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THIS APPENDIX includes all the missing proofs and the ancillary facts used in the main
body of the paper. We begin with a section on facts instrumental for Theorem 1 and
Proposition 5.

Foundation

Recall the definition of �′ in Section 5, that is,

p�′ q def⇐⇒ λp+ (1 − λ)r � λq+ (1 − λ)r ∀λ ∈ (0�1]�∀r ∈ ��

The goal of this section is to provide a Multi-Expected Utility representation for �′.

LEMMA 1: Let � be a binary relation on � that satisfies Weak Order. The following state-
ments are true:

1. The relation � satisfies M-NCI if and only if, for each p ∈ � and for each m ∈ R,

p� δme1 =⇒ p�′ δme1 � (Equivalently, p ��′ δme1 =⇒ δme1 � p�)

2. If � satisfies Monotonicity, then for each x� y ∈Rk,

x > y =⇒ δx �′ δy� (12)

3. If � satisfies Monetary equivalent, then, for each x� y ∈ Rk, there exists m ∈ R+ such
that

δy+me1 �′ δx �′ δy−me1 � (13)

PROOF: All three points follow from the definition of �′ and M-NCI, Monotonicity,
and Monetary equivalent, respectively. Q.E.D.
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Aumann Utilities and Multi-Expected Utility Representations

In this section, in our formal results, we consider a binary relation �∗ over � such that

p�∗ q ⇐⇒ Ep(v) ≥ Eq(v) ∀v ∈W� (14)

where W ⊆ C(Rk). Recall that a function v ∈ C(Rk) is an Aumann utility if and only if

p �∗ q =⇒ Ep(v) > Eq(v) and p ∼∗ q =⇒ Ep(v) = Eq(v)�

We denote by e the vector whose components are all 1’s. We endow C(Rk) with the dis-
tance d : C(Rk) ×C(Rk) → [0�∞) defined by

d(f�g) =
∞∑
n=1

(
1
2

)n

min
{

max
x∈[−ne�ne]

∣∣f (x) − g(x)
∣∣�1

}
∀f�g ∈ C

(
Rk

)
�

It is routine to show that (C(Rk)� d) is separable.1 Moreover, if {fm}m∈N ⊆ C(Rk) is such

that fm
d→ f , then {fm}m∈N converges uniformly to f on each compact subset of Rk.

PROPOSITION 7: If �∗ is as in (14) and such that

x > y =⇒ δx �∗ δy� (15)

then �∗ admits a strictly increasing Aumann utility.

PROOF: By (14), observe that x > y implies v(x) ≥ v(y) for all v ∈W . This implies that
each v ∈ W is increasing. By Aliprantis and Border (2006, Corollary 3.5), there exists a
countable d-dense subset D of W . Clearly, we have that

p�∗ q =⇒ Ep(v) ≥ Eq(v) ∀v ∈ D� (16)

Vice versa, consider p�q ∈ � such that Ep(v) ≥ Eq(v) for all v ∈ D. Since p and q have
compact support, there exists n̄ ∈ N such that [−n̄e� n̄e] contains both supports. Consider
v ∈ W . Since D is d-dense in W , there exists a sequence {vl}l∈N ⊆ D such that vl

d→ v. It
follows that vl converges uniformly on [−n̄e� n̄e]. This implies that

Ep(v) =
∫

[−n̄e�n̄e]
vdp = lim

l

∫
[−n̄e�n̄e]

vl dp = lim
l
Ep(vl)

≥ lim
l
Eq(vl) = lim

l

∫
[−n̄e�n̄e]

vl dq =
∫

[−n̄e�n̄e]
vdq = Eq(v)�

By (14) and (16) and since v was arbitrarily chosen, we can conclude that

p�∗ q ⇐⇒ Ep(v) ≥ Eq(v) ∀v ∈D� (17)

