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SPARSE NETWORK ASYMPTOTICS FOR LOGISTIC REGRESSION UNDER
POSSIBLE MISSPECIFICATION

BRYAN S. GRAHAM
Department of Economics, University of California—Berkeley

Consider a bipartite network where N consumers choose to buy or not to buy M dif-
ferent products. This paper considers the properties of the logit fit of the N ×M array
of “i-buys-j” purchase decisions, Y = [Yij]1≤i≤N�1≤j≤M , onto a vector of known functions
of consumer and product attributes under asymptotic sequences where (i) both N and
M grow large, (ii) the average number of products purchased per consumer is finite in
the limit, (iii) there exists dependence across elements in the same row or same column
of Y (i.e., dyadic dependence), and (iv) the true conditional probability of making a pur-
chase may, or may not, take the assumed logit form. Condition (ii) implies that the lim-
iting network of purchases is sparse: only a vanishing fraction of all possible purchases
are actually made. Under sparse network asymptotics, I show that the parameter index-
ing the logit approximation solves a particular Kullback–Leibler Information Criterion
(KLIC) minimization problem (defined with respect to a certain Poisson population).
This finding provides a simple characterization of the logit pseudo-true parameter un-
der general misspecification (analogous to a (mean squared error (MSE) minimizing)
linear predictor approximation of a general conditional expectation function (CEF)).
With respect to sampling theory, sparseness implies that the first and last terms in an
extended Hoeffding-type variance decomposition of the score of the logit pseudo com-
posite log-likelihood are of equal order. In contrast, under dense network asymptotics,
the last term is asymptotically negligible. Asymptotic normality of the logistic regres-
sion coefficients is shown using a martingale central limit theorem (CLT) for triangular
arrays. Unlike in the dense case, the normality result derived here also holds under
degeneracy of the network graphon. Relatedly, when there “happens to be” no dyadic
dependence in the data set in hand, it specializes to recently derived results on the
behavior of logistic regression with rare events and i.i.d. data. Simulation results sug-
gest that sparse network asymptotics better approximate the finite network distribution
of the logit estimator. A short empirical illustration, and additional calibrated Monte
Carlo experiments, further illustrate the main theoretical ideas.

KEYWORDS: Networks, exchangeable random arrays, dyadic clustering, dyadic re-
gression, sparse networks, logistic regression, rare events, bipartite network, alternative
asymptotics, sparse network asymptotics.

1. INTRODUCTION

LET i = 1� � � � �N INDEX A RANDOM SAMPLE of consumers and j = 1� � � � �M a random
sample of products. For each consumer-product pair ij, we observe Yij = 1 if consumer i
purchases product j and Yij = 0 otherwise. Let Wi ∈ W be a vector of observed consumer
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attributes, Xj ∈X a vector of product attributes, and n
def≡ M +N the total number of sam-

pled consumers and products. The conditional probability that consumer i buys product
j is given by

Pr(Yij = 1|Wi�Xj) = gn(Wi�Xj)� (1)

with gn : W × X → {0�1} an unknown regression function. In this paper, I consider the
statistical properties of (a sequence of) parametric logit approximations of gn(w�x) when
(i) both N and M grow large at the same rate (i.e., M/n → φ ∈ (0�1) as n → ∞), (ii)

the limiting purchase graph Y
def≡ [Yij]1≤i≤N�1≤j≤M is sparse, and (iii) there exists dyadic de-

pendence (i.e., Yi1j1 and Yi2j2 may covary whenever {i1� jj} and {i2� j2} share a common
consumer or product index). Dyadic dependence arises in the presence of unobserved
consumer- and/or product-specific heterogeneity.

The novelty relative to prior work on dyadic regression by Fafchamps and Gubert
(2007), Graham (2020a,b), Menzel (2021), Davezies, d’Haultfoeuille, and Guyonvarch
(2021), and others involves (i) the introduction of “sparse network asymptotics” and (ii)
an analysis which accommodates misspecification of the regression function. The sparse
network thought experiment introduced in this paper leads to novel asymptotic approxi-
mations which appropriately account for the effects of dyadic dependence when present,
while simultaneously being robust to its absence (and other forms of degeneracy).1 Ac-
commodating misspecification allows researchers to conduct inference on well-defined
pseudo-true parameters in settings where their model for (1) is only an approximation (as
is invariably the case in practice).

The basic setup developed in this paper may be used to characterize many settings of
interest to economists. For example, Chen and Song (2013) studied the syndicated loan
market where banks form lending relationships with large firms, Fox (2018) the matching
of car part suppliers with downstream automotive assemblers, Henisz and Delios (2001)
and García-Canal and Guillén (2008) variants of the plant location problem, and Rous-
sille and Scuderi (2023) an online labor market where firms may bid (or not) for specific
workers.

In what follows, random variables are denoted by capital Roman letters, specific real-
izations by lowercase Roman letters, and their support by blackboard bold Roman letters.
That is Y , y , and Y respectively denote a generic random draw of, a specific value of, and
the support of, Y . A “0” subscript on a parameter denotes its population value and may
be omitted when doing so causes no confusion. In what follows, I use graph, network, and
purchase graph to refer to Y

def≡ [Yij]1≤i≤N�1≤j≤M . All graph theory terms and notation used
below are standard (e.g., Chartrand and Zhang (2012)).

Sparseness

Let ρn = En[Yij] be the probability of the event that (randomly sampled) consumer i
buys (randomly sampled) product j. The notation En[·] is used to emphasize that the
probability law used to evaluate the expectation may vary with n (below, I use the nota-
tion E0[·] to indicate an average with respect to the limiting probability law as n → ∞).
Sparseness of the limit graph implies that the average consumer purchases only a finite

1An important precedent for the asymptotic thought experiment considered below is the work of Bickel,
Chen, and Levina (2011). They studied the properties of acyclic subgraph frequencies under sparseness.
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number of products in the limit:

λc
n

def≡ Mρn → λc
0 with 0 < λc

0 <∞ as n → ∞� (2)

Condition (2) is concordant with the fact that, for example, although consumers choose
from tens of millions of books, it is rare for individual libraries to exceed a few hundred
volumes (i.e., average consumer degree λc

n is small). Similarly, the lifetime sales of most
books rarely exceed several hundred copies, such that

λp
n

def≡ Nρn → λ
p
0 with 0 < λ

p
0 < ∞ as n → ∞ (3)

(i.e., average product degree λp
n is also small).

Conditions (2) and (3) restrict the sequence of regression functions (1) such that

En

[
gn(Wi�Xj)

]= ρn = O
(
n−1

)
� (4)

Equation (4) implies that the number of purchases actually made is negligible relative
to the set of all possible purchases that could have been made; the purchase graph Y is
sparse. If, instead, the marginal purchase probability ρn was fixed at, or converged to, a
constant between zero and 1, then the number of actual book purchases and the number
of possible book purchases would be of equal order (the so-called dense case). Sparseness
is a property of a sequence of graphs, each with an increasing number of vertices. It is used
here in the context of a particular asymptotic approximation argument, motivated by the
fact that, in many real-world graphs, the number of edges present is small relative to the
number that could be present (e.g., Newman (2010)).

Dyadic Dependence

Dyadic dependence refers to a particular pattern of dependence across the rows and
columns of Y. Consider predicting whether randomly sampled consumer i purchases
book j, say The Clue in the Crossword Cipher, the forty-fourth novel in the celebrated
Nancy Drew mystery series. Knowledge of the frequency with which other consumers
k = 1� � � � � i − 1� i + 1� � � � �N purchase book j will generally alter the econometrician’s
prediction of whether i also purchases book j. That is, for any k �= i,

Pr(Yij = 1|Ykj = 1) > Pr(Yij = 1)

or Yi1j1 and Yi2j2 will covary whenever the two transactions correspond to a common book
(such that j1 = j2).

Similarly, if the econometrician knew that consumer i was a frequent book buyer, she
might conclude that this consumer is also more likely to purchase some other book (rela-
tive to the average consumer). That is, Yi1j1 and Yi2j2 will also covary whenever the trans-
actions correspond to a common buyer (such that i1 = i2).

Importantly, dependence across Yi1j1 and Yi2j2 when {i1� jj} and {i2� j2} share a common
buyer or product index may hold even conditional on observed consumer, Wi, and prod-
uct attributes, Xj . Some consumers may have latent attributes (i.e., not contained in Wi)
which induce them to buy many books and some books may be especially popular (for
reasons not captured adequately by Xj). It might be, for example, that

Pr(Yij = 1|Ykj = 1�Wi�Xj) > Pr(Yij = 1|Wi�Xj)�
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The structured form of dependence across the elements of [Yij]1≤i≤N�1≤j≤M described
above is a feature of separately exchangeable random arrays (Aldous (1981), Hoover
(1979)). The inferential implications of such dependence, in the context of subgraph
counts, were first considered by Holland and Leinhardt (1976) almost fifty years ago.
Bickel, Chen, and Levina (2011) made an especially important recent contribution in this
area. In the context of regression models, the inferential implications of dyadic depen-
dence have been considered by, among others, Fafchamps and Gubert (2007), Cameron
and Miller (2014), Aronow, Samii, and Assenova (2017), Tabord-Meehan (2019), Gra-
ham (2020a), Davezies, d’Haultfoeuille, and Guyonvarch (2021), and Menzel (2021) (see
Graham (2020b, Section 4) for a review and additional references). This work generally
considers the dense case. Dyadic dependence, in the context of the sparse network asymp-
totics explored below, generates new issues.

2. POPULATION AND SAMPLING ASSUMPTIONS

Let i ∈ N index consumers in an infinite population of interest. Associated with each
consumer is the vector of observed attributes Wi ∈ W = {w1� � � � �wJ}. Let j ∈ M index
products in a second infinite population of interest. The model is a two-population one
(see Graham, Imbens, and Ridder (2018)). Associated with each product is the vector of
characteristics Xi ∈ X = {x1� � � � � xK}. The finite support assumption on W and X is not
formally maintained below, but invoking it here simplifies the discussion of exchangeabil-
ity.

Let σw :N → N be a permutation of a finite number of consumer indices which satisfies
the restriction

[Wσw (i)]i∈N = [Wi]i∈N� (5)

Restriction (5) implies that σw only permutes indices across observationally identical con-
sumers (i.e., those homogeneous in W ). Let σx : M → M be an analogously constrained
permutation of a finite number of product indices. Adapting the terminology of Crane
and Towsner (2018), I assume that the purchase graph is W -X-exchangeable:

[Yσw (i)σx(j)]i∈N�j∈M
D= [Yij]i∈N�j∈M� (6)

Here, D= denotes equality of distribution. One way to think about (6) is as a requirement
that any probability law for [Yij]i∈N�j∈M should attach equal probability to all purchase
graphs which are isomorphic as vertex-colored graphs. Here, Wi and Xj are associated
with the color of the corresponding consumer and product vertices in the overall purchase
graph. Virtually all single-population micro-econometric models assume that agents are
exchangeable; restriction (6) extends this idea to the two-population setting considered
here: our probability law for the model should not change if we re-label observationally
identical units.

