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APPENDIX A: IDENTIFICATION OF A NONSEPARABLE MODEL

WE NOW DISCUSS THE NONPARAMETRIC IDENTIFICATION OF a more general nonsepa-
rable utility specification based on the arguments in Matzkin (2019). As we shall see,
compared with those for the separable model, our identification results for this model are
based on an additional assumption (Assumption A.3) and two different rank conditions
(Conditions A.4 and A.5). Hence, the sufficient conditions below do not nest those in the
main text.

There is full nonseparability for all but one (i.e., 2C − 1) utility functions, while for one
student utility function, there is nonseparability between the observable zi and an index
yic + εic . That is, without loss of generality,

ui1 = u1(zi� yi1 + εi1)� uic = uc(zi� yic� εic) ∀c ∈ C \{1}�

and vci = vc(zi�wci�ηci) ∀c ∈ C� (A.1)

The additive index yi1 +εi1 can be relaxed to some known function such as yi1 ·εi1 (Matzkin
(2019)). Below we discuss a set of sufficient conditions under which our identification
strategy applies to {uc}c . Moreover, we show {vc}c is identified under additional separabil-
ity. This helps clarify the role of the additive separability in equation (1). For notational
simplicity, we also use u1(zi� yi1� εi1) to denote u1(zi� yi1 + εi1). The utility of the outside
option ui0 is assumed to be a continuous random variable.A.1

ASSUMPTION A.1: (i) zi, yi, and wi are continuously distributed; (ii) for each c ∈ C, the
functions, uc and vc , are continuously differentiable; (iii) F is continuously differentiable;
(iv) for each c ∈ C, uc and vc are strictly increasing in their last argument; and (v) for c ∈
C\{1}, when uc(zi� yic� εic) = ui0, ∂uc (zi�yic �εic)

∂yic
�= 0, and for c ∈ C, when vc(zi�wci�ηci) = δc ,

∂vc (zi�wci�ηci)
∂wci

�= 0.
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A.1In separable models, ui0 = 0 is a location normalization because the conditional match probability only

depends on the difference in the utility shocks. However, in this nonseparable model, it would impose an
additional restriction. See Matzkin (2019) for a discussion.
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ASSUMPTION A.2: (εi�ηi) is independent of (zi� yi�wi).

ASSUMPTION A.3: (i) The utility of the outside option is ui0 = h(yi0), where yi0 ∈Y0 ⊆ R
dy0

is a vector of observed covariates and h is a known function; (ii) The support of ui0, U0 ⊆ R,
is a superset of the range of the function uc , ∀c ∈ C.

Parts (i)–(iii) of Assumption A.1 and Assumption A.2 impose smoothness and exogene-
ity similar to Assumptions 3.1 and 3.2 in Section 3. Part (iv) of Assumption A.1 guarantees
that there is a one-to-one relationship between the value of each utility function and its
unobservable. Part (v) of Assumption A.1 guarantees that uic and vci are not constant
w.r.t. yic and wci, respectively, such that a change in yic or wci generates a change in the
conditional probability of being unmatched. Assumption A.3 guarantees that ui0 is ob-
served by the researcher and has a large support.

By the monotonicity assumption (part (iv) of Assumption A.1), for each c ∈ C, the
inverse of uc and vc w.r.t. their last argument exists. Let ũc and ṽc denote the inverse of
uc and vc w.r.t. their last argument, respectively. That is, for any a ∈ R,

u1
(
zi� ũ

1(zi� a)
) = a� and v1

(
zi�w1i� ṽ

1(zi�w1i� a)
) = a�

uc
(
zi� yic� ũ

c(zi� yic� a)
) = a� and vc

(
zi�wci� ṽ

c(zi�wci� a)
) = a� for any c ∈ C\{1}�

Then we have

λL(ι1i� � � � � ιCi) = P(vci ≥ δc ∀c ∈L;vdi < δd ∀d /∈ L|zi�wi;μ)

= P
(
vc(zi�wci�ηci) ≥ δc ∀c ∈L;vd(zi�wdi�ηdi) < δd ∀d /∈ L|zi�wi;μ

)
= P

(
ηci ≥ ṽc(zi�wci� δc) ∀c ∈L;ηdi < ṽd(zi�wdi� δd) ∀d /∈ L|zi�wi;μ

)
�

where ιci = ṽc(zi�wci� δc) for c ∈ C. Since ṽc is a c-specific nonparametric function, the
following analysis does not rely on the identification of δc . Similarly,

P

(
0 = arg max

c∈L
uic|L�zi� yi� ui0

)
= P(ui0 > uic for all c ∈L|L�zi� yi� ui0)

= P
(
ui0 > uc(zi� yic� εic) for all c ∈L|L�zi� yi� ui0

)
= P

(
εi1 < ũ1(zi�ui0) − yi1 if 1 ∈ L;

εic < ũc(zi� yic� ui0) for all c ∈ L and c �= 1|L�zi� yi� ui0

)
= g0�L(τi1� � � � � τiC)�

where τi1 = ũ1(zi�ui0) − yi1 and for c ∈ C\{1}, τic = ũc(zi� yic� ui0). Note that if c /∈ L, g0�L

does not change with the argument τic .
Further, following equation (5) for c = 0, we have

σ0(zi� yi�wi�ui0) =
∑
L∈L

λL(ι1i� � � � � ιCi) · g0�L(τi1� � � � � τiC)

≡ �0(τi1� � � � � τiC� ι1i� � � � � ιCi)� (A.2)

where �0 is a nonparametric function.
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To identify the derivatives of {uc� vc}c , we extend the argument in Matzkin (2019).
Our identification depends on conditions on the derivatives of the probability of be-
ing unmatched w.r.t. the excluded variables. Let yi�−1 = (yi2� � � � � yiC) ∈ Y−1 ⊆ R

2C−1 de-
note the vector of yi excluding yi1. For a given value (z�w� y−1�u0) in the interior of
Z ×W ×Y−1 ×U0, consider 2C different values, y1

1 � � � � � y
2C
1 , in the interior of the support

of yi1 conditional on (zi�wi� yi�−1�ui0) = (z�w� y−1�u0). We define a C ×C matrix


1

(
y1

1 � � � � � y
C
1 ;z�w� y−1�u0

) ≡

⎛⎜⎜⎜⎜⎜⎝
∂σ0

(
z�w� y−1�u0� y

1
1

)
∂yi1

· · · ∂σ0

(
z�w� y−1�u0� y

1
1

)
∂yiC

���
� � �

���
∂σ0

(
z�w� y−1�u0� y

C
1

)
∂yi1

· · · ∂σ0

(
z�w� y−1�u0� y

C
1

)
∂yiC

⎞⎟⎟⎟⎟⎟⎠ �

where for m = 1� � � � �C, the mth row of the matrix 
1 consists of the derivatives of con-
ditional probability of being unmatched w.r.t. the C excluded variables yi, evaluated at
(z�w� y−1�u0� y

m
1 ). Further, we define a 2C × 2C matrix


2

(
y1

1 � � � � � y
2C
1 ;z�w� y−1�u0

)

≡

⎛⎜⎜⎜⎝
∂σ0

(
z�w�y−1�u0� y

1
1
)

∂yi1
· · · ∂σ0

(
z�w�y−1�u0� y

1
1
)

∂yiC

∂σ0
(
z�w�y−1�u0� y

1
1
)

∂w1i
· · · ∂σ0

(
z�w�y−1�u0� y

1
1
)

∂wCi

�
�
�

� � �
�
�
�

�
�
�

� � �
�
�
�

∂σ0
(
z�w�y−1�u0� y

2C
1

)
∂yi1

· · · ∂σ0
(
z�w�y−1�u0� y

2C
1

)
∂yiC

∂σ0
(
z�w�y−1�u0� y

2C
1

)
∂w1i

· · · ∂σ0
(
z�w�y−1�u0� y

2C
1

)
∂wCi

⎞⎟⎟⎟⎠�

where for m = 1� � � � �2C, the mth row of the matrix 
2 consists of the derivatives of
conditional probability of being unmatched w.r.t. the 2C excluded variables yi and wi,
evaluated at (z�w� y−1�u0� y

m
1 ).

