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SM.1. DEPARTURE TIME MODEL IDENTIFICATION

IN THIS SECTION, I FORMALLY PROVE how identification of schedule costs and schedule
heterogeneity in a departure time model depends on observing commuter reactions to
congestion pricing. For analytical tractability, I proceed in a simplified model that main-
tains the key features of the full model: schedule preferences and a peak-hour (inverse U
shaped) travel time profile. These results continue to hold when the travel time profile is
endogenously determined in equilibrium. I use simulations to check a conjecture that the
deadweight loss of peak-hour congestion in this model is decreasing in the schedule costs.

For intuition for the identification results, consider a commuter that we observe to
leave at very different times on different days (as I document in Table SM.I). There are
two ways this could arise. In the first scenario, the commuter has a unique ideal arrival
time and high schedule flexibility. In this case, small idiosyncratic shocks have a large
effect on departure times. In the second scenario, each day, the commuter draws an ideal
arrival time from a dispersed distribution, but does not have much flexibility around that
time.

These two cases are observationally equivalent for departure times, but they have dif-
ferent implications for how substitutable two departure times are to each other, on any
given day. The key intuition for how congestion pricing leads to identification is that we
can measure cross-price elasticities: how the probability of choosing departure time h
depends on infinitesimal pricing of departure time h′.

SM.1.1. Simplified Departure Time Model

I assume that commuters have preferences directly over (continuous) departure times
h ∈ R. Unlike the main model where commuters have ideal arrival times, this assumption
eliminates expectations over travel time uncertainty and greatly simplifies the algebra.

Travel time is a (possibly degenerate) quadratic function of departure time. This cap-
tures the key shape of how travel time varies across the peak-hour.1 In most of the results
below, schedule costs are quadratic and the ideal departure time is normally distributed.
These assumptions rule out asymmetric (early/late) schedule costs yet deliver analytical
tractability.

Given the focus on identification, I drop individual i and time t subscripts and assume
that infinite data for a single individual are available. The utility for departure time h is

−αT (h) − v
(
h− hD

)︸ ︷︷ ︸
u(h|hD)

+εD(h)�
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1The quadratic shape implies unrealistic negative travel time for very early or very late departure time. I

later assume that schedule costs rise faster so that, on net, these departure times are unattractive.
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Here v(·) is the schedule penalty as a function of the deviation between departure time
and the ideal departure time hD. εD(h) are idiosyncratic shocks with scale β−1 that give
rise to continuous logit choice probabilities. The ideal departure time hD is distributed
according to a cumulative distribution function F .

I assume that the value of travel time α is known and normalize it to α= 100 INR/hour.
Note, if travel time is not constant, this rules out a trivial source of non-identification due
to scale.

The conditional probability density of choosing departure time h is given by the contin-
uous logit density, and the unconditional density is given by integrating over F ,

π
(
h|hD

) = exp
(
βu

(
h|hD

))∫
h′

exp
(
βu

(
h′∣∣hD

))
dh′

� and π(h) =
∫

π
(
h|hD

)
dF

(
hD

)
�

SM.1.2. Two Non-Identification Results With Observational Data

Before outlining the main results, I prove a general non-identification result in a sim-
ple setting where travel time is a constant (later, I will assume quadratic) and the ideal
departure time distribution is unrestricted.

In this case, we can write the observed departure time as the sum of two independent
random variables, corresponding to the ideal departure time, and the optimal departure
time conditional on the ideal departure time. This exact decomposition helps clarify the
source of non-identification.

PROPOSITION 1: Assume that travel time T is a constant (does not depend on departure
time h). Normalize β = 1. Consider any family V of schedule delay functions v ∈ V , with at
least two elements v1� v2 ∈ V that differ on a nonzero measure set. Then, the schedule delay
cost function v(·) is not identified given data on π(h).

PROOF: If T does not depend on h, then u(h|hD) is only a function of the difference
h− hD. Hence, the optimal departure time random variable h∗ can be written as the sum
of two independent random variables, h∗ = hD + h∗ − hD︸ ︷︷ ︸

hE

, where the pdf of hE is

G
(
hE

) = exp
(−v

(
hE

))∫
h

exp
(−v(h)

)
dh

�

(Note: if v is quadratic, then hE is normally distributed.)
Consider two different schedule delay functions v1(·) and v2(·) and let hE

1 and hE
2 denote

two independent random variables that have the corresponding pdfs G1 and G2.
Setting the ideal departure time distributions hD

1 ∼ G2 and hD
2 ∼ G1 (note that indices

are switched) implies that the observed optimal departure time random variables hD
1 +hE

1
and hD

2 + hE
2 have the same distribution. Hence, the schedule cost function v(·) is not

identified. Q.E.D.

The identification failure does not depend on constant travel time. I next prove the
main non-identification result, in a model that is more strongly parameterized and where
travel time is hump-shaped, which captures the peak-hour travel time profile. I make
three functional form assumptions.
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ASSUMPTION 1: T (h) is quadratic, T (h) = τ0 − τ1h
2 with τ1 > 0. Without loss of gener-

ality and for convenience I will set τ0 = 0.

ASSUMPTION 2: Schedule costs are quadratic, v(h− hD) = s(h− hD)2 with s > τ1.
(s > τ1 means that schedule costs dominate, and it implies that the commuter chooses

departure times with negative travel time—very early or very late departure time—with very
low probability.)

ASSUMPTION 3: The ideal departure time is normally distributed, hD ∼N(0�σ).

PROPOSITION 2: Fix the shape of the travel time profile τ1 and maintain the VOTT normal-
ization α = 100 INR/hour. Under Assumptions 1–3, the demand model parameters (β� s�σ)
are not identified with data on observed departure times.

This is not a trivial non-identification result due to scale, because VOTT α is normal-
ized, and travel time is not constant.

The proof will show that it is possible to explain the same observed distribution of de-
parture times by increasing schedule costs and increasing the spread of the ideal departure
time distribution.

PROOF OF PROPOSITION 2: I show that π(h) is a normal distribution centered at zero.
Its mean and variance depend on three variables (β, s, σ). Hence, the model is under-
identified with two degrees of freedom.

