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We explore the deliberate infusion of ambiguity into the design of contracts. We
show that when the agent is ambiguity-averse and hence chooses an action that max-
imizes their minimum utility, the principal can strictly gain from using an ambiguous
contract, and this gain can be arbitrarily high. We characterize the structure of optimal
ambiguous contracts, showing that ambiguity drives optimal contracts toward simplic-
ity. We also provide a characterization of ambiguity-proof classes of contracts, where
the principal cannot gain by infusing ambiguity. Finally, we show that when the agent
can engage in mixed actions, the advantages of ambiguous contracts disappear.
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1. INTRODUCTION

CONTRACTS ARE OFTEN ambiguous. A construction contract may require that a builder
use “superior materials,” a professional services contract may require that a provider ex-
ert “due diligence,” or “act as a fiduciary,” a labor contract may require that the parties
“bargain in good faith,” and the promotion guidelines of a university may require that
a candidate exhibit “research productivity and excellence.” In each case, the meaning of
these phrases may be ambiguous.

This ambiguity may reflect the impossibility of precise specification. In contrast, we
explore the deliberate infusion of ambiguity as a tool that a principal may employ to
increase her contracting power.

1.1. The Model

We examine a familiar, finite moral hazard problem, augmented to accommodate am-
biguous contracts analogously to the treatment of mechanism design problems by Di
Tillio, Kos, and Messner (2017). In the problem we consider, a principal (she) interacts
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with an agent (he). The agent can take one of n costly actions. Each action i ∈ [n] induces
a probability distribution pi = (p1� � � � �pm) overm outcomes and imposes a non-negative
cost ci on the agent. Each outcome j ∈ [m] comes with a reward rj for the principal. The
principal cannot directly observe the agent’s action, and seeks to influence the agent’s
choice of action by paying for the stochastic outcomes of the action taken by the agent.
The principal and agent are both risk neutral, and a limited liability constraint forces
payments to be non-negative.

A classic contract for this setting includes a payment function t = (t1� � � � � tm), where tj
specifies the non-negative payment from the principal to the agent when outcome j ∈ [m]
is realized. Given a payment function t, the agent chooses an action i ∈ [n] that maximizes
his expected payment minus cost. The principal, in turn, receives the expected reward
of the implemented action, minus the expected payment to the agent under the chosen
action.

We are interested in ambiguous contracts. The source of the ambiguity can be given
various interpretations. It may be that the contract has missing provisions, vaguely worded
provisions, or provisions specified in prohibitively copious fine print,1 each case leaving
the agent facing a set of possible realized contracts that he cannot refine. The resolution
of the ambiguity may reflect a decision on the part of the principal, the action of a third
party such as a court, or random events.

To capture this ambiguity, we define an ambiguous contract to be a collection of payment
functions τ ={t1� t2� � � � � tk}. The agent evaluates each action i ∈ [n] by the minimum util-
ity he could receive from a payment function t� ∈ τ, and chooses an action that maximizes
this minimum utility. We say that the ambiguous contract implements the selected action.
We impose the consistency condition that, for the implemented action, every payment
function in the support of τ gives the principal the same payoff. We motivate this require-
ment as ensuring that the principal’s “threat” that she may choose any payment function
t ∈ τ is credible, though we show that the requirement is without loss of generality.

1.2. Our Contribution

Section 2 sets up the model and examines the sets of implementable actions. We recall
the familiar conditions (Hermalin and Katz (1991)) for an action to be implementable
with a classic contract, and then characterize implementable actions under ambiguous
contracts. In general, ambiguity expands the set of implementable actions.

Section 3 examines optimal ambiguous contracts. We first show that the principal can
use ambiguity to her advantage, either because ambiguity allows her to implement the
optimal action under classic contracts at a reduced cost, or because she exploits the am-
biguity to implement a different action. Indeed, a principal wielding ambiguous contracts
may optimally induce an action that is impossible to implement under classic contracts.