CONDITION A.4: For a given value (z�w� y−1�u0) in the interior of Z × W × Y−1 × U0,
there exist C different values, y1

1 � � � � � y
C
1 , in the interior of the support of yi1 conditional on

(z�w� y−1�u0) such that 
1(y1
1 � � � � � y

C
1 ;z�w� y−1�u0) has rank C.

CONDITION A.5: For a given value (z�w� y−1�u0) in the interior of Z × W × Y−1 × U0,
there exist 2C different values, y1

1 � � � � � y
2C
1 , in the interior of the support of yi1 conditional on

(z�w� y−1�u0) such that 
2(y1
1 � � � � � y

2C
1 ;z�w� y−1�u0) has rank 2C.

Note that we can choose C different values of yi1 to satisfy Condition A.4 and then
independently choose another 2C values of yi1 to satisfy Condition A.5.

Let ερc denote the ρ-quantile of εic , that is, ερc = Quantileεic (ρ) ≡ inf{εc : Fεic (εc) ≥ ρ}
for ρ ∈ (0�1), where Fεic denote the marginal CDF of εic .

PROPOSITION A.6: Suppose that Assumptions A.1–A.3 and Conditions A.4 and A.5 are
satisfied. We have (i) for each c ∈ C\{1}, for any value (z� yc) in the interior of Z × Yc , for
any ρ ∈ (0�1), and for any coordinate k = 1� � � � � dz ,

∂uc (z�yc�ε
ρ
c )

∂zki
and ∂uc (z�yc�ε

ρ
c )

∂yic
are identified;

for c = 1, ∂u1(z�y1+ε
ρ
1 )

∂zki
and ∂u1(z�y1+ε

ρ
1 )

∂yi1
= ∂u1(z�y1+ε

ρ
1 )

∂εi1
are identified; and (ii) for each c ∈ C, for any



4 Y. HE, S. SINHA, AND X. SUN

value (z�wc) in the interior of Z×Wc , for any coordinate k= 1� � � � � dz ,
∂vc (z�wc�ηc)

∂zki
/ ∂vc (z�wc�ηc)

∂wci

is identified, where ηc is such that vc(z�wc�ηc) = δc .

We group the proofs at the end of this section. Using the variation in ui0, we identify
the derivatives of student utility functions at all quantiles of the unobservable εi. For the
college utility functions, without additional assumptions, we only identify the ratio of the
derivatives at certain values of the unobservable (i.e., ηc such that vc(z�wc�ηc) = δc).
This is because, on the college side, the probability of being unmatched is determined by
comparing vci with δc , while δc is unobserved and fixed. This lack of variation restricts the
identification of the derivatives of vci.

With a more restrictive functional form of vci, the following corollary identifies these
derivatives. For that, we let ηρ

c be the ρ-quantile of ηci, that is, ηρ
c = Quantileηci

(ρ) ≡
inf{ηc : Fηci

(ηc) ≥ ρ} for ρ ∈ (0�1), where Fηci
is the marginal CDF of ηci.

COROLLARY A.7: Suppose that vci = vc(zi�ηci) + wci, that wci has a large support, and
that Assumptions A.1, A.2, and A.3(i) and Conditions A.4 and A.5 are satisfied. For any
value z in the interior of Z , for all c ∈ C, any ρ ∈ (0�1), and k = 1� � � � � dz ,

∂vc (z�ηρ
c )

∂zki
is identi-

fied.

For this corollary, we do not need Assumption A.3(ii), which is required only for iden-
tifying the derivatives of uc for all possible values of εic .

PROOF OF PROPOSITION A.6: To simplify notation, for k = 1� � � � � dz , let uc

zki
= ∂uc

∂zki

and similar notation are defined for vc , ũc , ṽc , and the other variables, and let σm
0 =

σ0(z�w� y−1�u0� y
m
1 ) for m = 1� � � � �2C. Let tm be the value of (τi1� � � � � τiC� ι1i� � � � � ιCi)

evaluated at (z�w� y−1�u0� y
m
1 ). Under Assumption A.1(i)–(iii), in equation (A.2), �0,

uc , and vc are continuously differentiable and the observables are all continuously dis-
tributed. Taking derivatives of equation (A.2) on both sides w.r.t. yic and wci, and evaluat-
ing them at (z�w� y−1�u0� y

m
1 ), we have, for c = 1,

∂σm
0

∂yi1
= −∂�0

(
tm

)
∂τi1

and
∂σm

0

∂w1i
= ∂�0

(
tm

)
∂ι1i

ṽ1
w1i
� (A.3)

and, for c �= 1,

∂σm
0

∂yic
= ∂�0

(
tm

)
∂τic

ũc
yic

and
∂σm

0

∂wci

= ∂�0

(
tm

)
∂ιci

ṽcwci
� (A.4)

Further, taking derivatives of equation (A.2) on both sides w.r.t. ui0 and zk
i , and evalu-

ating them at (z�w� y−1�u0� y
m
1 ), we have

∂σm
0

∂ui0
=

C∑
c=1

∂�0

(
tm

)
∂τic

ũc
ui0
� (A.5)

∂σm
0

∂zk
i

=
C∑

c=1

∂�0

(
tm

)
∂τic

ũc

zki
+

C∑
c=1

∂�0

(
tm

)
∂ιci

ṽc
zki
� (A.6)
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Substituting equations (A.3) and (A.4) into equations (A.5) and (A.6), we have

∂σm
0

∂ui0
= −∂σm

0

∂yi1
ũ1
ui0

+
C∑

c=2

∂σm
0

∂yic

(
ũc
yic

)−1
ũc
ui0
� (A.7)

∂σm
0

∂zk
i

= −∂σm
0

∂yi1
ũ1
zki

+
C∑
c=2

∂σm
0

∂yic

(
ũc
yic

)−1
ũc

zki
+

C∑
c=1

∂σm
0

∂wci

(
ṽcwci

)−1
ṽc
zki
� (A.8)

To get the relationship between the derivatives of uc and ũc , for ∀c ∈ C\{1}, tak-
ing derivatives on both sides of the equation, uc(zi� yic� ũc(zi� yic� ui0)) = ui0, w.r.t. yic ,
ui0, and zk

i , one gets uc
yic

+ uc
εic
ũc
yic

= 0, uc
εic
ũc
ui0

= 1, and uc

zki
+ uc

εic
ũc

zki
= 0; it then fol-

lows that ũc
yic

= − ucyic
ucεic

, ũc
ui0

= 1
ucεic

, and that ũc

zki
= −

uc
zk
i

ucεic
at the value of εic , εc , such that

uc(z� yc� εc) = u0. Similarly, for c = 1, ũ1
ui0

= 1
u1
εi1+yi1

and ũ1
zki

= −
u1
zk
i

u1
εi1+yi1

at the value of

εi1 + yi1 such that u1(z� ε1 + y1) = u0. Importantly, y1 does not need to satisfy Condi-
tions A.4 and A.5 because for any y1, one can find an ε1 so that the above equation holds.

Similarly, taking derivatives of the equation, vc(zi�wci� ṽ
c(zi�wci� δc)) = δc , w.r.t. wci

and zk
i and making rearrangements, we obtain, for c ∈ C, ṽcwci

= − vcwci
vcηci

and ṽc
zki

= −
vc
zk
i

vcηci
at

the value of ηci such that vc(z�wc�ηc) = δc .
Plugging the above relationships among the utility functions and their inverse into equa-

tions (A.7) and (A.8), we obtain

∂σm
0

∂ui0
= −∂σm

0

∂yi1

1
u1
εi1+yi1

−
C∑
c=2

∂σm
0

∂yic

1
uc
yic

� (A.9)

∂σm
0

∂zk
i

= ∂σm
0

∂yi1

u1
zki

u1
εi1+yi1

+
C∑

c=2

∂σm
0

∂yic

uc

zki

uc
yic

+
C∑

c=1

∂σm
0

∂wci

vc
zki

vcwci

� (A.10)