The utility function is (recall that the value of time spent driving α is normalized)

u
(
h|hD

) = ατ1h
2 − s

(
h− hD

)2 + εD(h)�

Choice probabilities are given by

π(h) =
∫

π
(
h|hD

)
dF

(
hD

)
=

∫
e−β(−ατ1h

2+s(h−hD)2)∫ ∞

−∞
e−β(−ατ1(h′)2+s(h′−hD)2) dh′

· 1√
2πσ

e− 1
2 ( h

D
σ )2

dhD

= 1

√
2π

√
s2σ2

(s − ατ1)2 + 1
2β(s − ατ1)

exp
(

−1
2

h2

s2σ2

(s − ατ1)2 + 1
2β(s − ατ1)

)
�

This is a normal distribution with mean zero and variance s2σ2

(s−ατ1)2 + 1
2β(s−ατ1) . Q.E.D.

SM.1.3. Identification With Congestion Pricing Variation

I now study identification when we also observe choice probability distributions
π(·|p(·)) in response to any possible pricing function p(h).

Observing responses to pricing helps identify the cross-price elasticities for different de-
parture times. This helps resolve the ambiguity discussed in the previous section, because
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different combinations of departure time distributions and conditional choice probabili-
ties have different implications for cross-price elasticities.

The key object of interest is the impact of an “impulse” price function on choice proba-
bilities. Slightly abusing notation (skipping a formal limit argument), we study “Kronecker
delta” impulse pricing functions at h given by p(x;h�λ) = λ1(x = h) and study the effect
of increasing λ around λ = 0 for given h �= h′:

dπ
(
h′∣∣p(·;h�λ)

)
dλ

∣∣∣∣
λ=0

= d

dλ

∫ exp
(
βu

(
h′∣∣hD

))∫
h′′

exp
(
βu

(
h′′∣∣hD

) −βp
(
h′′;h�λ)) dF(

hD
)
�

For h �= h′ and evaluating at λ= 0, this simplifies to

β

∫
π

(
h′∣∣hD

)
π

(
h|hD

)
dF

(
hD

)
�

where π(·|hD) denotes the conditional probability in the absence of pricing (λ= 0).
This expression shows that, for fixed h−h′, when conditional probabilities are concen-

trated (e.g., when β is high and/or the schedule cost function is steep around the ideal de-
parture time), the cross-elasticities are close to zero. Intuitively, this suggests that knowing
cross-elasticities for all h and h′ solves the identification problem.

I now formally prove identification in the particular case considered in Result 2.

PROPOSITION 3: Fix the shape of the travel time profile τ1. Under Assumptions 1–3, the
model parameters (β� s�σ) are identified with data on observed departure times and cross-
elasticities for h �= h′.

PROOF: Substituting the utility function and normal distribution for hD in the expres-
sion for cross-elasticity, and computing integrals using Mathematica, yields

β

∫
π

(
h′∣∣hD

)
π

(
h|hD

)
dF

(
hD

)
= β2(s − ατ1)

1
2
(
s − ατ1 + 4βs2σ2

)− 1
2

× exp
(

(s − ατ1)2β2s2σ2(
s − ατ1 + 4βs2σ2

)(
h′ + h

)2 − (s − ατ1)β
((
h′)2 + h2

))
�

Taking log and grouping terms in a polynomial of h and h′ gives

ln
(∫

π
(
h′∣∣hD

)
π

(
h|hD

)
dF

(
hD

)) = −β(s − ατ1)
((
h′)2 + h2

)
+ 2β2s2σ2(s − ατ1)

s − ατ1 + 4βs2σ2

(
h′ + h

)2

+ 1
2

ln
(

β2(s − ατ1)
s − ατ1 + 4βs2σ2

)
�

By varying h and h′, we have three identified coefficients and three unknowns (β, s,
and σ). It is straightforward to check that this system of equations has a unique solution.

Q.E.D.
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SM.1.4. Equilibrium With Endogenous Congestion

I now show that the quadratic travel time profile assumed so far is consistent with equi-
librium.

Assume that the travel time T (h) is given by

T (h) = λ0 + λ1 log
(
V (h)

)
� (S1)

where V (h) is a measure of volume of travel around h. To construct V , assume that any
trip at h affects the travel times of all other departure times (trips leaving both before
and after h), with a weight given by a normal distribution pdf with standard deviation σV .
That is, V is given by

V (h) =
∫ ∞

−∞
π

(
h′)φ(

h′;h�σV

)
dh′�

where φ(x;μ�σ) is the normal pdf with mean μ and standard deviation σ , evaluated at
x.

Given that π is a normal pdf, so will V , and hence travel time given by (S1) will be
quadratic in h.

PROPOSITION 4: This model has a unique equilibrium, where travel time is quadratic and
choice probabilities follow a normal pdf. The following equilibrium equation holds:

s2σ2

(s − ατ1)2 + 1
2β(s − ατ1)

+ σ2
E = λ

2ατ1
�

SM.1.5. The Deadweight Loss of Congestion Is Decreasing in Schedule Costs

Consider an equilibrium as described above. Based on Proposition 2, the observed
choice probabilities and travel time profile are consistent with various combinations of
schedule cost s and dispersion of ideal departure times σ .

CONJECTURE 1: Holding fixed the equilibrium choice probabilities π(h) and the profile
of travel time T (h), the deadweight loss of congestion (in absolute terms) is decreasing in
schedule costs s.

The deadweight loss does not appear to have a closed form solution. I use numerical
simulations for 1000 randomly chosen parameter vectors. I maintain the normalization
α = 100 INR/hour, and draw the following parameters uniformly and independently: s ∈
[25�125] INR/hour2, σ ∈ [0�05�0�55] hours, β ∈ [0�25�0�75], σV ∈ [0�5�1�5] hours, and
λ1 ∈ [1�5�2�5]. In each simulation, I choose 10 alternate possible values of s′ and solve for
the implied σ ′ that leads to the same equilibrium as with the initial s, σ , and compute
deadweight loss. In all 1000 simulations, deadweight loss is decreasing in s′.

SM.2. ROUTE CHOICE MODEL IDENTIFICATION

To provide intuition for how VOTT and the route switching cost are separately iden-
tified using data from the route choice experiment, I analyze a version of the dynamic
route choice model without departure time from Section 4.2. I further assume no time
discounting (δ= 0).



