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APPENDIX: SUPPLEMENTAL APPENDIX

A.1. Specification

To examine the problem of correlated and contextual effects, we start with the formula-
tion similar to Moffitt (2001). Suppose that we have g = 1� � � �G groups and that there are
only two cities (i = 1�2) per group. Let yig be the outcome variable of interest for city i in
group g, xig be an observed characteristic of i, which in our case is the lagged outcome,
and vig be an unobservable characteristic. Assume that the model that we wish to estimate
is

y1g = α0 + αx1g +βx2g + v1g�

y2g = α0 + αx2g +βx1g + v2g�

In particular, we are interested in β, which captures how lagged events spread from city
1g to connected city 2g, and vice versa.

A concern is that v1g and v2g are correlated, for example, because of correlated and
contextual effects. The correlated effects are typically parametrized by an unobserved
group-specific unobserved shock, δg, which is part of the error and for which

E(δgxig) �= 0�

The contextual effects are typically parameterized by including a term γx2g in the error
term v1g. In our case, contextual effects could arise from events spreading through com-
munication channels that are correlated with the social media network, such as cell-phone
use. Thus, the error term, v1g, can be decomposed as

v1g = γx2g + δg + ε1g�

By the same token, v2g is similarly defined.
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In this model, γ �= 0 implies contextual effects and δg �= 0 implies correlated effects.
Clearly, β is not identified in the presence of these effects.

A.1.1. Setup

We estimate our model using a panel of N Chinese cities at daily frequency, t. Let yit
be a dummy variable indicating the occurrence of a protest. Suppose that the probability
of a protest in city i on day t, Pr(yit) depends on the number of people who are informed
about protests yjt−1 in another city j at time t − 1. Let fijt be the number of people in city
i who read posts from users in city j at time t and assume that the number of people who
learn about the protest is fijtyjt−1. We wish to model how protests spread from city j to
city i as a function of fijtyjt−1.

We illustrate the identification assumptions with the following simple example. There
are two periods (pre-Weibo and post-Weibo) and two groups of cities (N�C) that may be
affected by a protest in another city j on a previous date. Cities in group N are never con-
nected via social media to city j, whereas cities in group C are connected via social media
to city j in the post-Weibo period only. Social media connections increase the probability
that a protest spreads from j to other cities. In both periods, there are some days with
protests in location j, and some days without such protests. Let yji−1 be an indicator vari-
able for a protest in city j at t − 1, fi be an indicator variable for city i belonging to group
C and Pt be an indicator variable for the post-Weibo period. Then we have

yit = δ+ αyit−1 +βpfiyjt−1 + vit� (A1)

where βp measures the effect of events spreading through the social media network with
β0 = 0 in the pre-Weibo period (p = 0) and β1 = β in the post-Weibo period (p = 1).
Further, let

vit = γfiyjt−1 + fiδg + εit� (A2)

where γfiyjt−1 captures the contextual effects and fiδg captures the correlated effects.

A.1.2. Triple-Differences Estimator

Consider the following triple-differences equation in the linear probability model, with
outcome variable yit being a protest in city i at time t,

yit = β0 +β1fi +β2yjt−1 +β3Pt

+β4fiyjt−1 +β5fiPt +β6Ptyjt−1

+βPtfiyjt−1 + εit � (A3)

To simplify the exposition, we drop from the equation the term αyit−1, which captures
within-city spread. The conditional mean function E[yit|fi� yjt−1�Pt] can take on eight val-
ues, and the model is saturated because it has eight parameters. The first row of Equation
(A3) contains the three main effects and the constant, the second row contains the three
two-way interactions, and the third row contains the triple interaction. This model al-
lows for the probability of a protest in city i to be larger in connected cities (β1) than
in nonconnected cities, for example, because of correlated effects (absorbing fiδg) in the
post-Weibo period (β3), and additionally higher for connected cities in the post-Weibo
period (β5). Protests are also allowed to spread across all cities (β2), and differentially so
in the post-Weibo period (β6). In particular, note that protests in city i may be more likely
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to occur immediately after a protest in a connected city j in the pre-Weibo period (β4),
such as because of contextual effects (absorbing γfiyjt−1). The coefficient β captures the
difference in the spread of protests between connected and nonconnected cities before
and after Weibo entry.

Under the standard OLS assumption, E[εit|fi� yjt−1�Pt] = 0. For compactness, we use
the notation

E[Y|fi = 1� yjt−1 = 1�Pt = 1] = YC�S�Post�

where C denotes a connected city (fi = 1), S denotes lagged protests in city j (yjt−1 = 1),
and Post denotes Pt = 1. Similarly, let N denotes nonconnected city (fi = 0), W denote a
day without a protest in city j, yjt−1 = 0, and Pre denote that Pt = 0. It is straightforward
to show that β= δC − δN , where

δC = (YC�S�Post −YC�W �Post) − (YC�S�Pre −YC�W �Pre)

is the difference in city C between the pre-Weibo and post-Weibo periods in the difference
in protest incidence when there is a protest or not in city j, and

δN = (YN�S�Post −YN�W �Post) − (YN�S�Pre −YN�W �Pre)

is the equivalent difference in city N .
By rearranging terms, we can also write the estimator as β= δ1 − δ0, where

δ1 = (YC�S�Post −YC�W �Post) − (YN�S�Post −YN�W �Post)

is the difference between connected and nonconnected cities in the difference between
days with and without protests in the post-Weibo period, and

δ0 = (YC�S�Pre −YC�W �Pre) − (YN�S�Pre −YN�W �Pre)

is the equivalent difference in differences in the pre-Weibo period.

A.1.3. Parallel-Trends Assumption

Below, we articulate the identification conditions for the triple-difference estimator we
have derived under the potential outcomes framework.

