, either λrij = λ or λrji = λ or both.

The ij-decline sequence has the players behaving as on the prescribed path through
round rij , when player j offers the target conditional arrangement but player i sends the
null message, so a conditional arrangement is not formed; the players send the null mes-
sage to each other thereafter. Insignificant variations involve player i sending any message
other than c̆ij in round rij while player j sends c̆ij , and at least one of the players silent in
the other rounds. The next definition refers to sequences in which a pair of players send
each other the prescribed-path messages (forming their target conditional arrangement)
until one of them cancels.

DEFINITION 12: For any ordered pair (i� j) ∈ K and any round r ≥ 1, the ijr-cancel
sequence is defined by: λrijij = λrjiji = c̆ij , λrij = “cancel”, λrji = λ, and λ	ij = λ	ji = λ for 	 < rij .
Say that (hij�hji) is an ijr-cancel sequence except for insignificant variations if λrijij = λr

ji

ji =
c̆ij , λrij = “cancel”, λrji = λ, and for every 	 < rij , either λ	ij = λ or λ	ji = λ or both.

Next, I describe particular full sequences of messages between all players in the con-
tracting phase. These sequences proceed as in the prescribed path until a round in which
one relationship experiences a disruption in the formation of a conditional arrangement,
and this disruption triggers a particular contagion to other relationships.

DEFINITION 13: For any ordered pair (i� j) ∈ K satisfying ρ(i) ≥ ρ(j), the ij-initiated
transit sets, denoted by Prijij � P

rij+1
ij � � � � �Prij , are defined inductively as follows:

• Pr
ij

ij ={(i� j)}.
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• If rij < 0, then for r ∈{rij� � � � �−1} and given Prij , let

Pr+1
ij = {(

k�k′) ∈K|ρ(k) ≥ ρ(k′)�∃k′′ 	= k′ s.t.
(
k′′�k

) ∈ Prij
}
�

• Then, letting Pij ≡ ⋃
r∈{rij �����0}P

r
ij , let

P1
ij =

{(
k�k′) ∈K|

(
k�k′) /∈ Pij�

(
k′�k

)
/∈ Pij�and ∃k′′ s.t

(
k′′�k

) ∈ Pij or
(
k�k′′) ∈ Pij

}
�

• Finally, for r ∈{1� � � � � r − 1} and given Prij , let

Pr+1
ij = {(

k�k′) ∈K|∃k′′ 	= k′ s.t.
(
k′′�k

) ∈ Prij
}
�

By construction, the ij-initiated transit sets are disjoint. In the definition of P1
ij , the

condition of (k�k′′) ∈ Pij applies to (i� j).
Let the full sequence of messages in the contracting phase be denoted by h= (hij)i�j∈N;i 	=j ,

and note that this accounts for the sequence of messages between every pair of players.

DEFINITION 14: For any ordered pair (i� j) ∈ N × N satisfying (i� j) ∈ K and ρ(i) ≥
ρ(j), the ij-trigger sequence is the full sequence of messages uniquely defined by:

• For every (k�k′) ∈ Pij , (hkk′�hk′k) is the kk′-decline sequence.
• For every r ∈{1� � � � � r} and (k�k′) ∈ Prij , (hkk′�hk′k) is a kk′r-cancel sequence.
• For every (k�k′) /∈ ⋃

r∈{r�����r}P
r
ij , (hkk′�hk′k) is the prescribed message sequence.

Say that h is an ij-trigger sequence except for insignificant variations if the conditions above
hold in the weaker sense of “except for insignificant variations.”

Recall that hrij is the sequence of messages from player i to player j through round r of
the contracting phase. Note that for a given player i, (hrij� h

r
ji)j 	=i is the sequence of mes-

sages between player i and all other players through round r. Also, for a given sequence
of messages h̃ij through the entire contracting phase, let h̃rij refer to the truncation to
round r.

DEFINITION 15: For any player i ∈N and r ∈{r� � � � � r}, say that (hr
ij�h

r
ji)j �=i is consistent

with the prescribed path if, for every j 	= i, (hrij� h
r
ji) is the truncation of some (hij�hji) that

is the prescribed message sequence except for insignificant variations.

DEFINITION 16: For any players i� j�k ∈N and r ∈{r − 1� � � � � r}, say that (hr
ik′�h

r
k′i)k′ �=i

is consistent with a jk-trigger sequence if it is not consistent with the prescribed path and
there exists (h̃k′k′′)k′�k′′∈N;k′ 	=k′′ that is a jk-trigger history except for insignificant variations,
such that for every k′ 	= i, hrik′ = h̃rik′ and hrk′i = h̃rk′i. Say that (hr

ik′�h
r
k′i)k′ �=i is consistent with

a trigger sequence if there exist j�k ∈ N such that (hrik′�hrk′i)k′ 	=i is consistent with a jk-
trigger sequence.

A sequence of messages between a given player and the other players can be consistent
with multiple trigger sequences. For example, in the example shown in Figure 8, the 86-
trigger sequence and 76-trigger sequence would present the same way to player 2 (in
round 2 when player 2 receives the cancellation message from player 5).

An information set for player i is a personal history through some round r of the con-
tracting phase. In the case of r < r, player i’s personal history is exactly (hrij� h

r
ji)j 	=i. In the
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case of r = r, player i’s personal history is given by (hij�hji)j 	=i and the realization of the
random draw φ. In both cases, let us say that the personal history is consistent with a jk-
trigger sequence if (hrij� h

r
ji)j 	=i satisfies this condition, and likewise say that it is consistent

with the prescribed path if (hrij� h
r
ji)j 	=i satisfies this condition. The null history at the begin-

ning of the grand game is trivially consistent with the prescribed path. The terminology
just developed allows the key information sets to be defined.