6 GABRIEL KREINDLER

Consider three time periods. At t = 0, the model is in steady state. At t = 1, the short
route (r = 0) is unexpectedly charged p. At t = 2, the route is no longer charged. Denote
πt (rt−1 → r) the probability to use route r at time t if the t − 1 route was rt−1 when there
is no pricing, and πt (rt−1 → r|p) with pricing p. Because there is no discounting, we have
the following expressions for relative transition probabilities:

π0(0 → 0)
1 −π0(0 → 0)

= exp(0)

exp
(−γ − α�T

μ

) �
π0(1 → 0)

1 −π0(1 → 0)
=

exp
(−γ

μ

)
exp

(−α�T

μ

) �

π1(0 → 0|p)
1 −π1(0 → 0|p)

=
exp

(−p

μ

)
exp

(−γ − α�T

μ

) �
π1(1 → 0|p)

1 −π1(1 → 0|p)
=

exp
(−p− γ

μ

)
exp

(−α�T

μ

) �

It is easy to solve for the parameters α, γ, μ if these transition probabilities are known.
Next, I show that these parameters are also uniquely determined by the detour route
usage rates St in periods t = 0�1�2. These numbers satisfy the following equations (note
that t = 0 and t = 2 have the same transition probabilities):

S0π0(0 → 1) = (1 − S0)π0(1 → 0)�

S1 = S0π1(0 → 0|p) + (1 − S0)π1(1 → 0|p)�

S2 = S1π0(0 → 0) + (1 − S1)π0(1 → 0)�

It is tedious but straightforward to show that these three equations uniquely determine α,
γ, μ.

SM.3. ROUTE CHARGE TREATMENT REGRESSION ANALYSIS

For the regression analysis of the route experiment, I focus on the early treatment group
and the period before the experiment and the first two weeks during the experiment. I use
the following specification:

yit = γA · T Early
i W 1

t + γA�P · T Early
i W 2

t +μt + αi + εit � (S2)

The coefficients of interest are γA and γA�P , which measure the impact of route conges-
tion charges in the early charges group, and the persistence effect one week later, relative
to similar commuters who anticipate that they will be treated in the fourth week of the
experiment.

Panel A of Table SM.VII shows the impact of route charges on detour usage at the trip
level. The sample is all trips between home and work. The results show a large increase of
27 percentage points during the first week in the experiment among the early treatment
group, who faced charges that week. By comparison, only 11% of participants in the late
group chose the detour that week. The second column shows that more than a third of this
effect size persists one week later. Charges do not have a significant effect on the number
of trips per day (columns 3 and 4). This means that there is no evidence that commuters
reduce the number of trips to avoid route congestion charges, and the previous effects are
driven by route switching.
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I next analyze how baseline experience with detour routes affects the impact of charges.
In panel B, I restrict to commuters who use a detour route between home and work (or
between work and home) at least once before the experiment. In general, the results from
panel A are amplified in this sample. Baseline usage is higher, as are the impact of charges
(41 percentage points) and the persistence effect.

SM.4. TRAVEL DEMAND ESTIMATION

SM.4.1. Choice Probabilities

In the benchmark model with dynamic route choice and departure time choice, the
departure time choice probabilities conditional on the chosen route (with pit (h� r) = 0)
are given by

πi

(
h|r�hA

it

) = exp
((
σDT

)−1
Ev

(
h�Ti(h� r)�hA

it

))∑
h′

exp
((
σDT

)−1
Ev

(
h′�Ti

(
h′� r

)
�hA

it

)) �
These expressions show that the full model collapses to the single-route departure time
choice model given by (2) when we condition on route and ideal arrival time. Similar
expressions apply when we include pricing pit(h� r).

In the full model, the expected utility of choosing route r is

Euit

(
r|hA

it � rit−1

)
= σDT log

(∑
h

exp
((
σDT

)−1
Ev

(
h�Ti(h� r)�hA

it

))) − γ1(r �= rit−1) + δVit+1(r)�

This includes the “log-sum” or “inclusive value” term over departure times. In the upper
nest, this leads to route choice probabilities (conditional on hA

it )

πit

(
r|hA

it � rit−1

) = exp
((
σR

)−1
Euit

(
r|hA

it � rit−1

))
exp

((
σR

)−1
Euit

(
0|hA

it � rit−1

)) + exp
((
σR

)−1
Euit

(
1|hA

it � rit−1

)) �
Unconditional probabilities follow by integrating over the ideal arrival time distribution
fA
i .

SM.4.2. GMM Moments That Exploit Experimental Variation

The two-step optimal GMM estimation finds the parameter vector θ that solves
minθ ĝ(θ)′Ŵ ĝ(θ), where θ = (α�βE�βL�γ�σ

DT�σR�ηearly) and the moment function g(θ)
is described below, and Ŵ is the estimated optimal weighting matrix from the second step.
(For the first step, I use Ŵ = I.)

Departure Time Moments. The first 49 moments match the difference in differences in
departure time market shares, between the departure time treatment and control groups,
during the experiment relative to before. Let k index the 5-minute-step departure time
grid between −120 and +120 minutes relative to the rate profile peak. Denote PDT

ik (θ�pit)
the probability that the kth departure time is optimal when departure time and route
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pricing are given by pit . In the data, define P̃DT
ik (pre) and P̃DT

ik (post) the fractions of trips
starting in a 5-minute bin around the kth departure time for i in pre- and post periods,
respectively. The kth moment is

gk
i (θ�pit) = (−1)1−TDT

i
[(
P̃DT
ik (post) − P̃DT

ik (pre)
) − (

PDT
ik (θ�pit) − PDT

ik (θ�0)
)]
�

where TDT
i is an indicator for departure time charges.

Route Moments. Ten moments match route choice market shares during five periods
(before the experiment, and four weeks during the experiment) indexed by t = 1� � � � �5
and in two treatment groups (early and late charges).