Graphon

It is well-known that exchangeability implies restrictions on the structure of depen-
dence across observations in the cross-section setting (e.g., de Finetti (1931)). Aldous
(1981), Hoover (1979), and Crane and Towsner (2018) showed that exchangeable ran-
dom arrays also exhibit a special dependence structure. Let μ, {(Wi�Ai)}i≥1, {(Xj�Bj)}j≥1,
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and {Vij}i≥1�j≥1 be sequences of i.i.d. random variables, additionally independent of one
another, and consider the purchase graph [Y ∗

ij ]i∈N�j∈M, generated according to

Y ∗
ij = h(μ�Wi�Xj�Ai�Bj�Vij) (7)

with h : [0�1] × W × X × [0�1]3 → {0�1} a measurable function, henceforth referred to
as a graphon (we can normalize μ, Ai, Bj , and Vij to have support on the unit interval,
uniformly distributed, without loss of generality).

The results of Crane and Towsner (2018), which extend the earlier work of Al-
dous (1981) and Hoover (1979), show that, for any W -X-exchangeable random array
[Yij]i∈N�j∈M, there exists another array [Y ∗

ij ]i∈N�j∈M, generated according to (7), such that
the two arrays have the same distribution. An implication of this result is that we may use
(7) as a nonparametric data generating process for [Yij]i∈N�j∈M.

Inspection of (7) indicates that exchangeability implies a particular pattern of depen-
dence across the elements of [Yij]i∈N�j∈M. In particular, Yi1j1 and Yi2j2 may covary whenever
i1 = i2 or j1 = j2; this covariance may be present even conditional on observed consumer
and product attributes. This is, of course, precisely the dyadic dependence structure dis-
cussed earlier.

The aggregate shock, μ, in (7) is analogous to the latent mixing variable appearing in
de Finetti’s (1931) original theorem. The distribution of μ is never identified and the
inference results described below may be (informally) thought of as being conditional on
its realization; see Menzel (2021) for additional relevant discussion. Formally, the analysis
which follows works with a restriction of (7) which excludes μ:

Y ∗
ij = h(Wi�Xj�Ai�Bj�Vij)� (8)

Sampling Process

Let Y = [Yij]1≤i≤N�1≤j≤M be the observed N ×M matrix of consumer purchase decisions.
Let W and X be the associated matrices of consumer and product regressors. I assume that
Y is the adjacency matrix associated with the subgraph induced by a random sample of
consumers and products from a W -X-exchangeable network with graphon (8). Let G∞�∞
denote this population network. Let Vc and Vp denote the set of consumers and products
randomly sampled by the econometrician from G∞�∞. We have Y equal to the adjacency
matrix of the induced subgraph:

GN�M =G∞�∞[Vc�Vp]� (9)

The marginal probability of the event, random consumer i purchases random product j,
is thus

ρ0 = E
[
h(Wi�Xj�Ai�Bj�Vij)

]
� (10)

Let {GN�M} be a sequence of networks indexed by, respectively, the cardinality of the
sampled consumer and product index sets, N = |Vc| and M = |Vp|. The average number
of products purchased per consumer, or average consumer degree,

λc
n =Mρ0� (11)

will diverge as M → ∞ when 0 < ρ0 < 1. Likewise, the average number of times a product
is purchased, or average product degree,

λp
n =Nρ0� (12)



1842 BRYAN S. GRAHAM

will also diverge as N → ∞. A consequence of this divergence is that the number of
possible purchases and the number of actual purchases will be of equal order. In practice,
as discussed earlier, only a small fraction of all possible purchases are made in many real-
world settings. To capture this qualitatively in my asymptotic approximations requires a
slightly more elaborate thought experiment, which I outline next.

Instead of considering a sequence of graphs sampled from a fixed population, I con-
sider a sequence of graphs sampled from a corresponding sequence of populations. The
sequence of networks {GN�M} is one where both N and M grow at the same rate such that,
recalling that n =M +N ,

M/n → φ ∈ (0�1) (13)

as n→ ∞. For each n, the graphon describing the infinite population sampled from is

Yij = hn(Wi�Xj�Ai�Bj�Vij)� (14)

This sequence of graphons/populations {hn} has the property that network density

ρn = En

[
hn(Wi�Xj�Ai�Bj�Vij)

]
may approach zero as n → ∞. (It would be technically more appropriate to index the
sequence {hn} by both N and M , as opposed to just n; however, doing so adds no real
insight and clutters the notation.) Under this setup, the order of λc

n = Mρn and λp
n = Nρn

will depend upon the speed with which ρn approaches zero as n→ ∞.
As in other exercises in alternative asymptotics, indexing the population data generat-

ing process by the sample size is not meant to capture a literal feature of how the data
are generated; rather, it is done so that the limiting properties of the model share im-
portant qualitative features—in this case “sparseness”—with the actual finite network in
hand. In other settings, such an approach has led to more useful asymptotic approxima-
tions, a premise I maintain here (e.g., Staiger and Stock (1997)), and explore further via
simulation experiments below.

The following two assumptions provide the foundation for the sparse network limit
theory presented below.

ASSUMPTION 1—Sampling: (i) i = 1� � � � �N and j = 1� � � � �M index independent ran-
dom samples of consumers (N) and products (M), respectively; (ii) Wi ∈ W, with W a com-
pact subset of Rdim(Wi) and fW (w) bounded and bounded away from zero on W; similarly,
Xj ∈ X, with X a compact subset of Rdim(Xj) and fX (x) bounded and bounded away from
zero on X; (iii) [Yij]1≤i≤N�1≤j≤M is generated according to (14); (iv) the sequence of samples is
such that M

M+N
→φ ∈ (0�1) as N�M → ∞.

The sequence of graphons {hn} is left nonparametric, but restricted such that, in the
limit, the graph is sparse (i.e., conditions (2) and (3) above hold). To ensure this prop-
erty, I impose the stronger condition, observing that En[hn(Wi�Xj�Ai�Bj�Vij)|Wi�Xj] =
gn(Wi�Xj):

ASSUMPTION 2—Conditional Sparseness: The graphon sequence {hn} is such that (i)

ngn(w�x) = λ0(w�x) + o
(
n−1

)
with 0 < λ0(w�x) < ∞ for all (w�x) ∈ W × X, (ii) ngn(w�x) ≤ k(w�x) for all n and
(w�x) ∈ W × X with E[k(Wi�Xj)] < ∞, and (iii) En[|nEn[hn(Wi�Xj�Ai�Bj�Vij)|Wi�
Ai]|3] < ∞ and En[|nEn[hn(Wi�Xj�Ai�Bj�Vij)|Xj�Bj]|3] < ∞.
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Assumption 2 implies that the conditional probability that a type Wi =w customer buys
a type Xj = x product is O(n−1) for all (w�x) ∈ W×X. This restriction has two important
implications for the analysis which follows.

First, it ensures, as desired, that the limiting graph is sparse. Let λ0 = λc
0 + λ

p
0 equal the

sum of the limiting average consumer and product degrees. Note that nρn → λ0 and fur-
ther that λ0 = E[λ0(Wi�Xj)]. In what follows, I will call λ0(w�x) the (limiting) conditional
degree function.

Second, it implies that consumer and product attributes do not affect the order of the
probability that an edge forms. It rules out, for example, the existence of observable sub-
populations of products, say those with Xj = x, that are purchased by a non-trivial frac-
tion of consumers of, say, type Wi = w. This can be restrictive: if i indexes moviegoers
and j films, then it rules out film types Xj = x (say science fiction epics like Denis Vil-
leneuve’s Dune) which consumers of type Wi = w (say econometricians) see with very
high probability. In contrast, if i indexes econometricians and j research articles, it seems
reasonable to assume that there are no observable econometrician-article combinations,
Wi =w, Xj = x, where the event i cites j occurs with high probability. Indeed, sparseness
of the type imposed by Assumption 2 appears to be a useful description of many real-
world graphs (Newman (2010)). By ensuring that order of the linking probability does
not vary with w, x, Parts (i) and (ii) of Assumption 2, as will become clear below, provide
a well-defined function to target for approximation.

Part (iii) of Assumption 2 is used to verify Lyapunov conditions needed for the asymp-
totic normality result below (Theorem 2). It rules out very extreme skewness in the con-
sumer degree distribution (conditional on Wi and Ai) as well as that in the corresponding
product degree distribution (conditional on Xj and Bj).2

Connection to Conventional Models of Choice

While certain features of the data generating process outlined above are highly concor-
dant with the motivating demand application, others are not. Sparseness is an important
feature of many bipartite graphs: consumers only purchase a handful of products from
the many available, firms only choose a handful of locations for their production facilities,
and so on. Likewise, the presence of the consumer- and product-specific heterogeneity,
Ai and Bj , accommodates dependencies that many researchers find important in practice.
More negatively, the assumption that consumers’ purchase decisions are i.i.d. conditional
on observed and unobserved product characteristics does not accord with product com-
plementarity, substitutability, and/or the presence of budget constraints. Similarly, this
assumption controverts the reality that, to provide another counterexample, plant loca-
tion problems are exercises in combinatoric optimization.

Existing approaches to large demand models generally formally maintain finiteness of
the product space, with asymptotics based on a growing number of consumers and/or pur-
chase events per consumer (e.g., Lanier, Large, and Quah (2023)). Exploring the prop-
erties of these models as the number of products grows, and their relationship with the
framework presented here, is an interesting area to explore. Menzel (2015, 2016) explored

2Observe that NEn[hn(Wi�Xj�Ai�Bj�Vij)|Xj�Bj] corresponds to the product degree in the subpopulation
homogeneous in Xj and Bj . Certain configurations of Xj and Bj may correspond to “blockbusters.” Product
degree for such blockbusters will be large (e.g., a Harry Potter novel or Taylor Swift album). Part (iii) of As-
sumption 2 rules out purchase graphs that, while sparse, also have many blockbusters. I am grateful to the
referees for discussion and feedback that was helpful in formulating Assumption 2.
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related ideas in the context of one-to-one matching models and games of strategic inter-
action; ideas in his work may apply, with adaptation, here.

Irrespective of such analyses, the results presented here remain relevant. The assump-
tion of separate exchangeability is appropriate for many large bipartite graphs; in such
settings, the conditional degree function is a natural, albeit possibly “reduced form,” ob-
ject of interest.

