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THIS SUPPLEMENTAL APPENDIX contains the analysis of some extensions of our baseline
setup, as well as numerical evidence in the case n= 3. Section E discusses the extension
of Banerjee and Fudenberg (2004)’s main result to the case of costly signals. In Section F,
we provide numerical evidence on equilibrium behavior in the case of samples of size 3.
Section G refines the proof of Theorem 3 when n = 3. It shows that the conclusion of
Theorem 3 holds as soon as n2π(1 −π) < 1 (and c is small). In Section H, we investigate
the case where agents can choose any statistical experiment. Section I extends Theorem 2
to a fully asymmetric setup. Section J discusses the case where samples are not drawn
from the previous period, but from the further past (in the case n= 2).

APPENDIX E: BANERJEE–FUDENBERG WITH COSTLY SIGNALS

We prove here that the main insights of Banerjee and Fudenberg (2004) extend to the
case of costly signals.

Consider the following sequential learning setup. The state θ ∈ � is drawn uniformly
at random at time 0, and kept fixed. In each period t ≥ 1, each agent in a new contin-
uum of agents sample n agents from the previous period, then decide whether to acquire
information. Information has cost c > 0, and yields a private signal with cdf Hθ. Agents
are aware of calendar time, with utility function u(a�θ) = 1a=θ. Signals satisfy the usual
symmetry assumption.

We denote by zt the equilibrium fraction of agents in period t playing the correct ac-
tion.1

PROPOSITION E.1: Assume that n ≥ 2 and that Assumption 1 (c < v( 1
2 ) − u( 1

2 )) holds.
Then limt→+∞ zt = 1.

PROOF: The first period t = 1 is specific. Agents do not sample, acquire information,
hold an interim belief equal to the prior belief on θ, hence z1 = v( 1

2 ).
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1Because of symmetry, it is the same in both states, so that the fraction xt of agents playing action 1 is xt = zt

if θ= 1, and xt = 1 − zt if θ= 0.
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Let t ≥ 1 be arbitrary, such that zt ≥ v( 1
2 ). At equilibrium, agents acquire information

with a balanced sample k= n/2 (if n is even), and possibly for other values of k as well.
Therefore, the equilibrium payoff of a t+1-agent is at least zt+1 minus the probability of a
balanced sample times (multiplied by c). Consider a t+ 1-agent who switches unilaterally
to the strategy that acquires information when k= n/2, and plays the majority action for
other values of k. Denote by yt+1 the probability that this agent’s action is correct. Since
the equilibrium strategy buys “more” often information than the alternative strategy, it
must also be more often “correct”: one has zt+1 ≥ yt+1.

On the other hand,

yt+1 =
∑
k>n/2

(
n
k

)
zkt (1 − zt)n−k + 1n is even × v

(
1
2

)(
n
n

2

)
zn/2t (1 − zt)n/2�

Using the identity z = ∑n

k=0
k
n

( n
k

)
zk(1 − z)n−k, it follows that

zt+1 − zt ≥
∑
k>n/2

(
n
k

)
zkt (1 − zt)n−k + 1n is even × v

(
1
2

)(
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n

2
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zn/2t (1 − zt)n/2

−
∑
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k

n

(
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k

)
zkt (1 − zt)n−k

=
∑
k>n/2

(
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)(
n− k
n

)
zkt (1 − zt)n−k + 1n is even ×

(
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)
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)(
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zn/2t (1 − zt)n/2

−
∑
k< n

2

k

n

(
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k

)
zkt (1 − zt)n−k

≥
∑
k>n/2

(
n
k

)(
n− k
n

)[
zkt (1 − zt)n−k − zn−kt (1 − zt)k

]

=
∑
k>n/2

(
n
k

)(
n− k
n

)(
zt (1 − zt)

)n−k[
z2k−n
t − (1 − zt)2k−n]

≥ (
zt (1 − zt)

)n[
v

(
1
2

)n

−
(

1 − v
(

1
2

))n]
> 0�

where the last inequality holds since zt ≥ v( 1
2 ).

This implies that (zt) is increasing, hence convergent, with a limit z that satisfies (z(1 −
z))n = 0. Since z > 1

2 , one has z = 1, as desired. Q.E.D.

APPENDIX F: NUMERICAL EVIDENCE IN THE CASE n= 3

This section contains numerically based characterizations of equilibrium strategies for
samples of size n= 3. We start with an informal summary. When n= 3, strategies can be
summarized by three variables:

• the probability β(0) of acquiring information with a unanimous sample,
• β(1) of acquiring information with a balanced sample, and
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FIGURE F.1.—Equilibrium behavior (left) and welfare (right) for n= 3.

• the action α(1� 1
2 ) played when information is not acquired at balanced samples.2

For each possible profile of strategies, we adapt the proof techniques of Theorem 3 to
derive estimates of the limit interim beliefs, and thus check for what values (π� p̂) such a
profile of strategies is an equilibrium.

The results are summarized in Figure F.1. The parameter region identified in Theo-
rem 3 (β(0) > 0 and β(1) = 1) corresponds to the plain light (yellow) area in the upper-
right corner. In addition, we notice the existence of an area (with vertical stripes in the
lower- right corner) corresponding to high π and c where agents adopt a contrarian be-
havior when facing mixed evidence and not acquiring information(α(1� 1

2 ) = 1). By foster-
ing diversity, such contrarian behavior slows down convergence and helps the population
respond to change.

The right panel of Figure F.1 depicts the highest equilibrium welfare as a function of
π, for various values of c. We observe, for example, from the solid curve (c = 0), that the
equilibrium welfare may exceed p̂ for signals with low enough precision (corresponding to
the dark/blue area in the left panel), but that learning is always incomplete, in accordance
with our main message. We also note that for stronger signals, the equilibrium welfare is
given by p̂, irrespective of c.

Interestingly, we observe that welfare is both decreasing in π and independent of c as
long as (π� p̂) belongs to the plain dark (blue) region. There, agents never acquire in-
formation at unanimous samples, and always acquire otherwise. Therefore, equilibrium
beliefs do not vary with c. When π increases, information acquisition is thus unchanged,
but the correlation of actions within samples increases, lowering informativeness, and
then decreasing welfare. This suggests that more precise signals hurt as long as they do
not encourage more information acquisition. This is an instance of the principle of coun-
tervailing adjustment (Bikhchandani, Hirshleifer, Tamuz, and Welch (2024)): a favorable
shift in information availability does not necessarily improve decision-making or welfare.3

2It is clear that one follows one’s signal upon acquiring information, and one follows the crowd when drawing
a unanimous sample and not acquiring information, since the consensus is positively correlated with the state.

3Relatedly, Dasaratha, Golub, and Hak (2023) underline the importance of having agents with sufficiently
diverse signal distributions for information aggregation. While diversity of signals comes from different ex ante
signal distributions in their case, in our case it arises when agents are more likely to have ex post different signal
realizations, that is, less precise signals.
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The reminder of the section contains a detailed justification of the above claims. Sec-
tion F.1 contains the statements of formal results that we rely on in our numerical calcula-
tions. Section F.2 contains the proofs. Section F.3 discusses numerical computations and,
in particular, explains how we drew Figure F.1.

F.1. Equilibrium Characterization

Let us first describe the additional notation we use, together with some minor changes
relative to the paper. Notation that is not defined here is defined in the paper.