Let E[Y1|C�S�Post] denote the expected outcome in state (C�S�Post) in the case that a
city is connected and E[Y0|C�S�Post] denote the expected outcome in the counterfactual
case in which the city is not connected. The estimate βTT captures the causal effect of
being connected to a city with a protest in the post-Weibo period for the connected cities,
formulated as follows:

βTT = E[Y1|C�S�Post] −E[Y0|C�S�Post]�

Our estimator is

β = δC − δN

= (
E[Y1|C�S�Post] −E[Y0|C�W �Post]

) − (
E[Y0|C�S�Pre] −E[Y0|C�W �Pre]

)

−(
E[Y0|N�S�Post] −E[Y0|N�W �Post]

) − (
E[Y0|N�S�Pre] −E[Y0|N�W �Pre]

)
�
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The condition for β = βTT is that absence treatment, δC = δN . Since the only term that
contains treatment in δC is the first term, E[Y1|C�S�Post], the parallel-trend condition is

(
E[Y0|C�S�Post] −E[Y0|C�W �Post]

) − (
E[Y0|C�S�Pre] −E[Y0|C�W �Pre]

)

= (
E[Y0|N�S�Post] −E[Y0|N�W �Post]

)

− (
E[Y0|N�S�Pre] −E[Y0|N�W �Pre]

)
� (A4)

A.1.4. Contextual and Correlated Effects

Our estimator differences out the contextual and correlated effects in Equations (A1)
and (A2). The correlated effects, fiδg, are differenced out because both δC and δN are
constructed solely from the within-group differences.

The contextual effects are partialed out because they are contained in both δ1 and δ0,
and δ1 − δ0 = (β+ γ) − γ = β. The parallel-trends assumption in Equation (A4) implies
that the difference-in-differences captured by δ0 would have been the same in the post-
Weibo period, in the counterfactual case that the social media network did not exist,

(
E[Y0|C�S�Post] −E[Y0|C�W �Post]

) − (
E[Y0|N�S�Post] −E[Y0|N�W �Post]

) = γ�

We cannot test the assumptions directly because we do not observe E[Y0|C�S�Post].
However, we can estimate γ separately for each half-year, b, using

γ̂b = (YC�S�Pre −YC�N�Pre)b − (YN�S�Pre −YN�N�Pre)b

to see whether this exhibits a trend in the pre-Weibo period.

A.1.5. Multiple Cities

In the real-world data that we use, protests occur in all cities, and social media con-
nections in the post-Weibo period are of different strengths. Let fij be the strength of
city i’s connection to city j. Now, we generalize the above model by linearly adding the
contributions described in Equation (A3) from each city j,

yit = β0 +β1f i +β2(yt−1 − yit−1) +β3Pt

+β4sit−1 +β5f iPt +β6Pt (yt−1 − yit−1)

+βPtsit−1 + εit�

where f i =
∑

j f ij , yt−1 = ∑
j yjt−1, and sit−1 = ∑

j �=i fijyjt−1. To allow for more flexibility, we
will estimate an equation of the form

yit = αpyit−1 +βpsit−1 + δ
p
i + δt + εit� (A5)

where superscripts indicate the pre-Weibo and post-Weibo periods. The city-by-period
fixed effects absorb the following terms:

δ0
i = β0 +β1f i

δ1
i = β0 +β1f i +β3Pt +β5f iPt�
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The date-fixed effects and the lagged outcome in city i, yit−1, interacted with the period-
fixed effects pt , absorb the following terms:

β2yt−1 +β3Pt +β6Ptyt−1 + (−β2 −β6Pt2)yit−1 = δt + α0yit−1 + α1yit−1�

where δt = β2yt−1 + β3Pt + β6Ptyt−1, α0 = −β2, and α1 = −β2 − β6Pt2. To simplify the
exposition, we omit the term involving the within-city spread, αyit−1, from Equation (A1)
when we constructed Equation (A3). To include this spread, α should be added to α0 and
α1. Finally, our specification includes sit−1, interacted with period-fixed effects pt . This
absorbs the terms

β4sit−1 +βPtsit−1 = β0sit−1 +β1sit−1�

where β0 = β4 and β1 = β4 + β. After adding controls, Equation (A5) corresponds to
Equation (2) in the main manuscript.

A.2. Monte Carlo Simulations

A.2.1. Stationarity

In our setting, the stationarity of the process of protests or strikes is not simply an
econometric issue. Whether these processes are stable or exploding is likely to be a core
concern of an authoritarian regime (the Chinese central government in our context). Con-
sider the following simple first-order serial autoregressive process: yt = ρyt−1 + εt .

This process is stationary if |ρ|< 1. If ρ > 1, then, on average, each yt is larger than the
past yt−1, and in expectation, yt grows exponentially over time. We can investigate whether
a process is on such an exploding path by simulating outcomes generated from drawing
random shocks from the distribution of εt , and iteratively computing sequences of yt .
Our setting is more complex than this simple example because of the network structure,
multiple time lags, and discrete outcomes, but the principle remains the same.

In a dynamic spatial panel data model, stationarity depends on the parameters of the
model as well as on the spatial weight matrix, which determines the amount of autocor-
relation, or feedback, in the process. For the location’s own autoregressive term and the
distance weighted term, this feedback is constant over time because α, γ, and the distance
matrix D are constant. However, more intensive use of social media will increase the feed-
back, and each individual row in the forwarding matrix, F , does not sum up to one. This
implies that the marginal effect of a change in yt−1 on the probability of an event differs
across location and time. In the linear model, the average effect on a particular date t

equals βf t−1, where f t−1 is the average row sum across locations on that date. The max-
imum of such a row sum is 10.5, an order of magnitude larger than the average row sum
across all dates, t, which is normalized to one. This implies that the sufficient conditions
for stationarity are not fulfilled for the linear model. In other words, stationarity requires
a concave function for high values of sit−1, as we demonstrate below.

In the baseline estimation, we assume that sit−1 enters linearly in Equation (1). Now,
we investigate this assumption using a nonparametric least squares regression (Cattaneo,
Crump, Farrell, and Feng (2024)). Specifically, we estimate the nonparametric conditional
mean function h(·) using the following specification:

yit = αyit−1 + h(sit−1) + γdit−1 + θ0wit + θ′xit + δi + δt + εit � (A6)

Figure 5 in the paper plots the nonparametric conditional mean function (shown by
the dots), estimated using the specification in Equation (1), together with three paramet-
ric approximations: a linear approximation, a logarithmic (log(5sit−1 +1)) approximation,



6 B. QIN, D. STRÖMBERG, AND Y. WU

and a fifth-order polynomial approximation. The conditional mean function is approxi-
mately linear for most of the support, and all three approximation functions yield very
similar results for the estimated average marginal effects.1

However, as shown in Figure 5, when an event wave grows above a certain extent, the
marginal spread effect of an additional event (the slope of the curve) falls. Thus, for
sufficiently high values of sit−1, there is no spread of events through social media. This
causes the magnitude of yt to fall rapidly in the right tail. Because of this feature, the
process is never on an exploding path when we use either the fifth-order polynomial or
the log approximations of the conditional mean functions for the data-generating process.
Given that the log-model only has one parameter, and is sufficiently concave to avoid
exploding paths, we use this functional form in most of the simulations.