Denote PA
it (θ�pit) the probability to take the detour route (not intersect the congestion

area) in time period t when pricing is pit . In the data, define P̃A
it the fraction of days when

commuter home-work trips do not intersect the congestion area for individual i, which
depends on i’s treatment group. For t = 1� � � � �5, the route moments are

g49+t
i (θ�pit) = T

Early
i · [P̃A

it − PA
it (θ�pit)

]
�

g54+t
i (θ�pit) = (

1 − T
Early
i

) · [P̃A
it − PA

it (θ�pit)
]
�

SM.5. PARAMETER SENSITIVITY MEASURE

Table SM4 reports the estimated sensitivity measure � from Andrews, Gentzkow, and
Shapiro (2017), scaled by the standard deviation of each moment. Each entry �pj mea-
sures the change in estimated parameter θp due to a one standard deviation change in
moment mj . The measure is �̂ = (Ŝ′Ŵ Ŝ)−1Ŝ′Ŵ diag(σ̂), where Ŝ is the Jacobian evalu-
ated at the estimated parameters, Ŵ is the optimal weighting matrix, and σ̂ is the vector
of bootstrap standard deviation of moment j.

SM.6. ROAD TECHNOLOGY INVARIANCE RESULT

Conditional on the relationship (6) estimated on a representative sample, the impact of
an additional trip on total driving time in Bangalore is invariant to the aggregate volume
of traffic in Banglore, and it is invariant to the sample size used to estimate the road
technology relationship.

The key intuition is that equation (6) depends on normalized density, so it is invariant
to the true aggregate volume of traffic. Then, imagine that the aggregate volume is twice
as large as initially believed. Then the impact of a single trip on travel delay will be twice
as small. However, it will affect twice as many other commuters, so the impact on total
time is not affected.

Using the notation from Section 4.3, let Q = (q(h�K))h�k denote the pattern of depar-
tures, where q(h�K) is the mass of trips of length K starting at h, based on a sample of
N trips. Let x = (x(h))h denote the instantaneous travel delay profile, and d = (d(h))h
the density profile. Similarly to equation (6), assume that instantaneous delay satisfies
x(h) = λ0 + λ1 d(h)/N , where N is the number of trips in the sample.
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PROPOSITION 5: The marginal effect of an additional trip on total travel time does not
depend on the sample size used to construct Q.

PROOF: Let d(h′�Q) denote density at time h′ as a function of the pattern of depar-
tures, and d(Q) = (d(h′�Q))h′ .

Travel times are uniquely determined by the instantaneous travel delay profile, which
depends on normalized density. Hence, we can write average travel time as a function
T ( d(Q)

N
). Note that total travel time in the city is NT .

For every h′, d(h′�Q) is homogeneous of degree 1 in Q. Consequently, the partial
derivative dh�K(h′�Q) with respect to the mass of trips with length K starting at h is degree
0 in Q, that is, it does not depend on the sample size used to compute Q.

Consider adding a trip of length K that starts at h and denote the pattern of departures
by Q+ 1(h�K). The change in total travel time is

N

(
T

(
d
(
Q+ 1(h�K)

)
N

)
− T

(
d(Q)
N

))
≈N

∂T

∂1(h�K)
=N

∑
h′

∂T

∂h′
dh�K

(
h′�Q

)
N

�

The last term does not depend on N because neither ∂T
∂h′ nor dh�K(h′�Q) depend on

N . Q.E.D.

SM.7. POLICY SIMULATIONS

For policy simulations, I use a 5-minute departure time grid from 5 am to 2 pm. Each
simulation has 3040 agents, with each real study participant replicated with 10 inde-
pendent random draws of ideal arrival times from the distribution recovered with non-
negative least squares (Section 7.3). The vector of ideal arrival times is re-sampled during
bootstrapping. Thus, the confidence intervals include uncertainty due to numerical simu-
lation. Benchmark results are robust to using 10× more agents.

For the two-route equilibrium model, I assume double the volume of trips, so that on
average the volume of trips per route remains the same.

I use a nested logit model for the equilibrium model with an extensive margin decision.
The outer nest has two options, taking the trip (z = 1) and not taking the trip (z = 0).
Trips are valuable: a commuter not making a trip incurs a cost proportional to trip length
ωi = ω · Ki/K. Expected utility is given by

Eui

(
x�h�hA

i

) =
{
Ev

(
h�Ti(h)�hA

it

) −pit (h) + εit (1�h)� z = 1�
−ωi + εi(0�h)� z = 0�

where εi(z�h) follow a type-1 extreme value distribution with correlation within each
value of z, with logit scale parameter η for the trip (upper) nest. The congestion pricing
experiment was not designed to estimate the extensive margin trip elasticity.
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SM.8. SUPPLEMENTAL MATERIAL: FIGURES

FIGURE SM1.—Example deadweight loss versus schedule cost (holding observed equilibrium fixed).

FIGURE SM2.—Impact of departure time charges on departure times (commuting trips). Notes: Version of
Figure 2 restricting to regular commuters and trips between home and work (both ways).
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FIGURE SM3.—Travel demand model fit. Notes: This figure shows in- and out-of-sample fit for the esti-
mated travel demand model. Panel A plots the departure time moments that correspond to the difference-in-d-
ifferences (treated vs. control, during vs. before), the analogue of Figure SM2. Panel B shows the probability
density of departure time in the control group during the experiment (Post). These moments are not directly
targeted in the estimation (however, the ideal departure time distribution inversion routine depends on the
distribution of departure time before the experiment). Panel C shows the dynamic route choice moments, the
analogue of Figure 3. Panel D shows detour route choice heterogeneity by the amount of detour (in minutes),
for the “early” treatment group, which receives charges in week 1. This is the analogue of Kreindler (2023),
Figure A.4, and these moments are not targeted in estimation. For all graphs, the model is indicated by thicker,
red lines.

FIGURE SM4.—Travel demand model: understanding identification. Notes: Moments are defined as
gj (θ) = sj (θ) − sj�data. Panel A plots the partial derivatives dg(h�θ)/dβE and dg(h�θ)/dβL for each depar-
ture time moment g(h�θ). Panel B plots the scaled sensitivity measure from Andrews, Gentzkow, and Shapiro
(2017) quantifying the change in the estimated early and late schedule cost parameters β̂E and β̂L given by
one standard deviation change in each of the 49 departure time moments, as well as the LOESS fit. See Sup-
plemental Material SM.5 for definitions.
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FIGURE SM5.—Travel demand model numerical identification check and finite sample properties. Notes:
This figure compares true random parameters and the estimated parameters from simulated data, under two
scenarios. In the “asymptotic” scenario (red circles), the simulated data have exact (route and departure time)
choice probabilities. In the “finite sample” scenario (blue triangles), the simulated data have random choices
and I use exactly the same data set size as in the real data (the number of observations per commuter). Simu-
lations are based on 100 random parameters independently drawn between 25% and 175% of the benchmark
estimated values. For each set of parameters, I first invert the fA