DEFINITION 17: The set of key information sets � is defined to comprise, for each i ∈N ,
every personal history for player i that is consistent with the prescribed path, and every
personal history for player i that is consistent with a trigger sequence.

Note that many information sets are not in �. Examples include a personal history
in which player i established a conditional arrangement with some player j for which
(i� j) ∈ L and yet (i� j) /∈ K, or where (i� j) ∈ K but these players formed a conditional
arrangement that is not their target one and/or formed their conditional arrangement in
a round other than rij . In these personal histories, player i detects simultaneous devia-
tions by players i and j. Also absent from � are some personal histories consistent with
unilateral deviations, such as when player i deviates from the equilibrium path to cancel
a contract in a round that implies payment of a cancellation penalty.

Prescribed Actions at Key Information Sets

Recall that dri = (λrij)j 	=i denotes player i’s action in round r of the contracting phase
(the vector comprising the messages that player i sends to each other player). Denote by
d̆ri player i’s action in round r on the prescribed path. Further, for any ordered pair (j�k)
such that there exists a jk-trigger sequence, and for any player i, denote by d̃ri (j�k) player
i’s action in round r of the jk-trigger sequence.

Consider the information sets in � belonging to a given player i. The prescribed ac-
tions are specified as follows. Listed first are the personal histories consistent with the
prescribed path, followed by those consistent with a trigger sequence.

STRATEGY-PP: For each personal history through round r < r that is consistent with
the prescribed path, in round r+ 1 player i chooses action d̆r+1

i . For each personal history
through round r that is consistent with the prescribed path, in the production phase player
i chooses action a∗

i .

STRATEGY-TS: Consider any personal history of player i that is consistent with a trigger
sequence. If this personal history is through any round r < r, then in round r + 1 player i
chooses action d̃ri (j�k), for any j and k such that the personal history is consistent with a
jk-trigger sequence.20 If this personal history is through round r, then player i’s action in
the production phase is determined as follows:

(A) If i ∈N , then player i chooses αi, which is a∗
i , regardless of φ.

(B) If i ∈N and there is another core player j such that player i’s personal history is
consistent with a ji-trigger sequence or an ij-trigger sequence, and if |β̂(i� j)|= 1,
then player i chooses αi in the case of φ= 0 and âφi in the case of φ ∈N .

20There are cases in which there is more than one pair (j�k) with which the jk-trigger sequence player i’s
personal history is consistent, but it is not difficult to confirm that d̃ri (j�k) is the same for them.
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(C) If i ∈ N and there is a peripheral player j such that player i’s personal history is
consistent with a ji-trigger sequence, then player i chooses αi in the case of φ= 0
and aiφi in the case of φ ∈N .

(D) Otherwise, player i chooses αi in the case of φ= 0 and aφi in the case of φ ∈N .

In case B, player i is a core player and has just one partner in the core group with
whom she is supposed to contract, but the target conditional arrangement for this pair
was declined by her partner or herself. In this event, and since in the trigger sequence
she also cancels all conditional arrangements with peripheral players, player i enters the
production phase with only the null contract. Player i’s personal history in this case is
consistent with a ji-trigger sequence or an ij-trigger sequence. In the former subcase, it
may also be consistent with other trigger sequences, such as one initiated by a decline in
some round r < 0 that led player j to decline with player i. In case C, a peripheral player
declined with player i in round −1, and then player i declined with all core partners
in round 0 and cancelled with other peripheral partners in round 1. Case D covers all
instances in which player i enters the production phase with a conditional arrangement
cancelled with at least one other core player; in this event, player i is supposed to choose
her part of aφ for every φ ∈N .

Beliefs at Key Information Sets

I next describe partial beliefs of the players at the information sets in �, specifically the
marginal over the actions taken (or to be taken) by the players at all information sets in
�. This leaves out the belief of a player at an information set in � about actions taken
at information sets in I \�, and it leaves unaddressed the beliefs of the players at these
other information sets.

Consider the information sets in � belonging to a given player i. The partial beliefs,
described as appraisals (probability distribution over the space of strategy profiles), are
specified as follows.

BELIEF-PP: For each personal history that is consistent with the prescribed path, player
i believes that the actions taken at the information sets in � are exactly as prescribed
by Strategy-PP, except for any inconsistencies observed by player i. That is, (1) player i
believes that in every prior round r, the other players sent exactly the messages described
by d̆rj except for those messages that, in player i’s observation, constitute insignificant
variations; and (2) at unreached information sets, players would behave as prescribed.21

BELIEF-TS: For each personal history that is consistent with a trigger sequence, let T be
the (j�k) pairs such that player i’s personal history is consistent with a jk-trigger sequence
and the network-K distance between {j�k} and i is minimized among such pairs. Then
player i believes that actions taken at information sets in � are as prescribed by Strategy-
TS for one or more jk-trigger sequences where (j�k) ∈ T , except for any inconsistencies
observed by player i. Inconsistencies are resolved as described in the previous case.

