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APPENDIX A: PROOF OF PROPOSITION 1

PROOF OF PROPOSITION 1: FIGURE 8 SHOWS THE LINEAR PROGRAM determining the
optimal classic contract implementing action i, and its dual. Consider the primal LP in
Figure 8(a) for action i, but with the objective min

∑
j pijtj replaced with min 0. Action i

is implementable if and only if the resulting LP is feasible. The dual of this LP is

max
∑
i′ �=i

λi′ (ci − ci′)

∑
i′ �=i

λi′ (pij −pi′j) ≤ 0 ∀j

λi′ ≥ 0 ∀i′ �= i�

By strong duality for a general primal-dual pair, we can have the following four cases:
(1) The dual LP and the primal LP are both feasible.
(2) The dual LP is unbounded and the primal LP is infeasible.
(3) The dual LP is infeasible and the primal LP is unbounded.
(4) The dual LP and the primal LP are both infeasible.

FIGURE 8.—The minimum payment LP.
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In our case, the dual LP is always feasible (we can choose λi′ = 0 for all i′ �= i). This
rules out cases (3) and (4). So in order to prove the claim, it suffices to show that the
dual LP is unbounded if and only if there exists a convex combination (γi′)i′ �=i such that∑

i′ �=i γi′pi′j = pij for all j and
∑

i′ �=i γi′ci′ < ci.
We first show that if such a convex combination exists, then the dual LP is unbounded.

Indeed, if such a convex combination exists, then it corresponds to a feasible solution to
the dual LP because, for all j,

∑
i′ �=i

γi′ (pij −pi′j) =
(∑

i′ �=i

γi′

)
pij −

(∑
i′ �=i

γi′pi′j

)
= 0�

where we used that
∑

i′ �=i γi′ = 1 and
∑

i′ �=i γi′pi′j = pij . Moreover, the objective value
achieved by this solution is

∑
i′ �=i

γi′ (ci − ci′) =
(∑

i′ �=i

γi′

)
ci −

(∑
i′ �=i

γi′ci′

)
= δ

for some δ > 0, where we used that
∑

i′ �=i γi′ = 1 and
∑

i′ �=i γi′ci′ < ci. But then, for any
κ ≥ 0, setting the dual variables to κ · γi′ for i′ �= i results in a feasible solution whose
objective value is equal to κ · δ. So the dual LP is unbounded.

We next show that if the dual LP is unbounded, then a convex combination with the
desired properties must exist. Since the dual LP is unbounded, for any δ > 0 there must be
a feasible solution to the dual LP, (λi′)i′ �=i, such that

∑
i′ �=i λi′ (ci−ci′) ≥ δ and

∑
i′ �=i λi′ (pij −

pi′j) ≤ 0 for all j. Now consider γi′ = λi′/(
∑

i′ �=i λi′) for all i′ �= i. We claim that (γi′)i′ �=i

is a convex combination with the desired properties. First note that (γi′)i′ �=i is a convex
combination, that is, γi′ ∈ [0�1] for all i′ �= i and

∑
i′ �=i γi′ = 1. Also note that

∑
i′ �=i

γi′ (ci − ci′) = 1∑
i′ �=i

λi′

∑
i′ �=i

λi′ (ci − ci′) = 1∑
i′ �=i

λi′
· δ > 0�

and therefore
∑

i′ �=i γi′ci′ < (
∑

i′ �=i γi′)ci = ci. Moreover, for all j, using the fact that∑
i′ �=i λi′pi′j ≥ (

∑
i′ �=i λi′)pij , we must have

∑
i′ �=i

γi′pi′j = 1∑
i′ �=i

λi′

∑
i′ �=i

λi′pi′j ≥ 1∑
i′ �=i

λi′

(∑
i′ �=i

λi′

)
pij = pij�

So we know that for all j,
∑

i′ �=i γi′pi′j ≥ pij . We claim that, for all j, this inequality must
hold with equality. Indeed, assume for contradiction that, for some j′, we have a strict
inequality. By summing over all j, we then have