i distributions from pre-experiment (real)
data, then use it to simulate data. I then estimate the model on the simulated data using one random starting
condition that is independent of the parameters used to simulate the model. Each graph shows the estimated
parameter on the Y axis, and the true parameter on the X axis. Outlier values are censored. The diagonal line
is identity. See also Table SM.XII.
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FIGURE SM6.—Road technology estimation robustness checks. Notes: Panel A uses travel delay from GPS
trips to replicate Figure 4, including percentiles. The sample is all weekday trips more than 2 kilometers long,
without stops along the way, and with a trip diameter to total length ratio above 0.6 (the 25th percentile). For
each hour-day, I compute the average delay over trips starting in that interval. Panel B replicates Figure 4 with
“volume,” the normalized number of trips starting each hour, on the X axis. Panel C plots the distribution
of participant recruitment times (histogram in solid gray) and the distribution of trip departure times (kernel
density plot in solid blue line). Both Y axes start at zero. Panel D compares log-log road technology estimates
from this paper (gray dots, dashed blue line) with those from Akbar and Duranton (2017) in Bogotá (red solid
line). (Their estimate is computed from Figure 4 panel C.) Panel E describes peak-hour substitution towards
routes with less steep travel time profiles. For each commuter in the experimental sample, I query from Google
Maps the entire travel time profile for every route that is optimal at some departure time. For each route, I
compute its slope, the change in travel delay between 6:30 and 9:30 am. The right axis (black dashed line) plots
the fraction of commuters for whom their highest slope route is fastest at departure time h. The left axis (blue
solid line) plots the average slope of the optimal route at h.
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FIGURE SM7.—Road technology at the daily level. Notes. These graphs replicate Figure 4 panel A by date.
The first seven panels show the relationship between hourly GPS traffic volume and Google Maps travel delay
for seven randomly chosen calendar dates (one for each day of the week). The last panel overlays the predicted
fit for all calendar dates in the sample. The sample is calendar dates with above-median number of GPS trips
(at least 571 trips per day). Travel delay and traffic density at the day d and hour h level correspond to column
3 in Table III. Each fit is a power fit as in column 2 in Table III.
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FIGURE SM8.—Road technology on major arteries. Notes. These graphs replicate Figure 4 for major ar-
teries depicted in Kreindler (2023), Figure A.1, separately by direction. The Y axis is average Google Maps
travel delay for that road segment. To compute traffic density at the artery level, I define a buffer area around
each artery. I then count the number of GPS trips that travel along the artery in each direction for each time
of day, excluding short trips that intersect the artery for less than 200 meters (which I assume correspond to
cross-traffic). I obtain 268,292 trip segments on the 46 arteries. 95% confidence intervals based on Newey–West
standard errors with a 3-hour lag also reported.
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FIGURE SM9.—Policy counterfactual additional results. Notes: Panel A plots percentiles of the optimal
charges (equal to marginal social cost) around the social optimum. For comparison, I plot the average trip
delay (red, solid line) as in Figure 5, and the instantaneous travel delay (blue, dashed line). Panel B plots the
rates of trip departure rates in the Nash equilibrium and in the social optimum. Panel C overlays the alternate
road technologies used in panel D of Table IV, over the benchmark road technology (Figure 4). I use the
estimated λ0 and λ1 from the benchmark linear equation (6) and only vary ν. Panel D shows equilibrium peak
average travel delay (X axis) and welfare gain from optimal pricing (Y axis) when varying the total volume of
trips used in the simulation. The number near each point is the assumed fraction of all daily trips that happen
during peak time. In the benchmark specification, I assume this is 0.2.
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FIGURE SM10.—Decomposing gains and losses in the social optimum. Notes: For each com-
muter and ideal arrival time hA

i , the X axis is the average departure time hi = Eh(hA
i ) in Nash.

Panel A plots the Nash–social optimum difference in −EαT (hi) versus hi (black, solid line) and in
−EβE|hi + T (hi) − hA

i |− + βL|hi + T (hi) − hA
i |+ versus hi (green, dashed line). Panel B plots average ex-

pected utility change versus hi when commuters receive a rebate that is proportional to trip length (black,
solid line) or constant (green, dashed line).

FIGURE SM11.—Policy counterfactual in two-route equilibrium model. Notes: This figure describes the
two-route equilibrium (panel E of Table IV). Panel A overlays the alternate high-externality route road tech-
nologies over the benchmark road technology (Figure 4). Panel B plots the probability of taking the high-ex-
ternality route by departure time, in the Nash equilibrium and in the social optimum, in the two-route model
where one route has 15% higher slope. Panel C replicates Figure 5 by route for the two-route model where
one route has 15% higher slope.



18 GABRIEL KREINDLER

SM.9. SUPPLEMENTAL MATERIAL: TABLES

TABLE SM.I

DESCRIPTIVE STATISTICS ABOUT TRAVEL BEHAVIOR.

Median Mean Std. Dev. 10 Perc. 90 Perc. Obs.

Panel A. Trip Characteristics
Total Number of Trips 1�00 1�00 [0�00] 1�00 1�00 51�424
Number of Trips per Day 2�86 3�15 [1�16] 1�90 4�86 497
Median trip duration (minutes) 24�50 27�47 [12�82] 15�20 42�60 497
Median trip length (Km.) 5�93 7�19 [4�67] 2�92 13�36 497

Panel B. Commute Destination Variability
Regular Commuter 1�00 0�76 [0�43] 0�00 1�00 497
Frac. trips Home–Work, Work–Home 0�38 0�39 [0�21] 0�13 0�67 378
Frac. of trips Work–Work 0�03 0�06 [0�08] 0�00 0�15 378
Frac. of days present at Work 0�92 0�86 [0�16] 0�60 1�00 378

Panel C. Departure Time Variability
(Standard Deviation of the Departure Time in hours)
First Trip (AM) 1�27 1�24 [0�50] 0�54 1�82 496
Last Trip (PM) 1�72 1�71 [0�50] 1�04 2�36 497
First Home to Work Trip (AM) 0�48 0�62 [0�52] 0�15 1�28 332
Last Work to Home Trip (PM) 0�80 0�95 [0�63] 0�28 1�78 322

Note: This table reports summary travel behavior statistics for the experimental sample of 497 commuters. See Section 5.1 for the
definition of home and work locations and of regular commuter. In panel C, I compute the within-commuter variation in departure
times for different classes of trips.