Since D is countable, we can list its elements: D = {vm}m∈N. Set bl = l + max{|vl(−le)|�
|vl(le)|} for all l ∈N and am =�m

l=1bl ≥ bm for all m ∈ N. Finally, define v :Rk →R by

v(x) =
∞∑

m=1

vm(x)
am

∀x ∈Rk� (18)

1A proof is available upon request.
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We first prove that v is a well-defined continuous function. Fix x ∈Rk. It follows that there
exists m̄ ∈ N such that x ∈ [−me�me] for all m ≥ m̄. Since each vm is increasing, we have
that |vm(x)| ≤ max{|vm(−me)|� |vm(me)|} ≤ bm ≤ am for all m ≥ m̄. Since am ≥ m! for all
m ∈N, it follows that∣∣vm(x)

∣∣
am

=
∣∣vm(x)

∣∣
bmam−1

≤ 1
am−1

≤ 1
(m− 1)! ∀m ≥ m̄+ 1�

This implies that the right-hand side of (18) converges. Since x was arbitrarily chosen, v
is well-defined. Next, consider n ∈ N. From the same argument above, we have that∣∣vm(x)

∣∣
am

≤ 1
(m− 1)! ∀x ∈ [−ne�ne]�∀m≥ n+ 1�

By Weierstrass’s M-test and since {vm/am}m∈N is a sequence of continuous functions, we
can conclude that v = ∑∞

m=1
vm
am

converges uniformly on [−ne�ne], yielding that v is con-
tinuous on [−ne�ne]. Since n was arbitrarily chosen, it follows that v is continuous.

Finally, assume that p �∗ q (resp. p ∼∗ q). By (17), we have that Ep(vm) ≥ Eq(vm) for all
m ∈N and Ep(vm̂) > Eq(vm̂) for some m̂ ∈N (resp. Ep(vm) = Eq(vm) for all m ∈ N). In par-
ticular, we have that Ep(vm/am) ≥ Eq(vm/am) for all m ∈ N and Ep(vm̂/am̂) > Eq(vm̂/am̂)
for some m̂ ∈ N (resp. Ep(vm/am) = Eq(vm/am) for all m ∈ N). Since

∑∞
m=1

vm
am

converges
uniformly on compacta and the supports of p and q are compact, we can conclude that

Ep(v) −Eq(v) = Ep

( ∞∑
m=1

vm

am

)
−Eq

( ∞∑
m=1

vm

am

)
= lim

l

l∑
m=1

Ep

(
vm

am

)
− lim

l

l∑
m=1

Eq

(
vm

am

)

= lim
l

[
l∑

m=1

(
Ep

(
vm

am

)
−Eq

(
vm

am

))]
�

This implies that if p �∗ q (resp. p ∼∗ q), then Ep(v) > Eq(v) (resp. Ep(v) = Eq(v)),
proving that v is an Aumann utility. In particular, by (15), v is strictly increasing. Q.E.D.

Consider a binary relation �∗ on �. Define Wmax(�∗) as the set of all strictly increasing
functions v ∈ C(Rk) such that v(0) = 0 and p�∗ q implies Ep(v) ≥ Eq(v). We say that a
set W in C(Rk) has full image if and only if

∀x� y ∈ Rk�∃m ∈R+ s.t. v(y +me1) ≥ v(x) ≥ v(y −me1) ∀v ∈W �

PROPOSITION 8: Let �∗ be a binary relation on � represented as in (14). If �∗ satisfies
(12) and (13), then Wmax(�∗) is a nonempty convex set with full image that satisfies (14).