Next, stacking equation (A.9) for m = 1� � � � �C, we have

⎛⎜⎜⎜⎜⎜⎝
∂σ1

0

∂ui0
���

∂σC
0

∂ui0

⎞⎟⎟⎟⎟⎟⎠ = −

⎛⎜⎜⎜⎜⎜⎝
∂σ0

(
z�w� y−1�u0� y

1
1

)
∂yi1

· · · ∂σ0

(
z�w�y−1�u0� y

1
1

)
∂yiC

���
� � �

���
∂σ0

(
z�w� y−1�u0� y

C
1

)
∂yi1

· · · ∂σ0

(
z�w� y−1�u0� y

C
1

)
∂yiC

⎞⎟⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
u1
εi1+yi1
1
u2
yi2
���
1

uC
yiC

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

where the vector ( 1
u1
εi1+yi1

� 1
u2
yi2
� � � � � 1

uCyiC
)′ is finite due to part (v) of Assumption A.1. Note

that the derivatives of σ0 in the above system can be observed from the population data.
Then, by Condition A.4, 1

u1
εi1+yi1

and 1
ucyic

for each c ∈ C\{1} are identified.
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Similarly, stacking equation (A.10) for m= 1� � � � �2C, we obtain⎛⎜⎜⎜⎜⎜⎝
∂σ1

0

∂zk
i
���

∂σ2C
0

∂zk
i

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
∂σ0

(
z�w�y−1�u0� y

1
1
)

∂yi1
· · · ∂σ0

(
z�w�y−1�u0� y

1
1
)

∂yiC

∂σ0
(
z�w�y−1�u0� y

1
1
)

∂w1i
· · · ∂σ0

(
z�w�y−1�u0� y

1
1
)

∂wCi

�
�
�

� � �
�
�
�

�
�
�

� � �
�
�
�

∂σ0
(
z�w�y−1�u0� y

2C
1

)
∂yi1

· · · ∂σ0
(
z�w�y−1�u0� y

2C
1

)
∂yiC

∂σ0
(
z�w�y−1�u0� y

2C
1

)
∂w1i

· · · ∂σ0
(
z�w�y−1�u0� y

2C
1

)
∂wCi

⎞⎟⎟⎟⎠

·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1
zki
/u1

εi1+yi1

u2
zki
/u2

yi2

���
uC

zki
/uC

yiC

v1
zki
/v1

w1i

���
vC
zki
/vCwCi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

Then, by Condition A.5, for all c ∈ C,
vc
zk
i

vcwci
is identified at the value of ηci such that

vc(z�wc�ηc) = δc . Also,
u1
zk
i

u1
εi1+yi1

, and for each c ∈ C\{1},
uc
zk
i

ucyic
are identified. Combining this

with the first identification result, we identify uc

zki
for all c, at the value of εic such that

uc(z� yc� εc) = u0 for c ∈ C\{1}, and at the value of εi1 + yi1 such that u1(z� ε1 + y1) = u0

for c = 1.
Further, for each c and for any ρ ∈ (0�1), define the conditional ρ-quantile of ui0 given

(zi� yic) as Quantileui0|(zi�yic) (ρ) = inf{u0 : Fui0|(zi�yic) (u0) ≥ ρ}. Because of part (iv) of As-
sumption A.1, for any (z� yc), for εic such that uc(z� yc� εic) = ui0, the equivariance prop-
erty of quantiles (e.g., Chesher (2003)) implies that

Quantileui0|(z�yc) (ρ) = uc
(
z� yc� ε

ρ
c

)
�

where the LHS is known from the joint distribution of (ui0� zi� yic). Therefore, the above
identification result indicates that for all c, we can identify uc

zki
for any given (z� yc) and

ρ ∈ (0�1). Q.E.D.

PROOF OF COROLLARY A.7: Proposition A.6 implies that ∂vc (zi�ηci)
∂zki

is identified, where

ηci is such that vc(zi�ηci) +wci = δc . For any z and ρ ∈ (0�1), the equivariance property of
quantiles (e.g., Chesher (2003)) implies that Quantile−wci|z(ρ) = vc(z�ηρ

c ), where the LHS
is known from the joint distribution of (wci� zi). Hence, ∂vc (z�ηρ

c )
∂zki

is identified. Q.E.D.
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APPENDIX B: A CONTROL FUNCTION APPROACH

This Appendix discusses a control function approach (Heckman and Robb (1985),
Blundell and Powell (2004), Imbens and Newey (2009)) that relaxes Assumption 3.2 in
the identification of the derivatives of {uc� rc� vc}c .

For simplicity, we consider the case where there is one endogenous variable. That is,
zi = (z1i� z2i), where z1i is a scalar endogenous random variable and z2i is a vector of
exogenous random variables. Suppose that z1i can be written as a nonparametric function
of exogenous variables z2i, a vector of exogenous variables ti that is not contained in z2i,
and a scalar unobserved random variable ξi:

z1i = h(ti� z2i� ξi)� (B.11)

Assume that the unobservables ξi and (εi�ηi) are independent of all the exogenous vari-
ables (ti� z2i� yi�wi) but are not independent of each other. The endogeneity of z1i arises
due to the correlation between ξi and (εi�ηi).

The following approach exploits a control variable ei such that conditional on ei, z1i

and (εi�ηi) are independent. In a nonadditive setting described in equation (B.11),
suppose that the CDF of ξi is strictly increasing and continuous, and that h is strictly
monotone in its last argument. Then the control variable ei = Fz1i|(ti�z2i) (zi� ti) = Fξi (ξi),
where Fz1i|(ti�z2i) (zi� ti) is the conditional CDF of z1i given (ti� z2i) and Fξi (ξi) is the CDF
of ξi (Imbens and Newey (2009)). In an additive setting where z1i = h(ti� z2i) + ξi and
E(ξi|ti� z2i) = 0, the control variable ei = ξi.B.2

Suppose that each element in (εi�ηi) can be decomposed into a function of ei and a
residual that is independent of ei. Specifically, for each c ∈ C, we obtain

εic = ϕc(ei) + ε̃ic and ηci =φc(ei) + η̃ci� (B.12)

Note that ε̃ic and η̃ci are independent of (ti� z2i� yi�wi) because ξi (and thus ei) and (εi�ηi)
are both independent of (ti� z2i� yi�wi). Besides, ε̃ic and η̃ci are independent of z1i because
z1i is a function of (ti� z2i) and ξi.

Plugging equation (B.12) into the utility functions in equation (1), we have

uic = uc(zi) + rc(yic) +ϕc(ei) + ε̃ic and vci = vc(zi) +wci +φc(ei) + η̃ci� ∀c ∈ C�

We can treat ei as observed because it can be identified from the joint distribution of
(zi� ti). A similar argument as that in Proposition 3.4 then can be used to identify the
derivatives of the functions {uc� vc� rc�ϕc�φc}c .

APPENDIX C: EVALUATING CONDITION 3.3

C.1. A Nonparametric One-College Example

The following example shows that in a one-college case, Condition 3.3 holds for all but
the exponential distribution on η1i.

EXAMPLE C.1: Consider a one-college example: C = {1}, and L = {{0}�{0�1}}. Equa-
tion (5) for c = 1 can be written as σ1(zi� yi�wi) = λ{0�1}(ι1i) · g1�{0�1}(τi1) because

B.2For examples of parametric specifications in consumer choice models and in matching models, see Petrin
and Train (2010) and Agarwal (2015).
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g1�{0}(τi1) = 0. Recall that ι1i = v1(zi) + w1i and τi1 = u1(zi) + r1(yi1). We fix yi1 = y1 and
have r ′

1(y1) = 1. Condition 3.3 requires that, for any z in the interior of Z , there are two
values of w1i, ŵ1 and w̃1, such that the following matrix is full-rank:


(z� y1� ŵ1� w̃1) =
(
λ{0�1}(̂ι1) · g′

1�{0�1}(τ1) λ′
{0�1}(̂ι1) · g1�{0�1}(τ1)

λ{0�1}(̃ι1) · g′
1�{0�1}(τ1) λ′

{0�1}(̃ι1) · g1�{0�1}(τ1)

)
�

where ι̂1 ≡ v1(z) + ŵ1, ι̃1 ≡ v1(z) + w̃1, and τ1 ≡ u1(z) + r1(y1). A necessary condition
for Condition 3.3 is g′

1�{0�1}(τ1) �= 0, which is satisfied if εi1 has a strictly increasing cumu-
lative distribution function. Given that g′

1�{0�1}(τ1) �= 0 and g1�{0�1}(τ1) �= 0, Condition 3.3

is satisfied if
λ′

{0�1}(̂ι1)

λ{0�1}(̂ι1) �= λ′
{0�1}(̃ι1)

λ{0�1}(̃ι1) , or ∂ logλ{0�1}(̂ι1)
∂ι1i

�= ∂ logλ{0�1}(̃ι1)
∂ι1i

. The violation of Condition 3.3
stringently restricts λ{0�1}(ι1i), or the probability of college 1 being feasible to i. Specifi-
cally, for fixed z, Condition 3.3 is violated if the supply elasticity w.r.t. w1i is linear in w1i,
or ∂ logλ{0�1}(ι1i)

∂ι1i
is a constant for all w1i. This means that λ{0�1}(ι1i) = exp(a+ bι1i) with con-

stants a and b, which only occurs when η1i has an exponential distribution.