A.2.2. Nickell Bias

The Nickell bias arises in dynamic panels with fixed effects. In our estimation, we pre-
sume that the Nickell bias is small because the T in our panel model is very large. Nev-
ertheless, we run a set of Monte Carlo simulations to assess the Nickell bias in the esti-
mated coefficients of our baseline model. We first estimate the parameters α�β�γ�δt , and
δi from a regression specified as in Equation (1), using the logarithmic function described
above and without Weibo penetration and controls (for the sake of simplicity). Next, we
generate data using the same model with the estimated parameters, adjusted such that
δt + δi ≥ 0. Then we estimate the model parameters (α̂� β̂� γ̂) on the simulated data. We
repeat this procedure 100 times. Figure A.4 plots the distribution of t-statistics of coeffi-
cients α�β, and γ in Equation (1) against the standard normal density. The bias is very
small, as evident from the negligible difference between the true and the mean estimated
β for both protests and strikes.

In Section 5, we report the estimates of a model including fixed effects for arbitrary
time-constant spread across locations. We also run a set of Monte Carlo simulations to
assess the Nickel bias in this model. Specifically, we use the baseline model for the data-
generating process and then estimate the interaction-fixed-effects model using the simu-
lated data. Figure A.5 depicts the distribution of β-estimates from the Monte Carlo simu-
lations. The graphs to the left show the results from estimations without interaction-fixed
effects (Equation (1)), corresponding to specifications in columns (1) and (4) of Table I.
The graphs to the right are based on the regressions with interaction-fixed effects, corre-
sponding to the specifications used in columns (3) and (6). The blue line shows the true
coefficient used in the data-generating process. The red line represents the mean coeffi-
cients from the estimated on the simulated data. These graphs show a bias of 0.011 for
both protests and strikes.

We also test for the possibility of autocorrelated errors on the simulated data in which
the autocorrelation in errors is absent by construction. The test for autocorrelation in the
baseline model verifies this, although it slightly overrejects the nonautocorrelation hy-
pothesis. The model with interaction-fixed effects can control for the same pattern as the
baseline model, but many interaction-fixed effects are imprecisely estimated. Removing
slightly incorrect autocorrelated terms generates autocorrelated errors. Hence, it is not

1This is evident from results using the logarithmic function in the Appendix Tables A5 and A6, in comparison
with our baseline results (Tables I and II). The logarithmic model uses the conditional mean function ln(5sit−1 +
1). The estimates of β are statistically significant across all specifications and the implied marginal effects on
event probabilities are similar to those estimated using the linear model.
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surprising that the autocorrelation test for the model with interaction-fixed effects incor-
rectly rejects no autocorrelation in our data, which is simulated with no autocorrelation.

Presumably, autocorrelation would disappear as the sample size grows to infinity, be-
cause the coefficients are consistently estimated and would converge to the data gener-
ation process. The lack of autocorrelation in the errors in Table I shows that there is no
significant spread of protests other than what is captured in the baseline model. Although
the specifications used in columns (3) and (6) of Table I generate autocorrelated errors
in small samples, they will not severely bias the estimated coefficients, as shown in Fig-
ure A.5.

A.2.3. Mechanical Zero Effect

The estimated social media effect on event spread is not closely related to the number
of events in each period. For example, there are 50% more protests in period 2 than
period 1 (1516 compared with 1037), but the estimated spread in period 2 is smaller than
in period 1. Similarly, while there are six times as many strikes in period 2 than in period
1 (7857 compared with 1365), the estimated spread effect is not significantly different.
The lack of, or even a negative, relationship between the number of events and the size
of the estimated effects suggests that there is no mechanical relationship between these
two variables.

Concerns may remain that the smaller number of events in the pre-Weibo period would
mechanically reduce the estimated effects. To further explore this, we simulate event data
using a process that matches the observed event frequencies within each period, with the
propagation of protest waves across cities being equally strong in the pre-Weibo and post-
Weibo periods. Then we estimate the effects on the simulated data and test whether the
coefficients in the pre-Weibo period are significantly lower than in the post-Weibo period.

To implement this research design, we first run a set of Monte Carlo simulations to
generate event data for the period from 2010 to 2013. To simulate data with lower event
frequency for the pre-Weibo period (2006–2010), we use the post-Weibo data-generating
process, and then sample sequences starting from a random date and continuing until the
same number of events as in the real data are reached. We retain simulated events ỹit in
the sampled sequences but drop all other events (i.e., yit is set to zero).

Then we reestimate the model of Table II based on these simulated data. Table A4
shows the results. Despite the much smaller number of events in the pre-Weibo period,
the average estimated β-coefficient is only slightly lower in the pre-Weibo period than in
the post-Weibo period (0.10 compared with 0.12). When we test whether the coefficient in
the pre-Weibo period is lower than in the post-Weibo period at the 5% significance level,
the hypothesis is rejected in 8% of the simulations.

A.2.4. Magnitude of Event Waves

In this section, we estimate the effect of social media on the size of an event wave,
measured by the number of essentially simultaneous events across multiple cities. We
are not only interested in the mean number of events but also in the likelihood of very
large event waves. This requires that we specify some additional details about the dynamic
process of event waves.