We then show that ambiguity drives optimal contracts toward simplicity. In general,
optimal ambiguous contracts are composed of at most max{n− 1�m} payment functions,
each of which can be taken to attach a positive payment to precisely one outcome (i.e.,
is a single-outcome payment function). If we restrict attention to principal-agent prob-
lems satisfying the monotone likelihood ratio property (MLRP), then optimal ambiguous
contracts contain at most two (single-outcome payment) contracts. If payment functions
must be monotone—higher rewards engender higher payments—perhaps for reasons of

1Zuboff (2023) argued that pyramiding cross references can render it impossible to read all of the fine print
in a typical contract.



AMBIGUOUS CONTRACTS 1969

fairness, regulation, or robustness, then analogous results hold, with payment functions
now being step functions (with a single step) rather than paying for only a single outcome.

Section 4 uses the concept of an ambiguity gap—the largest possible ratio of the princi-
pal’s payoff under an optimal ambiguous contract to that of an optimal classic contract—
to quantify how much the principal gains by exploiting ambiguity. In general, this ratio
can be arbitrarily large. When all rewards are positive, the ambiguity gap is n − 1, and
hence grows arbitrarily large when the number of actions grows large.

Section 5 defines a class of contracts to be ambiguity-proof if it is impossible for the
principal to implement an action at a lower expected payment with an ambiguous con-
tract than with a classic contract. We show that a class of contracts is ambiguity-proof if
and only if it is ordered, in the sense that for any two contracts in the class, one of them
attaches a weakly higher payment to every outcome than does the other. An immediate
implication of this result is that the class of linear contracts is ambiguity-proof, among oth-
ers. In contrast, many other natural classes of contracts, such as the classes of all affine,
polynomial, or monotone contracts, are not ambiguity-proof.

Section 6 shows that the advantages of ambiguity disappear if the agent can mix over
actions. The ability to mix provides the agent with more alternative actions, tightening
the incentive constraints enough to dissipate any advantage the principal gains from am-
biguous contracts. As explained by Raiffa (1961) in his assessment of the Ellsberg (1961)
paradox, mixing allows the agent to transform a situation of ambiguity into one of risk,
alleviating the force of ambiguity aversion.

1.3. Implications

We do not expect to see agents literally facing a bevy of payment functions, wondering
which will actually be applied, but we do view our results as helpful in understanding three
aspects of real-world contracts.

First, we believe that contracts typically are ambiguous. Indeed, it is difficult to imag-
ine a contract that specifies beyond any doubt the implications of every outcome. The
literature has focused on feasibility constraints as the source of such imprecision—it may
be prohibitively expensive or impossible to anticipate, describe, or verify the various out-
comes.2 In contrast, we suggest that ambiguity may be deliberately embraced by the prin-
cipal as an incentive device. As our ambiguity gap results show, the gains to the principal
from doing so can be large.

Second, a theme that emerges from our results is that optimal ambiguous contracts tend
to be simple. We expect circumstances will often constrain contracts to be monotone. In
this case, the optimal ambiguous contract features a collection of step functions, each with
a single step. In practice, this would take the form of a single contract, specifying bonuses
if various performance thresholds are reached, but written sufficiently imprecisely as to
make the performance thresholds and bonuses ambiguous. If the technology satisfies the
monotone likelihood ratio property, the number of such performance-dependent bonuses
is small, namely two. We thus have a contract that requires at least adequate performance
in order to elicit payment, with a bonus for superior performance, written so as to allow
some ambiguity as to the precise performance thresholds and payments. We view actual
contracts in many circumstances as fitting this description. For example, an assistant pro-
fessor may believe that a reasonable research record engenders promotion to associate

2Aghion and Holden (2011) provided a survey of a literature that has its roots in Hart (1988) and Hart and
Moore (1988).
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professor and a raise, with an exemplary record bringing promotion to full professor and
a larger raise, with the thresholds and the amounts of the raises both ambiguous.