21For example, in a personal history that is consistent with the prescribed path, player i may have received
a message λrji 	= λ from player j in round r, where rij > r. This errant message did not disrupt the contracting
with player j and so it was an insignificant variation in player i’s experience. Player i would then believe that
player j’s action in round r was the vector formed from d̆

r
j by replacing λ with λrji as the message sent to player

i (leaving all other messages unchanged).
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In other words, for personal histories consistent with the prescribed path, player i be-
lieves that play has and will proceed according to the prescribed path, except for any
observed discrepancies (which player i believes are insignificant variations). Likewise, for
personal histories consistent with a trigger sequence, player i believes that play has and
will proceed according to a trigger sequence, except for any observed discrepancies (which
player i believes are insignificant variations). In the latter case, as noted above, it is pos-
sible that player i’s personal history is consistent with multiple trigger sequences. In this
case, player i believes that the actual trigger sequence playing out is among those having
the trigger-decline action occurring in a relationship closest to player i.

Rationality at Key Information Sets

Remember that, because the key information sets are a proper subset of all informa-
tion sets, the specified behavior at these information sets only partially defines the player’s
strategy profile. Likewise, we have only partially defined the player’s beliefs at these in-
formation sets. Nonetheless, we can verify that the prescribed behavior is sequentially
rational at the information sets in � given the partial beliefs. The following list provides
the details for every information set in � belonging to any player i ∈ N . All items on
the list pertain to a player i ∈ NK , whereas only the first two are relevant for a player
i ∈N \NK .

1. Personal histories through round r that are consistent with the prescribed path: Player i is
in the production phase. From Belief-PP, player i believes that the other players will select
a∗

−i. Because player i has assurance contracts with those she was supposed to contract
with, she prefers to choose a∗

i , for any deviation would cost herψ (per assurance contract),
which exceeds the maximal payoff gain in the underlying game.

2. Personal histories through any round r ∈ {0� � � � � r − 1} that are consistent with the pre-
scribed path: By adhering to the prescribed path, as specified, player i expects to eventually
obtain the payoff ui(a∗) + M̆i(a∗). If she deviates from d̆r+1

i by canceling her conditional
arrangement with another core player (and regardless of whether she cancels with multi-
ple other players), then, regardless of how she behaves later, her payoff must fall strictly
below ui(a∗) + M̆i(a∗).

This is because the maximum that player i could gain by altering play in the underlying
game is strictly less than γ, and by canceling she is forced to pay at least one cancellation
penalty of at least γ. Further, since there are no loops in networkK, and given what is fea-
sible in the continuation (in particular, that pairs of players who did not make conditional
arrangements must remain silent with each other), player i’s cancellation cannot lead an-
other player to eventually cancel with her, so player i will not receive any cancellation
penalties. For the same reason, player i will not receive any assurance penalties because,
for each player k satisfying (i�k) ∈K with whom player i retains the conditional arrange-
ment, all of the players in β(k� i) are expected to play their part of a∗ in the production
phase, unaware of player i’s deviation.

Finally, deviating by canceling conditional arrangements only with peripheral players
will result in a lost transfer from these players, in addition to the cancellation penalty if
r > 0, lowering player i’s payoff.

3. Personal histories through round r that are consistent with a trigger sequence: Let (j�k)
be a pair such that player i’s personal history is consistent with a jk-trigger sequence
and the distance between j and i is minimized among such pairs. Note that player i in
such a contingency has reached the production phase with all of her target conditional
arrangements either cancelled or declined. She believes every other player will choose
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the relevant action specified by Strategy-TS, including that every passive player k′ will
choose a∗

k′ . Consider cases as delineated in Strategy-TS(A)–(D):
(A) If i ∈ N , then the prescribed action a∗

i is clearly best given that all other passive
players do the same. This is true regardless of φ and whether player i has expe-
rienced a cancellation, because aφi = a∗

i for φ > 0 in every forcing contract that
results from a target conditional arrangement having been cancelled.

(B) Next, take the case in which i ∈N , there is another core player j such that player i’s
personal history is consistent with a ji-trigger sequence or an ij-trigger sequence,
and |β̂(i� j)|= 1. Here, player i’s contract was declined with the only core player
she was supposed to contract with, and she cancelled in round 1 with any periph-
eral contracting partners. Player i believes that target conditional arrangements
between all other pairs of core players were established and then cancelled, so
that aφ−i will be played in the event of φ> 0 and α−i will be played in the event of
φ= 0. Player i’s payoff is exactly as in the underlying game, and so âφi is optimal
in the event of φ> 0 and αi is optimal in the event of φ= 0.

(C) In the case of i ∈N and there is a peripheral player j such that player i’s personal
history is consistent with a ji-trigger sequence, player i has declined in round 0 with
the core players she was supposed to contract with, and she cancelled in round 1
with any other peripheral contracting partners. She believes that these actions per-
petuated the ji-trigger sequence (the other players abide by Strategy-TS), leading
the other players to select α−i in the case of φ= 0 and aiφ−i in the case of φ ∈N . By
construction of aiφ, it is optimal for player i to choose αi in the case of φ= 0 and
aiφi in the case of φ ∈N , as specified.

(D) For every remaining trigger sequence for i ∈ N , player i made the target condi-
tional arrangement with at least one other core player and all of her conditional
arrangements were cancelled. In the case of φ = 0, all of her contracts are null
except for constant transfers and she believes the other players will select α−i, to
which αi is a best response. In the case of φ> 0, she has only contracts that force
aφi (the penalty ψ outweighs any deviation gain in the underlying game) or are null
except for constant transfers, and she has at least one of the former. Thus, regard-
less of what she believes the other players will choose, player i’s optimal action is
αi in the case of φ= 0 and aφi in the case of φ ∈N .

