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IN THIS SUPPLEMENTAL APPENDIX, I describe the variance estimators used in the Monte
Carlo experiments reported in the main text. Graham (2020a) and Graham (2020b) both
discussed variance estimation under dyadic dependence and provided references to the
primary literature. Equation numbering continues in sequence with that established in
the main paper.

APPENDIX D: VARIANCE ESTIMATION
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A similar argument gives
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The ‘dense’, Wald-based, confidence intervals whose coverage properties are analyzed by
Monte Carlo are based on the limit distribution for n1/2Sn given in equation (31) of the
main text (with (56), (57), and φn replacing their populating/limiting values). Under dense

asymptotics, it is also the case that �̂n

def≡ Hn(θ̂) converges to, say, �0, without re-scaling by
n. From these two observations, a simple sandwich variance estimator can be constructed
and inference based on the approximation (see, e.g., Graham (2020a)):
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The ‘jackknife’ estimate of �c
1n is
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See, for example, Efron and Stein (1981). Basic manipulation gives
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ŝij�nŝ
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Analogous calculations yield
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The jackknife estimate for V(n1/2Sn) in the dense case is thus
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This suggests the bias-corrected estimate of V(n1/2Sn) equal to
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See Cattaneo, Crump, and Jansson (2014) for a related estimator in the context of density
weighted average derivatives.14

To estimate V(n3/2Sn), as required for sparse network inference, I use n2�̂JK−BC since
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which, under suitable conditions, should be such that
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To estimate �̃0, I use −nHn(θ̂). To ensure that �̂JK−BC
n is positive definite, I threshold

negative eigenvalues as suggested by Cameron and Miller (2014).
The above estimators seem to be obvious places to start based on the prior work on

dyadic clustering surveyed in Graham (2020a) and Graham (2020b). However, exploring
the strengths and weakness of alternative methods of sparse network inference formally
is a topic for future research.
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14Note that n2�̂JK appears to be a conservative estimate of V(n3/2Sn) under sparsity (again see Cattaneo,
Crump, and Jansson (2014) for helpful discussion in a different context).

https://www.e-publications.org/srv/ecta/linkserver/setprefs?rfe_id=urn:sici%2F0012-9682%282024%2992%3A6%2B%3C1%3ASTSNAF%3E2.0.CO%3B2-0
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/CattaneoetalET14&rfe_id=urn:sici%2F0012-9682%282024%2992%3A6%2B%3C1%3ASTSNAF%3E2.0.CO%3B2-0
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/EfronSteinAS81&rfe_id=urn:sici%2F0012-9682%282024%2992%3A6%2B%3C1%3ASTSNAF%3E2.0.CO%3B2-0
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/CattaneoetalET14&rfe_id=urn:sici%2F0012-9682%282024%2992%3A6%2B%3C1%3ASTSNAF%3E2.0.CO%3B2-0
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/EfronSteinAS81&rfe_id=urn:sici%2F0012-9682%282024%2992%3A6%2B%3C1%3ASTSNAF%3E2.0.CO%3B2-0

	Appendix D: Variance Estimation
	References