C.2. Parametric Analysis of Probit and Logit Models

C.2.1. Two Colleges

We now parameterize a two-college model with C = {1�2}. Student i’s utility when at-
tending college c for c = 1�2 is specified as

uic = uc(zi) + rc(yic) + εic = zi + yic + εic�

And ui0 = εi0. Because rc(yic) = yic , we can choose any value to be yc at which ∂rc (yc)
∂yic

= 1
as required by the scale normalization.

College c values student i at

vci = vc(zi) +wci +ηci = zi +wci +ηci�

We will consider εi0, εic , and ηci being i.i.d. N(0�1) or type I extreme values.
Let δ1 and δ2 be the cutoffs of the two colleges given the stable matching in the contin-

uum economy. Given the parametric assumptions, for a wide range of (δ1� δ2) in R
2, there

exist a vector of college capacities and joint distributions of (zi� yi�wi) such that (δ1� δ2)
are the cutoffs given the stable matching.

We start with a probit model in which εi0, εic , and ηci are i.i.d. N(0�1). We use Mathe-
matica to derive an expression for 
(z� y� ŵ� w̃) and calculate its determinant.

To show that we can choose (ŵ� w̃) to make |
(z� y� ŵ� w̃)| nonzero for given values
of (zi� yi), we consider a more adversarial case by fixing the values of (ŵ2� w̃1� w̃2) while
letting ŵ1 change freely. In this example, we let δ1 = 1 and δ2 = 0�75.

Panel (a) in Figure C.1 shows how |
(z� y� ŵ� w̃)| changes with ŵ1 for four differ-
ent vectors of (z� y� ŵ2� w̃1� w̃2). In each of the four cases, for a wide range of ŵ1,
|
(z� y� ŵ� w̃)| �= 0. We have also experimented with more values of (z� y� ŵ2� w̃1� w̃2) as
well as different values of (δ1� δ2) and found similar evidence for Condition 3.3.

We then repeat the same analysis in a logit model. That is, εi0, εic , and ηci are i.i.d.
type I extreme values. Again, δ1 = 1 and δ2 = 0�75. Panel (b) in Figure C.1 shows how
|
(z� y� ŵ� w̃)| changes with ŵ1 for 4 different vectors of (z� y� ŵ2� w̃1� w̃2). For all cases,
there is again a wide range of ŵ1 such that Condition 3.3 is satisfied.
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FIGURE C.1.—Probit and Logit Models with Two Colleges. Notes: This figure shows how |
(z� y� ŵ� w̃)|
changes with ŵ1 for 4 different vectors of (z� y1� y2� ŵ2� w̃1� w̃2) in a probit model (panel a) and in a logit
model (panel b). The cutoffs are fixed at δ1 = 1 and δ2 = 0�75. For both panels, the four vectors of
(z� y1� y2� ŵ2� w̃1� w̃2) (from the top line to the bottom line at ŵ1 = −2) are: (i) (1�−0�5�0�5�−0�5�1�0�5);
(ii) (1�−1�1�−0�5�1�0�5); (iii) (0�5�0�5�−0�5�−0�5�0�5�1); (iv) (0�5�1�−1�1�0�5�1).

C.2.2. Logit Models With Three or Four Colleges

We further expand the example to three or four colleges. Due to computational issues,
it becomes infeasible to consider probit models. We therefore focus on logit models. Fig-
ure C.2 shows how |
(z� y� ŵ� w̃)| changes with ŵ1 in the 2-, 3-, and 4-college examples
for four different values of other variables. From panels (a) to (c), there is no evidence
that Condition 3.3 becomes more difficult to satisfy as there are more colleges.

REMARK 1: In Figure C.2, the absolute value of |
(z� y� ŵ� w̃)| decreases (exponen-
tially) with the number of colleges, but it is not a sign of possible violations of the full-rank
condition. In fact, such a pattern is implied by the definition of 
(z� y� ŵ� w̃) because each
element in the matrix is a partial derivative of a match probability and thus tends to be a

FIGURE C.2.—Logit Models with 2–4 Colleges. Notes: This figure shows how |
(z� y� ŵ� w̃)| changes
with ŵ1 given 4 different vectors of other variables in each logit model with a different number of
colleges. Panel (a) is the same as panel (b) in Figure C.1. In panel (b), there are three colleges;
the cutoffs are δ1 = 1, δ2 = 0�75, and δ3 = 0�5; and the four vectors of (z� y� ŵ2� ŵ3� w̃1� w̃2� w̃3) are
(1�−1�0�5�1�0�5�0�5�0�5�1�0�5), (−1�1�0�5�−1�0�5�1�0�5�1�0�5), (−0�5�0�5�0�5�−0�5�0�5�0�5�1�0�5�1),
and (0�5�−0�5�0�5�−0�5�0�5�0�5�1�0�5�0�5). In panel (c), there are four colleges; the cutoffs are
δ1 = 1, δ2 = 0�75, δ3 = 0�5, and δ4 = 0�6; and the four vectors of (z� y� ŵ2� ŵ3� ŵ4� w̃1� w̃2� w̃3� w̃4) are
(0�5�−0�5�0�5�0�5�−0�5�0�5�0�5�0�5�1�0�5�0�5�0�5), (−0�5�0�5�0�5�−0�5�−0�5�0�5�0�5�0�5�1�0�5�0�5�1),
(1�−1�0�5�0�5�1�0�5�1�0�5�0�5�1�1�0�5), and (−1�1�0�5�−0�5�−1�0�5�1�1�0�5�1�0�5�0�5).
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small value. By the Leibniz formula for determinants, we have

∣∣
(z� y� ŵ� w̃)
∣∣ =

∑
�∈S2C

sgn(�)
2C∏
j=1

π�(j)�j�

where sgn is the sign function of permutations in the permutation group S2C , which returns
+1 and −1 for even and odd permutations, respectively; π�(j)�j is the element of 
 in the
�(j)-th row and jth column. Based on the discussion above,

∏2C
j=1 π�(j)�j tends to be small

and decrease when C increases, so does |
(z� y� ŵ� w̃)|.
As a piece of evidence that is consistent with this observation, when we express match

probabilities in percentage points, the determinants corresponding to the three in Fig-
ure C.2 are 1002C times of those in Figure C.2, and thus increase in C exponentially.

APPENDIX D: MONTE CARLO SIMULATIONS

In a series of Monte Carlo simulations, this Appendix shows (i) that a semiparametric
approach based on the results in Section 3 suffers from the curse of dimensionality, and
(ii) that a parametric model based on a Bayesian approach works well.

D.1. Setup

There are 3000 students competing for admissions to 3 colleges. The capacities of the
colleges are {750�700�750}. Every student has access to an outside option of value εi0
(i.i.d. N(0�1)). Student i’s utility when being admitted to college c is given by

uic = βy
c × yic +βs

c × si +βz
c × zi + εic� (D.13)

where yic is student-college-specific and follows i.i.d. (across colleges and across students)
N(0�36), si is one of the characteristics of student i (i.i.d. N(5�36)), zi is another charac-
teristic of i (i.i.d. N(0�36)), and εic is i.i.d. standard normal. For c = 1�2�3, βy

c = −1, and
βs

c = βz
c = 1.

College c values each student as follows:

vci = γw
c ×wci + γm

c ×mi + γz
c × zi +ηci� (D.14)

where wci is a student-college-specific characteristic (i.i.d. N(0�36)), mi is another char-
acteristic of student i (i.i.d. N(0�36)), and ηic is i.i.d. standard normal. zi appears in both
student and college preferences. For c = 1�2�3, γw

c = γm
c = γz

c = 1. For simplicity, we as-
sume that Tc = −∞ or, equivalently, every college finds every student acceptable.