PROOF: Consider v1� v2 ∈ Wmax(�∗) and λ ∈ (0�1). Since both functions are strictly
increasing and continuous and such that v1(0) = 0 = v2(0), it follows that λv1 + (1 − λ)v2

is strictly increasing, continuous, and takes value 0 in 0. Since v1� v2 ∈Wmax(�∗), if p�∗ q,
then Ep(v1) ≥ Eq(v1) and Ep(v2) ≥ Eq(v2). This implies that

Ep

(
λv1 + (1 − λ)v2

) = λEp(v1) + (1 − λ)Ep(v2)

≥ λEq(v1) + (1 − λ)Eq(v2) = Eq

(
λv1 + (1 − λ)v2

)
�
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proving that λv1 + (1−λ)v2 ∈Wmax(�∗) and, in particular, Wmax(�∗) is convex. By Propo-
sition 7, there exists a strictly increasing v̂ ∈ C(Rk) such that

p �∗ q =⇒ Ep(v̂) > Eq(v̂) and p ∼∗ q =⇒ Ep(v̂) = Eq(v̂)�

Without loss of generality, we can assume that v̂(0) = 0 (given v̂, set v = v̂ − v̂(0)) and,
in particular, we have that v̂ ∈ Wmax(�∗), proving that Wmax(�∗) is nonempty. Since �∗

satisfies (13), it follows that Wmax(�∗) has full image. Since �∗ satisfies (12), v is increasing
for all v ∈W . This implies that for each v ∈W and for each n ∈N, the function vn = (1 −
1
n
)v+ 1

n
v̂− [(1 − 1

n
)v(0) + 1

n
v̂(0)] ∈Wmax(�∗). By definition, if p�∗ q, then Ep(v) ≥ Eq(v)

for all v ∈Wmax(�∗). Vice versa, we have that

Ep(v) ≥ Eq(v) ∀v ∈Wmax

(
�∗)

=⇒ Ep

((
1 − 1

n

)
v + 1

n
v̂

)
≥ Eq

((
1 − 1

n

)
v + 1

n
v̂

)
∀v ∈W�∀n ∈ N

=⇒ Ep(v) ≥ Eq(v) ∀v ∈W =⇒ p�∗ q�

proving that (14) holds with Wmax(�∗) in place of W . Q.E.D.

We conclude by discussing Multi-Expected Utility representations which feature odd
sets. To do this, we make two simple observations. First, recall the map σ : � → �, which
swaps gains with losses, defined by

σ (p)(B) = p(−B) for all Borel subsets B of Rk and for all p ∈ ��

It is immediate to see that σ is affine and σ (σ (p)) = p for all p ∈ �. Second, by the
Change of Variable Theorem (see, e.g., Aliprantis and Border 2006, Theorem 13.46), we
have that

Eσ (r) (v) =
∫
Rk

vdσ (r) = −
∫
Rk

v̄dr = −Er (v̄) ∀r ∈ ��∀v ∈ C
(
Rk

)
� (19)

where v̄ :Rk → R is defined by v̄(x) = −v(−x) for all x ∈ Rk and for all v ∈ C(Rk).

PROPOSITION 9: Let �∗ be a binary relation on � represented as in (14) which satisfies
(12) and (13). The following statements are equivalent:

(i) For each p�q ∈ �,

p�∗ q ⇐⇒ σ (q) �∗ σ (p)�

(ii) For each p�q ∈ �,

p�∗ q =⇒ σ (q) �∗ σ (p)�

(iii) Wmax(�∗) is odd.
Moreover, if W in (14) is odd, then (i) and (ii) hold.

For the last part of the statement, that is, proving that if W is odd, then (i) and (ii) hold,
we can dispense with the assumption that �∗ satisfies (12) and (13). The proof will clarify.
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PROOF: By Proposition 8, we have that

p�∗ q ⇐⇒ Ep(v) ≥ Eq(v) ∀v ∈Wmax

(
�∗)�

In other words, for the first part of the statement, we can replace W in (14) with Wmax(�∗).
(i) implies (ii). It is obvious.
(ii) implies (iii). Fix v ∈ Wmax(�∗). By definition of v̄ and since each v in Wmax(�∗) is

strictly increasing, continuous, and such that v(0) = 0, we have that v̄ is strictly increasing,
continuous, and such that v̄(0) = 0. By assumption and (19), we have that

p�∗ q =⇒ σ (q) �∗ σ (p) =⇒ Eσ (q) (v) ≥ Eσ (p) (v)

=⇒ −Eq(v̄) ≥ −Ep(v̄) =⇒ Ep(v̄) ≥ Eq(v̄)�

By definition of Wmax(�∗), we can conclude that v̄ ∈ Wmax(�∗), proving that Wmax(�∗) is
odd.