Third, ambiguous contracts can be a burden for agents, either because they are more
difficult to evaluate and enforce or because they are a weapon for extracting surplus from
agents. Circumstances may accordingly restrict attention to ambiguity-proof classes of
contracts. Our results show that insisting on ambiguity proofness also drives contracts
toward (a different notion of) simplicity. Ordered contracts, with linear contracts as a
leading example, are straightforward to process. We note that commission contracts are
common, and in their simplest form are linear.3

The literature has established other reasons why contracts may be imprecise or simple
or linear. In each case, we cannot claim to have provided “the” explanation, but our work
adds another factor to the list of considerations.

1.4. Related Literature

We work with a familiar hidden-action moral hazard problem, as in Holmström (1979),
Grossman and Hart (1983), and Laffont and Martimort (2009, Chapter 4), with the fric-
tion arising out of limited liability (as in Innes (1990)) rather than risk aversion. In con-
trast to much of the moral hazard literature, our principal offers ambiguous contracts
to an ambiguity-averse agent. We implement the agent’s ambiguity aversion by modeling
the agent as maximizing his max-min utility (Schmeidler (1989), Gilboa and Schmeidler
(1993)).

A flourishing literature examines design problems in the face of non-Bayesian uncer-
tainty. One branch of this literature examines models in which the principal entertains
non-Bayesian uncertainty about the agents. Bergemann and Schlag (2011) examined
monopoly pricing on the part of a principal with ambiguous beliefs about buyers’ valu-
ations. Carrasco, Farinha Luz, Kos, Messner, Monteiro, and Moreira (2018) examined
screening problems in which the principal is only partially informed of the distribution of
agent preferences. Carroll (2015), Carroll and Walton (2022), and Kambhampati (2023)
examined moral hazard problems in which the principal has ambiguous beliefs about the
set of actions the agent can choose from. Dai and Toikka (2022) examined a principal
who writes contracts to shape the actions of a team of agents, with the principal hold-
ing ambiguous beliefs about the actions available to the agents. Dütting, Roughgarden,
and Talgam-Cohen (2019) examined moral hazard problems in which the principal has
ambiguous beliefs about the distribution of outcomes induced by the agent’s actions.

A second branch of the literature examines settings in which the agent has ambiguous
beliefs that the principal can potentially exploit. Beauchêne, Li, and Li (2019) and Cheng
(2020) examined Bayesian persuasion problems in which the sender exploits the ambigu-
ity aversion of the receiver. Bodoh-Creed (2012) and Di Tillio, Kos, and Messner (2017)
examined screening problems with agents who have max-min preferences. Bose and Re-
nou (2014) examined mechanism design problems in which agents have max-min pref-
erences. Lopomo, Rigotti, and Shannon (2011) examined moral hazard problems with
agents who have Bewley preferences. Bose, Ozdenoren, and Pape (2006) considered auc-
tions in which the seller and bidders may both be ambiguity-averse. Our paper is distin-
guished from the two branches above by examining moral hazard problems in which the
agent faces ambiguity concerning the payments attached to outcomes.

3A contract may include a base payment plus a commission, making it affine rather than linear. Section 5
notes that the class of all affine contracts is not ambiguity-proof, but there are ambiguity-proof classes of affine
contracts.
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The paper most closely related to our work is that of Di Tillio, Kos, and Messner (2017),
who conducted a parallel exercise in the context of a screening model, with a seller allo-
cating an object to an ambiguity-averse buyer. They found that the seller can gain from
offering an ambiguous mechanism, consisting of a set of simple mechanisms, just as our
principal can benefit from offering an ambiguous contract. In each case, the gain comes
from using the agent’s ambiguity aversion to relax incentive constraints. Di Tillio, Kos,
and Messner (2017) showed that an optimal ambiguous mechanism contains at mostN−1
mechanisms, whereN is the number of agent types (as opposed to the number of actions,
in our case), each of which takes a simple form reminiscent of our single-outcome pay-
ment functions. Finally, they showed that as the number of agent types grows arbitrarily
large, the principal comes arbitrarily close to extracting all of the surplus.

