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REPLY TO:
Comment on 4 Modern Gauss—Markov Theorem”

BRUCE E. HANSEN
Department of Economics, University of Wisconsin

This note makes a brief response to Portnoy (2022) and Pétscher and Preinerstorfer
(2024), and discusses what instructors should teach about best unbiased estimation.

1. JOINT DEPENDENCE

HANSEN (2022A) ESTABLISHED A SET of finite-sample efficiency lower bounds for the
linear regression model ¥ = X + e with fixed regressors and finite variance matrix
var[e] = o*2. These results cover the cases of joint dependence with unrestricted 3, and
independent sampling with diagonal 3.

One of these results (Theorem 4) demonstrates, in the context of joint dependence
with unrestricted 2, that an unbiased estimator of 8 cannot have a lower variance than
o2(X'Y 7' X)~". As this is the variance of the generalized least squares (GLS) estimator, it
follows that the latter is the best unbiased estimator (BUE) of . No explicit restriction
to linear estimators is necessary.

In a pair of insightful papers, Portnoy (2022) and Pétscher and Preinerstorfer (2024)
showed that in the specific context of Theorem 4, all unbiased estimators of B8 are linear

estimators. Since the lowest variance among unbiased linear estimators is o2(X'Y ™' X) ™!,
this can be viewed as an alternative proof that the GLS estimator is the BUE. The fact,
however, that an unbiased estimator must be linear severely limits the relevance of The-
orem 4.

2. INDEPENDENT SAMPLING

Another set of results (Theorems 5-7) in Hansen (2022a) examine the case of indepen-
dent sampling. Neither Portnoy (2022) nor Pétscher and Preinerstorfer (2024) examined
this case. For clarity, it is useful to review and explain the main result.

In this setting, the variables Y; are mutually independent across i and satisfy the linear
regression Y; = X|B + e, with X; fixed, E[e;] = 0, and E[e?] = o7. The variances satisfy 0 <
o} < oo but are otherwise unrestricted. Let F denote the joint distribution of (Y7, ..., Y,).
The class of joint distributions F satisfying these conditions is denoted as F5. This is the
class of linear regression models with possibly heteroskedastic variances. The class F; fixes
the regressors X;, but includes all possible regression coefficients B, error variances o7,
and error distributions. The variables Y; are mutually independent and satisfy a linear
regression Y; = X! + e;, but otherwise their distributions are unrestricted.

Now consider unbiased estimation of the regression coefficient 8. An estimator ZB: is
unbiased in the class F; if E[B] = B for all distributions F € F;. This means that 8 is
unbiased for B whenever the joint distribution satisfies a linear regression model. An
example is GLS:

-1
Egls = (Z o'i2XiX;> (Z o'i2XiYi) . 1)
i=1 i=1
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(The GLS estimator is infeasible in practlce but is a useful theoretical benchmark.) The
estimator ,th is called a linear estimator as it is a linear function of the dependent variables
(Y1,..., Y.

Given the Portnoy—Potscher—Preinerstorfer result, it is reasonable to ask if there exist
unbiased nonlinear estimators. The answer is yes. For example, take the location model
X; =1 and consider

El = Egls + 1Y, -Y5Y,, (2)

which is a nonlinear function of (Y1, ..., Y,). A simple calculation reveals that E[B 1=
for all F € F;, so B, is unbiased. Another calculation reveals that Var[Bl] > Var[Bgls] for
any I € F;. Thus, the addition of nonlinearity increases estimation variance.

Theorem 5 of Hansen (2022a) shows that this holds for all unbiased estimators.

THEOREM 5: If Eis unbiased for all F € ¥, then Var[ﬁ] > Var[ﬁgls] forall F € F5.

No unbiased estimator has lower variance than GLS, and therefore GLS is the best
(lowest variance) unbiased estimator. Theorem 5 makes no restriction to linear estima-
tors; there is no restriction other than unbiasedness. However, Theorem 5 is not a strict
improvement on the classical Gauss—Markov theorem as the latter only requires uncorre-
lated samples, while F} restricts attention to independent samples.

Another sharp result can be obtained in the location model with i.i.d. sampling. Let Y
be i.i.d. with distribution F, population mean E[Y;] = B, and variance VarJ;Y] = 0% < 00.
Let F) be the class of distributions F with a finite variance. An estimator 3 is unbiased in
the class F; if E[B] B for all distributions F € F). An example is the sample mean Y.
Theorem 11.1 of Hansen (2022b) shows that no unbiased estimator has a lower variance.

THEOREM 11.1: If B is unbiased for all F € ¥%, then var[B] > var[Y] for all F € F..