Given that signals are binary, players follow the signal whenever they acquire informa-
tion, in any equilibrium. It is worthwhile to redefine a strategy σ = (α�β) so that α(k)
is the probability of playing action 1 if no information is acquired at sample k. A sym-
metric strategy is defined by the four numbers (β(0)�β(1)�α(0)�α(1)). The equilibrium
conditions and p̂ > 1

2 imply that α(k) ∈{0�1}. Additionally, the consensus theorem (The-
orem 2) implies that, for sufficiently small λ, α(0) = 0.

We will use a different parametrization of strategies. We will encode an agent’s behavior
at sample k= 0 by a single parameter, β ∈ [0�1], and one’s behavior at sample k= 1 by a
another parameter, α ∈ [−1�1], as follows:

• an agent sampling k = 0 or k = n follows the sample with probability 1 − β and
acquires information with probability β (hence β= β(0)),

• an agent sampling k= 1 or k= n− 1 acquires information with probability 1 −|α|. If
the agent does not, it follows the majority action if α > 0, and the minority action if
α < 0. That is, |α| = 1 − β(1) encodes the probability of acquiring information, and
and the sign of α encodes one’s behavior when not acquiring information.

With πθ = πθ+ (1 −π)(1 − θ) for θ ∈�, the transitions induced by a strategy (α�β) ∈
[−1�1] × [0�1] are given by

gθ(x|α�β�π) = x3(1 −β+βπθ) + 3x2(1 − x)
((

1 − |α|)πθ + max(0�α)
)

+ 3x(1 − x)2
((

1 − |α|)πθ + max(0�−α)
) + (1 − x)3βπθ�

We denote by φθ(α�β�π) = g′
θ(0|α�β�π) the derivative at 0 of gθ:

φθ(α�β�π) = 3
(
max(0�−α) + (

1 − |α| −β)
πθ

)
�

Let pλk(α�β) be the interim beliefs at a stationary distribution for (α�β).

REMARK F.1: To be precise, pλk(α�β) are the beliefs deduced from some invariant dis-
tribution (that puts no mass on 0 and 1) given (α�β). In the following, statements about
limits limλ p

λ
k(α�β) should be interpreted as statements about limits of all possible se-

quences pλk(α�β) consistent with (α�β).

Given primitives (λ�π� p̂), we view an equilibrium as a 4-tuple (α�β�p0�p1) where
(α�β) is optimal given the beliefs pk for k = 0�1, and p0�p1 are deduced from some
invariant distribution for (α�β) (with no atom at 0 and 1). Let �λ(π� p̂) denote the set
of all equilibrium tuples. From the proofs in Section B, �λ(π� p̂) is closed and nonempty.
We set �(π� p̂) = lim supλ→0 �

λ(π� p̂).
We know from the main paper that the equilibrium value of β vanishes as λ→ 0, hence

the case β = 0 will have specific importance. In what follows, when we drop β from the
notation, it means that β= 0.
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The first result provides necessary conditions on elements of �(π� p̂). For this purpose,
we set

p∗
0(α�π) := − logφ0(α�π)

logφ1(α�π) − logφ0(α�π)
�

and

pmax
1 (α�π) = max

x

∑
i∈Z

ψ1

(
gi1(x|α�π)

)
∑
i∈Z

ψ1

(
gi1(x|α�π)

) +
∑
i∈Z

ψ2

(
gi1(x|α�π)

) �

pmin
1 (α�π) = min

x

∑
i∈Z

ψ1

(
gi1(x|α�π)

)
∑
i∈Z

ψ1

(
gi1(x|α�π)

) +
∑
i∈Z

ψ2

(
gi1(x|α�π)

) �

THEOREM F.1: For each (α�β�p0�p1) ∈ �(π� p̂), we have β = 0, and one of P1 or P2
holds.

P1 pmax
1 (α�π) and pmin

1 (α�π) are well-defined (i.e., the sums
∑

i∈Zψk(gi1(x|α�π)) are con-
vergent and bounded), p0 = min(p∗

0(α�π)�1 − p̂), and either:
1. α ∈ (−1�0) and p̂ ∈ (pmin

1 (α;π)�pmax
1 (α;π)),

2. α= 0 and 1 − p̂≤ pmax
1 (0;π) and pmin

1 (0�π) ≤ p̂,
3. α ∈ (0�1) and p̂ ∈ (1 −pmax

1 (α;π)�1 −pmin
1 (α;π)), or

P2 α= 1 − 1
3π and p0 = p1 = 1 − p̂.

We are not able to disprove the existence of the second type of equilibrium (α= 1− 1
3π ).

However, any such (limit) equilibrium has welfare equal to p̂, since p0 = 1 − p̂.
We will focus on the first type of equilibrium. For each π, we let

�∗(π� p̂) =
{
p0 : there exists α< 1 − 1

3π
�β�p1 st. (α�β�p0�p1) ∈ �(π� p̂)

}
�

We have the following corollary to Theorem F.1.

COROLLARY F.1: Let π > 1
2 , p̂ ∈ ( 1

2 �π), and p0 ∈ �∗(π� p̂) be given. Then p0 =
min(p∗

0(α�π)�1 − p̂) for some α such that either:
1. α < 0 and p̂ ∈ (pmin

1 (α;π)�pmax
1 (α;π)), or

2. α= 0 and p̂≥ max(pmin
1 (0;π)�1 −pmax

1 (0;π)), or
3. α > 0 and p̂ ∈ (1 −pmax

1 (α�π)�1 −pmin
1 (α�π)).

The second result is about sufficient conditions on elements of �∗(π� p̂).

THEOREM F.2: Let π > 1
2 and p̂ ∈ ( 1

2 �π) be given. Let −1 ≤ α0 ≤ α1 ≤ 1 be s.t. that one
of C1, C2, or C3 below holds. Then there is α ∈ [α0�α1] such that min(p∗

0(α�π)�1 − p̂) ∈
�∗(π� p̂).

C1 : α0�α1 < 0 and p̂ ∈ (mini pmax
1 (αi�π)�maxpmin

1 (αi�π)),
C2 : α0 = α1 = 0 and p̂ >max(pmax

1 (0�π)�1 −pmin
1 (0�π)), or

C3 : 0<α0�α1 < 1 − 1
3π and p̂ ∈ (1 − maxi pmin

1 (α�π)�1 − mini pmax
1 (αi�π)).
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F.2. Proofs

F.2.1. Preliminary Remarks

The consensus theorem (Theorem 2 from the paper) implies that, as λ→ 0, the distri-
bution of population states converges to the uniform distribution on {0�1}. We list a few
implications for equilibrium strategies (αλ�βλ):

• limλ→0 F
λ
0 (x) + Fλ1 (x) = 1

2 for each x ∈ (0�1), and limλ→0p
λ
0 (αλ�βλ;π) =

limλ→0
Fλ1 (x)

Fλ0 (x)+Fλ1 (x)
,

• lim supφ0(αλ�π) ≤ 1 ≤ lim infφ1(α�π).
Below, we collectively refer to these implications as “the consensus theorem.” Because
of the existence results, the proofs of Theorems F.1 and F.2 consider only strategies that
satisfy the consensus theorem.

F.2.2. Beliefs at Sample k= 0

LEMMA F.1: Let (αλ�βλ)λ be any strategy indexed by λ. Suppose that βλ → 0 and
lim infλ→0φ1(αλ�π) > 1. Then

lim sup
λ→0

pλ0
(
αλ�βλ�π

) ≤ lim supp∗
0

(
αλ�π

)
�

PROOF: Fix α as a cluster point of sequence αλ. For the most part of the proof, we fix λ
and consider transitions gθ and distributions Fθ associated with (αλ�βλ). In the last line,
we take limits over λ.