3. PSEUDO COMPOSITE LIKELIHOOD ESTIMATOR

The estimation target is the coefficient vector indexing (an approximation of) the con-
ditional average degree function n · gn(w�x). Other than the sparseness restrictions im-
posed by Assumption 2, the form of gn(w�x) is left unspecified. Let Zij = z(Wi�Xj) be
a vector of known basis functions in the underlying consumer and product attributes Wi

and Xj (excluding the constant) and consider the sequence—indexed by n—of parametric
logit models:

en(Wi�Xj;θ) = exp
(
α+Z′

ijβ− lnn
)

1 + exp
(
α+Z′

ijβ− lnn
) � (15)

where θ = (α�β′)′.
Sequence (15) has the feature that

nen(Wi�Xj;θ) → exp
(
α+Z′

ijβ
)

as n → ∞ and hence shares the sparseness features of the population graphon gn(w�x).
Its implied (limiting) average consumer and product degrees are

λc(φ�θ) =φE0

[
exp

(
α+Z′

ijβ
)]
� λp(φ�θ) = (1 −φ)E0

[
exp

(
α+Z′

ijβ
)]
�

For large n, the logit model is shown to provide a well-defined approximation of the condi-
tional degree function λ0(w�x). Furthermore, the pseudo-true parameter value indexing
this approximation is consistently estimable with a Gaussian limit distribution.

Note that in the event that gn(w�x) happens to take the logit form, Assumption 2 holds
since, with gn(w�x) = en(Wi�Xj;θ0) and λ0(w�x) = exp(α0 +Z′

ijβ0), we have

ngn(w�x) − λ0(w�x) =
⎡
⎢⎣ exp

(
α0 +Z′

ijβ0

)
1 + 1

n
exp

(
α0 +Z′

ijβ0

) − exp
(
α0 +Z′

ijβ0

)⎤⎥⎦

= −exp
(
α0 +Z′

ijβ0

)⎡⎢⎣
1
n

exp
(
α0 +Z′

ijβ0

)
1 + 1

n
exp

(
α0 +Z′

ijβ0

)
⎤
⎥⎦

= o
(
n−1

)
(we can also set k(w�x) = λ0(w�x)).
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Estimation

To estimate θ, I propose maximizing the pseudo composite log-likelihood function

θ̂ = arg max
θ∈�

Ln(θ) (16)

with Ln(θ) = 1
NM

∑N

i=1

∑M

j=1 lij�n(θ) and lij�n(θ) the logit kernel function:

lij�n(θ) = (2Yij − 1)
(
R′

ijθ− lnn
)− ln

(
1 + exp

(
(2Yij − 1)

[
R′

ijθ− lnn
]))

(17)

for Rij

def≡ (1�Z′
ij)

′. The use of the word ‘composite’ emphasizes that the criterion function
only models the data at the dyad level; no attempt is made to model the precise structure
of dependence across dyads (see Lindsey (1988), Cox and Reid (2004)). The use of the
word ‘pseudo’ emphasizes the allowance for misspecification of the dyad-level regression
function. Indeed, the analysis in this paper is potentially compatible with a wide variety of
actual network generating processes; whether the estimated regression function approx-
imation has any structural economic significance or is simply a predictor for Yij given Wi

and Xj will vary from application to application.

Consistency

Let θ0 = (α0�β
′
0)′ denote the pseudo-true value of θ; θ0 indexes a unique “best approx-

imation” of the conditional degree function λ0(w�x). To characterize this “best approxi-
mation,” Lemma 1 below provides a uniform convergence result for the pseudo composite
log-likelihood function. This result is used to both characterize the population approxi-
mation problem for which θ0 is the unique solution and to demonstrate consistency of the
maximum pseudo composite likelihood estimate θ̂ for θ0.

In addition to Assumptions 1 and 2 above, I require a standard identification condition
(e.g., Amemiya (1985, p. 270)).

ASSUMPTION 3—Identification:
(i) θ0 = (α0�β

′
0)′ ∈ A×B =�, A and B compact;

(ii) Zij ∈ Z with Z a compact subset of Rdim(Zij) with fZ(z) bounded on z ∈ Z;
(iii) E[ZijZ

′
ij] is a finite non-singular matrix.

Let f0(v|w�x) be the Poisson probability mass function (pmf) with rate parameter
λ0(x�w) and f (v|w�x;θ) the one with rate parameter λ(z;θ) = exp(α+ z′β). The corre-

sponding distribution functions are F0 and Fθ. Let δn

def≡ ln(n)
NM

∑N

i=1

∑M

j=1 Yij ; in Appendix A,
I show the following:

LEMMA 1—Limiting Objective Function: Let L∗
n(θ) = Ln(θ) + δn. Under Assump-

tions 1, 2, and 3,

sup
θ∈�

∣∣nL∗
n(θ) −L0(θ)

∣∣ p→ 0

as n→ ∞ with

L0(θ) = −DKL(F0‖Fθ) + S(F0)�



1846 BRYAN S. GRAHAM

where DKL(F0|Fθ)
def≡ E0[ln{

f0(Vij|Wi�Xj)
f (Vij|Wi�Xj ;θ)}] in the Kullback–Leibler divergence from Fθ to F0

and S(F0)
def≡ E0[λ0(Wi�Xj) · lnλ0(Wi�Xj)] −E0[λ0(Wi�Xj)] does not vary with θ.

The addition of δn to Ln(θ) ensures the existence of a well-defined limit; since it does
not change the value of θ̂, replacing Ln(θ) with L∗

n(θ) does not change inference. The E0[·]
notation in the definition of DKL(F0|Fθ) indicates that Vij is (conditionally) Poisson with
rate parameter λ0(Xi�Wj), which may or may not coincide with λ(Zij;θ) = exp(α+Z′

ijβ).
Lemma 1 suggests the follow pseudo-true parameter as a target for estimation:

θ0 = arg min
θ∈�

DKL(F0‖Fθ)� (18)

Equation (18) indicates that θ0 indexes the best approximation, in the (Poisson) Kullback–
Leibler divergence sense, of λ0(x�w)—averaged over the distribution of Wi and Xj—in
the family of exponential parametric conditional degree functions {exp(α + z′β) : α ∈
A�β ∈ B}. If en(w�x;θ0) = gn(w�x) for all (w�x) ∈ W×X, then θ0 indexes the true prob-
ability law for the graph.

To interpret θ0, it is helpful to consider the first-order conditions associated with (18):

E

[
Uij

UijZij

]
= 0�

where Uij

def≡ λ0(Xi�Wj) − exp(R′
ijθ0) is the approximation error of exp(R′

ijθ0) for the lim-
iting conditional degree function. This indicates that θ0 is chosen such that the error as-
sociated with approximating the conditional degree function, λ0(Xi�Wj), by exp(R′

ijθ0)
is mean zero and uncorrelated with Zij , similar to the familiar (MSE-minimizing) linear
regression approximation of a non-linear conditional expectation function.3,4

The purchase graph [Yij]1≤i≤N�1≤j≤M coincides with the outcome of NM dependent and
heterogeneous Bernoulli trials, each with O(n−1) success probabilities. Given this struc-
ture, it is (perhaps) ex post unsurprising that the limiting criterion function, and hence the
form of the pseudo-true parameter θ0, is related to the Poisson distribution. The Bernoulli
distribution with small success probabilities is well-approximated by the Poisson distribu-
tion (Mises (1921), Hodges and Le Cam (1960)). The takeaway for the analysis at hand is
that λ(z;θ0) = exp(α0 + z′β0) is as close as possible to λ0(x�w) over (w�x) ∈ W×X in a
well-defined and interpretable way.

THEOREM 1—Consistency: Under Assumptions 1, 2, and 3, (i) θ0 is the unique maxi-
mizer of L0(θ), as defined in Lemma 1, and (ii) the maximum pseudo composite likelihood
estimate θ̂

p→ θ0.

PROOF: See Appendix A. Q.E.D.

3I thank the Guest Co-Editor for some assistance in developing this characterization of θ0. Note that the
approximation is not a MSE-minimizing one; instead, it is a KLIC-minimizing one.

4For computation, most researchers will find it convenient to omit the ln(n) term from the logit function.
Let α̃n be the intercept estimate without the ln(n) term; an estimate of α0 is then α̂ = ln(n) + α̃n. This is a bit
awkward given the assumption that α0 ∈ A with A compact, but there is no contradiction. This estimate will
be numerically identical to the one based on the logit regression which does include the ln(n) term. Implicit
maximization over A is also possible, since for any fixed n, the parameter space for αn is also compact. Whether
compactness of A is required for Lemma 1 and Theorem 1 is an open question.
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Asymptotic Normality

The limit distribution of θ̂ under dense network asymptotics was derived by Graham
(2020b,a). More general results for dyadic M-estimators under dense network asymp-
totics, including results on the bootstrap and cross-fitting, can be found in Menzel (2021),
Davezies, d’Haultfoeuille, and Guyonvarch (2021), and Chiang, Kato, Ma, and Sasaki
(2022a). None of these results apply here. To derive a result that does apply, begin with
the mean value expansion

√
n(θ̂− θ0) = [

nHn(θ̄)
]+ × n3/2Sn(θ0)�

where F+ denotes a generalized inverse of the matrix F and

Sn(θ) = 1
NM

N∑
i=1

M∑
j=1

sij�n(θ)� (19)

with sij�n(θ) = ∂lij�n(θ)
∂θ

= (Yij − eij�n(θ))Rij and eij�n(θ) = en(Wi�Xj;θ) = e(α+Z′
ijβ− lnn),

corresponds to the score vector of the pseudo composite likelihood and

Hn(θ̄) = 1
NM

N∑
i=1

M∑
j=1

∂2lij�n(θ̄)
∂θ∂θ′ (20)

to the associated Hessian matrix. Here, θ̄ is a mean value between θ0 and θ̂ which may
vary from row to row.

Lemma 2, stated and proved in Appendix A, shows, after re-scaling by n, that nHn(θ)
converges uniformly to the negative of

�̃(θ) = E

[
exp

(
α+Z′

12β
)( 1 Z′

12
Z12 Z12Z

′
12

)]
� (21)

An intuition for why Hn(θ) needs to be re-scaled to ensure convergence is that, under
sparse network asymptotics, information accrues at a slower rate: the effective sample
size is not NM = O(n2), but rather O(n), an order of magnitude lower. Note that, under

Part (iii) of Assumption 3, the matrix �̃0
def≡ �̃(θ0) is of full rank. This fact, in conjunction

with Lemma 2 (stated in Appendix A), gives the linear approximation
√
n(θ̂n − θn) = −�̃−1

0 × n3/2Sn(θ0) + op(1)�

To derive the limit distribution of
√
n(θ̂n − θn), I show that the distribution n3/2Sn(θ0) is

well-approximated by a Gaussian random variable. The main tool used is a martingale
CLT for triangular arrays. That the variance stabilizing rate for Sn(θ0) is n3/2, like the
need to re-scale the Hessian, is non-standard. The need to “blow up” Sn(θ0) at a faster
than

√
n rate is a consequence of the fact that the summands in Sn(θ0) are Op(n−1). A sec-

ond complication is that, for any fixed n, Sn(θ0) is not mean zero. This bias reflects the
discrepancy between the finite network pseudo composite log-likelihood criterion and the
limiting population problem described by Lemma 1 above.