Di Tillio, Kos, and Messner (2017) imposed a consistency condition on ambiguous
mechanisms, analogous to the consistency condition we impose on ambiguous contracts.
In their case, this restriction is substantive rather than sacrificing no generality, reflect-
ing the differing structure of the incentive constraints that arise in screening and moral
hazard problems. Di Tillio, Kos, and Messner (2017) did not have counterparts of our
findings that the number of payment functions in an optimal ambiguous contract is pre-
cisely two in the presence of the MLRP condition, though they maintained throughout
the screening counterpart of this assumption, in the form of a single-crossing condition.

An implication of our results is that in the context of moral hazard problems, ambigu-
ity and max-min utility drive optimal designs toward simplicity. We thus join a literature,
with Holmstrom and Milgrom (1987) as a key early entry, endeavoring to explain why
actual contracts in moral hazard settings tend to be simple, in contrast to their theoreti-
cal counterparts. Carroll (2015), Carroll and Walton (2022), and Dai and Toikka (2022)
showed that a principal who is uncertain of the actions available to an agent and who has
max-min preferences will optimally choose a linear contract. Dütting, Roughgarden, and
Talgam-Cohen (2019) showed that the same holds for a principal who is uncertain about
the technology by which actions turn into outcomes and who has max-min preferences.
These papers thus show that ambiguity aversion on the part of the principal can lead to
linear contracts, whereas we find linear contracts may be attractive as a device for prevent-
ing the principal from exploiting the agent’s ambiguity aversion. In our setting, exploiting
the agent’s ambiguity aversion leads the principal to an alternative class of simple con-
tracts, consisting of single-outcome payment functions or step functions (when payment
functions must be monotone), and including only two such functions when the MLRP
condition holds.

2. THE MODEL

Our starting point is the classic hidden-action principal-agent model of contract theory
(e.g., Holmström (1979), Grossman and Hart (1983), and Laffont and Martimort (2009,
Chapter 4)). A principal (she) induces an agent (he) to take a costly, unobservable action
by writing a contract that attaches payments to the observable, stochastic outcomes of the
chosen action. We augment the model by introducing the notion of an ambiguous contract
and examining optimal ambiguous contracts.

2.1. The Principal-Agent Model

The basic ingredients of the principal-agent model apply to both classic and ambiguous
contracts.
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DEFINITION 1—Instance: An instance (c� r�p) of the principal-agent problem with n
actions and m outcomes is specified by:

• For each action i ∈ [n], a non-negative cost ci ∈ R+. We write c = (c1� � � � � cn) for the
vector of costs, and sort the actions so that c1 ≤ c2 ≤ · · · ≤ cn.

• For each outcome j ∈ [m], a reward rj ∈ R. We write r = (r1� � � � � rm) for the vector of
rewards, and sort outcomes so that r1 ≤ r2 ≤ · · · ≤ rm.

• For each action i ∈ [n], a probability distribution pi ∈ �m. We use pij to denote the
probability of outcome j under action i.

We use Ri = ∑m

j=1pijrj to denote the expected reward of action i, and writeWi =Ri− ci
for action i’s expected welfare.

The agent retains the option of not participating. To capture this, we assume throughout
that action 1 is a zero-cost action, that leads with probability 1 to an outcome that we
interpret as the status-quo outcome. As we explain in Sections 2.2–2.3, this does not limit
the generality of the model, but leads to a unified treatment of the incentive compatibility
and individual rationality constraints.