TABLE SM.II

EXPERIMENTAL DESIGN.

Strata Departure Time Sub-treatment

Route Eligibility Car or Moto Daily KM High Rate Low Rate Info Control

Panel A. Treatment Strata
Eligible Car Low 3/8 1/8 2/8 2/8
Eligible Car High 1/8 3/8 2/8 2/8
Eligible Moto Low 3/8 1/8 2/8 2/8
Eligible Moto High 1/8 3/8 2/8 2/8

Ineligible Car Low 1/12 3/12 4/12 4/12
Ineligible Car High 3/12 1/12 4/12 4/12
Ineligible Moto Low 1/12 3/12 4/12 4/12
Ineligible Moto High 3/12 1/12 4/12 4/12

(Continues)
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TABLE SM.II

Continued.

Treatment by Week in
Experiment

Route Eligibility Dep. Time Timing Dep. Time Sub-Treatment 1 2 3 4

Panel B. Treatment Timing
Eligible Late High rate R H H H

Low rate R L L L
Information R I I I
Control R C C C

Eligible Early High rate H H H R
Low rate L L L R
Information I I I R
Control C C C R

Ineligible Late High rate I H H H
Low rate I L L L
Information I I I I
Control C C C C

Ineligible Early High rate H H H I
Low rate L L L I
Information I I I I
Control C C C I

Note: There were eight strata in the experiment, all combinations of participants eligible or ineligible for the route charge, car
or non-car (motorcycle or scooter) users, and participants with high or low daily travel distance in the baseline period. Departure
time sub-treatment probabilities are given in panel A. There are eight route sub-treatments: all combinations of high/low charges,
short/long detour, and early/late. All have equal probabilities. Sub-treatments are cross-randomized (see Kreindler (2023), Section
A.6.). Treatment timing is presented in panel B. The letter R corresponds to the route treatment. The letters H, L, I, and C respectively
correspond to high-rate, low-rate, information, and control in the departure time treatment.
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TABLE SM.III

EXPERIMENTAL PARTICIPANT SAMPLE REPRESENTATIVENESS.

(1) (2) (3) (4) (5)
In Experiment Not in Experiment Difference (6)

Mean [SD] Mean [SD] in SD Units N

Panel A. All Respondents Approached
Male respondent 0�98 [0�13] 0�97 [0�17] 0�09 8231
Age 33�3 [8�2] 35�2 [8�7] −0�21 8231
Car driver 0�30 [0�46] 0�41 [0�49] −0�24 8227
Log vehicle price (residual) 10�5 [0�4] 10�5 [0�4] −0�00 7188

Panel B. Survey Respondents
Log income 9�96 [0�71] 9�91 [0�73] 0�07 2656
Stated Daily Travel (Km/day) 47�1 [24�0] 45�1 [25�1] 0�08 4427
Stated Value of Time (Rs/hr) 206�0 [138�9] 189�0 [151�3] 0�11 1001
Stated Schedule Flexibility (min) 20�0 [10�9] 18�7 [12�0] 0�11 952

(1)
Business
Owner or
Manager

(2)
Accountant,

Teacher,
Doctor

(3)
Software
and IT

(4)
Engineers,
Technical

(5)
Office
Staff

(6)
Manual

Jobs

(7)
Mobile
Profes-
sions

(8)
Student

(9)
Others,
Retired

(10)
Total

Panel C. Survey Respondents
In
Experiment

16.7 7.5 10.3 14.3 15.4 8.4 15.6 9�0 2.9 455

Not in
Experiment

15.6 6.2 10.1 11.2 18.1 9.5 12.0 13�4 3.9 2458

Note: These results describe respondent selection into experiment by comparing the experimental sample (497 respondents) to
the entire sample of eligible commuters approached in gas stations by the survey team (panel A) and to the full survey sample (panels
B and C). The sample in panel A is all respondents approached in gas stations, excluding ineligible respondents. Weights are used to
(a) account for missing data for each variable, and (b) adjust for the estimated ∼ 52% ineligible respondents among survey refusals
(for refusals, 7218 respondents did not complete the eligibility filter, and I assume the same proportion were ineligible). Gender, age,
and car driver variables are visually assessed by the surveyor for all respondents. Vehicle value (residual) is imputed based on vehicle
type (car/motorcycle), make, and model, using pricing data scraped from a used-vehicles website in Bangalore, residualized on a “car”
dummy. Monthly income is self-reported during the recruitment survey (the respondent is handed the tablet to enter the amount
confidentially—the surveyor never sees the amount), truncated at 100�000 INR (∼ 1300 USD). Occupation is self-reported during the
recruitment survey. Value of time and schedule flexibility are based on choices in hypothetical scenarios in a follow-up phone survey;
for details, see Kreindler (2023), Section A.4.2. The difference in SD units includes significance levels from a (weighted) regression of
the row outcome variable on an indicator for being in the experiment.
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TABLE SM.V

GPS DATA QUALITY AT DAILY LEVEL (ATTRITION CHECK).

(1) (2)
Treatment Departure Time Route

Commuter FE X X
High Rate × Post 0.02 (0.05)
Low Rate × Post 0.00 (0.05)
Information × Post 0.00 (0.04)
Route Charges 0.02 (0.04)
Post 0.08 (0.03) 0.14 (0.04)
Observations 24,779 9809
Control Mean 0.76 0.76

Note: This table shows experimental impacts on the quality of the GPS data received from study participants. The outcome is
a dummy for good quality GPS data on a given day. The sample covers all non-holiday weekdays for all experiment participants,
excluding days outside Bangalore. In the post period, the sample in column 1 is restricted to the departure time treatment period,
either the first or the last three weeks. The sample in column 2 is restricted to the first week in the experiment. All specifications
include respondent and study cycle fixed effects. Standard errors are clustered at the respondent level.

TABLE SM.VI

IMPACT OF DEPARTURE TIME CHARGES ON DAILY TOTAL JYPOTHETICAL RATE: COMMUTING TRIPS.