First, we show that for each ε > 0, there exists δ > 0 and m�n such that n
m

≤ (1 +
ε) p∗

0 (α�π)
1−p∗

0 (α�π) and hn1 (x) ≤ gm0 (x) for each x ∈ (0� δ) (where h1 is the generalized inverse of
g1, see the Appendix to the paper). For some ε′ > 0 to be determined later, let φθ =
(1 − ε′)φθ(α�π). Find δ such that for each x ∈ (0� δ),

gθ(x) ≥ βπθ +φθx≥φθx�
Then, for each m�n such that gn1 (gm0 (x)) ∈ (0� δ), we have

gn1
(
gm0 (x)

) ≥φn1φm0 x�
Choose n so that

n− 1 ≤m2ε′ − logφ0(α�π)
logφ1(α�π) − 2ε′ ≤ n�

Then φn1φ
m
0 ≥ 1, which implies that hn1 (x) ≤ gm0 (x). Moreover, for ε′ sufficiently small and

m sufficiently large,

n

m
≤ 2ε′ − logφ0(α�π)

logφ1(α�π) − 2ε′ + 1
m

≤ (1 + ε)
p∗

0(α�π)
1 −p∗

0(α�π)
�

Next, fix x ∈ (0� δ). By recursively applying stationary distribution equations, we obtain

F0(x) − F0

(
hn1 (x)

) ≥ F0(x) − F0

(
gm0 (x)

)
=

m−1∑
i=0

(
F0

(
gi0(x)

) − F0

(
gi+1

0 (x)
))
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= λ
m−1∑
i=0

(
F0

(
gi0(x)

) − F1

(
h1

(
gi+1

0 (x)
)))

≥ λm(
F0

(
gm−1

0 (x)
) − F1

(
h1

(
g0(x)

)))
�

Also,

F1(x) − F1

(
hn1 (x)

) =
n−1∑
i=0

(
F1

(
hi1(x)

) − F1

(
hi+1

1 (x)
))

= λ
n−1∑
i=0

(
F0

(
h0

(
hi1(x)

)) − F1

(
hi+1

1 (x)
))

≤ λn(F0

(
h0(x)

) − F1

(
hn1 (x)

))
�

Hence,

F1(x) − F1

(
hn1 (x)

) − (1 + ε)
p∗

0(α�π)
1 −p∗

0(α�π)
(
F0(x) − F0

(
hn1 (x)

))
≤ F1(x) − F1

(
hn1 (x)

) − n

m

(
F0(x) − F0

(
hn1 (x)

))
≤ λn[F0

(
h0(x)

) − F0

(
gm−1

0 (x)
) + F1(x) − F1

(
hn1 (x)

)]
�

Define a sequence x0 = x and xk = hn1 (xk−1). Adding up the above formula for x= xk
across all k≥ 0, using the fact that Fθ(0) = 0 and that h0(xk) ≤ gm−1

0 (xk−1), we get

F1(x) − (1 + ε)
p∗

0(α�π)
1 −p∗

0(α�π)
F0(x) ≤ λn(F0

(
h0(x)

) + F1(x)
)
�

In the limit λ→ 0, we get

F1(x) ≤ (1 + ε)
p∗

0(α�π)
1 −p∗

0(α�π)
F0(x)�

By the consensus theorem, we get

lim sup
λ→0

pλ0
(
α�βλ�π

) = lim
x→0

lim sup
λ→0

F1(x)
F0(x) + F1(x)

≤ (1 + ε)
p∗

0(α�π)
1 + εp∗

0(α�π)
�

Because ε > 0 is arbitrary, the result follows. Q.E.D.

LEMMA F.2: Let (αλ�0)λ be indexed by λ. If limλ→0φ1(αλ�π) > 1, then
limλ→0p

λ
0 (αλ�π) = limλ→0p

∗
0(αλ�π).

PROOF: Suppose that αλ → α such thatφ1(α�π) > 1. Given Lemma F.1, it is enough to
show that lim infλ→0p

λ
0 (αλ�π) ≥ p∗

0(α�π). Additionally, given Lemma F.1, it is enough to
assume that p∗

0(α�π) > 0, or thatφ0(α�π) > 0. The argument is analogous to the proof of
Lemma F.1. We present it here for the sake of completeness. First, we show that for each
ε > 0, there exists δ > 0 and m�n, such that n

m
≥ (1 − ε) p∗

0 (α�π)
1−p∗

0 (α�π) and hn1 (x) ≥ gm0 (x) for
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each x ∈ (0� δ). For some ε′ > 0 to be determined later, let φk = (1 + ε′)φk(α�π). Find
δ such that gk(x) ≤ φkx for each x ∈ (0� δ). Then, for each m�n such that gn1 (gm0 (x)) ∈
(0� δ), we have

gn1
(
gm0 (x)

) ≤φn1φm0 x�
Choose n so that

n≤m−2ε′ − logφ0(α�π)
logφ1(α�π) + 2ε′ ≤ n+ 1�

Then φn1φ
m
0 ≤ 1, which implies that hn1 (x) ≥ gm0 (x). Moreover, for ε′ sufficiently small and

m sufficiently large,

n

m
≥ 2ε′ − logφ0(α�π)

logφ1(α�π) − 2ε′ − 1
m

≥ (1 − ε)
p∗

0(α�π)
1 −p∗

0(α�π)
�

Next, fix x ∈ (0� δ). By recursively applying stationary distribution equations, we obtain

F0(x) − F0

(
gm0 (x)

) =
m−1∑
i=0

(
F0

(
gi0(x)

) − F0

(
gi+1

0 (x)
))

= λ
m−1∑
i=0

(
F0

(
gi0(x)

) − F1

(
h1

(
gi+1

0 (x)
)))

≤ λm(
F0(x) − F1

(
h1

(
gm0 (x)

)))
�

Also,

F1(x) − F1

(
gm0 (x)

) ≥ F1(x) − F1

(
hn1 (x)

)
=

n−1∑
i=0

(
F1

(
hi1(x)

) − F1

(
hi+1

1 (x)
))

= λ
n−1∑
i=0

(
F0

(
h0

(
hi1(x)

)) − F1

(
hi+1

1 (x)
))

≥ λn(F0

(
h0

(
hn−1

1 (x)
)) − F1

(
h1(x)

))
≥ λn(F0

(
gm0 (x)

) − F1

(
h1(x)

))
due to gm0 (x) ≤ hn1 (x) ≤ h0(hn−1

1 (x)). Hence,

(1 − ε)
p∗

0(α�π)
1 −p∗

0(α�π)
(
F0(x) − F0

(
gm0 (x)

)) − (
F1(x) − F1

(
gm0 (x)

))
≤ n

m

(
F0(x) − F0

(
gm0 (x)

)) − (
F1(x) − F1

(
gm0 (x)

))
≤ λn[F0(x) − F1

(
h1

(
gm0 (x)

)) − (
F0

(
gm0 (x)

) − F1

(
h1(x)

))]
≤ λn[F0(x) − F0

(
gm0 (x)

) + F1

(
h1(x)

) − F1

(
h1

(
gm0 (x)

))]
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Adding up across x0 = x and xk = gm0 (xk−1) for all values of k ≥ 0, and using the fact
that h0(xk) = gm−1

0 (xk−1), we get

F1(x) − (1 − ε)
p∗

0(α�π)
1 −p∗

0(α�π)
F0(x) ≥ −λn(F0(x) + F1

(
h1(x)

))
�

In the limit λ→ 0, we get

F1(x) ≥ (1 − ε)
p∗

0(α�π)
1 −p∗

0(α�π)
F0(x)�

By the consensus theorem, we get

lim sup
λ→0

pλ0
(
αλ�π

) = lim
x→0

lim sup
λ→0

F0(x)
F0(x) + F1(x)

≥ (1 − ε)
p∗

0(α�π)
1 + εp∗

0(α�π)
�

Because ε > 0 is arbitrary, the result follows. Q.E.D.