There are in total 150 MC samples (markets). The capacity constraint is always binding.
Note that we obtain a set of estimates from each sample/market.

D.2. Estimation: Average Derivatives

To operationalize our nonparametric results, we impose three additional assumptions.
First, the true functional form is known except for the distribution of (εi�ηi), which gives
us a semiparametric setting. Second, in student preferences, the parameters to be esti-
mated are βs

c = 1 for c = 1�2�3, and βz such that βz
c = βz = 1 (i.e., we have prior knowl-

edge that βz
c is constant across colleges). Third, in college preferences, the parameters to
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be estimated are γm
c = 1 for c = 1�2�3, and γz such that γz

c = γz = 1 (i.e., we have prior
knowledge that γz

c is constant across colleges).
Let xi = (yi�wi� si� zi�mi), with yi = (yi1� yi2� yi3) and wi = (w1i�w2i�w3i). We rewrite

equation (11) in the semiparametric setting for si and mi, respectively, integrate over the
entire support of xi to obtain unconditional expectations E:⎛⎜⎜⎜⎜⎜⎜⎝

E

(
∂σ1(xi)
∂si

)
E

(
∂σ2(xi)
∂si

)
E

(
∂σ3(xi)
∂si

)

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
E

(
−∂σ1(xi)

∂yi1

)
E

(
−∂σ1(xi)

∂yi2

)
E

(
−∂σ1(xi)

∂yi3

)
E

(
−∂σ2(xi)

∂yi1

)
E

(
−∂σ2(xi)

∂yi2

)
E

(
−∂σ2(xi)

∂yi3

)
E

(
−∂σ3(xi)

∂yi1

)
E

(
−∂σ3(xi)

∂yi2

)
E

(
−∂σ3(xi)

∂yi3

)

⎞⎟⎟⎟⎟⎟⎟⎠ ·
⎛⎝βs

1
βs

2
βs

3

⎞⎠ �

(D.15)⎛⎜⎜⎜⎜⎜⎜⎝
E

(
∂σ1(xi)
∂mi

)
E

(
∂σ2(xi)
∂mi

)
E

(
∂σ3(xi)
∂mi

)

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
E

(
∂σ1(xi)
∂w1i

)
E

(
∂σ1(xi)
∂w2i

)
E

(
∂σ1(xi)
∂w3i

)
E

(
∂σ2(xi)
∂w1i

)
E

(
∂σ2(xi)
∂w2i

)
E

(
∂σ2(xi)
∂w3i

)
E

(
∂σ3(xi)
∂w1i

)
E

(
∂σ3(xi)
∂w2i

)
E

(
∂σ3(xi)
∂w3i

)

⎞⎟⎟⎟⎟⎟⎟⎠ ·
⎛⎝γm

1
γm

2
γm

3

⎞⎠ � (D.16)

The derivatives with respect to zi lead to

⎛⎜⎜⎜⎜⎜⎜⎝
E

(
∂σ1(xi)
∂zi

)
E

(
∂σ2(xi)
∂zi

)
E

(
∂σ3(xi)
∂zi

)

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E

(
3∑

c=1

∂σ1(xi)
∂wci

)
−E

(
3∑

c=1

∂σ1(xi)
∂yic

)

E

(
3∑

c=1

∂σ2(xi)
∂wci

)
−E

(
3∑

c=1

∂σ2(xi)
∂yic

)

E

(
3∑

c=1

∂σ3(xi)
∂wci

)
−E

(
3∑

c=1

∂σ3(xi)
∂yic

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·
(
γz

βz

)
� (D.17)

We now have three equations in two unknowns specified by equation (D.17). Using any
two of the equations leads to an estimator. Moreover, we can formulate an estimator
based on the generalized method of moments (GMM) that uses all three equations.

In sum, our estimation of β’s and γ’s relies on equation systems (D.15)–(D.17).

Results. The estimation results from the 150 MC samples are in the left part of Ta-
ble D.I (columns 1–3). We observe that the estimated coefficients are not close to their
true values. The performance does not improve significantly when we double the sample
size. Our explanation for this poor performance in the estimation is the curse of dimen-
sionality. When calculating partial derivatives in equation systems (D.15) and (D.16), we
deal with 4-dimensional objects (i.e., (si� yi1� yi2� yi3) or (mi�w1i�w2i�w3i)); in equation sys-
tem (D.17), it is 7-dimensional (i.e., (zi� yi1� yi2� yi3, w1i�w2i�w3i)), which may explain that
the estimators for βz and γz perform the worst. This explanation is confirmed when we
reduce the dimensionality in the model.

Reduced Dimensionality. In student preferences (equation (D.13)), we further impose
that the parameters to be estimated are βs

c = 1 for c = 1�2�3, and βz
1 = 1, while we as-

sume, and know that βz
2 = βz

3 = 0 (i.e., zi does not enter i’s utility for college 2 or 3).
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TABLE D.I

SEMIPARAMETRIC ESTIMATION: THE GENERAL AND REDUCED MODELS.

General: Higher Dimensionality Reduced: Lower Dimensionality
βz

c = βz , γz
c = γz βz

2 = βz
3 = γz

1 = γz
2 = 0

Median Mean Std. Dev. Median Mean Std. Dev.
(1) (2) (3) (4) (5) (6)

A. Coefficients on s in student preferences (true value = 1)
βs

1 0�98 1�11 0�50 βs
1 0.98 1.21 0.98

βs
2 1�00 1�11 0�52 βs

2 0.91 1.16 1.06
βs

3 0�99 1�12 0�50 βs
3 1.01 1.18 0.82

B. Coefficients on m in college preferences (true value = 1)
γm

1 1�04 1�64 3�21 γm
1 1.00 1.02 0.27

γm
2 0�94 1�30 3�71 γm

2 1.02 1.05 0.30
γm

3 1�12 1�47 3�41 γm
3 0.98 1.09 0.44

C. Coefficients on z in student and college preferences (true value = 1)
GMM with all conditions in equation (D.17)

βz 0�12 0�41 2�54 βz
1 0.97 0.99 0.16

γz 0�16 0�08 3�13 γz
3 0.97 1.00 0.21

Using conditions 1 and 2 in equation (D.17)
βz 0�05 1�11 10�37 βz

1 0.97 1.01 0.26
γz 0�17 −0�59 5�71 γz

3 0.97 1.11 1.30

Using conditions 1 and 3 in equation (D.17)
βz 0�30 0�08 25�20 βz

1 0.97 1.00 0.15
γz 0�19 8�37 92�48 γz

3 0.98 1.00 0.20

Using conditions 2 and 3 in equation (D.17)
βz −0�06 0�84 7�34 βz

1 0.99 1.03 0.35
γz 0�08 0�30 6�35 γz

3 0.95 1.03 0.30

Note: This table presents estimates for the coefficients in student or college utility functions (equations (D.13) and (D.14)). The
statistics are calculated using 150 MC samples. In the general model, we assume that βz

c = βz (i.e., we have prior knowledge that βz
c is

constant across colleges) and γzc = γz . The estimation is based on equation systems (D.15), (D.16), and (D.17). In the reduced model,
we assume that we know βz

2 = βz
3 = 0 (i.e., zi does not enter i’s utility for college 2 or 3) and γz1 = γz2 = 0 (i.e., colleges 1 and 2 do not

use zi to evaluate students). The estimation is based on equation systems (D.15), (D.16), and (D.18).

In college preferences (equation (D.14)), the parameters to be estimated are γm
c = 1 for

c = 1�2�3, and γz
3 = 1, while we assume, and know that γz

1 = γz
2 = 0 (i.e., colleges 1 and 2

do not use zi to evaluate students). Based on these new parameter values, we regenerate
another 150 MC samples for estimation.