A detailed proof of Theorem 2, stated below, is provided in Appendix B. Here, I outline
the main arguments, which begin with the following four-part decomposition of the score
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vector

Sn(θ) =U1n(θ) +U2n(θ) + Vn(θ) + bn(θ)� (22)

where

U1n(θ) = 1
N

N∑
i=1

[
s̄c1i�n(θ) − bn(θ)

]+ 1
M

M∑
j=1

[
s̄
p
1j�n(θ) − bn(θ)

]
� (23)

U2n(θ) = 1
NM

N∑
i=1

M∑
j=1

{
s̄ij�n(θ) − bn(θ) − [

s̄c1i�n(θ) − bn(θ)
]

− [
s̄
p
1j�n(θ) − bn(θ)

]}
� (24)

Vn(θ) = 1
NM

N∑
i=1

M∑
j=1

{
sij�n(θ) − s̄ij�n(θ)

}
� (25)

bn(θ) = E
[
Sn(θ)

]
� (26)

with s̄ij�n(θ) = s̄n(Wi�Xj�Ai�Bj;θ), s̄n(w�x�a�b;θ) = E[sij�n(θ)|Wi = w�Xj = x�Ai =
a�Bj = b] and

s̄c1i�n(θ) = s̄c1�n(Wi�Ai;θ)�

s̄
p
1j�n(θ) = s̄

p
1�n(Xj�Bj;θ)�

with s̄c1�n(w�a;θ) = E[s̄n(w�Xj�a�Bj;θ)] and s̄
p
1�n(x�b;θ) = E[s̄n(Wi�x�Ai�b;θ)].

A variant of decomposition (22) also features in Graham (2020a), Menzel (2021), and
Graham, Niu, and Powell (2024). It can be derived by first projecting Sn(θ) onto A =
[Ai]1≤i≤N , W = [Wi]1≤i≤N , B = [Bj]1≤j≤M , and X = [Xi]1≤j≤N as follows:

Sn(θ) = E
[
Sn(θ)|W�X�A�B

]+ {
Sn(θ) −E

[
Sn(θ)|W�X�A�B

]}
= 1

NM

N∑
i=1

M∑
j=1

s̄ij�n(θ) + 1
NM

N∑
i=1

M∑
j=1

{
sij�n(θ) − s̄ij�n(θ)

}
� (27)

Next, observe that 1
NM

∑N

i=1

∑M

j=1 s̄ij�n(θ) is a two-sample U-statistic, albeit one defined
partially in terms of the latent variables Ai and Bj . Equation (23) corresponds to the Há-
jek projection of this U-statistic onto (separately) {(W ′

i �Ai)}Ni=1 and {(X ′
j�Bj)}Mj=1. Equa-

tion (24) is the usual Hájek projection error term.
The final term in (22), bn(θ), arises because, for any fixed n, bn(θ0) = En[Sn(θ0)] is not

mean zero. Instead, we have, after some manipulation, that

bn(θ0) = 1
NM

N∑
i=1

M∑
j=1

E
[(
Yij − eij�n(θ0)

)
Rij

]

= 1
n
E
[(
λ0(W1�X2) − exp

(
R′

12θ0

))
R12

]
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+ 1
n
E
[(
ngn(W1�X2) − λ0(W1�X2)

)
R12

]
+ 1

n
E
[(

exp
(
R′

12θ0

)− ne12�n(θ0)
)
R12

]
= 0 + 1

n
E
[(
ngn(W1�X2) − λ0(W1�X2)

)
R12

]

+ 1
n
E

⎡
⎢⎣
⎛
⎜⎝exp

(
R′

12θ0

)⎡⎢⎣1 − 1

1 + 1
n

exp
(
R′

12θ0

)
⎤
⎥⎦
⎞
⎟⎠R12

⎤
⎥⎦ � (28)

which, by Assumption 2, is o(n−2).5

Define φn

def≡ M/n, s̄c1i�n
def≡ s̄c1i�n(θ0), s̄p1j�n

def≡ s̄
p
1j�n(θ0), and also s̄ij�n

def≡ s̄ij�n(θ0). Similarly, let
Sn = Sn(θ0) and so on. Applying the variance operator to Sn yields

V(Sn) =V(U1n) +V(U2n) +V(Vn)

= �c
1n

N
+ �

p
1n

M
+ 1

NM

[
�2n −�c

1n −�
p
1n

]+ �3n

NM
� (29)

where

�c
1n = V

(
s̄c1i�n

)
�

p
1n = V

(
s̄
p
1j�n

)
�

�2n = V(s̄ij�n) = V
(
E[sij�n|Wi�Xj�Ai�Bj]

)
� (30)

�3n = E
[
V(sij�n|Wi�Xj�Ai�Bj)

]
�

In the dense case, �c
1n, �p

1n, �2n, and �3n are all constant in n; hence, the asymptotic
properties of Sn coincide with those of U1n (the bias term is also zero in this case). Since
U1n is a sum of independent random variables, a standard argument gives

n1/2Sn
D→N

(
0�

�c
1

1 −φ
+ �

p
1

φ

)
(31)

as long as �c
1 and/or �p

1 are non-zero (see Graham (2020a) or Davezies, d’Haultfoeuille,
and Guyonvarch (2021)). In the degenerate—but still dense—case, as emphasized by
Menzel (2021), the limiting behavior of n1/2Sn may be degenerate and, after appropri-
ate re-scaling, may also be non-Gaussian.

Under the sparse network asymptotics considered here, the orders of �c
1n, �p

1n, �2n, and
�3n vary with n. This affects the order of the four variance terms in (29) and, consequently,
which components of Sn contribute to its asymptotic properties. In Appendix B, I show
the order of the four terms in (29) are, respectively,

V(Sn) =O

(
ρ2
n

N

)
+O

(
ρ2
n

M

)
+O

(
ρ2
n

MN

)
+O

(
ρn

MN

)

5While not developed in the theory which follows, equation (28) suggests that part of the bias in Sn(θ0) is
estimable (namely the second term to the right of the last equality in (28)). This, in turn, suggests that it might
be fruitful to explore methods of bias reduction. Jackknife bias correction might also be of interest.
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=O

([
λc

0�n

φn

]2 1
(1 −φn)

1
n3

)
+O

([
λc

0�n

φn

]3 1
n3

)

+O

([
λc

0�n

φn

]2 1
φn(1 −φn)

1
n4

)
+O

(
λc

0�n

φ2
n(1 −φn)

1
n3

)
�

Since �c
1 and �

p
1 are both O(ρ2

n) = O(n−2), we can multiply them by n2 to stabilize them.
Define �̃c

1 to be the limit of n2�1n and �̃
p
1 to be the limit of n2�

p
1n. Similarly, we can define

�̃3 to be the limit of n�3n, all as n → ∞. Normalizing (29) by n3/2 therefore gives

V
(
n3/2Sn

)= �̃c
1

1 −φ
+ �̃

p
1

φ
+ �̃3

φ(1 −φ)
+O

(
n−1

)
� (32)

where I also use the fact that �2n = O(n−2). We also have, from Assumption 2, that
E[n3/2Sn]2 = E[n3/2bn]2 = o(n−1).

Under sparse network asymptotics, both U1n and Vn matter. In Appendix B, I further
show that U1n +Vn is a martingale difference sequence (MDS) to which a martingale CLT
can be applied; Theorem 2 then follows.

THEOREM 2: Under Assumptions 1, 2, and 3,

√
n(θ̂− θ0)

D→N
(

0� �̃−1
0

[
�̃c

1

1 −φ
+ �̃

p
1

φ
+ �̃3

φ(1 −φ)

]
�̃−1

0

)

as n → ∞.

PROOF: See Appendix B. Q.E.D.

Theorem 2 indicates that, under sparse network asymptotics, there are additional
sources of sampling variation in

√
n(θ̂ − θ0) relative to those which appear in the dense

case. Not incorporating these into inference procedures will lead to tests with incorrect
size and/or confidence intervals with incorrect coverage. A further advantage of consid-
ering sparse network asymptotics is that Theorem 2 remains valid even under degeneracy
of the graphon, hn(Wi�Xj�Ai�Bj�Vij). For example, if the graphon is constant in Ai and
Bj such that Yij and Yik do not co-vary conditional on covariates (and likewise for Yji and
Yki), then �̃c

1 = �̃
p
1 = 0, but Theorem 2 nevertheless remains valid (condition (iii) of 3

ensures that �̃3 will be positive definite). In contrast, under dense network asymptotics,
degeneracy—as elegantly shown by Menzel (2021)—generates additional complications.
In that case, the variance of U1n is identically equal to zero, while that of U2n and Vn are
of equal order. In some cases, the behavior of U2n may even induce a non-Gaussian limit
distribution (see van der Vaart (2000)). In the sparse network case, U2n is always negligi-
ble relative to Vn. Furthermore, Vn is—after suitable scaling—approximately a Gaussian
random variable.

Limit Theory Under Correct Specification

Theorem 2 holds for a general non-parametric regression function gn(w�x), with
θ0 a vector of pseudo-true parameters as defined by equation (18) above. If, in fact,
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gn(w�x) = en(w�x;θ0) for all (w�x) ∈ W × X, then calculations in Appendix B indicate
the asymptotic variance simplifies to

√
n(θ̂− θ0)

D→N
(

0� �̃−1
0

[
�̃c

1

1 −φ
+ �̃

p
1

φ

]
�̃−1

0 + �̃−1
0

φ(1 −φ)

)
�

which follows from an information matrix type equality result of nV(sij�n) → �̃0 as n → ∞.