LEMMA F.3: Suppose that αλ → α and φ1(α�π) > 1. For each p̂ such that 1 −
p̂ < limλ p

∗
0(αλ�π), there exists βλ such that (i) limλ→0β

λλ−k = 0 for each k, and (ii)
pλ0 (αλ�βλ�π) = 1 − p̂ for each sufficiently small λ. Moreover, if βλ is a sequence such that
pλ0 (αλ�βλ�π) = 1 − p̂ as λ→ 0, then limλ→0β

λλk = 0.

PROOF: An argument identical to the one used in Lemma C.4 shows that if
lim supλ β

λλ−k > 0, then limλ→0p
λ
0 (α�βλ�π) = 0. Given the second part of Lemma F.2,

the existence of a sequence βλ such that limλ→0β
λλ−k = 0 and pλ0 (α�βλ�π) = 1 − p̂ fol-

lows by continuity. Q.E.D.

REMARK F.2: For each α ∈ [−1�1], let

Bλ(α; p̂�π) =
{

{0} pλ0 (α�0�π) < 1 − p̂�{
β : pλ0 (α�β�π) = 1 − p̂}

otherwise�

The definition implies that if β ∈ Bλ(α; p̂�π), then the strategy (α�β) ∈ [−1�1] × [0�1] is
a best response (to the stationary distribution induced by itself) at sample k= 0.

Clearly, Bλ(α; p̂�π) is upper hemicontinuous. The continuity and the proof of
Lemma F.3 implies that, if αλ → α and φ1(α�π) > 1, then Bλ(αλ; p̂�π) 	= ∅ for λ suf-
ficiently small, and limβλλ−k = 0 for each βλ ∈ Bλ(αλ� p̂�π).

F.2.3. Beliefs at Sample k= 1

LEMMA F.4: Let (αλ�βλ)λ be an arbitrary strategy indexed by λ.
Assume lim infλ→0φ1(αλ�π) > 1 and limλ→0β

λλ4 = 0.
If lim supλ→0φ0(αλ�π) < 1, then pmin

1 (α�π) and pmax
1 (α�π) are well-defined and

pmin
1 (α�π) ≤ lim inf

λ
pλ1

(
α�βλ�π

) ≤ lim sup
λ

pλ1
(
α�βλ�π

) ≤ pmax
1 (α�π)�

If lim supλ→0φ0(αλ�π) = 1, then

0 = limp1

(
α�βλ�π

) = pmax
1 (α�π) = 0�
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PROOF: The proof of the first part follows the same argument as in the proof of Propo-
sition 2 from the paper (note, in particular, that the proof of Lemma A.1 applies verbatim).
Suppose now that φ0(αλ�π) ≤ 1 and limλ→0φ0(αλ�π) = 1. Following the same ideas as
in the proof of Proposition 2, it is enough to show that, for each ε > 0,

lim
λ→0

1
λ

∫ ε

0
xdF0

(
x;αλ�βλ�π) = +∞�

Using the stationarity equations, we get

1
λ

∫ ε

0
xdF0

(
x;αλ�βλ�π) ≥ 1

λ

∑
i≥0

gi+1
0 (ε)

[
F0

(
gi0(ε)

) − F0

(
gi+1

0 (ε)
)]

≥
∑
i≥0

gi+1
0 (ε)

[
F0

(
gi0(ε)

) − F1

(
h1

(
gi+1

0 (ε)
))]
�

Because of Lemma F.2, as λ→ 0, for each x > 0, F0(x) → 1, and F1(x) → 0. Hence, the
above is not smaller than

lim inf
λ

∑
i≥0

ḡi+1
0 (ε)�

where ḡ0(x) := limλ→0 g0(x). Using limλ→0φ0(αλ�π) = 3((1 − |α|)π0 + max(0�−α)) = 1,
we get

ḡ0(x) = x3 + 3x2(1 − x)
((

1 − |α|)π0 + max(0�α)
)

+ 3x(1 − x)2
((

1 − |α|)π0 + max(0�−α)
)

= xφ0(α�π) − x2
(
6
((

1 − |α|)π0 + max(0�−α)
)

− 3
[(

1 − |α|)π0 + max(0�α)
]) + o(x2

)
= xφ0(α�π) − x2

(
φ0(α�π) − 3

[
max(0�α) − max(0�−α)

]) + o(x2
)

= x− x2(1 − 3α) + o(x2
)
�

Let c = 2(1 − 3α). Then, for sufficiently small x,

ḡ0(x) ≥ x− cx2�

Find indexes ik = min{i : g∗i
0 (x) ≤ 1

2k
ε}. For sufficiently small ε > 0, we have 1 − cε ≥ 3

4 ,
and

2
3

≥
1

2k+1ε

1
2k
ε(1 − cε)

≥ ḡ
ik+1
0 (ε)

ḡ
ik
0 (ε)

≥ (
1 − cḡik0 (ε)

)ik+1−ik �

Hence,

∑
i≥0

ḡi+1
0 (ε) =

∞∑
k=0

ik+1−1∑
i=ik

ḡi0(ε) ≥
∞∑
k=0

1 − (
1 − cḡik0 (ε)

)ik+1−ik

1 − (
1 − cḡik0 (ε)

) ḡ
ik
0 (ε)
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≥
∞∑
k=0

1
3

cḡ
ik
0 (ε)

ḡ
ik
0 (ε) =

∞∑
k=0

1
3c

= +∞�

and the series is unbounded. Q.E.D.

F.2.4. Proof of Theorem F.1

Suppose that (α�β�p0�p1) = lim(αλ�βλ�p0(αλ�βλ;π)�p1(αλ�βλ;π)) ∈ �(π� p̂) for
some (αλ�βλ�p0(αλ�βλ;π)�p1(αλ�βλ;π)) ∈ �λ(π� p̂).

The consensus theorem implies that β = 0, p0 ≤ 1 − p̂, and φ0(α�π) ≤ 1 ≤ φ1(α�π).
We have:

• φ0(α�π) ≤ 1 implies that

α≥ αmin(π) :=

⎧⎪⎨
⎪⎩

1 − 1
3(1 −π)

π <
2
3
�

2
3π

− 1 π ≥ 2
3
�

which further implies that α>−1,
• φ1(α�π) ≥ 1 implies that α≤ αmax(π) = 1 − 1

3π , which further implies that α< 1,
Consider the case when φ1(α�π) > 1. Lemmas F.1 and F.2 imply that either βλ = 0 for
sufficiently small λ and p0 = p∗

0(α�π) ≤ 1 − p̂, or p0 = 1 − p̂ ≤ p∗
0(α�π). Hence, p0 =

min(1 − p̂�p∗
0(α�π)). The equilibrium conditions imply that⎧⎪⎨

⎪⎩
α ∈ (−1�0) if p1 = 1 − p̂�
α= 0 if p1 ∈ [1 − p̂� p̂]�
α ∈ (0�1) if p1 = p̂�

Additionally, Lemma F.4 implies that

pmin
1 (α�π) ≤ p1 ≤ pmax

1 (α�π)�

These observations imply the characterization from the theorem.