(iii) implies (i). By (19) and since W is odd and represents �∗, we have that

p�∗ q ⇐⇒ Ep(v) ≥ Eq(v) ∀v ∈W ⇐⇒ Ep(v̄) ≥ Eq(v̄) ∀v ∈W
⇐⇒ Eσ (q) (v) ≥ Eσ (p) (v) ∀v ∈W ⇐⇒ σ (q) �∗ σ (p)�

proving the implication (since Wmax(�∗) represents �∗) and also the second part of the
statement. Q.E.D.

Representing �′

We can finally provide a Multi-Expected Utility representation for �′.

PROPOSITION 10: If � satisfies Weak Order, Continuity, Monotonicity, and Monetary
equivalent, then

p�′ q ⇐⇒ Ep(v) ≥ Eq(v) ∀v ∈Wmax

(
�′)�

Moreover, Wmax(�′) is a nonempty convex set with full image.

PROOF: By the same techniques of Cerreia-Vioglio (2009, Proposition 22) (see also
Cerreia-Vioglio, Maccheroni, and Marinacci 2017, Lemma 1 and Footnote 10), �′ is a
preorder that satisfies Sequential Continuity and Independence.2 By Evren (2008, Theo-
rem 2), there exists a set W ⊆ C(Rk) such that p�′ q if and only if Ep(v) ≥ Eq(v) for all
v ∈W . By Lemma 1 and since � is a Weak Order which satisfies Monotonicity and Mon-
etary equivalent, we have that �′ satisfies (12) and (13). By Proposition 8 and considering
�′ in place of �∗, W can be chosen to be Wmax(�′), proving the statement. Q.E.D.

2That is, for each two generalized sequences {pα}α∈A and {qα}α∈A in �,

pα �′ qα ∀α ∈A� pα → p� and qα → q =⇒ p�′ q�
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Other Results

In this last section, we prove an ancillary lemma which is instrumental in proving Propo-
sition 4. We show that if � admits a finite essential Cautious Utility representation, then
it is canonical.

LEMMA 2: If � admits a finite essential Cautious Utility representation, then it is canoni-
cal.

PROOF: Define �∗ to be such that p �∗ q if and only if Ep(v) ≥ Eq(v) for all v ∈ W ,
where W is a finite essential Cautious Utility representation of �. Since W is finite, we
have that the smallest convex cone containing W , denoted by cone(W), is closed with
respect to the σ (C(Rk)��)-topology and so is the set cone(W) +{θ1Rk}θ∈R. By definition
of Wmax(�∗), it follows that cone(W)\{0} ⊆ Wmax(�∗). By Proposition 8, Remark 3, and
Evren (2008, Theorem 5) and since W is a Cautious Utility representation, we have that
(where the closure is in the σ (C(Rk)��)-topology)

cone(W) +{θ1Rk}θ∈R = cl
(
cone

(
Wmax

(
�∗)) +{θ1Rk}θ∈R

)
⊇ cl

(
Wmax

(
�∗) +{θ1Rk}θ∈R

)
⊇Wmax

(
�∗) +{θ1Rk}θ∈R�

yielding that cone(W)\{0} ⊇ Wmax(�∗) and, in particular, cone(W)\{0} = Wmax(�∗).
Since the functional v �→ c(p�v) is quasiconcave over cone(W)\{0} for all p ∈ �, it is
immediate to see that

V (p) = min
v∈W

c(p�v) = min
v∈cone(W)\{0}

c(p�v) ∀p ∈ ��

By Remark 3 and since W = {vi}ni=1 is a finite Cautious Utility representation, we have
that � satisfies Axioms 1–5. By Theorem 1 and its proof, Wmax(�′) is a canonical Cautious
Utility representation for �. In particular, we have that