Relationship With Rare Events Analysis Using I.I.D. Data

King and Zeng (2001) discussed, with a focus on finite sample bias, the behavior of
logistic regression under “rare events” with i.i.d. data. Evidently, binary choice analyses
where the marginal frequency of positive events is quite small are common in empiri-
cal work.6 The properties of logistic regression under sequences where the number of
“events” becomes small (i.e., “rare”) relative to the sample size as it grows were recently
characterized by Wang (2020) (see also Owen (2007)). The main result in Wang (2020)
coincides with a special case of Theorem 2 above.7 To see this, observe that if the graphon
is constant in Ai and Bj , then s̄ij�n will be identically equal to zero for all 1 ≤ i ≤ N and
1 ≤ j ≤ M . In this scenario, there is no “dyadic dependence” (after conditioning on Wi

and Xj) and �̃c
1 = �̃

p
1 = 0. Under these conditions, also maintaining correct specification,

Theorem 1 specializes to

√
n(θ̂− θn)

D→N
(

0�
�̃−1

0

φ(1 −φ)

)

as n → ∞. This is precisely, up to some small differences in notation, the result given in
Theorem 1 of Wang (2020).8

In his analysis, Wang (2020) emphasized that information accumulates more slowly un-
der “rare event asymptotics.” In the present setting, this is reflected in the need to re-scale
the Hessian matrix by n to achieve convergence (see Lemma 2 in Appendix A). In the
network setting, dyadic dependence additionally reduces the asymptotic precision with
which θ0 may be estimated (cf., Graham, Niu, and Powell (2024)). If a researcher is work-
ing with a sparse network and concerned about dyadic dependence, then she should base
inference on Theorem 2. If the graphon is degenerate or, more strongly, the elements of
[Yij]1≤i≤N�1≤j≤M are, in fact, i.i.d., then her inferences will remain valid (since Theorem 2
specializes to the “rare events” result of Wang (2020) in that case).

4. APPLICATION TO THE MARKET FOR SYNDICATED LOANS

Chen and Song (2013) studied how banks and firms match with one another in the syn-
dicated loan market. The syndicated loan market sits at the interface between monetary

6Interestingly, King and Zeng’s (2001) motivating example involves dyadic logistic regression as it arises in
empirical international relations applications; their analysis, however, does not formally consider the implica-
tions of dyadic dependence for estimation and inference.

7In fact, Theorem 2 is a bit more general even in the special case of no dyadic dependence as it also accom-
modates misspecification of the regression function.

8Wang (2020) scaled by the square root of the number of events or “ones” in the data set. This is, of course, of
the same order as n as defined here. This difference leads to a minor difference in our two variance expressions.
After making these adjustments, the results coincide.
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policy and the real economy. Using the maximum score matching estimator introduced by
Fox (2018), Chen and Song (2013) studied whether firms and banks assortatively match
based on size (among several other hypotheses).

This section uses a subsample of the Chen and Song (2013) data set to concretely illus-
trate the key estimation and inference methods described in this paper.9 Additionally, I
summarize the results of a Monte Carlo simulation study, calibrated to the empirical illus-
tration. The calibrated Monte Carlo study assesses the relevance and accuracy of “sparse
network asymptotics” in a real-world setting. An annotated Python Jupyter Notebook,
with replication code for the material reported below, is available in the Supplemental
Material (Graham (2024)). The empirical illustration and Monte Carlo experiments both
utilize the ‘bilogit’ estimation command included in the Python ‘netrics’ package. This
package is available on GitHub (https://github.com/bryangraham/netrics).

Here, I work with a subset of Chen and Song’s (2013) estimation sample, correspond-
ing to all loans originating in the first six months of 2003. Only 2 percent of all possi-
ble bank-to-firm lending relationships are present in the sample used here; providing a
setting where an asymptotic approximation which takes sparseness seriously may have
value-added.

I fit a logit model for whether bank i lends to firm j with the following regressors: the
total assets of bank i (in billions of dollars), the total assets of firm j (also in billions of
dollars), the interaction of these two variables, and the distance between the headquar-
ters of bank i and firm j (in thousands of kilometers). All of these variables enter the
logit function in log form (e.g., log-distance, etc.). The coefficient on the asset interaction
regressor provides a measure of the extent to which larger banks prefer to lend to larger
firms (assortative matching), while the distance coefficient measures the importance of
physical proximity for sustaining lending relationships. Chen and Song (2013) discussed
the monetary policy and regulatory implications of positive assortative matching by size
as well as those of proximity effects. They also included additional references to the ex-
tensive empirical literature on syndicated loan markets.10

Table I reports results. Standard errors based upon the sparse network asymptotic ap-
proximation are presented in parentheses, while those for the dense asymptotic case are
presented in square brackets. The sparse intervals are Wald ones which use a variance
estimate suggested by Cameron and Miller (2014). This estimate can also be thought of
as a bias-corrected version of the usual jackknife variance estimate (see Efron and Stein
(1981), Cattaneo, Crump, and Jansson (2014), Graham (2020b)). A description of the
variance estimate, which is a direct analog estimate of the asymptotic variance presented
in Theorem 2, is given in Supplemental Appendix D. The ‘dense’ intervals are based upon
the analog estimate of the dense asymptotic variance given by Graham (2020a) (see also
Appendix D).

In a sufficiently dense network, the two sets of standard errors will be close to one other.
This is not the case here; the additional (estimated) variance terms retained by the sparse
network approximation are of similar magnitude to those which enter the dense network
approximation. Hence, the two standard errors are appreciably different in size. For ex-
ample, the “sparse” standard error on the log-distance regressor is 1.6 times the size of

9An overview of the Refinitiv LPC DealScan data set, from which the estimation sampled used below is
partially constructed, was provided by Cohen et al. (2021).

10Their data set was constructed by combining records in the Thomson Reuters LPC Dealscan database,
Compustat, and Federal Reserve sources. I am very grateful to Jiawei Chen for providing me with their data.
Please see Chen and Song (2013) for additional details on the data set as well as for variable definitions.

https://github.com/bryangraham/netrics
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TABLE I

LOGIT MODEL FOR BANK-FIRM LENDING
RELATIONSHIPS IN FIRST SIX MONTHS OF 2003.

Covariate Coefficient

Bank assets 0�6154
(0�1302)
[0�1138]

Firm assets −0�7241
(0�1198)
[0�0950]

Bank-by-firm assets 0�1557
(0�0200)
[0�0155]

Distance −0�1663
(0�0423)
[0�0262]

N (Banks) 39
M (Firms) 351

Note: Data set includes all N × M = 39 × 351 =
13�689 bank-firm pairs in the Chen and Song (2013) data
set (first six months of 2003 only). Reported coefficients
computed by logistic regression with standard errors cal-
culated as described in Supplemental Appendix D. Stan-
dard errors valid under sparse network asymptotics are
reported in parentheses, while those that are valid only
under dense network asymptotics are reported in square
brackets.

the dense one. This is a meaningful difference in estimated precision, with consequential
implications for inference.

To explore this latter claim, I calibrate a small Monte Carlo experiment to the data
set. Let Ai ∼ Gamma( 1

2 �1), Bi ∼ Gamma( 1
2 �1), and Vij ∼ Gamma(ρ − 1�1); mutually

independent.11 Define the standard logistic random variable

Uij = ln
(

F
(
U∗

ij;ρ�1
)

1 − F
(
U∗

ij;ρ�1
))� with U∗

ij =Ai +Bj + Vij�

where F (U∗
ij;ρ�1) is the Gamma(ρ�1) CDF.12 The presence of Ai and Bj generates de-

pendence across Ui1j1 and Ui2j2 whenever they share an index in common; the marginal
distribution of Uij is nevertheless logistic. The variance of the unit-specific terms, Ai +Bj ,
is 1, while that of the entire underlying latent effects, Ai + Bj + Vij , is ρ. The magnitude
of ρ calibrates the level of cross-dyad dependence, with smaller values generating more
dependence.

Next, generate the binary outcome

Yij = 1
(
α0 +Z′

ijβ0 − lnn ≥Uij

)
�

11I use the shape-rate parameterization of the Gamma distribution.
12That U∗

ij ∼ Gamma(ρ�1) follows from the reproductive stable property of the Gamma distribution.
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TABLE II

MONTE CARLO RESULTS, βDistance.

βDistance = −0�1662 (1) (2) (3)

Mean Bias 0.0022 0�0007 0�0015
Median Bias 0.0006 −0�0009 −0�0005
Std. Dev. 0.0355 0�0348 0�0401
Mean S.E.—Sparse 0.0333 0�0333 0�0345
Coverage (95% CI)—‘Sparse’ 0.9280 0�9306 0�9044
Coverage (95% CI)—‘Dense’ 0.5256 0�5266 0�5052

Note: Results based on 5000 replications of the data generating process described in the text. The Monte Carlo standard deviation
of the point estimates (row 3) is a robust measure (the difference between 95th and 5th percentiles of the estimated coefficient’s
Monte Carlo distribution divided by the corresponding quantile differences of a standard normal variate). The standard error of the
simulation error on the coverage estimates is

√
α(1 − α)/5000 ≈ 0�003 for α= 0�05. See the text for additional information. ρ= 35, 20,

5 respectively for the DGPs corresponding to Columns 1, 2, and 3.

for i = 1� � � � �39 and j = 1� � � � �351. The Zij vector includes those variables listed in Table I
with values coinciding with those in the estimation sample. The coefficients are chosen
such that α0 = α̂ + ln(39 + 351) and β0 = β̂ (with α̂ and β̂ the logit estimates computed
using the actual data). Finally, ρ is chosen to calibrate the level of dyadic dependence.
Three values are chosen, corresponding to a low, medium, and high level of dependence.
The “medium” choice of ρ is chosen such that the simulated value of the interquartile
range of the bank degree sequence is close to its empirical value. The simulation design
matches the observed density of the data set by construction. The level of ρ is chosen to
additionally match (approximately) the dispersion of degree across banks.

I simulate 5000 samples and fit the model featured in Table I to each simulated sample.
Table II summarizes the sampling properties of the coefficient on the log-distance vari-
able, a key parameter of interest in the Chen and Song (2013) study. The column 2 results
correspond to the design mostly closed matched to the data set used to fit the model in
Table I, while those in column 1 are associated with less dyadic dependence, and those in
column 3 with more.

Consistent with the graphon being correctly specified, mean and median bias are neg-
ligible. It is also the case that the standard deviation of the distance coefficient across
the simulated data sets is very close to that of the average estimated sparse standard er-
ror. A Monte Carlo estimate of the coverage of two different confidence intervals is also
reported. The sparse intervals’ actual coverage is close to their nominal coverage.13 The
dense intervals’ coverage, in contrast, is very poor, consistent with the usual dense asymp-
totic approximation being very poor for the setting at hand.

Appendix C presents the results of additional Monte Carlo experiments. These experi-
ments are constructed to verify the rate-of-convergence calculations present in Section 3,
as well as the accuracy of the distribution theory in a controlled setting.

In this data set, only 2 percent of all possible lending relationships are present. This is
“sparse,” but not unusually so: qualitative sparseness like this is quite common in other
bipartite graphs studied by economists (see, e.g., Henisz and Delios (2001) and García-
Canal and Guillén (2008) for facility location examples). The small empirical illustration,
in conjunction with the Monte Carlo results and theoretical arguments also presented,

13Coverage is, however, significantly below nominal coverage in a statistical sense. Using the column 2 re-
sults yields a two-sided t-statistics for the null of correct coverage of (0�9306 − 0�9500)/0�003 = −6�5.
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suggests that researchers should consider using the sparse network asymptotic approx-
imations developed in this paper. As in other settings where non-standard asymptotics
play an important role, specific test statistics and methods of inference may have vary-
ing theoretical and real-world properties (see, e.g., Andrews, Stock, and Sun (2019)). An
open question is what precise methods of inference perform best under sparse network
asymptotics. Also open is the question of whether related asymptotic approximations can
be developed for dyadic regression settings beyond the logistic one explored here.