F.2.5. Proof of Theorem F.2

Let Bλ(α� p̂�π) sets be defined as in Remark F.2. We consider the three cases sepa-
rately.

C1 The assumptions, Lemma F.4, and continuity (including Remark F.1) imply that,
for sufficiently low λ, there exist αλ ∈ (α0�α1) and βλ ∈ B(αλ� p̂�π) such that
pλ1 (αλ�βλ�π) = 1 − p̂. Due to the definition of sets Bλ(αλ� p̂�π), the strategy αλ�βλ
is an equilibrium for sufficiently low λ. By Lemma F.2 and the construction, the limit
beliefs at sample k= 0 are equal to limpλ0 (αλ�βλ�π) = min(p∗

0(α�π)�1 − p̂).
C2 Let βλ ∈ Bλ(0� p̂�π). Lemma F.4 implies that limpλ1 (0�βλ�π) = p∗

1(0�π) ∈ (1 −
p̂� p̂). Hence, strategy σ (0�βλ) is an equilibrium strategy for each sufficiently low
λ. By Lemma F.2, the limit beliefs at sample k = 0 are equal to limpλ0 (0�βλ�π) =
min(p∗

0(0�π)�1 − p̂).
C3 The same proof as in case (1).
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TABLE F.I

PARAMETER VALUES

Parameter Name Value

first_pi 0�51
n_pis 200

n_alphas 200
n_xs 101

phat_step 0.0001
δ 0�001
ε 0.0001

F.3. Numerical Computations

The code generates the set (a grid) of (π� p̂�p0) that satisfy conditions of Corollary F.1
and Theorem F.2. The code can be found at https://github.com/marcinpeski/Python—
Stationary-learning-simulation.

F.3.1. Generate beliefs.py

The purpose of this script is to generate numerical approximations to the set of all tu-
ples (π�α�p∗

0(α�π)�pmin
1 (α�π)�pmax

1 (α�π)) where σ (α�0) is a possible limit of an equi-
librium strategy (which means that φ0(α�π) < 1�φ1(α�π) > 1, and g1(x|α�π) > x for all
x. We take the following parameters (Table F.I).

The script relies on the following functions:
1. generate_alphas: Generate set of potential (α�π) equilibrium pairs S:

(a) Generate set generate a grid of no_pis πs between first_pi and 1,
(b) for each π in the grid, generate a grid of no_alphas αs between αmin(π) + δ

and αmax(π) − δ,
(c) for each π and α, let n(α�π) be the first iteration such that gn1 (ε|α�π) ≥ 1 − ε.

For some αs, such n does not exist (e.g., if g1(x|α�π) = x for some x.) We drop
αs such that for some x ∈ (ε�1 − ε), g1(x|α�π) − x≤ 0�001ε.

2. compute_beliefs_for_alpha: For all (α�π) ∈ S, compute beliefs p̄0(α�π) and the
range [ ¯pmin

1 (α�π)� ¯pmin
1 (α�π)]

(a) find a grid of n_xs xs between ε and g1(ε|α�π),
(b) For each x in the grid, compute Ak(x) = ∑n(α�π)−1

i=0 ψk(x)gi1(x|α�π),
(c) compute beliefs p̄0(α�π) = p∗

0(α�π), and ¯pmin
1 (α�π) = minx

A1(x)
A1(x)+A2(x) �

¯pmax
1 (α�π) = maxx

A1(x)
A1(x)+A2(x) .

The numerical computations show that for all α�π in set S,

1 × 10−6 ≤ ¯pmax
1 (α�π) − ¯pmin

1 (α�π) ≤ 1 × 10−3�

F.3.2. Figure F.1 superset.py

Let S∗ be the set of pairs of (α�π) ∈ S such that either:
1. α< 0, pmax(α�π) > 1

2 and pmin(α�π) ≤ π, or
2. α= 0, pmin(α�π) ≤ 1

2 , or
3. α> 0, pmin(α�π) ≤ 1

2 and pmax(α�π) ≥ 1 −π.
File Figure F.1 superset.py draws Figure F.1. Its heart is function generate_equilibria,
which uses set S to generate correspondence �∗:

https://github.com/marcinpeski/Python---Stationary-learning-simulation
https://github.com/marcinpeski/Python---Stationary-learning-simulation
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1. First, restrict set S to the set S∗ of tuples (α�π) ∈ S such that either:
(a) α< 0 and pmax(α�π) > 1

2 and pmin(α�π) ≤ π, or
(b) α= 0, max(pmin(α�π)�1 −pmax(α�π)) ≤ π, or
(c) α> 0, pmin(α�π) ≤ 1

2 and 1 −pmax(α�π) ≤ π,
2. Next, in each of the three cases, identify the range of p̂ that are consistent with

Corollary F.1. We also classify a profile with a label X that describes qualitative
behavior at sample k= 1,:
(a) p̂ ∈ [max( 1

2 �p
min(α�π))�min(pmax(α�π)�π)], label X = “−�′′ which corre-

sponds to a contrarian behavior when information is not acquired,
(b) p̂ ∈ [max(pmin(α�π)�1 − pmax(α�π))�π], label X = “0�′′ which corresponds to

always acquiring information,
(c) p̂ ∈ [max( 1

2 �1 −pmax(α�π))�min(1 −pmin(α�π)�π)], labelX = “+�′′ which cor-
responds to a regular behavior when information is not acquired.

We denote the interval boundaries as p̂min(α�π)� p̂max(α�π). Label X where
X = “ − .”

3. For each (α�π) ∈ S∗, find a grid P(α�π) of p̂ ∈ [p̂min(α�π)� p̂max(α�π)] separated
by phat_step. For each p̂ ∈ P(α�π), compute u(α�π� p̂) = min(p∗

0(α�π)�1 − p̂)
and associate it with a label Y that describes qualitative behavior at sample k= 0:
(a) label Y = 0 if p∗

0(α�π) < 1 − p̂, which corresponds to never acquiring informa-
tion, and

(b) label Y = “A′′ if p∗
0(α�π) ≥ 1 − p̂, which corresponds to sometimes acquiring

information.
Set �∗consists of tuples (π� p̂�u(α�π� p̂)) for all (α�π) ∈ S∗ and p̂ ∈ P(α�π). This set is
drawn on the left panel of Figure F.1, with label Y illustrated with two colors and label
Xwith hatching pattern.

APPENDIX G: THE CASE n= 3: TIGHTER BOUNDS FOR THEOREM 3

For n= 3, we here show that the conclusion of Theorem 3 holds whenever n2π(1−π) <
1 and c is small: under these conditions, there is an equilibrium with welfare p̂ in which all
agents acquire information with strictly positive probability, irrespective of their sample.
This follows from the proof of Theorem 3, and from the result below, where l(p) := p

1−p .

PROPOSITION G.1: If π is such that 32π(1 −π) < 1 and c is small, one has

l(1 − p̂) < inf
(xi)i∈Z

∑
i∈Z

ψ2(xi)

∑
i∈Z

ψ1(xi)
≤ sup

(xi)i∈Z

∑
i∈Z

ψ2(xi)

∑
i∈Z

ψ1(xi)
< l(p̂)�

where the infimum and supremum are taken over all (doubly infinite) orbits of ḡ1.

We stress that we make no attempt below at getting optimal bounds. Irrespective of
π, the proof works as long as p̂ ≥ 0�85. Numerical results suggest that the result holds
whenever p̂≥ 0�6.