∑
j

(∑
i′ �=i

γi′pi′j

)
>

∑
j

pij = 1� (8)

where we used that pi is a probability distribution over outcomes j. On the other hand,
we have that ∑

j

(∑
i′ �=i

γi′pi′j

)
=

∑
i′ �=i

γi′

(∑
j

pi′j

)
=

∑
i′ �=i

γi′ = 1� (9)
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where we used that the pi′ ’s are also probability distributions over outcomes j and that
(γi′)i′ �=i is a convex combination. Combining (8) with (9), we get the desired contradiction.

Q.E.D.

APPENDIX B: TIGHTNESS OF THEOREM 1

PROPOSITION 5: Assume m> 4. There exist instances where the best ambiguous contract
composed of n− 1 = m payment functions is strictly better than any ambiguous contract that
is composed of fewer payment functions.

PROOF: Consider the instance (c� r�p) depicted in Figure 9 with m outcomes and
n = m + 1 actions, where δ is a vanishingly small positive number. First note that in this
instance, the expected reward Ri of any action i ≤ m is

Ri ≤
m∑
j=1

1
m− 1

rj =
(

m−1∑
j=1

(j − 1)
m− 1

· δ
)

+ m− 1
m− 1

= 1 + 1
2
(
m2 − 3m+ 2

)
δ�

which can be made arbitrarily close to 1 by choosing δ small enough. On the other hand,
the expected reward of action m+ 1 is

Rm+1 =
(

m−1∑
j=1

1
(m− 1)2 · (j − 1)δ

)
+

(
1 − 1

m− 1

)
· (m− 1)

= (m− 2)
(

1 + 1
2(m− 1)

δ

)
�

Since δ is positive and m > 4, it follows that Rm+1 ≥ m − 2 and Wm+1 = Rm+1 − cm+1 ≥
m − 3 ≥ 2. To prove the claim, it thus suffices to show that there exists a (consistent) IC
ambiguous contract consisting of n − 1 = m payment functions that implements action
m+ 1 with an expected payment equal to cm+1; while any (consistent) IC ambiguous con-
tract that consists of strictly fewer payment functions must pay strictly more in order to
implement action m+ 1.

We first show that we can indeed implement action m+ 1 with an ambiguous contract
consisting of n − 1 = m payment functions with an expected payment equal to cm+1. To

FIGURE 9.—Instance (c� r�p) used in the proof of Proposition 5.
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this end, consider the ambiguous contract 〈τ�m+1〉 consisting of n−1 =m SOP payment
functions:

τ = {
t1� t2� � � � � tm

}
s.t.

t
j
j = cm+1

p(m+1)j
and t

j

j′ = 0 ∀j′ �= j�

It is then easy to verify that, for any payment function tj ∈ τ, Tm+1(tj) = cm+1, which shows
that 〈τ�m + 1〉 is consistent. Since Tm+1(τ) = cm+1, the agent’s utility for action m + 1 is
UA(m+ 1|τ) = 0. On the other hand, for any action i �= m + 1, there is an SOP contract
tj ∈ τ such that Ti(tj) = 0. Thus, for any action i �= m + 1, UA(i|τ) ≤ 0, which shows that
〈τ�m+ 1〉 is IC.

To complete the proof, assume by contradiction that there is a (consistent and)
IC ambiguous contract 〈τ′�m + 1〉 with Tm+1(τ′) = cm+1 but |τ′| < n − 1 = m. Since
UA(m+ 1|τ′) = 0, in order for 〈τ′�m + 1〉 to implement action m + 1, we must have
UA(i|τ′) ≤ 0 for each action i ∈ [m]. The only way to achieve this is to have, for each
such action i ∈ [m], a payment function t ′ ∈ τ′ under which Ti′ (t ′) = 0. Since for each ac-
tion i ∈ [m], there exists only one outcome, denoted by j(i), for which it has 0 probability,
and for all other j′ we have that pij′ > 0, we get that the only type of payment function for
which its expected payment is 0, is an SOP payment function that pays for that specific
outcome, j(i). Since each action has a unique outcome for which it has 0 probability (i.e.,
for all i� i′ ∈ [m], i �= i′, it holds that j(i) �= j(i′)), we get that, for each action, the SOP
payment function for which its expected payment is 0 is unique as well. This shows that
τ′ must consist of at least n − 1 = m payment functions, in contradiction to our assump-
tion. Q.E.D.