In addition to the effects through social media, measured by sit−1, the propagation of
protests may depend on the size of event waves in the real world, measured by the num-
ber of essentially simultaneous events, yt−1 = ∑

yit−1. On the same date, yt−1 is constant
across all cities, and hence is absorbed by the date fixed effect, δt , in Equation (1). The
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specification including date-fixed effects is preferred when the purpose is to identify the
marginal effect of sit−1, because it flexibly controls for all time-constant heterogeneity,
including that through yt−1. However, this specification does not explicitly model the dy-
namic effects through yt−1. Therefore, when the objective is to explore the size of event
waves, we need to bring the effect of yt−1 to the scene. We do so by adding yt−1 to Equa-
tion (1) and replacing the date-fixed effects with fixed effects for running months. More
specifically, we use the parameters (α̂� γ̂) and the fifth-order polynomial ĥ5(sit−1), esti-
mated as described above, which are obtained from the specification in Equation (1) that
includes date fixed effects (because this model most convincingly identifies these param-
eters). Then we estimate the parameters δi�ρ�δm using the following specification:

yit = α̂yit−1 + ĥ5(sit−1) + γ̂dit−1 + δi + ρyt−1 + δm + εit� (A7)

where the date fixed effects, δt , are replaced with date-constant variables: the total num-
ber of events in the past two days, yt−1, and the month-fixed effects, δm. The estimate of
ρ̂ ≈ −0�002 implies that the probability of an event falls by 0.02 for every 10 additional
events that occurred in the past two days.

Then we use the above model to simulate event data under two scenarios, with and with-
out social media. In both scenarios, we use the estimated probabilities that events erupt
independently of other events, δ̂i + δ̂m, and we keep the within-city and geographical and
aggregate spread, (α̂� γ̂� ρ̂) at the estimated levels. In one scenario, we allow events to
spread through social media using the estimated nonparametric conditional mean func-
tion, ĥ5(sit−1). In the other scenario, we do not allow for event spread over social media
by omitting the function ĥ5(sit−1) from the data generating process. We simulate the data
1000 times, obtaining 1000 possible histories of protest events in our city panel up to 2013.
For each simulation and year, we compute the maximum number of cities with protests
within the same week and the corresponding maximum share of population in the cities
affected by protests. The results are shown in Figure 6 and discussed in Section 6.3 of the
paper.

A.3. Censorship

Censorship and Aggregate Retweets. In 2015, we checked which posts in a subsample of
posts in our data set remained online. Based on this deletion rate at the regional level,
we construct a measure of local censoring intensity. Given the literature on censorship
in China, it seems unlikely that censorship significantly affects the number of retweets
on nonsensitive topics. We verify this by regressing our time-constant measure of social
media connections, fij , on the average share of deleted posts in city i and city j. All of the
variables are standardized, and standard errors are clustered by city i and city j. Table A9
reports the results. It is clear that fij is not significantly related to the share of deleted posts
in either the city of the tweeting user (j) or the city of the retweeting user (i). Column
(2) adds city-level controls and Weibo penetration in 2012. The coefficients of interest
are nonsignificant, and the implied magnitudes are small. Column (3) interacts the share
of deleted posts with Weibo penetration, because the effect on total retweets should be
increasing in Weibo use. The coefficient of this interaction term is small and statistically
insignificant.

Heterogeneity Analysis. We further investigate whether the spread of protests and
strikes is correlated with our measure of local censorship intensity. First, censorship may
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affect outgoing messages from the city of event occurrence. Suppose that the event yjt−1

in city j at time t − 1 causes a burst of tweets, a share of which, cj , are censored. To
capture this type of effect, we construct the variable

∑
i �=j fijcjyjt−1 where cj is the mea-

sure of the average share of deleted posts in city j. However, the variables
∑

i �=j fijcjyjt−1

and
∑

i �=j fijyjt−1 are highly collinear, making it impossible to separately identify the effects
from these two variables. Such multicollinearity arises because many events occur in cities
with deletion rates close to the mean deletion rates, and thus the variance in the weights
cj is small, making the two variables highly correlated.

Second, we consider the situation in which censorship may prevent social media users
in affected cities (to which the events could spread) from reading or retweeting incoming
event-related tweets from other cities. We capture this by using the variable ci

∑
i �=j fijyjt−1

where ci is the share of deleted posts in city i. As shown in Table A10, neither the spread
of protests nor the spread of strikes is significantly different in cities with different levels
of censorship.

A.3.1. Censorship, Content Exposure, and Conclusions About Mechanisms

Because of censorship, the visibility to Weibo users of tweets with a certain content may
differ from the availability of these tweets in our data set.

Consider two types of content referencing protests, labeled A and B. Type-A content
reveals logistics information (e.g., where and when to meet), which lowers the cost of
protesting. Type-B content just talks about the occurrence of a protest or expresses sen-
timent, which supports other mechanisms. The Chinese government censors Type-A con-
tent but not Type-B content. Given that data downloading is slower than user reading of
tweets, users may read Type-A tweets that are censored before we download them. Hence,
the ratio in the downloaded tweets may be a biased measure of the ratio of reader expo-
sure (the share of tweets read by users). Below, we provide a simple formulation to assess
this potential bias.

Suppose that there are N Type-A tweets. Among these tweets, let α be the share of
those that contain sensitive keywords, which are therefore automatically held in quar-
antine. A share s of these pass the censorship test and are later published; these pub-
lished tweets are downloaded by us and also visible to users. The remaining tweets, which
amount for a share of 1 −α, do not contain sensitive keywords, and are directly published
but later reviewed and perhaps censored. We download a share δ of these tweets. Suppose
that uA users would read these tweets if they were never censored, and that on average a
share r of these users read the tweets before they are censored. Thus, we define a measure
of user exposure to Type-A content, eA, to be

eA = NuA

(
αs + (1 − α)r

)
�

The number of tweets that we download is

dA = N
(
αs + (1 − α)δ

)
�

Hence, the ratio of user exposure to downloaded tweets is

eA

dA

= uA

αs + (1 − α)r
αs + (1 − α)δ

�

The equivalent ratio for Type-B content, which is not censored, is uB, because in this case
α = 0 and r = δ = 1. The relative ratios of user exposure to the number of downloaded
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tweets for Type-A content and Type-B content depend on the difference between r and δ
as well as the discrepancy between uA and uB.