APPENDIX

The appendix includes proofs of the formal results stated in the main text as well as
statements and proofs of supplemental results. All notation is as established in the main
text unless stated otherwise. Equation numbering continues in sequence with that estab-
lished in the main text.

APPENDIX A: IDENTIFICATION AND CONSISTENCY

Proof of Lemma 1 (Representation Result for θ0)

To show Lemma 1, it is convenient to observe that L0(θ) = E[λ0(Xi�Wj)R′
ijθ] −

E[exp(R′
ijθ)]. To see this equality, note that

L0(θ) = E
[
λ0(Xi�Wj)R′

ijθ
]−E

[
exp

(
R′

ijθ
)]

= E0

[
Vij ln

( exp
(
R′

ijθ
)

λ0(Xi�Wj)

)]
+E

[
λ0(Xi�Wj)

]
−E

[
exp

(
R′

ijθ
)]+E

[
Vij ln

(
λ0(Xi�Wj)

)]−E
[
λ0(Xi�Wj)

]
= E0

[
ln
{
f (Vij|Wi�Xj;θ)
f0(Vij|Wi�Xj)

}]
+E

[
λ0(Xi�Wj) ln

(
λ0(Xi�Wj)

)]−E
[
λ0(Xi�Wj)

]
= −DKL(F0‖Fθ) + S(F0)�

To show uniform convergence of nL∗
n(θ) to L0(θ), write L∗

n(θ) = Ln(θ) + δn as the
average

L∗
n(θ) = 1

NM

N∑
i=1

M∑
j=1

l∗ij�n(θ) (33)

with kernel, recalling that Rij = (1�Z′
ij)

′,

l∗ij�n(θ) = YijR
′
ijθ− ln

(
1 + 1

n
exp

(
R′

ijθ
))

� (34)

The form of (34) follows from the fact that, manipulating (17) in the main text,

l∗ij�n(θ) = (2Yij − 1)
(
R′

ijθ− lnn
)− ln

(
1 + exp

(
(2Yij − 1)

[
R′

ijθ− lnn
]))+Yij lnn

= Yij

(
R′

ijθ− lnn
)− ln

(
1 + exp

(
R′

ijθ− lnn
))+Yij lnn

= YijR
′
ijθ− ln

(
1 + 1

n
exp

(
R′

ijθ
))

�
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First, I show that

lim
n→∞

E
[
nl∗ij�n(θ)

]=L0(θ)

= E
[
λ0(Xi�Wj)R′

ijθ
]−E

[
exp

(
R′

ijθ
)]

(35)

pointwise in θ ∈ �. By Part (ii) of Assumption 1, Part (ii) of Assumption 2, and Parts (i)
and (ii) of Assumption 3, we have the dominating function∣∣ngn(w�x)r ′θfW (w)fX (x)

∣∣≤ k(w�x) × sup
r∈(1�Z)�θ∈�

∣∣r ′θ
∣∣× fW (w)fX (x) < ∞�

Part (i) of Assumption 2 implies that ngn(w�x)r ′θ converges pointwise to λ0(x�w)r ′θ.
The Dominated Convergence theorem then yields

lim
n→∞

E
[
ngn(Wi�Xj)R′

ijθ
]→ E

[
λ0(Xi�Wj)R′

ijθ
]
� (36)

Next, the exponential function characterization expx = limn→∞(1 + x
n
)n and continuity of

the ln(·) function yield the limit

lim
n→∞

ln
(

1 + 1
n

exp
(
r ′θ
))n

= exp
(
r ′θ
)
�

To verify the stronger equality

lim
n→∞

E

[
ln
(

1 + 1
n

exp
(
R′

ijθ
))n]

= E
[
exp

(
R′

ijθ
)]
� (37)

it suffices to show that

sup
w∈W�x∈X

∣∣∣∣ln
(

1 + 1
n

exp
(
r ′θ
))n

fW (w)fX (x) − exp
(
r ′θ
)
fW (w)fX (x)

∣∣∣∣→ 0

as n → ∞. Under Part (ii) of Assumption 1 and Parts (i) and (ii) of Assumption 3, this
follows if

sup
x∈[x�x̄]

∣∣∣∣ln
(

1 + 1
n

exp(x)
)n

− exp(x)
∣∣∣∣→ 0 (38)

with [x� x̄] the support of possible values for the index r ′θ. Let bn(x) = ln(1+ 1
n

exp(x))n −
exp(x); since b′

n(x) = exp(x)[ 1
1+ 1

n exp(x)
− 1] < 0 on x ∈ [x� x̄], condition (38) holds since

both bn(x) and bn(x̄) converge to zero. Condition (35) follows directly from (36) and
(37).

Second, since (35) also gives limn→∞ E[nL∗
n(θ)] = L0(θ), the mean square error decom-

position

E
[(
nL∗

n(θ) −L0(θ)
)2]= (

E
[
nL∗

n(θ)
]−L0(θ)

)2 +V
(
nL∗

n(θ)
)

implies convergence of nL∗
n(θ) to L0(θ) in mean square if V(nL∗

n(θ)) → 0 as n → ∞.
This follows under Assumptions 2 and 3 since

V
(
nL∗

n(θ)
)= n2

N
O
(
ρ2
n

)+ n2

M
O
(
ρ2
n

)+ n2

NM
O(ρn)
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=O
(
n−1

)+O
(
n−1

)+O
(
n−1

)
�

By concavity of L∗
n(θ) in θ, this convergence is uniform in θ ∈ �. Lemma 1 follows directly

with some algebra.

Proof of Theorem 1: Consistency of θ̂ for θ0

The result follows by verifying conditions (i) to (iv) of Theorem 2.1 in Newey and Mc-
Fadden (1994, p. 2121). Part (ii) follows from Assumption 3, Part (iii) follows by inspec-
tion, and Part (iv) was shown in Lemma 1. Part (i) requires demonstrating uniqueness of
the solution

θ0 = arg max
θ∈�

L0(θ)� (39)

For this to hold, it suffices to verify global concavity of L0(θ) in θ. Direct calculation yields
first- and second-order conditions equal to

E

[
∂L0(θ)
∂θ

]
= E

[(
λ0(Xi�Wj) − exp

(
R′

ijθ
))
Rij

]
�

E

[
∂2L0(θ)
∂θ∂θ′

]
= −E

[
exp

(
R′

ijθ
)
RijR

′
ij

] def≡ �(θ)�

(40)

Under Assumption 3, the matrix �(θ) is negative definite for all θ ∈ �; therefore, L0(θ)
is globally concave in θ ∈ � with unique maximum θ0.

Hessian Convergence

Note that for en(v) = exp(v − lnn)/[1 + exp(v − lnn)], we have that e′
n(v) = en(v)[1 −

en(v)] and e′′
n(v) = en(v)[1 − en(v)][1 − 2en(v)]. Further, let eij�n(θ) = en(R′

ijθ); with this
notation, we can write the first three derivatives of the kernel function of the composite
log-likelihood with respect θ as

sij�n(n) = (
Yij − eij�n(θ)

)
Rij� (41)

∂sij�n(θ)
∂θ′ = −eij�n(θ)

[
1 − eij�n(θ)

]
RijR

′
ij� (42)

∂

∂θ′

{
∂sij�n(θ)
∂θp

}
= −eij�n(θ)

[
1 − eij�n(θ)

][
1 − 2eij�n(θ)

]
RijR

′
ijRp�ij� (43)

with (43) holding for for p = 1� � � � �dim(θ).
Let t = (θ − θ0) and note that t ∈ T with T compact by Assumption 3. Associated with

any t ∈ T is a θ ∈ �. With these preliminaries, we can show that nHn(θ) converges uni-
formly to �̃(θ), as defined in equation (21) of the main text.

LEMMA 2—Uniform Hessian Convergence: Under Assumptions 1, 2, and 3,

sup
θ∈�

∥∥nHn(n) − �̃(θ)
∥∥ p→ 0�
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PROOF: Let ‖A‖2�1 =∑N

i=1

√∑M

j=1 A
2
ij denote the �2�1 matrix norm. Note that θ = θ0 + t

and hence that Hn(θ0 + t) = Hn(θ). The mean value theorem, as well as compatibility of
the Frobenius matrix norm with the Euclidean vector norm, gives for any t and t̄ both in
T,

∥∥Hn(θ0 + t) −Hn(θ0 + t̄)
∥∥

2�1
≤

dim(θ)∑
p=1

∥∥∥∥∥ 1
NM

N∑
i=1

M∑
j=1

∂

∂θ′

{
∂sij�n(θ0 + t)

∂θp

}∥∥∥∥∥
F

‖t − t̄‖2�

Since E[eij�n(θ)[1 − eij�n(θ)][1 − 2eij�n(θ)]] = O(n−1), we have that, inspecting (43) above,
for any t ∈ T, ∥∥∥∥∥ 1

NM

N∑
i=1

M∑
j=1

∂

∂θ′

{
∂sij�n(θ0 + t)

∂θp

}∥∥∥∥∥
F

=Op

(
n−1

)
�

This gives ‖nHn(θ0 + t) − nHn(θ0 + t̄)‖2�1 ≤ Op(1) · ‖t − t̄‖2. Next, again recalling that
θ0 + t = θ, we have that

Hn(θ0 + t) = − 1
NM

N∑
i=1

M∑
j=1

eij�n(θ)
[
1 − eij�n(θ)

]
RijR

′
ij

= − 1
NM

N∑
i=1

M∑
j=1

1
n

exp
(
R′

ijθ
)
RijR

′
ij +Op

(
1
n2

)
�

which gives, using a law of large numbers for U-statistics, nHn(θ)
p→ �(θ) for all t ∈ T. The

claim then follows from an application of Lemma 2.9 of Newey and McFadden (1994, p.
2138). Q.E.D.

APPENDIX B: PROOF OF THEOREM 2

To show Theorem 2, I first verify the rate-of-convergence analysis for Sn given in the
main text. Next, I show asymptotic normality of U1n + Vn, after normalization. I then
prove the main result.