(1) (2) (3) (4) (5) (6) (7)
AM & PM AM PM

Time of Day All Pre Peak Post Peak All Pre Peak Post Peak

Commuter FE X X X X X X X
Sample: Regular Commuters, Home–Work and Work–Home Trips
Charges × Post −7.95 −3.77 −3.00 −0.76 −4.18 −0.88 −3.30

(2.89) (1.90) (1.56) (1.20) (1.67) (1.23) (1.08)
Post −1.74 −0.74 −1.29 0.55 −1.00 −0.69 −0.31

(2.65) (1.74) (1.30) (1.36) (1.61) (1.18) (1.06)
Observations 12,116 12,116 12,116 12,116 12,116 12,116 12,116
Control Mean 40.81 23.37 14.27 9.10 17.44 9.15 8.29

Note: This table reports the impact of departure time charges on daily total hypothetical rates for regular commuters and commut-
ing trips, separately by time interval. The sample of users and days, and the specifications, are the same as in Table I, panel B, further
restricted to regular commuters and direct trips between their home and work locations (in either direction). Columns (3) and (6)
restrict to trips before the peak, that is, the mid-point of the rate profile. Columns (4) and (7) restrict to trips after the peak. Kreindler
(2023), Table A.3, reports these results for variable commuters. Standard errors in parentheses are clustered at the respondent level.
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TABLE SM.VII

IMPACT OF ROUTE CHARGES ON DETOUR ROUTE USAGE.

(1) (2) (3) (4)
Outcome Use Detour Route Number of Trips Today

Commuter FE X X X X

Panel A. All Commuters
Treatment: Early × week 1 0.27 (0.05) 0.26 (0.05) 0.02 (0.07) 0.02 (0.07)
Persistence: Early × week 2 0.09 (0.04) −0.09 (0.08)
Observations 5235 6038 9809 11,016
Control Mean (week 1) 0.11 0.11 0.73 0.73

Panel B. Commuters Who Used Detour at Baseline
Treatment: Early × week 1 0.41 (0.08) 0.41 (0.08) 0.03 (0.13) 0.02 (0.13)
Persistence: Early × week 2 0.13 (0.07) −0.01 (0.13)
Observations 2369 2718 3508 3940
Control Mean (week 1) 0.18 0.18 0.87 0.87

Note: This table reports difference-in-differences impacts of the route treatment on trip and daily outcomes. In the first two
columns, an observation is a commuting trip between home and work, and the outcome is whether the commuting trip used a detour
route (defined as any route that avoids the congestion area). The last two columns, an observation is a commuter, day combination,
and the outcome is the total number of trips that day. The sample is all non-holiday weekdays with good quality GPS data, excluding
days outside Bangalore. In the post period, all days except trial days are included. The sample is restricted to 243 participants in the
route treatment. In the first two columns, only frequent commuters are included. In panel B, the sample is restricted to commuters
who used a detour route between home and work at least once before the experiment. All specifications include respondent and study
cycle fixed effects. The mean of the outcome variable in the control (late) group in week 1 of the experiment is reported for each
specification. Standard errors in parentheses are clustered at the respondent level.

TABLE SM.VIII

IMPACT OF ROUTE CHARGE SUB-TREATMENTS ON DAILY OUTCOMES.

Hypothetical Route Charges

(1) (2)

Treated × High Rate −41.1 (13.1)
Treated × Low Rate −21.5 (13.3)
Treated × Short Detour −43.0 (15.4)
Treated × Long Detour −26.2 (17.8)
Observations 6129 3693
Commuters 243 148
Control Mean 117.1 122.7
P-val Equal Sub-treatment Effects 0.30 0.48

Note: This table reports difference-in-differences impacts of route sub-treatments on daily total hypothetical route charges. The
sample in column 1 is the same as in Table SM.VII, covering the period before and during the first week in the experiment. In column
2, the sample is restricted to 148 route treatment participants for whom candidate areas included at least one with short detour (3–
7 minutes) and at least one with long detour (7–14 minutes). The outcome is total daily hypothetical route charges; higher values
indicate lower detour usage. Standard errors in parentheses are clustered at the respondent level.
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TABLE SM.IX

TRAVEL DEMAND ESTIMATES: ADDITIONAL RESULTS.

(1)
Static Route

Choice

(2)
Asymmetric

Switching Cost
(3)

Time FE
(4)

Half Attention

(5)
Parameters

Prop. to Wage

(6)
Single Ideal
Arrival Time

βE : Schedule cost
early (INR/hour)

647
[369, 2514]

525
[235, 3000]

488
[244, 2939]

244
[126, 541]

445
[121, 3000]

856
[267, 3000]

βL: Schedule cost
late (INR/hour)

499
[232, 3000]

343
[195, 1324]

358
[197, 1501]

1340
[601, 1966]

630
[188, 2555]

239
[112, 2491]

α: Value of travel
time (INR/hour)

2200
[1798, 2772]

552
[198, 998]

494
[173, 1851]

28.6
[0, 161]

388
[121, 956]

645
[224, 1247]

γ: Route switching
cost (INR)

55
[34.6, 69.9]

107
[43.7, 146]

39.3
[19.6, 61.8]

80.7
[43.1, 117.9]

81.6
[46.2, 105]

σDT: Logit
departure time

15.6
[1, 142]

18.9
[1, 146.2]

18.2
[1, 134.4]

12
[1, 65.6]

35.2
[1, 333.5]

17.1
[1, 159.9]

σR: Logit route
nest

95.9
[72.0, 130.3]

63.5
[49.4, 84.4]

62.9
[44.3, 96.1]

17.1
[1.11, 42.0]

58.3 [40.2,
85.8]

62.5
[47.0, 86.1]

Obs. 304 304 304 304 304 304
Model Components:
Route choice
model

Static Dynamic Dynamic Dynamic Dynamic Dynamic

Fixed discount
factor (δ)

- 0.90 0.90 0.90 0.90 0.90

Asymmetric switch
cost (γ01 = 2γ10)

- Yes - - - -

Route Choice
Time FE

- - Yes - - -

50% share
attentive to RCT

- - - Yes - -

Moments:
Departure Time
(49)

Yes Yes Yes Yes Yes Yes

Dynamic route
choice (10)

- Yes Yes Yes Yes Yes

Static route choice
(2)