Empirical Estimates. To gauge the discrepancy between reader exposure and data
downloading (r and δ), we need to know the share of interested users who read the tweets
before they are censored, and the share of tweets that are downloaded before censoring.
This requires estimates of the speed of (i) censoring, (ii) user reading, and (iii) our down-
loading of tweets. Let F̂c(t) be the empirical distribution of censoring time as measured by
Zhu et al. (2013), who provide an accurate measure of the speed of censorship in minutes
after a tweet is posted. Let F̂r (t) be the empirical distribution of retweet time in our data,
which serves as a proxy for the speed of reading tweets. Finally, we assume that the down-
loading time, F̂d(t), is uniformly distributed between 0 and 24 hours. This assumption is
reasonable because most of our data are downloaded by lining up users over a 24-hour
time window and the posts of each of these users are downloaded at a daily frequency.

The empirical distributions of censoring and retweet speed are plotted in Figure A.2.
This figure includes two distributions of retweet speed for (i) all retweets and (ii) retweets
of posts referencing protest and strike within two days after a real world event. In the first
10 minutes after a tweet is posted, retweeting (especially for the protest or strike events)
is faster than censoring. After this time, the speed of censoring is considerably higher
than that of retweeting. Protest and strike tweets are retweeted more quickly than the
average tweet. This could be because users are more active in responding to politically
sensitive content or because censorship disables the retweeting of sensitive posts after a
certain time. For the latter reason, rather than using protest and strikes tweets, we use
the retweet distribution based on all tweets, for which the share of censored posts is very
small, to calculate the probabilities below.

We simulate data to generate samples of 1000 tweets. For each simulation, we draw
independent realizations of the censoring time (c) from the empirical distribution F̂c(t),
the download time (d) from F̂d(t), and 10 realizations of retweet time (r) from F̂r (t).2
The simulated probability of downloading a tweet that is later censored is 0.23, which
implies that approximately 77% of the posts that are eventually censored are censored
before they are downloaded. Our simulation show that around one-third of the users who
would read a tweet have done so by the time of censorship.

To gauge the ratio of r to δ, suppose that there are 100 Type-A tweets susceptible to
censorship and 100 uncensored Type-B content. Each tweet would be read by 10 users
if censorship did not occur. In this case, the Type-B tweets are read 1000 times and the
Type-A tweets are read 330 times. We download 100 of the Type-B tweets and 23 of the
Type-A tweets. Hence, the ratio of downloaded Type-A tweets relative to Type-B tweets
is 23/100, and the corresponding ratio of user exposure to tweets is 330/1000.

According to our previous formulation, if no posts in category A contain sensitive key-
words and are automatically held for review (α = 0), then we would underestimate the
prevalence of censored Type-A tweets relative to uncensored Type-B tweets by around
30% (1-23/33). In practice, we expect that a significant share of Type-A tweets contain lo-
gistic information, which typically includes sensitive keywords, and thus the bias is smaller
than when α= 0.

The other issue is that the number of interested users may differ across content types
(uA �= uB). To capture this difference, we compare the numbers of retweets of Type-A and
Type-B content, because the average number of retweets per tweet tends to increase in
the number of users who read the tweet.

2The number 10 is used because the tweets on protest and strike topics are retweeted ten times on average.
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FIGURE A.1.—Distribution of events across cities. Notes: The x-axis indicates the accumulated number of
events within each city, and the y-axis indicates the frequency of cities. The sample period for protests is from
2006 to 2017, and that for strikes is from 2007 to 2017.

FIGURE A.2.—Speed of retweeting and censorship of posts about protests and strikes.
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FIGURE A.3.—Media control in China during 2000—2020. Notes: “Media Bias” is a measure of pro-govern-
ment bias of Chinese newspapers based on the method used in Qin et al. (2018). The Freedom House Freedom
Index (starting from 2005) is the aggregate score of freedom of expression and media freedom constructed by
the Freedom House.

FIGURE A.4.—Monte Carlo simulations DGP, distribution of t-statistics. Notes: The graphs plot the distri-
bution of t-statistics of coefficients of interest against the standard normal density. The red vertical line denotes
the mean of the standardized t statistics. α, β, γ are coefficients of the three variables in Equation (1): lagged
event dummy in city i (yit−1), the time-varying diffusion of information on protests through social media (sit−1),
the spread to geographically close cities (dit−1).
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FIGURE A.5.—Monte Carlo simulations of the fixed-effect model. Notes: The graphs plot the distribution
of β estimates. The blue solid line indicates the coefficient of the DGP. The red dotted line indicates the mean
estimated coefficient using the simulated data.

FIGURE A.6.—Student-IV dynamic effects. Notes: The graphs plot the estimated biannual coefficients on
the time-constant measure sit−1 (Instrumented by the student-mobility variable zit−1) relative to the pre-period
mean. The bars indicate the 95% confidence interval.
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FIGURE A.7.—Monte Carlo simulations with observability driven by Weibo without network spread. Notes:
The blue (left) line is at the beta-coefficient of the DGP. The red (right) line is at the mean estimated coefficient
using the simulated data.

FIGURE A.8.—Local censoring intensity across provinces. Notes: The left graph plots the correlation be-
tween our measure of censoring intensity (the share of deleted posts) and the measure of the share of deleted
posts by Bamman et al. (2012). The right graph plots a similar correlation with the x-variable replaced with a
measure of pro-government media bias based on Qin et al. (2018).
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TABLE A1

SUMMARY STATISTICS OF THE MAIN VARIABLES.

Protest Strike

Mean sd min max Mean sd min max

Event dummy 0�002 0�039 0 1 0�002 0�045 0 1
#events 1–2 days prior (retweet

weighted)
0�016 0�04 0 0�69 0�02 0�043 0 0�675

#events 1–2 days prior 0�003 0�056 0 2 0�004 0�065 0 2
#events 1–2 days prior

(distance weighted)
0�003 0�007 0 0�145 0�004 0�008 0 0�233

Total # retweets by users in
focal city in the last 182 days

1�026 1�019 0 3�495 1�021 0�948 0 3�303

log (#posts per capita +1) 0�06 0�185 0 2�646 0�059 0�18 0 2�646
log(Population) 5�965 0�635 3�767 8�119 5�874 0�684 2�871 8�119
log(GDP) 15�147 1�204 11�989 19�179 15�093 1�184 12�031 19�179
log(Agriculture share of GDP) 1�484 1�068 −3�219 4�078 1�455 1�076 −3�219 4�071
log(Industrial share of GDP) 3�898 0�264 2�123 4�504 3�903 0�277 2�161 4�504
log(Tertiary share of GDP) 3�703 0�266 2�153 4�454 3�693 0�276 2�153 4�454
log(#Cellphone users, 10,000) 5�422 0�846 2�509 8�124 5�362 0�851 2�786 8�124
#cities 248 282
#observations 670,996 713,702

TABLE A2

BETWEEN-CITY MOBILITY OF COLLEGE STUDENTS AND SOCIAL MEDIA CONNECTIONS.