4. Personal histories through any round r ∈ {1� � � � � r − 1} that are consistent with a trigger
sequence: Given the definition of trigger sequence, player i has no choice to make (re-
stricted to silence with everyone else) except for the subcase in which another player k
cancelled a conditional arrangement with player i in round r and player i earlier estab-
lished a conditional arrangement with at least one other player (not yet cancelled). It must
be that ρ(k) ≤ ρ(i) and |β̂(k� i)|≥ 1 (i.e., there is an active player on k’s side of network
K). Player i is supposed to cancel all remaining conditional arrangements.

Because player i believes that the players in β(k� i) will continue to play according
to Strategy-TS, player i believes that in the production phase, aβ(k�i) 	= a∗

β(k�i) for at least
one value of φ. This follows from the fact that âjj = a

j
j 	= a∗

j for every j ∈ N . Therefore,
player i expects to eventually pay the assurance penalty of ψ with probability of at least
ε, for every outstanding conditional arrangement that she does not cancel (because from
Lemma 2(a) the resulting contracts are assurance contracts).

From the definition of ψ, the expected penalty exceeds (n− 1)γ and thus exceeds the
maximal gain in the underlying game. The arranged cancellation penalties are strictly
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below (n−1)γ, and so player i prefers to cancel all outstanding conditional arrangements.
In fact, player i prefers to do so immediately (in round r + 1), since the cancellation
penalty increases with r and no other player in β(i�k) would otherwise cancel with her
(implied by K having no loops).

5. Personal histories through round r = 0 that are consistent with an ik-trigger sequence for
some k ∈N : It is the case that ρ(i) ≥ ρ(k), which implies that |β̂(k� i)|≥ 1 because only
pairs of core players are scheduled to form conditional arrangements in round 0. Player i
is supposed to cancel all remaining conditional arrangements.

The logic for class 4 of personal histories, based on player i believing that aβ(k�i) 	= a∗
β(k�i)

for at least one value of φ, holds here as well, implying that player i prefers to cancel
all outstanding conditional arrangements in the current round 1. Note that this includes
the subcase of i ∈N and player i having initiated the trigger sequence by declining with
exactly one other core player k in round 0. It also includes the case in which player i
is peripheral, where player i believes that akφ−i will be chosen by the other players in the
event ofφ> 0, where k is the closest active player to player i. Recall that, by construction,
akφ−i 	= a∗

−i for some value of φ.
6. Personal histories through round r = 0 that are consistent with a ki-trigger sequence

for some k ∈ N satisfying ρ(k) = ρ(i) = 0: Player i is supposed to cancel all remaining
conditional arrangements. As in class 4 and class 5 of personal histories, |β̂(k� i)| ≥ 1,
player i believes that aβ(k�i) 	= a∗

β(k�i) for at least one value of φ, and so player i prefers to
cancel all outstanding conditional arrangements in the current round 1.

7. Personal histories through round r = 0 that are consistent with a ji-trigger sequence for
some j ∈N satisfying ρ(j) = ρ(i) + 1: In this class, from Belief-TS, player i believes that
a ji-trigger sequence is in process. In round rij + 1, player i declined with every player
k satisfying (i�k) ∈ K and ρ(k) ≤ ρ(i), which is a single player if ρ(i) > 0 and possi-
bly multiple players if ρ(i) = 0. Player i is supposed to cancel all remaining conditional
arrangements. As in the previous class of personal histories, |β̂(k� i)|≥ 1 and player i be-
lieves that aβ(k�i) 	= a∗

β(k�i) for at least one value of φ, and so player i prefers to cancel all
outstanding conditional arrangements in the current round 1.

8. Personal histories through round r < 0 that are consistent with a ji-trigger sequence for
some j ∈ N : As in the previous class, from Belief-TS, player i believes that a ji-trigger
sequence is in process, and here it must be that ρ(j) = ρ(i) + 1. Player i is supposed to
send the null message to everyone else. If r 	= −ρ(j), then she has no incentive to deviate
because non-null messages would be interpreted as insignificant variations and ignored
by the others.

If r = −ρ(j), then there is at least one player k for which (k� i) ∈K and rik = r + 1 (ex-
actly one such player in the case of r <−1), and this player would expect to receive mes-
sage c̆ik. By sending something other than this expected message with every such player
k, player i continues the ji-trigger sequence and expects to receive the payoff wi. By
sending message c̆ik to each such player, player i makes them believe that they are on
the prescribed path except for insignificant variations, and by continuing as though on
the prescribed path player i expects to get the payoff ui(a∗) + M̆i(a∗) − m̆

ij
i (a∗). From

Lemma 2, this value is strictly less than wi, so player i prefers not to deviate in this way.
Other deviations in the continuation cannot improve player i’s payoff either. For in-

stance, if ρ(i) = 0 and there are multiple other core players with whom player i is sup-
posed to contract, declining with some but not all of them will put player i in the position
addressed in the previous classes, where player i expects to pay an assurance penalty for
some values of φ.
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Further, if player i sends message c̆ik to each player k described above, pretending with
them to be on the prescribed path, and plans to cancel conditional arrangements with any
of them later, then player i expects to pay a cancellation penalty. Planning to cancel with
only a player j′ for which ρ(j′) = ρ(i) + 1 would not entail a cancellation penalty if it is
done in round 1, but then player i loses a positive transfer from this player given that she
has induced each player k described above to play as though on the prescribed path.