The literature often focuses on instances that satisfy the monotone likelihood ratio
property:

DEFINITION 2—MLRP: An instance (c� r�p) satisfies the MLRP (monotone likelihood
ratio property) if, for any two actions i, i′ such that ci > ci′ , it holds for all j′ > j that

pij′pi′j ≥ pijpi′j′ �
Intuitively, the MLRP condition requires that more costly actions are more likely to

yield high outcomes.
The specification (c� r�p) is known to both the principal and the agent. The agent’s

action is known only by the agent, while realized outcomes are observed by both the
principal and agent.

A payment function t : [m] → R+ identifies a payment made by the principal to the
agent upon the realization of each outcome, with the payment t(j) made in response to
outcome j typically denoted by tj . Payments are attached to outcomes rather than actions
because the principal can observe only the former. We assume that payments are non-
negative. This is a standard limited liability assumption.

In many cases, considerations of fairness, regulation, or robustness may restrict atten-
tion to monotone payment functions.

DEFINITION 3: The payment function t is monotone if outcomes generating larger re-
wards engender (at least weakly) larger payments: rj ≥ rj′ =⇒ tj ≥ tj′ for all j� j′ ∈ [m].

2.2. Classic Contracts

We first describe the classic setting, in which a contract, denoted by 〈t� i〉, is a payment
function t and a recommended action i ∈ [n]. The interpretation is that the principal posts
a contract, the agent observes the contract and chooses an action and bears the attendant
cost, an outcome is drawn from the distribution over outcomes induced by that action,
and the principal makes the payment to the agent specified by the contract. The inclusion
of a recommended action in the contract allows us to capture the common presumption
that the agent “breaks ties in favor of the principal.”
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More precisely, an agent who chooses action i′ when facing a contract 〈t� i〉 garners
expected utility

UA

(
i′|t

) =
m∑
j=1

pi′jtj − ci′ = Ti′ (t) − ci′�

given by the difference between the expected payment Ti′ (t) and the cost ci′ . The resulting
principal utility is UP (i′|t) =Ri′ − Ti′ (t).

DEFINITION 4—IC contract: A contract 〈t� i〉 is incentive compatible (IC) if

i ∈ argmax
i′∈[n]

UA

(
i′|t

)
�

in which case we say that contract 〈t� i〉 implements action i.

Because payments are non-negative and action 1 has zero cost, incentive compatibil-
ity ensures that the agent secures an expected utility of at least zero, and hence implies
individual rationality.

We assume the agent follows the recommendation of an incentive compatible contract.
If the principal posts the incentive compatible contract 〈t� i〉, the payoffs to the principal
and agent are then

UP

(〈t� i〉) = UP (i|t) =Ri − Ti(t)�
UA

(〈t� i〉) = UA(i|t) = Ti(t) − ci�
It is without loss of generality to restrict the principal to incentive compatible con-

tracts. The idea is that an agent facing contract 〈t� i〉 will choose an action that maximizes
her expected utility given t, and hence the principal might as well name such an action
in the contract. The optimal classic contract implementing each action i can be identi-
fied by solving a linear programming problem, presented in Figure 8 in Supplemental
Appendix A (Dútting, Feldman, Peretz, and Samuelson (2024)). The optimal (incentive
compatible) classic contract will inevitably induce indifference on the part of the agent,
as some incentive constraint will bind.

2.3. Ambiguous Contracts

An ambiguous contract 〈τ� i〉 = 〈{t1� � � � � tk}� i〉 is a set of payment functions and a rec-
ommended action. If t ∈{t1� � � � � tk}, then we say that t is in the support of τ.

The principal now posts an ambiguous contract, the agent observes the ambiguous con-
tract and chooses an action and bears the attendant cost, a payment function is selected
from the support of the ambiguous contract, an outcome is drawn from the distribution
over outcomes induced by that action, and the principal makes the payment to the agent
specified by the selected contract.

The agent is a max-min expected utility maximizer (Schmeidler (1989), Gilboa and
Schmeidler (1993)), and so evaluates each action i according to the payment function
that minimizes the expected payment of the action.