(1)
Variables fij

Students0509
ij 0.083

(0.013)

Inverse geographical 39.722
distance (4.223)

Observations 86,308
R-squared 0.938
Fixed effects Prov pair + city-prov pair

Note: The dependent variable is log(1+# of retweets from city i of tweets from city j). Students0509
ij is log(1+mean # students

from city i who move to city j in 2005 or in 2009). The regression includes origin and destination city-fixed effects, as well as fixed effects
for province pairs and destination city-province pairs. Standard errors (in parentheses) are clustered by origin city and destination city.
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TABLE A3

STUDENT-MOBILITY IV: FIRST STAGE.

Protest Strike
Variables sit−1 sit−1

Students0509
ij x period 0 1.196 1.249

(0.081) (0.078)
Students0509

ij x period 1 1.414 1.422
(0.078) (0.073)

Students0509
ij x period 2 1.246 1.494

(0.075) (0.081)

Observations 999,472 1,092,477
R-squared 0.980 0.985

Note: The dependent variable is sit−1, the lagged events in other cities, weighted by social media connections. The unit of obser-
vation is city by date. The regression includes lagged events, yit−1, and distance-weighted lagged events, dit−1, interacted with period
fixed effects, city-by-period, and date-fixed effects. Controls include population, GDP, shares of the industrial and tertiary sectors in
GDP, and the number of cell-phone users. Standard errors (in parentheses) are two-way clustered by date and city.

TABLE A4

TESTING FOR MECHANICAL ZERO EFFECTS AT LOW EVENT FREQUENCY.

Variables Mean

β0 0.115
β1 0.127
sd(β0) 0.044
sd(β1) 0.021
Tests of β1 >β0 at 5% significance 0.080

Note: Data are generated so that the simulated event frequencies equal observed event frequencies for the pre-Weibo and post-
Weibo periods, while the DGP-beta is the same for both periods. The model of Table II is then estimated on the simulated data.
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TABLE A5

TIME-VARYING MEASURE OF CONNECTIONS (LOG MODEL).

(1) (2) (3) (4) (5) (6)
Variables Protest Protest Protest Strike Strike Strike

Social-media spread (β) 0.055 0.054 0.047 0.039 0.037 0.024
(0.013) (0.012) (0.013) (0.008) (0.007) (0.008)

Geo-distance spread (γ) −0�008 −0�007 0.031 0.030
(0.008) (0.008) (0.013) (0.012)

Number events 1–2 days prior 0.009 0.009 0.017 0.017
(0.004) (0.004) (0.004) (0.004)

Total number retweets 0.000 −0�000 0.000 −0�001 −0�001 −0�001
(0.000) (0.000) (0.000) (0.001) (0.001) (0.001)

Weibo posts 0.006 0.006 0.005 0.011 0.010 0.009
(0.002) (0.002) (0.002) (0.004) (0.003) (0.003)

Observations 670,996 670,996 670,996 713,702 713,702 713,702
R-squared 0.016 0.016 0.219 0.027 0.027 0.239
Controls No Yes Yes No Yes Yes
QPtest 0.07 0.15 0.27 0.32

Note: Results are obtained from a linear regression of an event dummy. The unit of observation is city by date. The estimated
model is

yit = αh(yit−1) +βh(sit−1) + γh(dit−1) +β0wit + θ′xit + αip + δt + εit �

where h(x) = ln(5x + 1). Controls are population, GDP, shares of the industrial and tertiary sectors in GDP, and the number of cell
phone users. Columns (3) and (6) allow for arbitrary time-invariant heterogeneity in the spread across city pairs. In this specifica-
tion, the variables capturing geo-distance spread and the number of events 1–2 days prior are collinear with the fixed effects and
are dropped. The QP statistic reports the p-value of the test for serial correlation in the fixed-effects model. Standard errors (in
parentheses) are two-way clustered by date and city.
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TABLE A6

TIME-CONSTANT MEASURE OF CONNECTIONS (LOG MODEL).

(1) (2) (3) (4)
Variables Protest Protest Strike Strike

Social-media spread, sit−1 β0 0.036 0.033 0.023 0.028
(0.018) (0.020) (0.039) (0.043)

β1 0.214 0.246 0.178 0.190
(0.055) (0.058) (0.042) (0.046)

β2 0.100 0.109 0.237 0.249
(0.027) (0.028) (0.032) (0.035)

Geo-distance spread, dit−1 γ0 −0�003 −0�010 0.113 0.114
(0.018) (0.018) (0.066) (0.067)

γ1 −0�028 −0�026 0.116 0.113
(0.038) (0.038) (0.059) (0.061)

γ2 0.026 0.024 0.030 0.031
(0.026) (0.027) (0.035) (0.034)

Observations 1,140,224 1,028,085 1,224,880 1,119,858
R-squared 0.018 0.019 0.048 0.049
Controls No Yes No Yes
P-value: β1 = β0 0.002 0.001 0.006 0.008
P-value: β2 = β0 0.048 0.032 0.000 0.000

Note: Results are obtained from a linear regression on an event dummy variable. The unit of observation is city by date. The
estimated model is

yit = αph(yit−1) +βph(sit−1) + γph(dit−1) +β0wit + θ′xit + αip + δt + εit �

where h(x) = ln(5x + 1). Controls include population, GDP, shares of the industrial and tertiary sectors in GDP, and the number of
cell-phone users. Standard errors (in parentheses) are two-way clustered by date and city.

TABLE A7

EVENT SPREAD ACROSS CITIES: PROBIT MODEL.