APPENDIX C: PROOF OF PROPOSITION 3

PROOF OF PROPOSITION 3: By Proposition 2, action i is implementable if and only if
there is no other action i′ such that pi′ = pi and ci′ < ci. Therefore, if A = ∅, then it must
hold that ci = 0. In this case, 〈{(0� � � � �0)}� i〉 implements action i, and clearly no other
contract can do so with a lower expected payment. So suppose A �= ∅, and consider the
contract 〈τ� i〉 for this case from the statement of the proposition. We have already argued
that this contract is (consistent and) IC (in the proof of Proposition 2). It remains to show
that it is optimal.

For a contradiction, suppose that there exists a (consistent) IC contract 〈τ′� i〉, such that
Ti(τ′) < Ti(τ). By Theorem 1, we can assume that 〈τ′� i〉 is an SOP contract.

Consider an action i′ ∈A for which

min
{
x ≥ 0

∣∣pij(i′) · x

pij(i′)
− ci ≥ pi′j(i′) · x

pij(i′)
− ci′

}
= T� (10)

and recall that Ti(τ) = T .
First note that since 〈τ� i〉 is IC, we must have T ≥ ci. Moreover, we cannot have T = ci,

because then we would have Ti(τ′) < Ti(τ) = T = ci, which would contradict our assump-
tion that 〈τ′� i〉 is IC.

So consider the case where T > ci. In this case, since pij(i′)/pij(i′) > pi′j(i′)/pij(i′) , Equa-
tion (10) implies that ci > ci′ .
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Since 〈τ′� i〉 is IC, there must be an SOP payment function t ′ ∈ τ′ such that UA(i′|τ′) =
UA(i′|t ′) ≤ UA(i|t ′) = UA(i|τ′). Since t ′ is SOP, there must be an outcome j′ for which
t ′j′ ≥ 0, while t ′j′′ = 0 for all j′′ �= j′.

If j′ = j(i′), then

pi′j(i′) · Ti

(
τ′)

pij(i′)
− ci′ = UA

(
i′|t ′

) ≤UA

(
i|t ′

) = pij(i′) · Ti

(
τ′)

pij(i′)
− ci�

which contradicts the minimality of T .
Otherwise, j′ �= j(i′). In this case, since UA(i|t ′) ≥ UA(i′|t ′) and ci > ci′ , we must have

pi′j′/pij′ < 1. Moreover, by definition of j(i′), we must have pi′j′/pij′ ≥ pi′j(i′)/pij(i′) . So

Ti(τ) = ci − ci′

1 − pi′j(i′)

pij(i′)

≤ ci − ci′

1 − pi′j′

pij′

≤ Ti

(
τ′)�

where the equality holds by definition of T , the first inequality uses that ci − ci′ > 0, and
the final inequality holds because UA(i|t ′) ≥ UA(i′|t ′). We obtain a contradiction to our
assumption that Ti(τ′) < Ti(τ). Q.E.D.