Formally, given an ambiguous contract 〈τ� i〉, the agent’s utility for action i′ ∈ [n] is

UA

(
i′|τ

) = min
t∈τ
UA(i|t)�
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DEFINITION 5—IC ambiguous contract: An ambiguous contract 〈τ� i〉 is incentive com-
patible (IC) if

i ∈ argmax
i′∈[n]

UA

(
i′|τ

)
�

in which case we say that ambiguous contract 〈τ� i〉 implements action i.

As in the case of a classic contract, the incentive compatibility constraint implies indi-
vidual rationality. It is again without loss to restrict the principal to incentive compatible
ambiguous contracts.

If the principal’s expected utility UP (i|t) under payment scheme t ∈ τ is strictly higher
than UP (i|t ′) for some t ′ ∈ τ, then the principal’s “threat” that she may use any contract in
τ may not be credible—an agent facing ambiguous contract 〈τ� i〉 may fear the principal
will contrive to invariably select the payment function t rather than t ′. As in Di Tillio,
Kos, and Messner (2017), we accordingly restrict the principal to consistent ambiguous
contracts.

DEFINITION 6—Consistency: An ambiguous contract 〈τ� i〉 = 〈{t1� � � � � tk}� i〉 is consis-
tent if, for any �� �′ ∈ [k],

UP

(
i|t�

) =UP

(
i|t�

′)
� (1)

If the principal posts the consistent, incentive compatible ambiguous contract 〈τ� i〉 =
〈{t1� � � � � tk}� i〉, then the induced payment Ti(τ) can be defined as

Ti(τ) = Ti
(
t�

) = Ti
(
t�

′) ∀�� �′ ∈ [k]� and hence

UA

(
i|t�

) = UA

(
i|t�

′) ∀�� �′ ∈ [k]�

with the first directly implied by consistency and the second following from UA(i|t) =
Ti(t) − ci. The expected utilities UP (〈τ� i〉) and UA(〈τ� i〉) of the principal and agent are
then given by, for any t ∈ τ,

UP

(〈τ� i〉) = UP (i|t) =Ri − Ti(τ) and

UA

(〈τ� i〉) = UA(i|t) = Ti(τ) − ci�
It is without loss of generality to restrict the principal to consistent ambiguous contracts:

LEMMA 1: Suppose 〈τ� i〉 is incentive compatible. Then there exists a consistent, incentive
compatible ambiguous contract 〈τ′� i〉 from which the principal obtains expected payoff at
least maxt∈τ UP (i|t).

PROOF: Consider an incentive compatible ambiguous contract 〈τ� i〉 that is not consis-
tent. Let the payment functions in τ be numbered so that

UP

(
i|t1

) = max
t∈τ

UP (i|t)�

Suppose

UP

(
i|t1

)
>UP

(
i|t2

)
�
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Then it must be that
m∑
j=1

pijt
1
j <

m∑
j=1

pijt
2
j �

Let θ ∈ [0�1) satisfy
m∑
j=1

pijθt
2
j =

m∑
j=1

pijt
1
j �

and consider the ambiguous contract 〈τ′� i〉 = 〈{t1� θt2� � � � � tk}� i〉, constructed from 〈τ� i〉
by replacing payment function t2 with θt2. We have UP (i|t1) = UP (i|θt2) > UP (i|t2), and
so the principal’s payoff is at least as high under 〈τ′� i〉 as under 〈τ� i〉. In addition, we have

UA

(
i|θt2

) = UA

(
i|t1

)
<UA

(
i|t2

)
and

UA

(
i′|θt2

) = θTi′
(
t2

) − ci′ ≤UA

(
i′|t2

)
�

which imply

min
t∈τ′

UA(i|t) = min
t∈τ
UA(i|t) and

min
t∈τ′

UA

(
i′|t

) ≤ min
t∈τ
UA

(
i′|t

) ∀i′ ∈ [n]�

which establishes that 〈τ′� i〉 is incentive compatible. Applying a similar argument to pay-
ment functions t3� � � � � tk yields the result. Q.E.D.