(1) (2) (3) (4)
Variables Protest Protest Strike Strike

Social-media spread (β) 0.618 0.568 0.558 0.572
(0.271) (0.254) (0.179) (0.181)

Geo-distance spread (γ) 1.727 1.927 2.129 2.103
(1.433) (1.392) (0.643) (0.653)

Number events 1-2 days prior 0.178 0.168 0.317 0.319
(0.079) (0.077) (0.049) (0.048)

Total number retweets −0�032 −0�042 0.194 0.203
(0.046) (0.044) (0.036) (0.036)

Weibo posts 0.238 0.232 −0�009 −0�008
(0.058) (0.060) (0.034) (0.038)

Observations 564,378 564,378 581,509 581,509
Controls No Yes No Yes

Note: Results are obtained from a probit regression on an event dummy. The unit of observation is city by date. The regression
includes city-fixed effects and a quadratic function of the time trend in date. Controls include population, GDP, shares of the industrial
and tertiary sectors in GDP, and the number of cell-phone users. Standard errors (in parentheses) are two-way clustered by date and
city.



SOCIAL MEDIA AND COLLECTIVE ACTION IN CHINA 19

TABLE A8A

THREE-PERIOD ANALYSIS OF PROTESTS, ADDITIONAL CONTROLS.

(1) (2) (3) (4) (5) (6) (7)
Variables Protest Protest Protest Protest Protest Protest Protest

Social-media spread, sit−1 β0 0.043 0.029 0.033 0.033 0.031 0.028 0.044
(0.021) (0.018) (0.019) (0.016) (0.017) (0.018) (0.020)

β1 0.204 0.168 0.204 0.179 0.175 0.173 0.189
(0.061) (0.045) (0.056) (0.046) (0.045) (0.045) (0.065)

β2 0.068 0.086 0.090 0.083 0.085 0.086 0.082
(0.028) (0.022) (0.024) (0.021) (0.021) (0.022) (0.026)

Geo-distance spread, dit−1 γ0 −0�014 −0�012 −0�013 −0�015 −0�011 −0�012 −0�014
(0.018) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016)

γ1 −0�034 −0�024 −0�033 −0�030 −0�019 −0�026 −0�027
(0.037) (0.035) (0.037) (0.037) (0.034) (0.036) (0.038)

γ2 0.024 0.020 0.019 0.020 0.022 0.019 0.021
(0.025) (0.024) (0.024) (0.024) (0.023) (0.024) (0.024)

Observations 1,022,162 1,022,162 1,022,162 1,022,162 1,022,162 1,022,162 1,022,162
R-squared 0.020 0.020 0.020 0.020 0.020 0.020 0.020
Interacted controls All Population GDP Agriculture

share
Industrial

share
Tertiary
Share

Cell-phone

P-value: β1 = β0 0.016 0.004 0.004 0.003 0.003 0.003 0.034
P-value: β2 = β0 0.544 0.059 0.089 0.096 0.074 0.059 0.302

Note: Results are from a linear regression on an event dummy variable. The unit of observation is city by date. The regression
includes lagged events, yit−1 interacted with period-fixed effect, city-by-period, and date-fixed effects. Default controls include popula-
tion, GDP, shares of the industrial and tertiary sectors in GDP, and the number of cell phone users. Interacted controls are constructed
as

∑
j wiwjyjt−1, where the weights wi are population, GDP, etc., for city i. Standard errors (in parentheses) are two-way clustered by

date and city.
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TABLE A8B

THREE-PERIOD ANALYSIS OF STRIKES, ADDITIONAL CONTROLS.

(1) (2) (3) (4) (5) (6) (7)
Variables Strike Strike Strike Strike Strike Strike Strike

Social-media spread, sit−1 β0 -0.025 0.034 0.027 0.025 0.031 0.028 0.023
(0.038) (0.039) (0.036) (0.032) (0.033) (0.033) (0.035)

β1 0.023 0.151 0.129 0.126 0.135 0.133 0.092
(0.038) (0.035) (0.030) (0.026) (0.029) (0.029) (0.031)

β2 0.074 0.109 0.133 0.125 0.124 0.125 0.087
(0.026) (0.017) (0.022) (0.017) (0.017) (0.017) (0.021)

Geo-distance spread, dit−1 γ0 0.117 0.100 0.102 0.104 0.102 0.102 0.103
(0.071) (0.064) (0.066) (0.066) (0.065) (0.065) (0.066)

γ1 0.112 0.093 0.100 0.102 0.100 0.098 0.106
(0.052) (0.051) (0.054) (0.056) (0.054) (0.054) (0.055)

γ2 0.050 0.043 0.048 0.047 0.054 0.047 0.048
(0.032) (0.032) (0.031) (0.031) (0.031) (0.031) (0.031)

Observations 1,113,920 1,113,920 1,113,920 1,113,920 1,113,920 1,113,920 1,113,920
R-squared 0.050 0.050 0.050 0.050 0.050 0.050 0.050
Interacted controls All Population GDP Agriculture

share
Industrial

share
Tertiary
Share

Cell-phone

P-value: β1 = β0 0.263 0.025 0.022 0.005 0.010 0.011 0.113
P-value: β2 = β0 0.020 0.055 0.002 0.001 0.004 0.002 0.091

Note: Results are from a linear regression on an event dummy variable. The unit of observation is city by date. The regression
includes lagged events, yit−1 interacted with period-fixed effect, city-by-period, and date-fixed effects. Default controls include popula-
tion, GDP, shares of the industrial and tertiary sectors in GDP, and the number of cell-phone users. Interacted controls are constructed
as

∑
j wiwjyjt−1, where the weights wi are population, GDP, etc., for city i. Standard errors (in parentheses) are two-way clustered by

date and city.
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TABLE A8C

THREE-PERIOD ANALYSIS OF PROTESTS, ADDITIONAL CONTROLS (LOG MODEL).