We now have a simplified version of equation (D.17) with a reduced dimension:⎛⎜⎜⎜⎜⎜⎜⎝
E

(
∂σ1(xi)
∂zi

)
E

(
∂σ2(xi)
∂zi

)
E

(
∂σ3(xi)
∂zi

)

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
E

(
∂σ1(xi)
∂w3i

)
−E

(
∂σ1(xi)
∂yi1

)
E

(
∂σ2(xi)
∂w3i

)
−E

(
∂σ2(xi)
∂yi1

)
E

(
∂σ3(xi)
∂w3i

)
−E

(
∂σ3(xi)
∂yi1

)

⎞⎟⎟⎟⎟⎟⎟⎠ ·
(
γz

3
βz

1

)
� (D.18)

The estimation results are presented in the right half of Table D.I (columns 4–6). We
observe that all estimates are centered around their corresponding true value.
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D.3. A Parametric Approach: Bayesian Estimation

The practical difficulties of the semiparametric method motivate us to consider a para-
metric approach. We again focus on the utility functions as in equations (D.13) and (D.14)
and use the 150 MC samples generated in Section D.1. In other words, zi enters each col-
lege’s preferences and each student’s preferences over all colleges.

We assume that we know the functional form and the distributions of εic and ηci; how-
ever, we do not know, and thus will estimate, the standard deviation of εi3 (the shock in
students’ utility for college 3), denoted by ζε. The other parameters to be estimated are
βy

c , β
s
c , and βz

c for all c in student preferences and γw
c , γm

c , and γz
c for all c in college

preferences. Collectively, we denote them by (β�γ�ζε).

Bayesian Estimation Procedure. We use a Gibbs sampler to implement the Bayesian
estimation. The priors for β, γ, ζ2

ε are

β∼ N(0��β)� γ ∼N(0��γ)� and ζ2
ε ∼ IW

(
ζ

2
ε� νε

)
�

where IW is the inverse Wishart distribution. Following Chapter 5 of Rossi, Allenby, and
McCulloch (2012), we set diffuse priors as follows: The prior variances of β and γ (�β

and �γ) are 100 times the identity matrix, and (ζ
2
ε� νε) = (1�2).

In each iteration, the Gibbs sampler goes through the following steps (for notational
simplicity, we omit the index for iterations):

1. Conditional on student preferences, uic , from the previous iteration, we update col-
lege preferences, vci, by invoking the restrictions implied by the stability of the ob-
served matching. For each college c, let Ic be the set of students with uiμ(i) > uic (i.e.,
students who like their own match more than c) and Ic be the set of students with
uiμ(i) < uic . The updating of college c’s utilities and cutoff has four parts.
(a) c’s preferences over those who are matched with it: Given vci from the previous

iteration, we find vc = maxi∈Ic vci. For each i such that μ(i) = c, vci is drawn from
N(γw

c wci + γm
c mi + γz

c zi�1) truncated below by vc .
(b) c’s cutoff: It is the lowest utility among those who are matched with c.
(c) c’s preferences over those in Ic: c’s utility for any student i ∈ Ic is drawn from

N(γw
c wci + γm

c mi + γz
c zi�1) truncated above by c’s cutoff.

(d) c’s preferences over those in Ic: c’s utility for any student i ∈ Ic is drawn from
N(γw

c wci + γm
c mi + γz

c zi�1) (without any truncation).
2. Conditional on the updated college preferences vci in this iteration, we update stu-

dent preferences, uic , again by invoking the restrictions implied by stability of the
observed match. Note that vci determines all colleges’ cutoffs and their feasibility to
each student. The updating of student preferences has three parts:D.3

(a) i’s preferences over infeasible colleges: For an infeasible college c (i.e., vci is
below c’s cutoff), student i’s utility is drawn from a normal distribution with
mean βy

cyic +βs
csi +βz

czi and variance 1 if c �= 3 or ζ2
ε if c = 3.

(b) i’s utility for her matched college: Given uic from the previous iteration, we find
the highest utility among all feasible colleges other than μ(i), denoted by ui. i’s
utility for μ(i) is drawn from a normal distribution truncated below by ui with
mean βy

cyic +βs
csi +βz

czi and variance 1 if c �= 3 or ζ2
ε if c = 3.

D.3In the estimation, a student’s outside option is an always feasible college. The student’s preference for
her outside option is also updated according to the following steps.
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(c) i’s preferences over her unmatched feasible colleges: i’s utility for a feasible
college c ( �= μ(i)) is drawn from a normal distribution truncated above by uiμ(i)

with mean βy
cyic +βs

csi +βz
czi and variance 1 if c �= 3 or ζ2

ε if c = 3.
3. Following the standard procedure as detailed in Chapter 5 of Rossi, Allenby, and

McCulloch (2012), we then update the distribution of β, γ, and ζ2
ε conditional on

the updated vci and uic as well as the data.
For each MC sample, we iterate through the Markov Chain 1.5 million times, and dis-

card the first 0.55 million draws as “burn in” to ensure mixing. We compute the Potential
Scale Reduction Factor (PSRF) following Gelman and Rubin (1992). For all the 19 pa-
rameters across the 150 MC samples, 92.04% of the PSRFs are below 1.1, while only
0.46% of them are above 1.3.

Results. This parametric approach leads to the results in Table D.II. We observe that
the estimator works well as the posterior means are close to the true values. Moreover,
we conclude that the posterior standard deviation is a reasonable measure of estimation
precision. Comparing column (3), which represents the estimation precision, with col-
umn (4), which is the median of the posterior standard deviations, we find that they are

TABLE D.II

RESULTS FROM BAYESIAN ESTIMATION.

Posterior Mean Posterior Std. Dev.

Median Mean Std. Dev. Median Mean 5th Perc. 95th Perc.
(1) (2) (3) (4) (5) (6) (7)

True value = 1
βs

1 1�02 1�02 0.10 0.07 0.07 0.06 0.09
βs

2 1�03 1�02 0.11 0.07 0.07 0.06 0.09
βs

3 1�03 1�03 0.10 0.07 0.07 0.06 0.09
γm

1 1�07 1�10 0.19 0.13 0.14 0.10 0.22
γm

2 1�05 1�06 0.35 0.13 0.15 0.10 0.22
γm

3 1�07 1�10 0.14 0.14 0.14 0.10 0.21
βz

1 1�02 1�02 0.10 0.07 0.07 0.06 0.09
βz

2 1�02 1�02 0.10 0.07 0.07 0.06 0.09
βz

3 1�02 1�02 0.10 0.07 0.07 0.06 0.09
γz

1 1�07 1�10 0.19 0.14 0.14 0.10 0.22
γz

2 1�03 1�02 0.69 0.13 0.14 0.10 0.22
γz

3 1�07 1�10 0.15 0.14 0.14 0.10 0.22

Coefficients on y (true value = −1)
β

y
1 −1�02 −1�03 0.09 0.07 0.07 0.06 0.09

β
y
2 −1�02 −1�03 0.10 0.07 0.07 0.06 0.08

β
y
3 −1�02 −1�02 0.10 0.07 0.07 0.06 0.09

Coefficients on w (true value = 1)
γw

1 1�06 1�10 0.18 0.13 0.14 0.10 0.22
γw

2 1�05 1�03 0.68 0.13 0.16 0.10 0.22
γw

3 1�08 1�10 0.15 0.14 0.14 0.10 0.21

Std. dev. of student utility shock (εi3)
ζε 1�05 1�04 0.19 0.17 0.17 0.15 0.19

Note: This table presents statistics on the posterior means and standard deviations of the coefficients in student and college utility
functions (equations (D.13) and (D.14)). For each coefficient, there are 150 posterior means and 150 posterior standard deviations
from the 150 Monte Carlo samples. For each sample, the Bayesian approach with a Gibbs sampler goes through the Markov Chain
1.5 million times, and we take the first 0.55 million iterations as “burn in.” The last 0.95 million iterations are used to calculate the
posterior means and standard deviations in a sample.
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close to each other, although some of the values in column (4) tend to be smaller. Reas-
suringly, no value in column (3) is larger than the corresponding one in column (7), which
is the 95th percentile among the 150 posterior standard deviations for each coefficient.

APPENDIX E: DATA CONSTRUCTION

For student and school characteristics, the main data set we have used is the SIMCE
test result data set, which is accompanied by parent and teacher questionnaires. To extract
tuition data and location of students and schools, we have used publicly available data on
the Ministry’s website, https://datosabiertos.mineduc.cl (last accessed on December 07,
2023).

Here we briefly outline the construction of some key variables:
1. Distance. The data does not include the home address of each student. Instead,

the distance is calculated as follows. We obtain the latitude and longitude of each
school and those of each student’s comuna. The former is contained in the data,
whereas the latter is obtained from an online tool (http://www.gpsvisualizer.com/
geocoder/). Using a Matlab package (distance) to calculate geodesic distances, we
obtain the distances between each comuna and each school, measured in kilometers.