Asymptotic Variance of the Score

To prove (29), the decomposition of the variance of the score given in the main text,
and hence that

V
(
n3/2Sn

)= �̃c
1

1 −φ
+ �̃

p
1

φ
+ �̃3

φ(1 −φ)
+O

(
n−1

)
�

use the definitions given in (30) of the main text and observe that

�c
1n = E

[
(Y12 − e12�n)(Y13 − e13�n)R12R

′
13

]− b2
n

=O
(
ρ2
n

)+ o
(
n−4

)
� (44)
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and also that

�
p
1n = E

[
(Y21 − e21�n)(Y31 − e31�n)R21R

′
31

]− b2
n

=O
(
ρ2
n

)+ o
(
n−4

)
� (45)

Turning to �2n and �3n, we get that

�2n = E
[
E
[
(Y12 − e12�n)R21|W1�X2�A1�B2

]
×E

[
(Y12 − e12�n)R21|W1�X2�A1�B2

]′]− b2
n

= O
(
ρ2
n

)+ o
(
n−4

)
� (46)

and further that

�3n = E
[
{sij�n − s̄ij�n}{sij�n − s̄ij�n}′]

= O(ρn) (47)

by virtue of the equality Y 2
ij = Yij (which holds because Yij is binary-valued).

From Assumption 2, we have that ρn = O(n−1); hence, (44) implies that n2�c
1n = O(1),

(45) that n2�
p
1n =O(1), and (47) that n�3n =O(1). This gives

V(Sn) =O

(
ρ2
n

N

)
+O

(
ρ2
n

M

)
+O

(
ρ2
n

MN

)
+O

(
ρn

MN

)

=O

([
λc

0�n

M

]2 1
N

)
+O

([
λc

0�n

M

]2 1
M

)
+O

([
λc

0�n

M

]2 1
MN

)
+O

(
λc

0�n

M

1
MN

)

=O

([
λc

0�n

φn

]2 1
(1 −φn)

1
n3

)
+O

([
λc

0�n

φn

]2 1
φn

1
n3

)

+O

([
λc

0�n

φn

]2 1
φn(1 −φn)

1
n4

)
+O

(
λc

0�n

φ2
n(1 −φn)

1
n3

)

=O
(
n−3

)+O
(
n−3

)+O
(
n−4

)+O
(
n−3

)
�

and hence the form of the variance expression stated in the theorem.

Variance Simplification When gn(w�x) Takes the Logit Form

Observe that V(sij�n) = �2n +�3n. Therefore, when gn(Wi�Xj) = en(α0 +Z′
ijβ0), we have

that

nV(sij�n) = nE
[
(Yij − eij�n)2RijR

′
ij

]− nb2
n

= nE
[
eij�n(1 − eij�n)RijR

′
ij

]+ o
(
n−3

)
→ �̃0�

and hence the alternative limiting variance expression

V
(
n3/2Sn

)= n2�c
1n

1 −φn

+ n2�
p
1n

φn

+ n(�2n +�3n)
φn(1 −φn)

+O
(
n−1

)
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→ �̃c
1

1 −φ
+ �̃

p
1

φ
+ �̃0

φ(1 −φ)

as n→ ∞.

Triangular Array Setup

Observe that U1n +Vn =∑T

t=1 Znt , where the triangular array {Znt} is defined as follows:

Zn1 = 1
N

(
s̄c11�n − bn

)
�

���

ZnN = 1
N

(
s̄c1N�n − bn

)
�

ZnN+1 = 1
M

(
s̄
p
11�n − bn

)
�

���

ZnN+M = 1
M

(
s̄
p
1M�n − bn

)
�

ZnN+M+1 = 1
NM

(s11�n − s̄11�n)�

���

ZnN+M+NM = 1
NM

(sNM�n − s̄NM�n)�

with T = T (n) = N + M + NM . For any vector Xi, let Xt
1 = (X1� � � � �Xt)′. Iterated ex-

pectations, as well as the conditional independence relationships implied by dyadic de-
pendence (Assumptions 1 and 2), yield

E
[
Znt|Zt−1

n1

]= 0�

establishing that {Znt} is a martingale difference sequence (MDS). The variance of this
MDS is

�̄n

def≡ V

(
T∑
t=1

Zni

)

= �c
1n

N
+ �

p
1n

M
+ �3n

NM
�

To show asymptotic normality of n3/2Sn(θ0), I first show, recalling decomposition (22)
in the main text, that, for a vector of constants c,

(
c′�̄nc

)−1/2
c′Sn = (

c′�̄nc
)−1/2

c′[U1n + Vn] + op(1) (48)
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and subsequently that (
c′�̄nc

)−1/2
c′[U1n + Vn]

p→N (0�1)� (49)

To show (48), observe that

c′�̄nc = O

(
ρ2
n

N
+ ρ2

n

M
+ ρn

NM

)

= O

(
ρ2
n

n

(
1

1 −φn

+ 1
φn

+ 1
(1 −φn)λc

n

))

= O

(
ρ2
n

n

)
�

and hence that (c′�̄Nc)−1 = O(nρ−2
n ) as long as λc

n ≥ C > 0 and φ ∈ (0�1) (see Assump-
tions 1 and 2). Additionally, using (46) yields

(
c′�̄nc

)−1/2
c′U2n = O

(
n1/2ρ−1

n

)
O
(
ρ2
n

)
= O

(
n1/2ρn

)
= o(1)�

as long as ρn = O(n−α) for α> 1
2 , as is maintained here. We also have that (c′�̄nc)−1/2c′bn =

O(n1/2ρ−1
n )o(n−2) = o(1). These two results imply assertion (48).

Central Limit Theorem

To show (49), I verify the conditions of Corollary 5.26 of Theorem 5.24 in White (2001);
specifically, the Lyapunov condition, for r > 2,

T (n)∑
t=1

E

[(∣∣∣∣ c′Znt(
c′�̄nc

)1/2

∣∣∣∣
)r]

= o(1)� (50)

and the stability condition
T (n)∑
t=1

(
c′ZNt

)2

c′�̄nc

p→ 1� (51)

I will show (50) for r = 3. First, I show that

E

[∣∣∣∣ 1
N
c′(s̄c1i�n − bn

)∣∣∣∣
3]

=O

(
ρ3
n

N3

)
� (52)

E

[∣∣∣∣ 1
M

c′(s̄p1j�n − bn

)∣∣∣∣
3]

=O

(
ρ3
n

M3

)
� (53)

E

[∣∣∣∣ 1
NM

c′(s11�n − s̄11�n)
∣∣∣∣

3]
=O

(
ρn

N3M3

)
� (54)
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Recall that s̄c1i�n = s̄c1�n(Wi�Ai;θ) with

s̄c1�n(w�a;θ) = E

[(
hn(w�Xj�a�Bj�Vij) − en(w�Xj;θ)

)( 1
z(w�Xj)

)]

= E

[(
hn(Wi�Xj�Ai�Bj�Vij) − en(Wi�Xj;θ)

)( 1
z(Wi�Xj)

)∣∣Wi =w�Ai = a

]
�

where the second equality follows from mutual independence of {(Wi�Ai)}i≥1, {(Xj�

Bj)}j≥1, and {Vij}i≥1�j≥1. Let, in a slight abuse of notation, h̄n(Wi�Ai)
def≡ E[hn(Wi�Xj�Ai�Bj�

Vij)|Wi�Ai]; I bound the first term above, Equation (52), according to

E

[∣∣∣∣ 1
N
c′(s̄c1i�n − bn

)∣∣∣∣
3]

≤ 8E
[∣∣∣∣c

′s̄c1i�n
N

∣∣∣∣
3]

≤ 64E
[∣∣∣∣ h̄n(Wi�Ai)

N
c′
(

1
z̄(Wi)

)∣∣∣∣
3]

≤ C ·E
[∣∣∣∣nh̄n(Wi�Ai)

nN

∣∣∣∣
3]

=O

(
ρ3
n

N3

)
�

where the third inequality follows from compactness of Z (Part (ii) of Assumption 3; with

z̄(w)
def≡ E[z(w�Xj)]) and the final equality from Part (iii) of Assumption 2. Equation (53)

follows from a parallel argument. Finally, term (54) follows from (with h̄n(w�x�a�b)
def≡

E[hn(w�x�a�b�Vij)]):

E

[∣∣∣∣ 1
NM

c′(s11�n − s̄11�n)
∣∣∣∣

3]
= E

[∣∣∣∣ 1
NM

c′(Yij − h̄n(Wi�Xj�Ai�Bj)
)( 1

z(w�Xj)

)∣∣∣∣
3]

≤ C ·E
[∣∣∣∣ Yij

NM

∣∣∣∣
3]

=O

(
ρn

N3M3

)
�

These calculations, as well as independence of summands 1 to N , N + 1 to N +M , and
N +M + 1 to N +M +NM , imply that

T (n)∑
t=1

E

[(∣∣∣∣ c′ZNt(
c′�̄nc

)1/2

∣∣∣∣
)3]

=Op

(
n3/2ρ−3

N

){
O

(
ρ3
n

N2

)
+O

(
ρ3
n

M2

)
+O

(
ρn

N2M2

)}

=Op

(
n3/2

){
Op

(
n−2

)+O
(
n−2

)+O
(
n−2

)}
=Op

(
n−1/2

)
= op(1)�

as required.
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To verify the stability condition (51), I rewrite it as

T (n)∑
t=1

1

n3
(
c′�̄nc

)n3
{(
c′Znt

)2 −E
[(
c′Znt

)2]} p→ 0� (55)

Since n−3(c′�̄Nc)−1 =O(n−3 ·nρ−2
N ) = O(1), the stability condition (51) will hold if the nu-

merator in (55)—S
def≡ ∑T (n)

t=1 n3{(c′Znt)2 − E[(c′Znt)2]}—converges in probability to zero.
By the independence restrictions on (Wi�Ai), (Xj�BJ), and Uij , the summands in S are
mutually uncorrelated such that

E
[
S2
]= n6

T (n)∑
t=1

E
[(
c′Znt

)4]− (
E
[(
c′Znt

)2])2
�

We then have

E
[(
c′Znt

)2]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
N2 c

′�c
1nc =O

([
λc
n

(1 −φn)φn

]2 1
n4

)
� t = 1� � � � �N�

1
M2 c

′�p
1nc =O

([
λc
n

φ2
n

]2 1
n4

)
� t =N + 1� � � � �N +M�

1
N2M2 c

′�3Nc = O

(
λc
n

φ3
n(1 −φn)2

1
n5

)
� t =N +M + 1� � � � �N +M +NM�

and

E
[(
c′Znt

)4]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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E
[(
c′s̄c1n1

)4]
N4 = O

([
λc
n

(1 −φn)φn

]4 1
n8

)
� t = 1� � � � �N�

E
[(
c′s̄p1n1

)4]
M4 = O
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λc
n

φ2
n

]4 1
n8

)
� t =N + 1� � � � �N +M�

E
[(
c′(sn11 − s̄n11)

)4]
N4M4 = O

(
λc
n

φ5
n(1 −φn)4

1
n9

)
� t =N +M + 1� � � � �N +M +NM�

We therefore have

n6
{
E
[(
c′Znt

)4]− (
E
[(
c′Znt

)2])2}

=

⎧⎪⎨
⎪⎩
n6
[
O
(
n−8

)+O
(
n−8

)]= O
(
n−2

)
� t = 1� � � � �N�

n6
[
O
(
n−8

)+O
(
n−8

)]= O
(
n−2

)
� t =N + 1� � � � �N +M�

n6
[
O
(
n−9

)+O
(
n−10

)]=O
(
n−3

)
� t =N +M + 1� � � � �N +M +NM�

The sum of the first N terms in S is therefore of order O(N/n2) = O(1/n) = o(1), that
of the next M terms is of order O(M/n2) = O(1/n) = o(1), while that of the final NM
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terms is of order O(NM/n3) = O(1/n) = o(1). Therefore, S converges in probability to
zero as n→ ∞ and condition (55) holds as required.