9. Personal histories through round r < 0 that are consistent with an ij-trigger sequence
for some j ∈N : In this class, player i earlier initiated a trigger sequence by declining with
player j. Player i is supposed to send the null message to everyone else. Given that player i
believes the ij-trigger sequence is in progress and expects to receive the null message from
all other players, deviating would not affect player i’s expected payoff because any non-
null message would be viewed as an insignificant variation and ignored by the recipient.

10. Personal histories through any round r < 0 that are consistent with the prescribed path:
By adhering to the prescribed path, as specified, player i expects to eventually obtain
the payoff ui(a∗) + M̆i(a∗). In the case of r = −1 and ρ(i) = 0, player i could deviate
by declining with every player k with whom she is supposed to establish a conditional
arrangement in round 0 (by sending a message other than c̆ik). It would then be optimal
for her to cancel all conditional arrangements with peripheral players in round 1 (by the
same logic described in class 4). As in class 3(C), she would believe that the other players
will select α−i in the case of φ = 0 and aiφ−i in the case of φ ∈ N . The best that player i
could then do in the production phase is to choose αi in the case of φ= 0 and aiφi in the
case of φ ∈N , leading to the expected payoff wi. From Lemma 2(b), her expected payoff
would be strictly below ui(a∗) + M̆i(a∗), and therefore player i does not want to deviate
in this manner.

She can do no better by declining with only some of the players with whom she is sup-
posed to contract, for then she would be on the hook for an assurance penalty or a can-
cellation penalty. Deviating by sending non-null messages to players expecting to receive
the null message would not further affect player i’s expected payoff, since these messages
would be ignored as insignificant variations.

The analysis is much the same in the case of r <−1 and ρ(i) = −r − 1. Here, there is
one player k for whom (i�k) ∈K and rik = r + 1, and it is the case that ρ(k) = ρ(i) − 1.
If in round r + 1 player i declines with player k by not sending message c̆ik, then player
i would believe that play will proceed according to the ik-trigger sequence, resulting in
expected payoff wi.

Next, take the case of r <−1, ρ(i) = −r − 2, and the existence of a player j for whom
(i� j) ∈K and ρ(j) = ρ(i) +1. In the current round r+1, player i is supposed to send mes-
sage c̆ij to such a player. Deviating to decline the target conditional arrangement nullifies
the contract with this other player and, if player i were to otherwise behave as though on
the prescribed path, then she would expect to obtain the payoff ui(a∗) + M̆i(a∗) − m̆ij

i (a∗),
which is below ui(a∗) + M̆i(a∗) by Lemma 2(c). Declining in this manner and planning
to decline again with all others in the following period would give player i an expected
payoff of at most wi. No other deviation is worthwhile, using the logic laid out above.

Translating the Partial Construction to a Fully Described Sequential Equilibrium

The penultimate step of the proof is to specify a sequence of fully mixed behavior
strategies for the information sets in � that converges to the partial strategy defined by
Strategy-PP and Strategy-TS, and that induces the partial beliefs defined by Belief-PP
and Belief-TS. I shall use the term situation in place of information set, to be consistent
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with Watson (2023). Beliefs are expressed as appraisals (probability distributions over the
space of strategy profiles).

Denote by s a strategy profile in the grand game and note that it can be expressed as
a mapping from I to the action space in the grand game, such that for each ξ ∈ I, s(ξ)
is a feasible action at situation ξ. Let S denote the space of strategy profiles in the grand
game, let S� denote the set of strategy profiles restricted to �, and for any s ∈ S let s� be
the restriction to �. For each ξ ∈ I, let S(ξ) denote the set of strategy profiles that reach
ξ (the path of play passes through situation ξ) and let S(ξ)� ≡{s�|s ∈ S(ξ)}.

A probability distribution π ∈ �S� is called fully mixed if it has full support, and it is
called a behavior strategy on � if it exhibits independence across these situations. Let π∗

denote the behavior strategy on � defined by Strategy-PP and Strategy-TS. Note that, as
constructed, π∗ is a degenerate distribution (a pure strategy profile).

Define a sequence (πκ)∞
κ=1 of fully mixed behavior strategies on � as follows. For each

personal history of player i through any round r < r that is consistent with the prescribed
path, player i randomizes independently across the components of the message vector.
In the case of r ≤ 0, for each other player j and each feasible message λij that differs
from what d̆ri specifies to be sent to player j, player i sends message λij to player j with
probability (1/κ)n2(n−r) . The remaining probability (which converges to 1 as κ→ ∞) is put
on the message prescribed by d̆ri . In the case of r ∈ {1� � � � � r − 1}, for each other player
j and each feasible message λij that differs from what d̆ri specifies to be sent to player j,
player i sends message λij to player j with probability (1/κ)n4n . The remaining probability
(which converges to 1 as κ→ ∞) is put on the message prescribed by d̆ri .

Similarly, for each personal history of player i through any round r < r that is consistent
with a jk-trigger sequence, player i randomizes independently across the components of
the message vector. For each other player j′ and each feasible message λij′ that differs
from what d̃ri (j�k) specifies to be sent to player j′, player i sends message λij′ to player j′

with probability (1/κ)n2(n−r) if r < 1 and (1/κ)n4n if r ≥ 1. he remaining probability is put
on the message prescribed by d̃ri (j�k).

Finally, for each personal history of player i through round r that is consistent with the
prescribed path, player i chooses each action ai 	= a∗

i with probability (1/κ) and puts the
remaining probability on a∗

i (which is what Strategy-PP prescribes). Likewise, for each
personal history of player i through round r that is consistent with a jk-trigger sequence,
player i puts probability (1/κ) on each action other than that prescribed by Strategy-TS,
and puts the remaining probability on the action prescribed by Strategy-TS.