An implication of this result is that we can equivalently view the principal as selecting
the contract to be implemented, or as having max-min preferences over the outcome of a
selection by a third party.

2.4. Implementability

This section characterizes the actions that are implementable with classic and ambigu-
ous contracts. The following result for classic contracts is standard (e.g., Hermalin and
Katz (1991, Proposition 2)).

PROPOSITION 1: Action i ∈ [n] is implementable with a classic contract if and only if there
does not exist a convex combination λi′ ∈ [0�1] of the actions i′ �= i that yields the same
distribution over rewards

∑
i′ �=i λi′pi′j = pij for all j but at a strictly lower cost

∑
i′ λi′ci′ < ci.

For completeness, we provide a proof in Supplemental Appendix A. In contrast, the
conditions for implementing an action with ambiguous contracts are more permissive:

PROPOSITION 2: Action i ∈ [n] is implementable with an ambiguous contract if and only
if there is no other action i′ �= i such that pi′ = pi and ci′ < ci.

PROOF: We first show that if there exists an action i′ �= i such that pi′ = pi and ci′ < ci,
then it is impossible to implement action i with an ambiguous contract. For the sake of
contradiction, suppose that ambiguous contract 〈τ� i〉 = 〈{t1� � � � � tk}� i〉 implements ac-
tion i. In this case, since pi = pi′ , we have Ti(t�) = Ti′ (t�

′) for all �� �′ ∈ [k]. But then



1976 DÜTTING, FELDMAN, PERETZ, AND SAMUELSON

UA(i′|τ) = min�∈[k] Ti′ (t�) − ci′ >min�∈[k] Ti(t�) − ci =UA(i|τ), contradicting the fact that
〈τ� i〉 is incentive compatible.

Next, we show that if there is no action i′ �= i such that pi′ = pi and ci′ < ci, then action i
can be implemented with an ambiguous contract. In this case, for each action i′ �= i, either
(i) pi′ �= pi or (ii) pi′ = pi and ci′ ≥ ci. Let A be the actions of type (i). If A is empty,
then i must be a zero-cost action. A (consistent) ambiguous contract for implementing
that action is 〈τ� i〉 with τ ={(0� � � � �0)}.

Assume A is non-empty. We construct an ambiguous contract 〈τ� i〉 for implementing
action i that has one contract ti′ for each action i′ �= i of type (i). For each action i′ ∈A,
let j(i′) be an outcome j such that pij/pi′j is maximal. Note that pij(i′)/pi′j(i′) > 1. Let

T = max
i′∈A

{
min

{
x≥ 0

∣∣∣pij(i′) · x

pij(i′)
− ci ≥ pi′j(i′) · x

pij(i′)
− ci′

}}
�

For each i′ ∈A, let ti′j(i′) = T/pij(i′) and ti′j′ = 0 for j′ �= j(i′).
We conclude by verifying that 〈τ� i〉 = 〈{ti′|i′ ∈A}� i〉 is a (consistent) ambiguous con-

tract that implements action i. It is easy to check consistency.
To see that 〈τ� i〉 is incentive compatible, first consider actions i′ �= i of type (ii). For

these actions, we have

UA

(
i′|τ

) =UA(i|τ) + ci − ci′ ≤UA(i|τ)�

where we used that pi′ = pi and ci′ ≥ ci.
Next, consider actions i′ �= i of type (i). For these actions, there must be a Ti′ ≥ 0 with

Ti′ ≤ T such that

pij(i′) · Ti′

pij(i′)
− ci ≥ pi′j(i′) · Ti′

pij(i′)
− ci′ �

Since Ti′ ≤ T and pij(i′) >pi′j(i′) , this implies

UA(i|τ) = pij(i′) · T

pij(i′)
− ci

≥ pi′j(i′) · T

pij(i′)
− ci′

= min
i′′∈A

(
pi′j(i′′) · T

pij(i′′)
− ci′

)
=UA

(
i′|τ

)
�

where the first equality holds by consistency, the second equality holds by definition of
j(i′), and the final equality holds by definition. Q.E.D.