Yes - - - - -

Note: Column 1 fits a model with static route choice (δ = γ = 0) using only two route choice moments: the fraction using route
1 when not charged during the experiment, and when charged. Column 2 modifies the benchmark model to include asymmetric
switching costs parameterized by γ01 = γ10 = 2γ. Column 3 estimates time fixed effects η1, η2, η3, η4 that enter route 1 utility on
the corresponding weeks during the experiment. Column 4 imposes that each commuter ignores experimental congestion charges
with independent probability p = 0�5. In column 5, all preference parameters are proportional to wi , commuter i’s self-reported

hourly wage. (Note that logit parameters are proportional to wi and to normalized trip length, i.e., σDT
i = σ

wi
w

Ki
K

.) In column 6, I

assume that all commuters have the same ideal arrival time that does not vary over time, hAit = hA . The optimization routine restricts
α�βE�βL ≤ 3000 INR/hour (145 USD/ hour PPP). 95% confidence intervals from 500 Bayesian bootstrap iterations are reported in
parentheses.
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TABLE SM.X

TRAVEL DEMAND ESTIMATION: DISCOUNT FACTOR ROBUSTNESS.

Varying Discount Factor δ Estimate δ

(1) (2) (3) (4) (5)

βE : Schedule cost early (INR/hour) 339 385 534 542 540
[203, 813] [214, 1179] [255, 3000] [255, 3000] [258, 3000]

βL: Schedule cost late (INR/hour) 3000 3000 346 345 346
[1227, 3000] [889, 3000] [197, 1426] [195, 1594] [196, 1463]

α: Value of travel time (INR/hour) 79.6 81.6 595 618 612
[0, 724] [0, 598] [249, 996] [286, 1004] [308, 953]

γ: Route switching cost (INR) 44.5 50 81.8 77.6 80.5
[24.1, 99.0] [31.5, 100] [53.1, 105] [48.7, 101] [54.6, 105]

σDT: Logit departure time 16.1 16.3 18.5 17.2 17.7
[1, 188] [1, 157] [1, 182] [1, 138] [1, 147]

σR: Logit route (upper nest) 23.9 34.1 63.4 64.4 64.3
[4.88, 78.78] [9.71, 76.7] [49.1, 85.2] [51.1, 84.7] [52.1, 82.8]

δ: discount factor 0.895
[0.457, 0.990]

Obs. 304 304 304 304 304
Model:
Dynamic route choice model Dynamic Dynamic Dynamic Dynamic Dynamic
Fixed discount factor (δ) 0.0 0.50 0.90 0.99 -

Moments:
Departure time (49) Yes Yes Yes Yes Yes
Dynamic route choice (10) Yes Yes Yes Yes Yes
Route choice transition (1) - - - - Yes

Note: Columns 1–4 replicate column 1 in Table II with different assumptions on δ. In column 5, I estimate δ, using an additional
moment. This moment measures the transition probability between route 0 and route 1, on average, between weeks 1–2, 2–3, and 3–4
during the experiment. In the data, I define that the commuter uses route 0 if the average weekly route choice of route 0 is strictly
below 0�5. The optimization routine restricts α�βE�βL ≤ 3000 INR/hour (145 USD/ hour PPP). 95% confidence intervals from 500
Bayesian bootstrap iterations are reported in parentheses.

TABLE SM.XI

DYNAMIC ROUTE CHOICE MODEL IDENTIFICATION.

(1) (2) (3)
Full Model No departure time Simple Model (δ = 0)

α γ σR α γ σR α γ σR

Estimated values 594�5 81�8 63�4 561�7 86�4 57�6 808�8 98�9 62�8

Jacobian: Change in Route 1 take-up Due to Change in Parameter
Before Experiment −0�09 −0�09 0�19 −0�09 −0�09 0�18 −0�19 −0�06 0�24
Week 1 (Charges) −0�22 −0�39 0�2 −0�23 −0�4 0�21 −0�4 −0�35 0�25
Week 2 (After Charges) −0�17 −0�13 0�18 −0�18 −0�14 0�18 −0�38 −0�06 0�19

Note: This table reports the Jacobian matrix for three moments with respect to three route choice parameters (VOTT α, switch
cost γ, and logit scale σR). The three moments are the route treatment “early” group average detour route usage (1) before the
experiment, (2) during week 1 in the experiment (when charges were in effect), and (3) in week 2 (after charges had ended). The first
group of columns uses the benchmark model, and the next group uses the dynamic route choice model without departure time (column
4 in Table II). In the last group of columns, I estimate a simple model where a single agent faces the average detour (6.4 minutes) and
the average route charge (144 INR), and I assume δ= 0 (see Supplemental Material SM.2). Jacobian entries are divided by the value
of the parameter, so they represent the semi-elasticity of the moment with respect to a proportional change in the parameter.
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TABLE SM.XII

TRAVEL DEMAND MODEL FINITE SAMPLE PROPERTIES CHECK.

Estimated Parameter

α̂ β̂E β̂L γ̂ σ̂DT σ̂R

(1) (2) (3) (4) (5) (6)

(True) Value of time α 1.02 0.05 0.01 −0.01 0.00 0.00
(0.11) (0.09) (0.18) (0.01) (0.01) (0.00)

(True) Penalty early βE 0.03 0.78 −0.05 0.00 −0.01 0.00
(0.10) (0.12) (0.14) (0.01) (0.01) (0.00)

(True) Penalty late βL −0.07 0.02 1.65 −0.01 0.01 0.01
(0.15) (0.18) (0.34) (0.01) (0.01) (0.01)

(True) Switch Cost γ −0.17 0.26 0.79 0.95 −0.10 0.03
(0.69) (0.66) (1.07) (0.03) (0.06) (0.03)

(True) Logit departure time σDT 0.48 −0.82 −2.41 −0.02 0.76 0.21
(2.73) (2.56) (4.96) (0.15) (0.26) (0.10)

(True) Logit route σR −0.73 −0.41 0.48 −0.01 0.07 1.05
(0.84) (0.77) (1.83) (0.05) (0.05) (0.03)

Observations 100 100 100 100 100 100

Note: This table uses simulated data of exactly the same size as the data used in estimation to describe the finite sample properties
of the estimation procedure. See notes for Figure SM5. Each column reports results from a quantile (median) regression of the
estimated parameter on the vector of true parameters.
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