APPENDIX D: PROOF OF THEOREM 2

PROOF: Theorem 1 ensures that there exists an ambiguous contract 〈τ′′� i〉 consisting
of the SOP payment functions τ′′ = {t1� � � � � tk} that implements action i with expected
payment Ti(τ), and with t1 and tk specified as in point 2. To prove the result, it suffices
to show that the ambiguous contract 〈τ′� i〉 with τ′ = {t1� tk} also implements action i. In
turn, it suffices for this result to note that

i′ < i =⇒ Ti′
(
τ′′) = min

j=1�����k
pi′j

Ti(τ)
pij

≥ pi′h
Ti(τ)
pih

≥ min
j=1�k

pi′j
Ti(τ)
pij

= Ti′
(
τ′)� (11)

i′ > i =⇒ Ti′
(
τ′′) = min

j=1����k
pi′j

Ti(τ)
pij

≥ pi′	
Ti(τ)
pi	

≥ min
j=1�k

pi′j
Ti(τ)
pij

= Ti′
(
τ′)� (12)

The first inequality in each of these statements follows from the MLRP condition. In the
case of (11), for example, this inequality follows from noting that if i′ < i, then the MLRP
condition implies that (since h> j) pihpi′j ≥ pijpi′h. Q.E.D.

APPENDIX E: PROOF OF THEOREM 4

PROOF OF THEOREM 4: By construction, the ambiguous contract 〈τ′� i〉 with τ′ =
{t1� tk} is consistent and Ti(τ′) = Ti(τ), so point 1 is satisfied. To show that 〈τ′� i〉 is in-
centive compatible, we note that since 〈τ� i〉 implements action i, each action i′ �= i has
a monotone payment function t (i′) ∈ τ such that UA(i′|t (i′)) ≤ UA(i|τ). It then suffices to
show that each action i′ �= i has a payment function t ∈ τ′ for which Ti′ (t) ≤ Ti′ (t (i′)).

For actions i′ �= i such that ci′ ≤ ci, we claim that Ti′ (tk) ≤ Ti′ (t (i′)). Indeed, for any such
action i′,

Ti′
(
tk

) =
m∑
j=1

pi′j · tkj =
m∑
j=h

pi′j · tkj = pi′h · tkh �
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where we used that tkj = 0 for j < h, and that pi′j = 0 for j > h by the MLRP condition.
Substituting the definition of tkh = Ti(τ)/pih and using that Ti(τ) = Ti(t (i′)) by consistency,
we obtain

Ti′
(
tk

) = pi′h · Ti

(
t (i′))
pih

= pi′h ·

∑
j∈[m]

pij · t (i′)
j

pih

=
h∑

j=1

pi′h ·pij

pih

· t (i′)
j �

where, for the last step, we used that pij = 0 for j > h (by definition of h).
By the MLRP condition, since ci′ ≤ ci, for all j ≤ h:

pi′h

pih

≤ pi′j

pij

=⇒ pi′h ·pij

pih

≤ pi′j�

Using this, we obtain

Ti′
(
tk

) ≤
h∑

j=1

pi′j · t (i′)
j =

m∑
j=1

pi′j · t (i′)
j = Ti′

(
t (i′))�

where we again used that pi′j = 0 for j > h by the MLRP condition.
For actions i′ �= i such that ci′ > ci, we claim that Ti′ (t1) ≤ Ti′ (t (i′)). In this case, with

	′ = min{j ∈ [m]|pi′j > 0}, the expected payment for action i′ under t1 is

Ti′
(
t1

) =
m∑
j=1

pi′j · t1
j =

m∑
j=	′

pi′j · Ti(τ) ≤ Ti(τ) = Ti

(
t (i′))�

completing the proof. Q.E.D.

APPENDIX F: PROOF OF LEMMA 2

PROOF OF LEMMA 2: If W = 0, then the linear contract 〈(0� � � � �0)�1〉 is optimal and
Equation (2) is immediate with A ={1} and α1 = 0. So suppose W > 0.

Let A ⊆ [n]\{1} be a subset of actions formed by (i) excluding action 1 (the null action),
(ii) excluding actions that cannot be implemented with a linear contract, and (iii) selecting
a single action from each of the subsets (if any) of the remaining actions that have the
same cost. Let n′ =|A|. Note that since W > 0, it must be that A �= ∅ and thus 1 ≤ n′ ≤
n − 1. Relabel the actions i ∈ A according to the smallest α ∈ [0�1] such that 〈t� i〉 =
〈(αr1� � � � �αrm)� i〉 is incentive compatible, and let αi denote the corresponding α. The
sequences {Ri}, {Wi}, {ci} for i ∈ A are strictly increasing in i, with R1 > 0 and c1 ≥ 0.