The sequence (πκ)∞
κ=1 clearly converges to π∗, because at each situation in �, the

probability put on the action prescribed by π∗ converges to 1 as κ approaches ∞. It is
also clear that for each ξ ∈ �, the conditional distribution πκ(·|S(ξ)�) converges. Let
qξ ≡ limκ→∞πκ(·|S(ξ)�) and note that this is the appraisal of the player on the move at ξ
about the behavior at the situations in �. By construction, qξ is as described by Belief-PP
and Belief-TS, whichever is the relevant case.

For example, consider a personal history of player i through round r < 1 that is con-
sistent with the prescribed path but where the message from player j in round r differed
from what d̆rj specifies. The unexpected message from player j is an insignificant variation
in the communication with player i. The probability that this occurred due to a tremble of
player j’s hand in round r (a tremble that affected only the message to i) is on the order
of (1/κ)n2(n−r) , whereas the probability that it followed from a deviation by any player in a
previous round that caused player j to send the unexpected message in round r is at most
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on the order of (1/κ)n2(n−r+1) . Thus, in the limit as κ→ ∞, player i believes play has been
exactly on the prescribed path except for the insignificant variation observed in round r.
The same logic works for the case of multiple insignificant variations in the same round
and/or across rounds, because the probability of up to n(n− 1) trembles across a number
of rounds is at least one order of magnitude higher than the probability of a single tremble
in a previous round.

For another example, consider a personal history of player i through round r ≥ 1 that is
consistent with a trigger sequence, where player j cancelled with player i in round r. The
probability that the cancellation occurred due to a tremble of player j’s hand in round r
is on the order of (1/κ)n4n , whereas the probability that it followed from a decline choice
at round 0 by some player is at least on the order of (1/κ)n2n , because there exists such
a decline sequence that would reach player i in round r. Further, any decline sequence
initiated prior to round 0 occurs on the order of at most (1/κ)n2(n+1) . Thus, in the limit as
κ→ ∞, player i believes play has been exactly on a j′k-trigger sequence, where j′�k ∈ N̂K

(they are core players, so the decline action that initiated the trigger sequence occurred
in round 0). The same logic works when insignificant variations are included.

Note that in the case just described, player i believes that the trigger sequence in pro-
cess was initiated by a single decline choice in round 0, rather than being initiated earlier.
Likewise, for a personal history through round r ≤ 0 that is consistent with a trigger se-
quence and where some player j declined with player i, player i believes that a ji-trigger
sequence is in process, rather than a trigger sequence that was initiated earlier.

The appraisal system for the partial equilibrium construction is given by Q ≡ (qξ)ξ∈�,
where � is the union of � and artificial situations that represent the beginning of the
game (see Watson (2023) for an explanation). The appraisals include the specification of
π∗. We can extend the appraisals to include nature’s choices by taking the product of each
qξ and nature’s behavior strategy, since nature moves after the contracting phase and the
players observe nature’s choice.

To summarize, Q is fully consistent (Kreps and Wilson (1982)) in the partial game be-
cause it was constructed from a sequence of fully mixed behavior strategies. Further, we
have verified that Q is sequentially rational, regardless of the players’ behavior at situ-
ations I \ � (what Watson (2023) calls �-sequentially rational). This means that Q is a
�-partial sequential equilibrium, as defined by Watson (2023).

The last step is to use the theorem of Watson (2023) to establish the existence of a
sequential equilibrium in the entire grand game that coincides withQ on�. To do this, we
must verify that the rectangular margin-support condition holds, which is that {s ∈ S(ξ)|s� ∈
suppqξ} is a �-product set, for every ξ ∈ � that is a situation for a strategic player (not
nature). This is straightforward given all of the work we have done to construct Q.

Observe that, for each ξ ∈�, the appraisal qξ puts zero probability on strategy profiles
that pass through any situation in I \� before reaching ξ. This is clear from the fact that
every situation reached through a history that is the prescribed message sequence except
for insignificant variations is itself a personal history consistent with the prescribed path,
and the player in this situation believes that communication between the other players
was exactly the prescribed message sequence. Likewise, every situation reached through
a history that is an ij-trigger sequence except for insignificant variations is itself a personal
history consistent with either the ij-trigger sequence or the prescribed path, and the player
in this situation believes that communication between the other players was exactly the
prescribed message sequence or the ij-trigger sequence.
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Thus, for each ξ ∈� and s ∈ S such that s� ∈ suppqξ, it must be that s ∈ S(ξ) regardless
of the behavior specified for I \�. That is, {s ∈ S(ξ)|s� ∈ suppqξ} = S(ξ)� × SI\�, and so
this is a product set.

The theorem of Watson (2023) then establishes the existence of a sequential equilib-
rium in the entire grand game, given by an appraisal system P , such that for each ξ ∈�,
pξ� = qξ. In particular, the players’ equilibrium behavior at the situations in� is exactly as
described by Q; it is given by π∗. The equilibrium path is the prescribed path, and so the
grand game ends with play of action profile a∗ in the underlying game, which is efficient.

Specifications for the Cases Held Aside

Recall that, for the complicated construction completed above, we left aside the case
in which the underlying game is trivial and also the case in which |N̂K| ≤ 2 (implying
N = N̂K). I next describe how to deal with these cases.