Next, observe that

n3�̄n → �̃c
1

1 −φ
+ �̃

p
1

φ
+ �̃3

φ(1 −φ)

as n → ∞, such that, using (48) and the Cramér–Wold theorem, n3/2Sn
D→ N (0� �̃c

1
1−φ

+
�̃
p
1
φ

+ �̃3
φ(1−φ) ). The result then follows from Lemma 2 and Slutsky’s theorem.

APPENDIX C: ADDITIONAL SIMULATION EXPERIMENTS

In this appendix, I report the results of a small set of additional simulation experiments.
An annotated Python Jupyter Notebook with replication code is available in the Supple-
mental Material. The goal of these experiments is to assess the finite sample quality of
the sparse network asymptotic approximations developed in the paper in a stylized and
controlled setting. The question of precisely how to best conduct inference when analyz-
ing sparse networks (e.g., assessing the relative merits of different methods of variance
estimation) is largely open and not directly addressed (see Chiang, Matsushita, and Otsu
(2022b)).

For the Monte Carlo experiments, I set the graphon, hn(Wi�Xj�Ai�Bj�Vij), equal to

Yij = 1
(
α+ z(Wi�Xj)′β+ ln(Ai) + ln(Bj) − ln(n) ≥ Vij

)
with Vij a standard exponential random variable. Averaging over Vij yields

En[Yij|Wi�Xj�Ai�Bj] = 1
n

exp
(
α+ z(Wi�Xj)′β

)
AiBj�

I set {Ai}Ni=1 and {Bj}Mj=1 to be i.i.d. log-normal sequences of random variables with μ =
−1/12 and σ = 1/

√
6. This implies that both Ai and Bj are mean 1 and, furthermore, that

the variance of ln(Ai) + ln(Bj) is one third that of Vij . This generates meaningful, but not
overpowering, cross-dyad dependence. Under these assumptions, the regression function
equals

gn(w�x) = 1
n

exp
(
α+ z(Wi�Xj)′β

)
�

Finally, I set z(Wi�Xj) = (
Wi Xj WiXj

)′
with {Wi}Ni=1 i.i.d. Bernoulli with a success

probability πw = 1/
√

3 and {Xj}Mj=1 iid Bernoulli with a success probability πx = 1/
√

3.
This implies that one third of dyads are of the Wi =Xj = 1 type.

I simulate data for five sample sizes: n = 64, 144, 256, 576, and 1024 with N = M in
all cases. I set α = ln(64 × 0�04), βw = βx = 0, and βwx = ln 4 ≈ 1�3863. This implies that
ρn = 0�08, 0�036, 0�020, 0�009, and 0�005 across the five designs. Note that θ0 is fixed across
these designs, but the triangular array structure of the DGP induces a decline in density
with n. For each design, I perform 5000 Monte Carlo replications.

The design is a stylized version of how a researcher might analyze data from a simple
consumer-product promotion experiment. Let Ai be consumer-specific heterogeneity, Bj

product quality heterogeneity, Wi = 1 if consumer i was randomly invited to participate in
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TABLE III

MONTE CARLO RESULTS, βwx.

(1) (2) (3) (4) (5)

n = 64 n = 144 n= 256 n= 576 n= 1024
ρn = 0�080 ρn = 0�036 ρn = 0�020 ρn = 0�009 ρn = 0�005

Mean Bias 0.1209 0.0615 0.0396 0.0171 0.0119
Median Bias 0.1632 0.0635 0.0406 0.0149 0.0127
Std. Dev. 0.7039 0.4221 0.2968 0.1972 0.1516
Mean S.E.—Sparse 0.6779 0.4638 0.3445 0.2340 0.1783
Coverage (95% CI)—‘Sparse’ 0.8754 0.9286 0.9442 0.9496 0.9434
Coverage (95% CI)—‘Dense’ 0.3468 0.3620 0.3506 0.3208 0.2922

Note: Results based on 5000 replications of the data generating process described in the text. The Monte Carlo standard deviation
of the point estimates (row 3) is a robust measure (the difference between 95th and 5th percentiles of the estimated coefficient’s
Monte Carlo distribution divided by the corresponding quantile differences of a standard normal variate). The standard error of the
simulation error on the coverage estimates is

√
α(1 − α)/5000 ≈ 0�003 for α= 0�05. See the text for additional information.

a ‘sale’ and zero otherwise, and Xj = 1 if product j was randomly determined to be ‘sale-
eligible’ and zero otherwise. The treatment effect of being invited to participate in the sale
increases the purchase probability for sale-eligible items by a factor of four (βwx = ln 4);
there is no spillover effect onto non-eligible items (βw = 0). Likewise, there is no direct
effect of an item being ‘sale-eligible’ on the probability of making a purchase (βx = 0). In
what follows, I focus on estimation of, and inference on, the interaction coefficient βwx.

In the experiments, the logit approximation does not coincide with the population re-
gression function for any fixed n; however, the approximation error declines as n → ∞.
Therefore, the pseudo composite maximum likelihood estimates of θ̂ are consistent for
their population analogs. However, we would expect to observe noticeable bias in small
samples. This is shown in the first two rows of Table III: for smaller samples, mean and
median bias are modestly large relative to the standard deviation of β̂wx across the 5000
Monte Carlo replications (row 3). As predicted, this bias declines with n.

The theoretical rate-of-convergence results outlined above suggest that the standard
deviation of β̂wx in design 2 should be two thirds of that in design 1. In practice, we have

that 0�4221
0�7039 ≈ 0�60 ≈

1√
144
1√
64

= 2
3 , which is close. That in design 3 should be three quarters of

that in design 2 (actual: 0�2968
0�4221 ≈ 0�70 ≈

1√
256
1√
144

= 3
4 ); design 4, two thirds of that in design 3

(actual: 0�1972
0�2968 ≈ 0�66 ≈

1√
576
1√
256

= 2
3 ); and design 5, three quarters of that in design 4 (actual:

0�1516
0�1972 ≈ 0�77 ≈

1√
1024
1√
576

= 3
4 ). Overall, the Monte Carlo rate-of-convergence estimates track

theoretical predictions well.
The final two rows of Table III report the actual coverage of two different nominal 95

percent Wald-based confidence intervals. These two intervals are constructed as described
in the discussion of the Monte Carlo experiments reported in the main text of the paper
(further details are in Supplemental Appendix D). In the designs with smaller samples,
the sparse confidence intervals undercover slightly, but once n is large enough such that
bias is negligible, their actual and nominal coverage coincide. As suggested by the theory,
the actual coverage of the dense asymptotic intervals is well below nominal levels in all
designs.
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TABLE IV

ACCURACY SPARSE NETWORK ASYMPTOTICS FOR β̂wx.

(1) (2) (3) (4) (5) (6)

n3/2Sn(θ0) n3/2U1n(θ0) n3/2U2n(θ0) n3/2Vn(θ0) n3/2[U1n(θ0) + Vn(θ0)] n3/2bn(θ0)

Panel A: n = 256
Mean 2�164 0.0446 −0�0045 0�0227 0.0672 2.101
Std. Dev. 5�2165 3.8460 0�3196 3�6122 5.2090 –
Pr(T ≥ 1�645) 0�0578 0.0546 0�0422 0�0542 0.0576 –
Pr(T ≤ 1�645) 0�0400 0.0432 0�0502 0�0472 0.0412 –
Pr(T ≥ 1�96) 0�0324 0.0290 0�0282 0�0308 0.0304 –
Pr(T ≤ 1�96) 0�0154 0.0184 0�0360 0�0246 0.0166 –

Panel B: n = 1024
Mean 1�116 0.0399 −0�0025 −0�0019 0.0380 1.081
Std. Dev. 5�3091 3.8169 0�1555 3�7162 5.3123 –
Pr(T ≥ 1�645) 0�0502 0.0526 0�0432 0�0508 0.0504 –
Pr(T ≤ 1�645) 0�0490 0.0490 0�0522 0�0476 0.0490 –
Pr(T ≥ 1�96) 0�0276 0.0244 0�0266 0�0236 0.0268 –
Pr(T ≤ 1�96) 0�0236 0.0234 0�0362 0�0234 0.0244 –

Note: Results based on 5000 replications of the data generating process described in the text. The forms of Sn(θ0), U1n(θ0),
U2n(θ0), Vn(θ0), and bn(θ0) are based on pencil and paper calculations and the details of the simulated data generating process (see
the Python Jupyter Notebook in the Supplemental Material for details).

Table IV summarizes the sampling behavior of the components of

n3/2Sn(θ0) = n3/2U1n(θ0) + n3/2U2n(θ0) + n3/2Vn(θ0) + n3/2bn(θ0)�

For each Monte Carlo draw, I construct each component of n3/2Sn(θ0) analytically (see
the Python Jupyter Notebook in the Supplemental Material). The variance of these com-
ponents is then estimated by their sampling variance across the 5000 Monte Carlo draws
(i.e., by Monte Carlo integration). Table IV reports the mean and standard deviation of
each of the components n3/2Sn(θ0) in the n = 256 and n = 1024 designs, specifically the
elements corresponding to the interaction coefficient βwx.

Table IV indicates that, for the designs considered here, n3/2U1n(θ0) and n3/2Vn(θ0) are
of equal order, while—as asserted by the theoretical analysis—n3/2U2n(θ0) is of lower
order. The closeness of the Monte Carlo standard deviations across the two samples also
indicates that n3/2 is the correct variance stabilizing rate. The Monte Carlo estimate of
the bias in n3/2Sn(θ0) also closely tracks its theoretical counterpart. Most importantly, the
normal approximation to n3/2[U1n(θ0)+Vn(θ0)], which underlies Theorem 2, appears to be
quite accurate. Normalized by its standard deviation, the tail frequencies of n3/2[U1n(θ0)+
Vn(θ0)] are close to those of a standard normal random variable (especially for the larger
sample size).
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