Observe that for i = 1, we have α1 = c1/R1, while for i > 1, we have

αi = ci − ci−1

Ri −Ri−1
�

Using this notation, we have

max
〈t�i〉∈L(c�r′�p)

UP

(〈t� i〉) = max
i∈A

(1 − αi)Ri�
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We next show an upper bound on the maximum social welfare. Note that

W = max
i∈A

Wi = Wn′ =Rn′ − cn′�

where we used that the highest-welfare action is among the actions in A. The upper bound
follows from a lower bound on (1 − αi)Ri, summed up over all i ∈A.

For i = 1, we use that, by the definition of α1, it holds that (1−α1)R1 = (1−c1/R1)R1 =
R1 − c1. For i > 1, we again use the formula for αi, to obtain that

(1 − αi)Ri =
(

1 − ci − ci−1

Ri −Ri−1

)
Ri ≥ (Ri − ci) − (Ri−1 − ci−1)�

where we additionally used that Ri/(Ri −Ri−1) ≥ 1.
Hence, by a telescoping sum argument,

W =Wn′ = (R1 − c1) +
n′∑
i=2

(
(Ri − ci) − (Ri−1 − ci−1)

) ≤
n′∑
i=1

(1 − αi)Ri�

Using this for the final inequality in the following, we thus obtain

max
〈t�i〉∈L(c�r�p)

UP

(〈t� i〉) = max
i∈A

(1 − αi)Ri ≥ 1
n′

n′∑
i=1

(1 − αi)Ri ≥ 1
n′W�

giving the result. Q.E.D.

APPENDIX G: CLASSIC CONTRACTS IN LOWER-BOUND INSTANCE

The following lemma shows that in the instance depicted in Figure 7, the principal
cannot obtain a utility greater than 1 using a classic contract.

LEMMA 3: Let n ≥ 3. Let γ�ε ∈ (0�1) and let δ = ε · γn−2. Consider the parameterized
instance (c� r�p) with n actions depicted in Figure 7. Then

max
〈t�i〉∈C(c�r�p)

Up

(〈t� i〉) ≤ 1�

PROOF: We have W1 ≤ W2 ≤ 1, so there is nothing to show for these actions. Next con-
sider any action i such that 3 ≤ i ≤ n− 1. Suppose 〈t� i〉 implements action i. Since action
i puts zero probability on outcome 1, we can without loss of generality assume that t1 = 0.
We derive a lower bound on Ti(t), by considering only the IC constraint that compares
action i to action i− 1. According to this constraint, we must have(

1 − γn−i
)
t2 + γn−it3 − ci ≥

(
1 − γn−i+1

)
t2 + γn−i+1t3 − ci−1�

Since (1−γn−i) < (1−γn−i+1) and γn−i > γn−i+1, we obtain a lower bound on the expected
payment Ti(t) by setting t2 = 0 and finding the smallest t3 such that

γn−it3 − ci ≥ γn−i+1t3 − ci−1�
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Rearranging and substituting ci and ci−1, this yields

t3 ≥ 1
γn−i

· ci − ci−1

1 − γ
= 1

γn−i

(
1

γi−2 − 1
)
�

So the principal’s utility from action i is at most

γn−ir3 − γn−it3 ≤ 1
γi−2 −

(
1

γi−2 − 1
)

= 1�

Next consider action n, and any IC contract 〈t� n〉. Since action n puts zero probability
on outcome 2, we can without loss of generality assume t2 = 0. To obtain an upper bound
on the principal’s utility, we proceed in a similar manner as before, except that now, in
addition to comparing to action n − 1, we also compare to action 1. The comparison to
action 1 gives