2. Tuition. Data sets with average monthly tuition (per student) are publicly avail-
able for most public and private subsidized schools in the years 2004–2012. Interval
data is available for most schools in 2013. To impute the missing tuition values in
2008, we first regressed tuition in year t on tuition in year t+1, and then predicted
the missing values of year t using this fitted regression. We started with t=2012,
and iteratively proceeded until t=2008.

3. Teacher Quality. This is measured by the average number of years the teachers
have had in their teaching career at the school level. A teacher’s tenure includes the
years spent in other schools.

4. Average percentile scores. We first studentize the test scores of students
in 2008 and compute their individual percentile rank in the whole market. This is
used as a student characteristic. We take an average over the percentile ranks for
each school in 2006 and use this as a school characteristic in 2008.

5. Average parental education. The average mother’s education in 2006 is
considered as a school-level characteristic in 2008.

6. Median parental Income. Parental income is reported in 13 intervals. For
each school, we first compute the proportion of households in each of the 13 in-
tervals; then we find the median income interval based on the 13 proportions and
use the midpoint of the median income interval as the median parental income.

7. School enrollments and capacity. We compute enrollments for each
school for grade 10 in the years 2006, 2008, and 2010. We also compute enrollments
for each school for grade 11 in 2010.E.4 We take the maximum of these enrollments
across each school and set it as the capacity unless it is less than 20 (in which case
the capacity is set to 20). We use this variable to determine which schools have a
binding capacity constraint for grade 10 in the year 2008. As public schools cannot
select students, their capacity is irrelevant.

Table E.III and Table E.IV summarize the student characteristics and school attributes,
respectively.

E.4We use grade 11 in 2010 as a proxy for grade 10 in 2009.

https://datosabiertos.mineduc.cl
http://www.gpsvisualizer.com/geocoder/
http://www.gpsvisualizer.com/geocoder/
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TABLE E.III

SUMMARY STATISTICS OF STUDENT CHARACTERISTICS.

Students Enrolled in a Secondary School of Type

Private Private
All students Public Subsidized Nonsubsidized Outside Option
(N = 9314) (N = 3911) (N = 4048) (N = 1211) (N = 144)

Mean S.d. Mean S.d. Mean S.d. Mean S.d. Mean S.d.

Female 0.51 0.50 0.54 0.50 0.48 0.50 0.52 0.50 0.49 0.50
Language score 0.50 0.29 0.36 0.26 0.55 0.27 0.75 0.23 0.46 0.27
Math score 0.49 0.29 0.34 0.24 0.56 0.26 0.78 0.20 0.39 0.25
Composite score 0.49 0.29 0.34 0.24 0.56 0.26 0.78 0.20 0.42 0.26
Mother’s
education
(years)

13.97 3.19 12.43 2.78 14.33 2.81 17.78 1.86 13.54 2.82

Parental income
(CLP)

430,336 493,814 194,861 147,491 358,906 284,207 1,447,069 541,758 283,333 282,595

Distance to
enrolled school
(km)

2.71 2.50 2.21 1.96 2.93 2.60 3.61 3.23 - -

Note: This table describes student characteristics in Market Valparaiso. Scores are measured in percentile rank (from 0 to 1). CLP
stands for Chilean peso. Parental income is measured in 2008 when 1 USD was about 522 CLP.

TABLE E.IV

SUMMARY STATISTICS OF SCHOOL ATTRIBUTES.

All Private Schools Full Capacity Private Schools

Public Schools Subsidized Nonsubsidized Subsidized Nonsubsidized
(C = 20) (C = 64) (C = 33) (C = 27) (C = 6)

Mean S.d. Mean S.d. Mean S.d. Mean S.d. Mean S.d.

Average language
score

0.32 0.13 0.54 0.15 0.70 0.14 0.58 0.16 0.65 0.20

Average math
score

0.29 0.15 0.55 0.16 0.73 0.15 0.58 0.17 0.66 0.22

Average composite
score

0.29 0.15 0.55 0.17 0.73 0.15 0.59 0.17 0.67 0.22

Average mother’s
edu. (years)

12.01 0.91 14.73 1.34 17.39 0.81 15.06 1.29 16.90 0.99

Fraction of female
students

0.53 0.30 0.49 0.21 0.49 0.22 0.53 0.23 0.47 0.08

Median parental
income (CLP)

155,000 22,361 335,156 149,783 1,284,848 475,573 353,704 166,944 950,000 440,454

Teacher experience
(years)

17.89 6.41 13.68 7.81 18.07 8.90 13.79 8.84 13.85 9.80

Tuition (CLP) 4034 1750 17,899 10,548 57,780 8117 19,858 9711 55,673 11,351
Capacity - - 73.94 71.30 48.91 29.06 56.04 34.86 35.67 33.07
Valparaiso student
enrollmenta

195.55 124.80 63.25 58.97 36.70 26.82 53.59 31.29 34.17 32.36

Note: This table describes the attributes of the schools in Market Valparaiso. Median parental income and tuition are measured
in 2008 when 1 USD was about 522 CLP.

aThis excludes students who are not from Market Valparaiso.
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Note that for the school attributes in Table E.IV, the following four variables are mea-
sured among the 2006 10th graders who are already in a secondary school in 2007: median
parental income among students (in logarithm), fraction of female students, average com-
posite score, and average mother’s education.

Finally, missing values are imputed. For students, missing values for variable X are
imputed by matching the observations to a group of similar observations (similar in di-
mensions other than X), respectively. The missing values are then assigned the median
values of X for that matched group. For schools, missing values are replaced by analogous
aggregated variables at the school level in 2008.

APPENDIX F: ADDITIONAL DETAILS ON DATA ANALYSIS

Estimation. The same as our Monte Carlo simulations, we use a Bayesian approach
with a Gibbs sampler to estimate student and school preferences in the Chilean data. In
addition to the procedure of updating the Markov Chain as described in Section D.3 for
the Monte Carlo, this Appendix describes some unique features in this empirical exer-
cise. In particular, we emphasize that (i) some schools are girls or boys only, and thus
are never feasible to the other gender in the updating of the Markov Chain, (ii) a stu-
dent can be unacceptable to a school, and (iii) there are some students who are not from
Market Valparaiso but attending a school in Market Valparaiso and contributing to the
determination of school cutoffs.

There are 375 students who are not from Market Valparaiso but attend a private school
in Market Valparaiso. Among them, 75 students attend a private school with binding ca-
pacity constraint. When updating the Markov Chain, these 75 students are included in
the calculation of school cutoffs, but their preferences are not the focus of our paper.
Therefore, to simplify the procedure, we assume that they only find their matched school
acceptable (i.e., better than their outside option).

We iterate through two distinct chains from dispersed initial values 1.75 million times,
and take the first 1 million as “burn in.” The posterior means and standard deviations
of the last 0.75 million iterations are similar between the chains. We check convergence
by calculating the Potential Scale Reduction Factor (PSRF) as proposed by Gelman and
Rubin (1992). The PSRFs are below 1.1 for all but two parameters and below 1.2 for all
parameters.

Model Fit. Our model fits the data reasonably well when we compare the observed
matching with the one predicted based on our model.

We use the average of 1000 simulations of the matching market to calculate the model
prediction. In each simulation, we take the posterior means in Table II and the observables
of each student and each school, randomly draw the utility shocks in equations (14) and
(15) according to the estimated distributions, and calculate each student and each school’s
preferences. A stable matching is found by the Gale–Shapley deferred acceptance in each
simulation and is compared to the observed matching.

As a benchmark, we calculate a random prediction that is similarly constructed for
1000 simulations, except that each agent’s utility for a school/student is a draw from the
standard normal. Its fit is then evaluated against the observed matching.

We present two sets of model fit measures. The first is how often among the 1000 simu-
lations an observed outcome is correctly predicted. For their matched school, the random
prediction is correct for merely 1.36% of the students. In contrast, our model correctly
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TABLE F.V

SUMMARY STATISTICS OF STUDENT CHARACTERISTICS BY INCOME STATUS.

Low Income (N = 4002) Nonlow Income (N = 5312)

Mean S.d. Mean S.d.