(1) (2) (3) (4) (5) (6) (7)
Variables Protest Protest Protest Protest Protest Protest Protest

Social-media spread, sit−1 β0 0.045 0.036 0.036 0.035 0.036 0.036 0.037
(0.024) (0.020) (0.020) (0.019) (0.020) (0.020) (0.020)

β1 0.268 0.244 0.244 0.249 0.245 0.244 0.245
(0.069) (0.057) (0.057) (0.060) (0.057) (0.057) (0.057)

β2 0.109 0.107 0.107 0.102 0.107 0.107 0.108
(0.030) (0.028) (0.028) (0.027) (0.028) (0.028) (0.028)

Geo-distance spread, dit−1 γ0 −0�011 −0�011 −0�011 −0�011 −0�011 −0�011 −0�011
(0.018) (0.018) (0.018) (0.018) (0.018) (0.018) (0.018)

γ1 −0�034 −0�029 −0�029 −0�031 −0�029 −0�029 −0�030
(0.039) (0.037) (0.037) (0.038) (0.038) (0.037) (0.037)

γ2 0.023 0.023 0.023 0.025 0.023 0.023 0.023
(0.026) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027)

Observations 1,022,162 1,022,162 1,022,162 1,022,162 1,022,162 1,022,162 1,022,162
R-squared 0.019 0.019 0.019 0.019 0.019 0.019 0.019
Interacted controls All Population GDP Agriculture

share
Industrial

share
Tertiary
Share

Cell-phone

P-value: β1 = β0 0.003 0.001 0.001 0.001 0.001 0.001 0.001
P-value: β2 = β0 0.157 0.051 0.051 0.059 0.052 0.051 0.055

Note: Results are from a linear regression on an event dummy variable. The unit of observation is city by date. The regression
includes lagged events, yit−1 interacted with period-fixed effect, city-by-period, and date fixed effects. Default controls include popula-
tion, GDP, shares of the industrial and tertiary sectors in GDP, and the number of cell-phone users. Interacted controls are constructed
as

∑
j wiwjyjt−1, where the weights wi are population, GDP, etc., for city i. Standard errors (in parentheses) are two-way clustered by

date and city.
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TABLE A8D

THREE-PERIOD ANALYSIS OF STRIKES, ADDITIONAL CONTROLS (LOG MODEL).

(1) (2) (3) (4) (5) (6) (7)
Variables Strike Strike Strike Strike Strike Strike Strike

Social-media spread, sit−1 β0 -0.017 0.019 0.018 0.026 0.020 0.019 0.015
(0.058) (0.045) (0.044) (0.039) (0.044) (0.044) (0.045)

β1 0.167 0.183 0.182 0.179 0.183 0.181 0.181
(0.041) (0.042) (0.042) (0.041) (0.042) (0.042) (0.042)

β2 0.258 0.248 0.248 0.247 0.249 0.249 0.249
(0.036) (0.035) (0.034) (0.034) (0.035) (0.035) (0.035)

Geo-distance spread, dit−1 γ0 0.120 0.112 0.112 0.110 0.111 0.112 0.113
(0.074) (0.068) (0.068) (0.068) (0.067) (0.068) (0.068)

γ1 0.110 0.106 0.106 0.107 0.105 0.106 0.106
(0.058) (0.057) (0.057) (0.058) (0.057) (0.057) (0.057)

γ2 0.030 0.031 0.031 0.032 0.031 0.031 0.031
(0.035) (0.034) (0.034) (0.034) (0.034) (0.034) (0.034)

Observations 1,113,920 1,113,920 1,113,920 1,113,920 1,113,920 1,113,920 1,113,920
R-squared 0.049 0.049 0.049 0.049 0.049 0.049 0.049
Interacted controls All Population GDP Agriculture

share
Industrial

share
Tertiary
Share

Cell-phone

P-value: β1 = β0 0.007 0.006 0.005 0.002 0.005 0.006 0.006
P-value: β2 = β0 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Note: Results are from a linear regression on an event dummy variable. The unit of observation is city by date. The regression
includes lagged events, yit−1 interacted with period-fixed effect, city-by-period, and date-fixed effects. Default controls include popula-
tion, GDP, shares of the industrial and tertiary sectors in GDP, and the number of cell-phone users. Interacted controls are constructed
as

∑
j wiwjyjt−1, where the weights wi are population, GDP, etc., for city i. Standard errors (in parentheses) are two-way clustered by

date and city.

TABLE A9

CORRELATION BETWEEN RETWEETING AND CENSORING INTENSITY.

(1) (2) (3)
Variables fij fij fij

Share deleted i 0.026 0.032
(0.030) (0.035)

Share deleted j −0�000 −0�002
(0.016) (0.018)

Share deleted i x Weibo penetration i 0.209
(0.210)

Share deleted j x Weibo penetration j −0�116
(0.100)

Observations 99,048 73,015 73,015
R-squared 0.750 0.803 0.803
City controls No Yes Yes

Note: Results are obtained from a linear regression of fij on the share of deleted Weibo posts in a city. All variables are standard-
ized. The unit of observation is city i by city j. Controls include population, GDP, shares of the industrial and tertiary sectors in GDP,
and the number of cell-phone users. Standard errors, clustered by city i and city j, are reported in parentheses.
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TABLE A10

TIME-VARYING MEASURE OF CONNECTIONS INTERACTED WITH CENSORING INTENSITY.

(1) (2) (3) (4)
Variables Protest Protest Strike Strike

Social-media spread (β) 0.163 0.162 0.120 0.116
(0.049) (0.049) (0.025) (0.024)

Social-media spread (β) × share deleted posts 0.024 0.026 0.009 0.015
(0.044) (0.044) (0.026) (0.029)

Geo-distance spread (γ) −0�031 −0�031 0.142 0.137
(0.036) (0.036) (0.058) (0.054)

Number events 1–2 days prior 0.015 0.015 0.030 0.030
(0.007) (0.007) (0.007) (0.006)

Total number retweets 0.002 0.002 0.002 0.002
(0.001) (0.001) (0.001) (0.001)

Weibo posts 0.006 0.006 0.010 0.009
(0.002) (0.002) (0.004) (0.003)

Observations 670,996 670,996 713,702 713,702
R-squared 0.017 0.017 0.027 0.027
Controls No Yes No Yes

Note: Results are obtained from a linear regression of an event dummy. The unit of observation is city by date. The regression
includes city-by-period and date-fixed effects. Controls include population, GDP, shares of the industrial and tertiary sectors in GDP,
and the number of cell-phone users. Standard errors (in parentheses) are two-way clustered by date and city.
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