δt1 + (1 − δ)t3 − cn ≥ t1�

or equivalently,

t3 − t1 ≥ cn

1 − δ
�

An important consequence of this is that t3 − t1 ≥ 0. Combining this with the fact that the
agent does not want to deviate to action n− 1, we obtain

γt3 − cn−1 ≤ δt1 + (1 − δ)t3 − cn = t3 − δ(t3 − t1) − cn ≤ t3 − cn�

Rearranging and substituting cn and cn−1, this yields

t3 ≥ 1
1 − γ

(cn − cn−1) = 1
γn−2 − 1�

Hence, the principal’s utility from action n is at most

(1 − δ)r3 − (1 − δ)t3 ≤ 1 − δ�

which completes the proof. Q.E.D.

APPENDIX H: ALGORITHMIC IMPLICATIONS

In this section, we show that the structural properties of optimal ambiguous contracts
specified in Section 3 have important algorithmic implications. Specifically, they lead to
polynomial-time algorithms for the optimal ambiguous contract problem.

THEOREM 7—Computation: There exists an algorithm that computes the optimal am-
biguous contract in time O(n2m). If the instance satisfies MLRP, then the running time im-
proves to O(n2 +m).

PROOF: We argue that for any given action i ∈ [n], we can, in O(nm) time, (1) decide
whether it can be implemented by an ambiguous contract and (2) find the optimal contract
〈τ� i〉 that implements it (if it is implementable). Applying this algorithm to all actions
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i ∈ [n] and choosing the ambiguous contract that maximizes the principal’s utility, we find
the optimal ambiguous contract in O(n2m) time.

Fix any action i ∈ [n]. By Proposition 2, action i is implementable if there is no other
action i �= i such that pi′ = pi and ci′ < ci. For a given action i′ �= i, we can check whether
pi′ = pi and ci′ < ci in O(m) time. Applying this to all actions i′ �= i, we can test imple-
mentability in O(nm) time.

For each action i ∈ [n] that is implementable, we can determine an optimal ambiguous
contract via Proposition 3. Note that we can determine the set A in O(nm) time (simply
by iterating over all actions i′ �= i and checking whether pi′ �= pi). If A = ∅, then an op-
timal ambiguous contract is given by 〈(0� � � � �0)� i〉, and outputting this contract requires
O(1) time. On the other hand, if A �= ∅, then for each of the at most n − 1 actions in A,
we can determine the maximum likelihood ratio outcome j(i′) in O(m) time. We can then
compute action i′’s contribution to T in O(1) time. We can thus compute the maximum
likelihood ratio outcomes for all i′ ∈ A and T in O(nm) time. Outputting the optimal am-
biguous contract described in Proposition 3 for this case takes O(nm) time. We conclude
that we can determine an optimal ambiguous contract for action i in O(nm) time.

The improved running time for MLRP instances follows from the stronger characteri-
zation of optimal ambiguous contracts for such instances (Theorem 2). According to this
characterization, to find the optimal ambiguous contract 〈τ� i〉 that implements action i
(if one exists), we can first determine the indices (	i�hi) (defined in bullet 2). Then, for
each action i′ �= i such that ci′ ≤ ci, we can find the minimum payment on outcome hi such
that the agent prefers action i over action i′; while for actions i′ �= i such that ci′ > ci, we
can do the same with respect to outcome 	i instead of hi. Applying this procedure to all
actions i ∈ [n], we obtain an algorithm for finding the optimal ambiguous contract that
runs in O(n2) time given access to the (	i�hi) indices. The proof is completed by noting
that for MLRP instances, these indices are monotone (non-decreasing) in cost, and can
thus be precomputed in O(n+m) time. Q.E.D.

Notably, using similar ideas to the ones used in the proof of Theorem 7, one can show
that for monotone contracts, there exists an algorithm that computes the optimal am-
biguous contract in time O(n2m). If the instance satisfies MLRP, then the running time
improves to O(n2 +m).

Co-editor Parag Pathak handled this manuscript.
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