Mother’s education (years) 12.29 2.74 15.23 2.92
Female 0.52 0.50 0.51 0.50
Language score 0.38 0.26 0.59 0.28
Math score 0.37 0.25 0.59 0.28
Composite score 0.36 0.25 0.59 0.28
Parental income (CLP) 133,633 37,002 653,869 557,009
Distance to the enrolled school (km) 2.59 2.24 2.80 2.67

Note: This table describes the student characteristics by income status. A student is of low income if the student’s parental income
is among the bottom 40%. Parental income is measured in 2008 when 1 USD was about 522 CLP.

predicts for 5.37% of the students, 3.95 times the rate from the random prediction.F.5

Moreover, the model correctly predicts the type of their matched school for 56.48% of
the students, 1.63 times the rate from the random prediction (34.60%).

The second set of model fit measures focuses on the average characteristics of each
school’s matched students and the attributes of each student’s matched school. For a
given student characteristic (evaluated as an average at each school), we calculate the
root-mean-square errors (RMSEs, hereafter) across the 1000 simulations with the “er-
ror” being the difference between each school’s predicted average and its observed aver-
age.F.6 Hence, a high RMSE indicates a poor fit. Compared with the random prediction,
the model prediction leads to RMSEs that are 45–72% lower except for the characteris-
tic, female. In the data, a student’s gender does not play an important role in the utility
functions (see Table II), while being weakly correlated with the student’s composite score
and uncorrelated with other characteristics. This might explain the poor fit of the model
for this characteristic.

Similarly, for a given school attribute, the RMSEs from the model are 33–45% lower
than those from the random prediction except for two attributes, teacher experiences and
the fraction of female students. The poor fit on those two dimensions may be due to their
relative irrelevance in student and school preferences.F.7

Low-Income versus Nonlow-Income Students. Our counterfactual policy prioritizes
students from low-income families for admissions to all schools. A student is of low in-
come if the student’s parental income is among the lowest 40%. Table F.V shows summary
statistics of the students by their income status.

F.5This seemingly low number is understandable: the matching market resembles a discrete choice with 117
options, so correctly predicting a student’s choice is challenging.

F.6Specifically, for student characteristic x, RMSEx =
√

1
M·C

∑M
m=1

∑C
c=1(x̄pred

c�m − x̄obs
c )2, where x̄

pred
c�m is the av-

erage characteristic among the students matched with school c in the mth simulated market and x̄obs
c is the

average characteristic among those who are matched with c in the data.
F.7These two attributes do not significantly contribute to the utility functions (see Table II) and are only

weakly correlated with other school attributes. Specifically, a school’s fraction of females is uncorrelated with
all the school attributes, and a school’s teacher experience is weakly correlated with average student score but
uncorrelated with all other school attributes.



IDENTIFICATION AND ESTIMATION IN MANY-TO-ONE TWO SIDED MATCHING 19

REFERENCES

AGARWAL, NIKHIL (2015): “An Empirical Model of the Medical Match,” American Economic Review, 105 (7),
1939–1978. [7]

BLUNDELL, RICHARD W., AND JAMES L. POWELL (2004): “Endogeneity in Semiparametric Binary Response
Models,” The Review of Economic Studies, 71 (3), 655–679. [7]

CHESHER, ANDREW (2003): “Identification in Nonseparable Models,” Econometrica, 71 (5), 1405–1441. [6]
GELMAN, ANDREW, AND DONALD B. RUBIN (1992): “Inference From Iterative Simulation Using Multiple

Sequences,” Statistical science, 7 (4), 457–472. [14,17]
HECKMAN, JAMES, AND RICHARD ROBB (1985): “Alternative Methods for Evaluating the Impact of Interven-

tions: An Overview,” Journal of econometrics, 30 (1–2), 239–267. [7]
IMBENS, GUIDO W., AND WHITNEY K. NEWEY (2009): “Identification and Estimation of Triangular Simulta-

neous Equations Models Without Additivity,” Econometrica, 77 (5), 1481–1512. [7]
MATZKIN, ROSA L. (2019): “Constructive Identification in Some Nonseparable Discrete Choice Models,” Jour-

nal of Econometrics, 211 (1), 83–103. [1,3]
PETRIN, AMIL, AND KENNETH TRAIN (2010): “A Control Function Approach to Endogeneity in Consumer

Choice Models,” Journal of marketing research, 47 (1), 3–13. [7]
ROSSI, PETER E., GREG M. ALLENBY, AND ROB MCCULLOCH (2012): Bayesian Statistics and Marketing. John

Wiley & Sons. [13,14]

Co-editor Guido W. Imbens handled this manuscript.

Manuscript received 4 April, 2021; final version accepted 21 February, 2024; available online 23 February, 2024.

https://www.e-publications.org/srv/ecta/linkserver/setprefs?rfe_id=urn:sici%2F0012-9682%282024%2992%3A3%2B%3C1%3ASTIAEI%3E2.0.CO%3B2-8
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/agarwalempirical2015&rfe_id=urn:sici%2F0012-9682%282024%2992%3A3%2B%3C1%3ASTIAEI%3E2.0.CO%3B2-8
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/blundell2004endogeneity&rfe_id=urn:sici%2F0012-9682%282024%2992%3A3%2B%3C1%3ASTIAEI%3E2.0.CO%3B2-8
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/chesher2003identification&rfe_id=urn:sici%2F0012-9682%282024%2992%3A3%2B%3C1%3ASTIAEI%3E2.0.CO%3B2-8
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/gelman1992inference&rfe_id=urn:sici%2F0012-9682%282024%2992%3A3%2B%3C1%3ASTIAEI%3E2.0.CO%3B2-8
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:5/heckman1985alternative&rfe_id=urn:sici%2F0012-9682%282024%2992%3A3%2B%3C1%3ASTIAEI%3E2.0.CO%3B2-8
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:6/imbens2009identification&rfe_id=urn:sici%2F0012-9682%282024%2992%3A3%2B%3C1%3ASTIAEI%3E2.0.CO%3B2-8
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/matzkinconstructive2019&rfe_id=urn:sici%2F0012-9682%282024%2992%3A3%2B%3C1%3ASTIAEI%3E2.0.CO%3B2-8
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:8/petrin2010control&rfe_id=urn:sici%2F0012-9682%282024%2992%3A3%2B%3C1%3ASTIAEI%3E2.0.CO%3B2-8
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/agarwalempirical2015&rfe_id=urn:sici%2F0012-9682%282024%2992%3A3%2B%3C1%3ASTIAEI%3E2.0.CO%3B2-8
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/blundell2004endogeneity&rfe_id=urn:sici%2F0012-9682%282024%2992%3A3%2B%3C1%3ASTIAEI%3E2.0.CO%3B2-8
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/gelman1992inference&rfe_id=urn:sici%2F0012-9682%282024%2992%3A3%2B%3C1%3ASTIAEI%3E2.0.CO%3B2-8
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:5/heckman1985alternative&rfe_id=urn:sici%2F0012-9682%282024%2992%3A3%2B%3C1%3ASTIAEI%3E2.0.CO%3B2-8
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:6/imbens2009identification&rfe_id=urn:sici%2F0012-9682%282024%2992%3A3%2B%3C1%3ASTIAEI%3E2.0.CO%3B2-8
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/matzkinconstructive2019&rfe_id=urn:sici%2F0012-9682%282024%2992%3A3%2B%3C1%3ASTIAEI%3E2.0.CO%3B2-8
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:8/petrin2010control&rfe_id=urn:sici%2F0012-9682%282024%2992%3A3%2B%3C1%3ASTIAEI%3E2.0.CO%3B2-8

	Appendix A: Identiﬁcation of a Nonseparable Model
	Appendix B: A Control Function Approach
	Appendix C: Evaluating Condition 3.3
	A Nonparametric One-College Example
	Parametric Analysis of Probit and Logit Models
	Two Colleges
	Logit Models With Three or Four Colleges


	Appendix D: Monte Carlo Simulations
	Setup
	Estimation: Average Derivatives
	Results
	Reduced Dimensionality

	A Parametric Approach: Bayesian Estimation
	Bayesian Estimation Procedure
	Results


	Appendix E: Data Construction
	Appendix F: Additional Details on Data Analysis
	Estimation
	Model Fit
	Low-Income versus Nonlow-Income Students

	References