PROOF: The assumption on π implies π ≥ 0�87. We fix p̂ s.t. 0�85 ≤ p̂ < π.
We recall that ḡ1(x) = π + x3(1 −π) − (1 − x)3π, and that ψk(x) = xk(1 − x)n−k.



14 R. LEVY, M. PĘSKI, AND N. VIEILLE

Let (xi) be an orbit of ḡ1 and set

i0 := max{i : xi ≤ 1 − p̂} and i1 := min{i : xi ≥ p̂}�

We list an number of elementary observations, which we later combine to deliver the
proof, and next prove the upper and lower bounds in turn. Q.E.D.

Preliminary observations
O.1 : ḡ′

1(x) = 3{x2(1 −π) + (1 − x)2π} is convex with a minimum at π. Note also that,
viewed as a function of π, ḡ1 is increasing. The inequality ḡ1( 5

11 ) < 0�84 holds for
π = 1, hence for all π. This implies that ḡ1( 5

11 ) < p̂ irrespective of p̂ and π, hence
xi1−1 >

5
11 .

O.2 : If r > R> 1 and (yi)i∈Z are such that ryi ≤ yi+1 ≤Ryi for each i < h, then

R

R− 1
yh ≤

∑
i≤h
yi ≤ r

r − 1
yh�

O.3 : Since ḡ′
1 is decreasing on [0�1 − p̂] (see O.1) and ḡ1(0) = 0, one has

ḡ′
1(1 − p̂)xi ≤ xi+1 ≤ ḡ′

1(0)xi for each i < i0�

hence by O.2,

ḡ′
1(0)xi0

ḡ′
1(0) − 1

≤
∑
i≤i0
xi ≤ ḡ′

1(1 − p̂)xi0
ḡ′

1(1 − p̂) − 1
�

Since 1 − p̂≤ xi0+1 ≤ ḡ′
1(0)xi0 and xi0 ≤ 1 − p̂, this yields

(1 − p̂)
ḡ′

1(0) − 1
≤

∑
i≤i0
xi ≤ ḡ′

1(1 − p̂)(1 − p̂)
ḡ′

1(1 − p̂) − 1
(G.1)

O.4 : For i≥ i1 and since ḡ1(1) = 1, one has(
min
[p̂�1]

ḡ′
1

)
× (1 − xi) ≤ 1 − xi+1 ≤

(
max
[p̂�1]

ḡ′
1

)
× (1 − xi)�

By O.1, this rewrites ḡ′
1(π)(1 − xi) ≤ 1 − xi+1 ≤ G(p̂)(1 − xi), where G(p̂) :=

max(ḡ′
1(p̂)� ḡ′

1(1)). Since 1 − xi1 ≤ 1 − p̂≤ 1 − xi1−1, one gets

∑
i≥i1

(1 − xi) ≤ 1 − xi1
1 −G(p̂)

≤ 1 − p̂
1 −G(p̂)

(G.2)

and ∑
i>i1

(1 − xi) ≥ 1 − xi1−1

1 − ḡ′
1(π)

≥ 1 − p̂
1 − ḡ′

1(π)
� (G.3)

O.5 : ψ2 is single-peaked with a maximum at 2
3 .

O.6 : For i≤ i0, p̂2xi ≤ψ1(xi) ≤ xi and ψ2(xi) ≤ x2
i .
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O.7 : For i≥ i1, one hasψ2(xi1−1) ≥ min(ψ2( 5
11 )�ψ2(p̂)), using O.5 and xi1−1 >

5
11 . Since

ψ2(0�85) <ψ2( 5
11 ) and p̂≥ 0�85, one has ψ2(p̂) <ψ2( 5

11 ), so that

ψ2(xi1−1) >ψ2(p̂)� (G.4)

The upper bound
We set N0 := ∑i1−1

i=i0+1ψ2(xi), D0 := ∑i1−1
i=i0+1ψ1(xi), N1 := ∑

i≤i0 ψ2(xi), D1 :=∑
i≤i0 ψ1(xi), N2 := ∑

i≥i1 ψ2(xi), and D2 := ∑
i≥i1 ψ1(xi), so that

R :=

∑
i∈Z

ψ2(xi)

∑
i∈Z

ψ1(xi)
= N0 +N1 +N2

D0 +D1 +D2
�

We prove that N0+N1+N2
D0+D1

< l(p̂).

• N0
D0

. For i0 < i < i1, one has xi < p̂, hence ψ2(xi)
ψ1(xi)

= l(xi) < l(p̂).

• N1
D1

. For i≤ i0, one has xi ≤ 1 − p̂, hence ψ2(xi)
ψ1(xi)

= l(xi) ≤ l(1 − p̂).
• N2

D1
. For i≥ i1, ψ2(xi) ≤ 1 − xi. For i≤ i0, ψ1(xi) ≥ p̂2xi (O.6), hence

N2

D1
≤ 1
p̂2 ×

∑
i≥i1

(1 − xi)
∑
i≤i0
xi

<
1
p̂2 × ḡ′

1(0) − 1
1 −G(p̂)

:=H(p̂)� (G.5)

It follows that
N0 +N1 +N2

D0 +D1
<max

(
l(p̂)� l(1 − p̂) +H(p̂)

)
The claim below concludes the proof of the upper bound.

CLAIM G.1: One has l(1 − p̂) +H(p̂) < l(p̂).

PROOF: H(p̂) = 1
p̂2 × max( 3π−1

1−ḡ′
1(1) �

3π−1
1−ḡ′

1(p̂) ). For fixed p̂, the quantity 3π−1
1−ḡ′

1(1) is decreasing

in π while 3π−1
1−ḡ′

1(p̂) is increasing in π. Therefore,

H(p̂) ≤ 1
p̂2 × max

(
3p̂− 1
3p̂− 2

�
2

1 − (1 − p̂)2

)
�

The result then follows from simple computations. Q.E.D.

The lower bound
We set Ñ0 := ∑i1−2

i=i0+1ψ2(xi) and D̃0 := ∑i1−2
i=i0+1ψ1(xi), so that

R :=

∑
i∈Z

ψ2(xi)

∑
i∈Z

ψ1(xi)
= Ñ0 +ψ2(xi1−1) +N1 +N2

D̃0 +ψ1(xi1−1) +D1 +D2

�
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We prove that
Ñ0+ψ2(xi1−1)+N2

D̃0+ψ1(xi1−1)+D1+D2
> l(1 − p̂) (ignoring Ñ0 and D̃0 if these sums are empty).

• ψ2(xi1−1)

ψ1(xi1−1) = l(xi1−1) ≥ l( 5
11 ) = 5

6 , using O.1.

• N2
D2

. For i≥ i1, ψ2(xi)
ψ1(xi)

= l(xi) ≥ l(p̂)

• Ñ0
D̃0

. For i0 < i < i1 − 1, one has xi > 1 − p̂, hence ψ2(xi)
ψ1(xi)

= l(xi) > l(1 − p̂).

• ψ2(xi1−1)

D1
. By O.7, ψ2(xi1−1) ≥ ψ2(p̂) = p̂2(1 − p̂). On the other hand, D1 ≤ ∑

i≤i0 xi.
Using O.3, this implies

ψ2(xi1−1)
D1

> p̂2 × ḡ′
1(1 − p̂) − 1
ḡ′

1(1 − p̂)
�

Define φ(p∗) by the equality 1
φ(p̂) := 6

5 + ḡ′
1(1−p̂)

p̂2(ḡ′
1(1−p̂)−1) . The last two inequalities imply

ψ2(xi1−1)
ψ1(xi1−1) +D1

≥φ(p̂)�

One obtains

Ñ0 +ψ2(xi1−1) +N2

D̃0 +ψ1(xi1−1) +D1 +D2

>min
(
l(p̂)� l(1 − p̂)�φ(p̂)

)

The result follows from the claim below.