V (p) = min
v∈W

c(p�v) = min
v∈cone(W)\{0}

c(p�v) = inf
v∈Wmax(�′)

c(p�v) ∀p ∈ ��

Since �′ is the largest subrelation of � that satisfies the Independence axiom and p �∗

q implies p � q, we have that �∗ is a subrelation of �′ and Wmax(�′) ⊆ Wmax(�∗) =
cone(W)\{0}. By contradiction, assume that Wmax(�′) �= cone(W)\{0}. Since Wmax(�′)
is a convex set closed with respect to strictly positive scalar multiplications, this implies
that W �Wmax(�′). If W is a singleton, then � is Expected Utility and, in particular, �′

is complete and coincides with �. This implies that W = {v1} and Wmax(�′) = {λv1}λ>0 =
cone(W)\{0}, a contradiction. Assume W is not a singleton. Consider v̆ ∈ W\Wmax(�′

). Since W is essential, there exists p̄ ∈ � such that minv∈W c(p̄� v) < minv∈W\{v̆} c(p̄� v).
Since W = {vi}ni=1 and n ≥ 2, without loss of generality, we can set v̆ = vn /∈ Wmax(�′). In
particular, we have that

inf
v∈Wmax(�′)

c(p̄� v) = min
v∈W

c(p̄� v) = c(p̄� vn) < c(p̄� vi) ∀i ∈{1� � � � � n− 1}� (20)

Consider a sequence {v̂m}m∈N ⊆ Wmax(�′) such that c(p̄� v̂m) ↓ infv∈Wmax(�′) c(p̄� v). By
construction and since Wmax(�′) ⊆ cone(W)\{0}, there exists a collection of scalars
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{λm�i}m∈N�i∈{1�����n} ⊆ [0�∞) such that v̂m = ∑n

i=1 λm�ivi for all m ∈ N. Since v̂m is strictly
increasing, we have that, for each m ∈ N, there exists i ∈ {1� � � � � n} such that λm�i > 0.
Define λm�σ = ∑n

i=1 λm�i > 0 for all m ∈ N. For each m ∈ N and for each i ∈ {1� � � � � n},
define also λ̄m�i = λm�i/λm�σ as well as ṽm = ∑n

i=1 λ̄m�ivi = v̂m/λm�σ . Since λm�σ > 0 for all
m ∈ N, it is immediate to see that c(p̄� ṽm) = c(p̄� v̂m) for all m ∈ N and, in particular,
c(p̄� ṽm) ↓ infv∈Wmax(�′) c(p̄� v). For each m ∈ N, denote by λ̄m the Rn vector whose ith
component is λ̄m�i. Since {λ̄m}m∈R is a sequence in the Rn simplex, there exists a subse-
quence {λ̄ml}l∈N such that λ̄ml�i → λ̄i ∈ [0�1] for all i ∈ {1� � � � � n} and

∑n

i=1 λ̄i = 1. It is im-

mediate to see that ṽml
= ∑n

i=1 λ̄ml�ivi
σ (C(Rk)��)→ ∑n

i=1 λ̄ivi = ṽ, where ṽ is continuous, strictly
increasing, and such that ṽ(0) = 0. Moreover, for each p�q ∈ �, we have that p�′ q im-
plies Ep(ṽ) ≥ Eq(ṽ), proving that ṽ ∈ Wmax(�′). Note that λ̄n < 1; otherwise, we would
have that vn = ṽ ∈Wmax(�′), a contradiction. By (20) and since λ̄n < 1 and the functional
v �→ c(p�v) is explicitly quasiconcave over co(W) for all p ∈ �,3 we have that

c(p̄� vn) < c(p̄� ṽ) = lim
l
c(p̄� ṽml

) = lim
m

c(p̄� ṽm) = inf
v∈Wmax(�′)

c(p̄� v) = c(p̄� vn)�

a contradiction. It follows that Wmax(�′) = cone(W)\{0} and, in particular, W represents
also �′. This implies that W is canonical. Q.E.D.
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