In the case of a trivial underlying game, where the underlying game has an efficient
Nash equilibrium, we can construct an efficient sequential equilibrium of the grand game
as follows. The prescribed path entails all players sending the null message to each other
in every round, and then choosing α. Define � as the situations that are consistent with
the prescribed path, where insignificant variations may have occurred. At the situations
in �, the players are prescribed to behave as on the prescribed path, ignoring insignifi-
cant variations, which is clearly sequentially rational. The partial-sequential-equilibrium
construction and full equilibrium existence work as before.

In the case in which |N̂K|≤ 2, the core group comprises exactly two active players or
exactly one active player. In the subcase in which αi(a

∗
i ) < 1 for i ∈ N̂K (which is implied

by |N̂K|= 1), the equilibrium construction is exactly as described in the previous section
except that profiles aφ, âji , and aik do not come into play because trigger sequences result
in contracts not being formed by core players (rather than being cancelled). Strategy-TS
is modified to specify simply that player i chooses ai in the underlying game. It is not
difficult to see that the rest of the construction holds together.

In the subcase in which |N̂K|= 2 and yet αi(a
∗
i ) = 1 for one player j ∈ N̂K (it cannot

be both), we can treat this player as passive and perform the equilibrium construction as
though there is exactly one active player (the subcase covered in the previous paragraph).
This is because on the equilibrium path and in any trigger sequence, the lone active player
i plays only a∗

i or αi, and thus player j optimally responds with a∗
j with any specified

assurance contract or the null contract.

REFERENCES

BERNHEIM, B. DOUGLAS, AND MICHAEL D. WHINSTON (1986a): “Common Agency,” Econometrica, 54, 923–
942. [1738]

(1986b): “Menu Auctions, Resource Allocations and Economic Influence,” Quarterly Journal of Eco-
nomics, 101, 1–31. [1738]

BERNSTEIN, LISA, AND BRADLEY PETERSON (2020): “Managerial Contracting: A Preliminary Study,” prelim-
inary draft, University of Chicago. [1737,1758]

BLOCH, FRANIS, AND ARMANDO GOMES (2006): “Contracting With Externalities and Outside Options,” Jour-
nal of Economic Theory, 127 (1), 172–201. [1757]

BRAMOULLÉ, YANN, AND RACHEL KRANTON (2016): “Games Played on Networks,” in Oxford Handbook of
the Economics of Networks, ed. by Y. Bramoullé, A. Galeotti, and B. Rogers. [1759]

CHATTERJEE, KALYAN, BHASKAR DUTTA, DEBRAJ RAY, AND KUNAL SENGUPTA (1993): “A Noncooperative
Theory of Coalitional Bargaining,” Review of Economic Studies, 60, 463–477. [1757]

COASE, R. H. (1960): “The Problem of Social Cost,” Journal of Law and Economics, 3, 1–44. [1737]

https://www.e-publications.org/srv/ecta/linkserver/setprefs?rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/Beretal1986a&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/Beretal1986b&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/BloGom2006&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:6/Chaetal1993&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/Coa1960&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/Beretal1986a&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/Beretal1986b&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/Beretal1986b&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/BloGom2006&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:6/Chaetal1993&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B


1774 JOEL WATSON

COLLARD-WEXLER, ALLAN, GAUTAM GOWRISANKARAM, AND ROBIN S. LEE (2019): “‘Nash-in-Nash’ Bar-
gaining: A Microfoundation for Applied Work,” Journal of Political Economy, 127 (1), 163–195. [1738]

CRÉMER, JACQUES, AND MICHAEL H. RIORDAN (1987): “On Governing Multilateral Transactions With Bilat-
eral Contracts,” The RAND Journal of Economics, 18 (3), 436–451. [1738]

DE FONTENAY, CATHERINE C., AND JOSHUA S. GANS (2014): “Bilateral Bargaining With Externalities,” The
Journal of Industrial Economics, 62 (4), 756–788. [1757]

ELLINGSEN, TORE, AND ELENA PALTSEVA (2016): “Confining the Coase Theorem: Contracting, Ownership,
and Free-Riding,” The Review of Economic Studies, 83 (2), 547–586. [1738,1744,1759]

GALASSO, ALBERTO (2008): “Coordination and Bargaining Power in Contracting With Externalities,” Journal
of Economic Theory, 143 (1), 558–570. [1738]

GOMES, ARMANDO (2005): “Multilateral Contracting With Externalities,” Econometrica, 73 (4), 1329–1350.
[1757]

GOMES, ARMANDO, AND PHILIPPE JEHIEL (2005): “Dynamic Processes of Social and Economic Interactions:
on the Persistence of Inefficiencies,” Journal of Political Economy, 113, 626–667. [1757]

HAFALIR, ISA E. (2007): “Efficiency in Coalition Games With Externalities,” Games and Economic Behavior,
61, 242–258. [1757]

HATFIELD, JOHN W., AND PAUL R. MILGROM (2005): “Matching With Contracts,” American Economic Review,
95 (4), 913–935. [1738]

HORN, HENRICK, AND ASHER WOLINSKY (1988): “Bilateral Monopolies and Incentives for Merger,” The
RAND Journal of Economics, 19 (3), 408–419. [1738]

HURWICZ, LEONID (1994): “Economic Design, Adjustment Processes, Mechanisms, and Institutions,” Eco-
nomic Design, 1, 1–14. [1759]

HYNDMAN, KYLE, AND DEBRAJ RAY (2007): “Coalition Formation With Binding Agreements,” Review of
Economic Studies, 74, 1125–1147. [1757]