CLAIM G.2: One has φ(p̂) > l(1 − p̂).

PROOF: One needs to prove that

6
5

+ ḡ′
1(1 − p̂)

p̂2
(
ḡ′

1(1 − p̂) − 1
) < l(p̂)�

For fixed p̂, the left-hand side is decreasing in π and, therefore, highest for π = p̂. So,
the claim is equivalent to

6
5

+ 1
p̂2 ×

(
1 + 1

3p̂3 + 3
(
1 − p̂3

) − 1

)
< l(p̂)�

which holds for p̂≥ 0�85. Q.E.D.

APPENDIX H: ENDOGENOUS INFORMATION STRUCTURES

We assume in the baseline version that agents have access to a fixed-information source
at a lumpy cost, but the choice of this source could be endogenized. Assume that agents,
upon seeing their samples, can choose any statistical experiment μ, at a cost C(μ).

Given interim beliefs p, an agent optimally obtains

v(p) = sup
μ

{
pμ1(1) + (1 −p)μ0(0) −C(μ)

}
�
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FIGURE H.1.—The value of information with endogenous information structures.

where μθ(a) is the probability of (optimally choosing) action a in state θ under the
information structure μ. As in the baseline model, there exists p̂ ∈ [ 1

2 �1] such that
v(p) − c > u(p) if and only if p ∈ (1 − p̂� p̂). The central question is whether p̂ < 1
or p̂= 1. The answer depends on the functional C(·).

We follow Pomatto, Strack, and Tamuz (2023), who argue that an experiment μ may
without loss be identified with the probabilities μθ(a) of (optimally choosing) action a in
state θ and use an axiomatic approach, and assume that the cost-of-information functional
is given by C(μ) = κ∑

a∈A�θ∈� μθ(a) ln μθ(a)
μ1−θ(a) , for some κ. With such a functional, we show

that there exists p̂ < 1 such that v(p) = u(p) for each p /∈ [1 − p̂� p̂].
This setup is therefore equivalent to having a single, exogenous source of information

with bounded strength, which is implicitly defined by Figure H.1.4

PROOF: To simplify notation, we set x = μ1(1) and y = μ0(0). Elementary algebra
yields

v(p) = sup
x�y

(
px+ (1 −p)y −C(x� y)

)

= sup
x�y

(
px+ (1 −p)y − κ(x+ y − 1) ln

xy

(1 − x)(1 − y)

)
�

We argue by contradiction and assume that there are interim beliefs arbitrarily close
to 1 such that v(p) > p. For such p, we simply denote by x and y values such that the
expression in the supremum in (H.6) exceeds p.

Since

px+ (1 −p)y −C(x� y) >p (H.1)

for each p, it follows that limp→1 x= 1 and limp→1C(x� y) = 0, which implies limp→1 y = 0.
Up to a subsequence, we may assume that the limit α := limp→1

y

1−x ∈ [0�+∞] exists.
We rewrite (H.1) as

−p+ (1 −p)
y

1 − x − C(x� y)
1 − x > 0� (H.2)

4Figure H.1 assumes κ= 0�3.
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Assume first α ∈ (0�+∞). In that case, C(x� y) ∼p→1 (1 − x)(α− 1) lnα, hence (H.2)
implies in the limit

−1 + (1 − α) lnα≥ 0�

which cannot possibly hold.
Assume next α= 0. Inequality (H.2) implies −p+ (1−p) y

1−x > 0 for p close to 1, which
does not hold.

Assume finally α= +∞. Inequality (H.2) writes

−p+ (1 −p)
y

1 − x −
(

y

1 − x − 1
)(

ln
y

1 − x + ln
x

1 − y
)
> 0�

which does not hold when p is close to 1 and y

1−x is large enough. Q.E.D.

APPENDIX I: ASYMMETRIC VERSIONS

In this section, we drop all symmetry assumptions. Specifically, the invariant probability
of state 1 is p∗ ∈ (0�1), the utility is an arbitrary function u :A×�→ [0�1], and the (un-
conditional) distribution of private beliefs is an arbitrary distribution H ∈ �([0�1]) with
expectation 1

2 , from which the state-conditional distributionsHθ are uniquely determined.
We assume that either signals are costly (c > 0), or that the distribution of beliefs has

bounded precision.

ASSUMPTION I.1: Either c > 0, or H([q� q̄]) = 1 for some 0< q < q̄ < 1.

Assumption I.1 implies the existence of 0< p∗
0 ≤ p∗

1 < 1 such that (for c > 0) informa-
tion acquisition is strictly optimal if and only if p ∈ (p∗

0�p
∗
1) and (for c = 0) signal are

ignored unless p ∈ (p∗
0�p

∗
1). The cutoffs p∗

0 and p∗
1 play the role of 1 − p̂ and p̂, respec-

tively. To rule out trivialities, we assume that p∗
0 < p

∗ <p∗
1. This is a joint assumption on

all primitives of the model.
The notion of an equilibrium steady state in this asymmetric environment is the same

as in the paper, with the symmetry requirement dropped.

I.1. The Consensus Result

THEOREM I.1—Asymptotic consensus: Assume n ≥ 2. There exists a constant K <∞,
depending only on the primitives u(·) and H such that the following holds. For every λ > 0
and every equilibrium steady state (μ�σ), one has∫

�×[0�1]
x(1 − x) dμ(θ�x) ≤Kλ�

PROOF: Set

qmin := 1
2

min
θ

∣∣p∗ −p∗
θ

∣∣ and d := min
[p∗−qmin�p

∗+qmin]
v− u�

Note that d > 0 since v > u on [p∗
0�p

∗
1]. We will prove that

∫
�×[0�1] x(1 − x) dμ(θ�x) ≤

1
qmin d

λ for each equilibrium steady state (μ�σ) of G(λ�ρ), as soon as λ ≤ λ∗ := (1 −
qmin) d.
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Below, we assume λ < λ∗ and we write f (ν) := ∫
[0�1] fdν for each ν ∈ �([0�1]) and

measurable f : �([0�1]) → R. Let an equilibrium steady state (μ�σ) be given, with equi-
librium payoff v∗. Consider a thought experiment in which an agent observes the actions
a(1)� � � � � a(n) in her sample in some random order, and denote by Fm the information
structure induced by the observation of the first m actions. We view Fm as a distribution
over (interim) beliefs, hence Fm ∈ �([0�1]). With these notation, v∗ = v(Fn). Because
more information cannot hurt, we have

v∗ = v(Fn) ≥ · · · ≥ v(F1) and v(Fm) ≥ u(Fm)� (I.1)

We look more closely at the information structures F0�F1, and F2, and introduce some
notation. We denote by ν := ∫

�×[0�1](1 − x) dμ(θ�x) the probability of a(1) = 0, and by
qa = P(θ = 1|a(1) = a) the interim belief when first sampling a ∈A. We also denote by
νa be the conditional probability of next sampling a(2) = 0 given a(1) = a, and by qaa′ :=
P(θ = 1|(a(1)� a(2)) = (a�a′)) the interim belief given the first two actions in the sample.
Using the notation (a1)p1 · · · (ak)pk to describe the finite-support probability distribution
that assigns probability pm to am, we thus have

F0 = (
p∗)1

� (I.2)

F1 = (q0)ν(q1)(1−ν)� (I.3)

F2 = (q00)νν0 (q01)ν(1−ν0) (q10)(1−ν)ν1 (q11)(1−ν)(1−ν1)� (I.4)

Because a(1) and a(2) are exchangeable, we have

q01 = q10 and ν(1 − ν0) = (1 − ν)ν1�

By the martingale property of beliefs, the expected belief in all three information struc-
tures is the same and equal to

p∗ = νq0 + (1 − ν)q1 = νν0q00 + 2ν(1 − ν0)q01 + (1 − ν)(1 − ν1)q11� (I.5)

The result relies on the fundamental observation below.