Theorem 11.1 shows that the sample mean Y is the best unbiased estimator of the pop-
ulation mean under i.i.d. sampling. No restriction to linear estimators is necessary. The-
orem 11.1 is also a strict improvement over the Cramér—Rao theorem (e.g., Theorem 2
of Hansen (2022a)), as Theorem 11.1 holds for all distributions, while the Cramér—Rao
theorem requires normality.

Appendix A of Potscher and Preinerstorfer (2024) presents a related but distinct ex-
ample which provides additional insights. Take the location model X; = 1, assume ho-
moskedastic variances o7 = 1, and consider the nonlinear estimator

2 2
B.=Y + u (3)
n
A 51mple calculation reveals that under the stated assumptions, E[Bz] =f3, so B2 is unbi-
ased in this class. To calculate the variance of B,, for simplicity assume 8 = 0, e; has the
Rademacher distribution, and e, the Mammen (1993) distribution.! A straightforward
calculation shows that under these conditions,

~ 1 1 _
var[ ;] = P <var[Y], 4)

'Which satisfy E[e}] = 0, E[e{] = 1, E[e3] = 1, and E[e]] = 2.
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showing that B has a lower variance than the sample mean. At first glance, this may
appear to contradict Theorem 5 and/or Theorem 11.1, but it does not. First, while 3,
is unbiased under the assumption of homoskedastic variances, it is biased under het-
eroskedastic variances. Therefore, it is not unbiased in the class of models F, and hence
falls outside the scope of Theorem 5, so is not a counterexample to Theorem 5. The es-
timator 3, is able to achieve improved efficiency only by sacrificing unbiasedness under
heteroskedasticity. Second, the calculation (4) exploits the assumption that the observa-
tions Y; and Y, have different third moments; when they are identically distributed, then
Var[Ez] > var[Y]. Consequently, this example falls outside the scope of Theorem 11.1, so
is not a counterexample to Theorem 11.1.

Together, the examples (2) and (3) illustrate the powerful role of unbiasedness in The-
orems 5 and 11.1, and the role of identical distributions in Theorem 11.1.

3. WHAT SHOULD WE TEACH?

The reason why instruction includes the BLUE and Gauss—Markov theorems is because
we want simple justifications for standard estimators. The BLUE and Gauss—Markov the-
orems are awkward for this purpose because of the unnatural restriction to linear estima-
tors.

This material is typically taught in the context of independent sampling, where Theo-
rems 5 and 11.1 are relevant. However, the phrasing of these theorems as presented in the
previous section, while precise, may be overly technical for instruction. Instead, I believe
that the following simplified restatements can be constructively used.

First, take estimation of the population mean under i.i.d. sampling, which is typically
discussed in introductory classes.

THEOREM 11.1: Let Y; be i.i.d. with a finite variance. Then, the sample mean Y is the
best unbiased estimator of the population mean E[Y].

When taught, it should be explained that “best” refers to “minimum variance,” and
“unbiased”refers to “unbiased under i.i.d. sampling from any distribution with a finite
variance.” Theorem 11.1’ can be presented to students to justify why the sample mean is
the standard estimator of the population mean. We can replace the BLUE acronym with
BUE.

Second, take the case of linear regression with independent but not necessarily iden-
tically distributed observations, which is typically discussed in intermediate econometrics
classes.

THEOREM 5: Let {(Y1, X1), ..., (Ya, Xy)} be an independent sample satisfying a linear
regression Y; = X|B+e; with E[e;] =0, E[e?] = 07,and 0 < o} < 00. Then, the best unbiased
estimator of B is GLS (1).

When taught, it should be explained that “unbiased” refers to “unbiased under inde-
pendent sampling from any linear regression with possibly heteroskedastic variances.” It
is important to understand that this unbiased property must hold under any form of het-
eroskedasticity. Theorem 5’ can be used in instruction to demonstrate why we focus on
GLS estimators. Theorem 5’ can also be used to deduce that when the error variances are
homoskedastic, then the BUE is ordinary least squares.

A reasonable question is whether or not instructors will want to discuss the proofs of
Theorems 5 and 11.1. The most accessible presentation of Theorem 11.1 can be found
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in Section 11.6 of Hansen (2022b), and that of Theorem 5 in Sections 4.8-4.9 of Hansen
(2022c). While these textbook treatments focus on the independent sampling case, they
are still quite advanced. For many levels of instruction, therefore, it may be prudent to
skip the proof, assert that the BUE is linear, and then proceed with the conventional
derivation of the best unbiased estimator among linear estimators.
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