JACKSON, MATTHEW O., AND SIMON WILKIE (2005): “Endogenous Games and Mechanisms: Side Payments
Among Players,” Review of Economic Studies, 72 (2), 543–566. [1738]

JACKSON, MATTHEW O., AND YVES ZENOU (2014): “Games on Networks,” in The Handbook of Game Theory,
Vol. 4, ed. by P. Young and S. Zamir. [1759]

KANDORI, MICHIHIRO (1992): “Social Norms and Community Enforcement,” The Review of Economic Studies,
59 (1), 63–80. [1758]

KREPS, DAVID M., AND ROBERT WILSON (1982): “Sequential Equilibria,” Econometrica, 50 (4), 863–894.
[1741,1772]

MCAFEE, R. PRESTON, AND MARIUS SCHWARTZ (1994): “Opportunism in Multilateral Vertical Contracting:
Nondiscrimination, Exclusivity, and Uniformity,” The American Economic Review, 84 (1), 210–230. [1738,

1757]
PETERS, MICHAEL, AND BALÁZS SZENTES (2012): “Definable and Contractible Contracts,” Econometrica, 80

(1), 363–411. [1756]
PRAT, ANDREA, AND ALDO RUSTICHINI (2003): “Games Played Through Agents,” Econometrica, 71 (4), 989–

1026. [1738,1757]
ROSTEK, MARZENA, AND NATHAN YODER (2020): “Matching With Complementary Contracts,” Economet-

rica, 88 (5), 1793–1827. [1738]
(2022): “Matching With Multilateral Contracts,” manuscript in circulation. [1738,1759]

SEGAL, ILYA (1999): “Contracting With Externalities,” Quarterly Journal of Economics, 114 (2), 337–388. [1738,
1757]

SEIDMANN, DANIEL J., AND EYAL WINTER (1998): “Exploring Gains From Trade in Multilateral Bargaining:
A Theory of Gradual Coalition Formation,” Review of Economic Studies, 65, 793–815. [1757]

WATSON, JOEL (2007): “Contract, Mechanism Design, and Technological Detail,” Econometrica, 75, 55–81.
[1738]

(2017): “A General, Practicable Definition of Perfect Bayesian Equilibrium,” unpublished draft.
[1741]

(2023): “Partially Constructed Sequential Equilibrium,” unpublished draft. [1746,1753,1757,1762,
1771-1773]

(2024): “Supplement to ‘Contractual Chains’,” Econometrica Supplemental Material, 92, https://doi.
org/10.3982/ECTA19797. [1739]

Co-editor Barton L. Lipman handled this manuscript.

Manuscript received 1 June, 2021; final version accepted 28 April, 2024; available online 6 May, 2024.

https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:8/Coletal2019&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/CreRio1987&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:10/DeGan2014&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:11/EllPal2016&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:12/Gal2008&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:13/Gom2005&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:14/GomJeh2005&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:15/Haf2007&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/HatMil2005&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:17/HorWol1988&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:18/Hur1994&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:19/HynRay2007&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:20/JacWil2005&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:22/Kand1992&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:23/KreWil1982&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:24/McAetal1994&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:25/PetSze2012&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:26/PraRus2003&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:27/RosYod2020&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:29/Seg1999&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:30/SeiWin1998&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:31/Wat2007&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://doi.org/10.3982/ECTA19797
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:8/Coletal2019&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/CreRio1987&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:10/DeGan2014&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:11/EllPal2016&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:12/Gal2008&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:14/GomJeh2005&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:15/Haf2007&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/HatMil2005&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:17/HorWol1988&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:18/Hur1994&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:19/HynRay2007&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:20/JacWil2005&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:22/Kand1992&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:24/McAetal1994&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:25/PetSze2012&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:26/PraRus2003&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:27/RosYod2020&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:30/SeiWin1998&rfe_id=urn:sici%2F0012-9682%282024%2992%3A5%3C1735%3ACC%3E2.0.CO%3B2-B
https://doi.org/10.3982/ECTA19797

	Introduction
	Related Literature
	Overview

	The Model
	Setting
	Contracting Institution and Design Problem
	Equilibrium Concept and Implementation

	Barriers Illustrated by Simple Examples
	Disconnected Networks
	Collaboration Agreement
	Collaboration and a Peripheral Beneﬁciary

	Efﬁcient Implementation
	Featured Contracting Institution
	Organizing Elements of Underlying Games and Networks
	Focal Elements for a Given Underlying Game
	Global Parameters
	Deﬁnitions Pertaining to Subnetworks
	Focal Elements for a Given Underlying Game and Network
	Summary

	Feasible and Featured Contracts
	Target Conditional Arrangements
	Overview of the Equilibrium Construction
	Play on the Equilibrium Path
	First Sample Deviation
	Second Sample Deviation
	Additional Notes


	Elaboration and Discussion
	Two Extensions
	Notes About Option Contracts and Penalties
	Summary of Technical and Conceptual Contributions
	Implications for Applications
	Variations for Further Study

	Conclusion
	Appendix A
	Default Payoff Vector Construction
	Proofs of Lemmas
	Proof of the Theorem: Partial Construction and Existence
	Terminology for Key Information Sets
	Prescribed Actions at Key Information Sets
	Beliefs at Key Information Sets
	Rationality at Key Information Sets
	Translating the Partial Construction to a Fully Described Sequential Equilibrium
	Speciﬁcations for the Cases Held Aside


	References