LEMMA I.1: One has v∗ − λ≤ u(F1).

PROOF: Consider a strategy of observing and replicating a(1). The payoff from such a
strategy is u(F1). On the other hand, apart from the possibility that the state has changed
since the sampled individual took her action, the payoff from such a strategy is equal to
the payoff of the sampled individual. The probability that the state has changed is equal
to λ. But the expected payoff of the sampled individual is equal to v∗. Q.E.D.

Together with (I.1), Lemma I.1 readily implies

v(F1) − u(F1) ≤ λ and v(F2) − v(F1) ≤ λ� (I.6)

For concreteness, we assume below that q10 ≥ p∗.5 Also, notice that q1 > q0—this holds
since θ and a are positively correlated in any equilibrium steady state, and since states are
persistent.

5This is w.l.o.g., since the argument below has a flip side otherwise.
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LEMMA I.2: One has ν�1 − ν ≥ qmin.

PROOF: We prove that ν ≥ qmin. A similar argument shows that 1 − ν ≥ qmin. Thanks to
(I.5), one has

ν = q1 −p∗

q1 − q0
� (I.7)

We argue by contradiction: if ν ≤ qmin, (I.7) implies that q1 −p∗ ≤ qmin, or q1 ≤ p∗ + qmin.
Using (I.6), it follows that

λ ≥ v(F1) − u(F1)

= ν
[
v(q0) − u(q0)

] + (1 − ν)
[
v(q1) − u(q1)

]
≥ (1 − ν)

[
v(q1) − u(q1)

] ≥ (1 − qmin) d = λ∗�

where the last inequality follows from the choice of d, since p∗ ≤ q1 ≤ p∗ + qmin. This
contradicts the assumption λ < λ∗. Q.E.D.

We collect two consequences in the claim below. In this statement, κ : [0�1] → R is a
tangent line to u at p= q0, that is, κ(·) is affine, with κ≤ u and κ(q0) = u(q0). Note that
κ≤ v since u≤ v.

CLAIM I.1: One has v(q01) − κ(q01) ≥ d and v(q0) ≤ κ(q0) + 1
qmin
λ.

PROOF OF THE CLAIM: Start with the first inequality and note first that q0 ≤ q1 implies
q0 ≤ p∗ since p∗ is an average of q0 and of q1. Therefore, q0 ≤ p∗ ≤ q01. Since κ≤ u≤ v,
and by convexity of v, v − κ is nondecreasing on [q0�1]. In particular, v(q01) − κ(q01) ≥
v(p∗) − κ(p∗) ≥ v(p∗) − u(p∗) ≥ d, where the last inequality follows from the definition
of d.

The second inequality follows from (I.6) and Lemma I.2. Indeed,

λ ≥ v(F1) − u(F1)

= ν
[
v(q0) − u(q0)

] + (1 − ν)
[
v(q1) − u(q1)

]
�

≥ qmin

[
v(q0) − u(q0)

] = qmin

[
v(q0) − κ(q0)

]
� Q.E.D.

We are now in a position to conclude. Starting from (I.6), one has the following se-
quence of inequalities:

λ ≥ v(F2) − v(F1)

= Eμ

[
v(qa(1)a(2) ) − v(q(a1))

]
≥ P

(
a(1) = 0

)
E
[
v(qa(1)a(2) ) − v(q(a1))|a(1) = 0

]
≥ qmin

[
ν0v(q00) + (1 − ν0)v(q10) − v(q0)

]
(I.8)

≥ qmin

[
ν0κ(q00) + (1 − ν0)κ(q10) − v(q0)

] + qmin d(1 − ν0) (I.9)

≥ qmin

[
ν0κ(q00) + (1 − ν0)κ(q10) − κ(q0)

] − λ+ (1 − ν0) dqmin (I.10)

≥ −λ+ (1 − ν0) dqmin� (I.11)
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where (I.8) holds since ν ≥ qmin, (I.9) holds since v ≥ κ and v(q01) ≥ κ(q01) + d, (I.10)
holds using Claim I.1, and (I.11) holds since κ is affine, so that

ν0κ(q00) + (1 − ν0)κ(q10) = κ(
ν0q00 + (1 − ν0)q10

) = κ(q0)�

The inequality (I.11) rewrites 1 − ν0 ≤ 2
qmin d

λ. Since

∫
�×[0�1]

x(1 − x) dμ(x) = P
(
a(1) = 0� a(2) = 1

) = ν(1 − ν0)�

the result follows. Q.E.D.

APPENDIX J: SAMPLING FROM THE FURTHER PAST: THE CASE n= 2

Our analysis seamlessly accommodates situations where actions are sampled from the
more distant past. We indicate here how, focusing for concreteness on Proposition 2.
Specifically, assume that, in period t, past actions are each sampled from a random, pos-
sibly different, period t − τ, where the lag τ ≥ 1 follows a geometric distribution with
parameter ρ < 1, and that the vintages t − τ of the sampled actions are unobserved. For
ρ = 1, actions are sampled from the previous period, as in baseline version. In the limit
ρ→ 0, τ is uniformly distributed over the infinite past. This extension bends itself to an
alternative interpretation. Under this equivalent narrative, a fraction ρ of the population
is replaced in each period, agents are long-lived and act (only) when arriving. In such a
extended setup, all our results still hold as stated.

When the vintage of sampled actions is drawn according to a geometric distribution
with parameter ρ (or equivalently, when a fraction ρ of the population is replaced each
period), the analysis of the case n= 2 requires minor adjustments, which we provide here.
The notation is the same as in the main text.

Since agents who observe a balanced sample k= 1 hold the interim belief p1 = 1
2 and

acquire information, the fraction of newborn agents choosing action 1 in period t is

χt := x2
t−1 + 2xt−1(1 − xt1 )φθt �

Hence, the fraction xt of the period t population playing action 1 is given by

xt =
∑
m≥1

ρ(1 − ρ)m−1χt+1−m = (1 − ρ)xt−1 + ρχt�

Putting things together, the sequence (xt) follows the recursive equation:

xt+1 = (1 − ρ)xt + ρ
{
x2
t + 2xt (1 − xt)φθt+1

}
�

Set now φρθ := (1 − ρ) + ρ × 2φθ and observe that φρ0φ
ρ
1 < 1. Indeed, (φρ0�φ

ρ
1) ∈ R2

is a convex combination of (1�1) and of (2φ0�2φ1) and, therefore, lies on the straight
line with equation y0 + y1 = 2. This line is tangent to the (half-)hyperbola C of equation
y0y1 = 1 (y0� y1 > 0) at the point (1�1), and strictly “below” C, except at the point of
tangency. Since ρ > 0, it follows that φρ0φ

ρ
1 < 1.

The rest of the proof is identical.
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