The following example presents an action that is implementable with an ambiguous
contract but not a classic contract.

EXAMPLE 1—Action implementable with ambiguous but not classic contract: Consider
the instance in Figure 1. A half/half combination of actions 2 and 3 gives the same distri-
bution over outcomes as action 4, but at a lower cost, and hence no classic contract can im-
plement action 4. However, the ambiguous contract 〈τ�4〉 = 〈{t1� t2}�4〉 with t1 = (0�6�0)
and t2 = (0�0�6) implements action 4 with the minimum possible expected payment of
T4(τ) = c4 = 3.
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FIGURE 1.—Instance (c� r�p) for Example 1.

3. OPTIMAL AMBIGUOUS CONTRACTS

We first show, in Section 3.1, that the principal can benefit by employing ambiguous
rather than classic contracts. This observation motivates us to study the structure of opti-
mal ambiguous contracts. Section 3.2 establishes that optimal ambiguous contracts taking
a particularly simple form always exist. Section 3.3 establishes the counterparts of these
results for monotone contracts.

3.1. The Advantage of Optimal Ambiguous Contracts

In the following simple variation of Example 1, the principal gains from ambiguity by
implementing the same action as in the best classic contract, though less expensively.

EXAMPLE 2—Strict improvement: Consider the instance shown in Figure 2. The best
classic contract is 〈(0�1�1)�4〉, yielding the principal an expected utility of 1. Indeed, the
best classic contract implementing action 2 is 〈(0�1/2�0)�2〉, for a principal’s utility of
3/4, and the same holds for action 3, with the contract 〈(0�0�1/2)�3〉.

An optimal ambiguous contract is 〈τ�4〉 = 〈{t1� t2}�4〉, with t1 = (0�3/2�0) and t2 =
(0�0�3/2). The worst payment function in τ for action 2 is t2, giving the agent an expected
payment of 0. Similarly, the worst payment function for action 3 is t1, for an expected
payment of 0. Thus, both actions 2 and 3 give the agent negative utilities. In contrast, the
expected payment for action 4 is 3/4 under both t1 and t2, giving the agent an expected
utility of 0. The ambiguous contract 〈τ�4〉 thus implements action 4, with an expected
payment of 3/4, and an expected utility for the principal of 5/4, strictly higher than her
optimal utility under a classic contract.

We next show that the same phenomenon can occur in instances satisfying the MLRP
condition. In this example, the optimal ambiguous contract implements a different action
than the one implemented by the optimal classic contact.

EXAMPLE 3—Strict improvement under MLRP: Consider the instance shown in Fig-
ure 3. In this instance, the principal can implement both action 2 and action 4 with a classic
contract, with an expected payment equal to the agent’s respective cost. Possible contracts
that achieve this include 〈(0�5/3�0�0)�2〉 and 〈(0�0�0�30)�4〉. The resulting principal

FIGURE 2.—Instance (c� r�p) for Example 2.
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FIGURE 3.—Instance (c� r�p) for Example 3.

utility is R2 − c2 = 18�2 for action 2 and R4 − c4 = 21�4 for action 4. The cheapest way
to implement action 3 (e.g., by solving the LP in Figure 8 in Supplemental Appendix A)
is via contract 〈t = (0�25/12�245/12�0)�3〉, yielding a utility of R3 − T3(t) = 21�25. The
maximal utility the principal can achieve with a classic contract is thus 21�4. Contrast this
with the optimal ambiguous contract 〈{t1� t2}�3〉, consisting of the two payment functions
t1 = (0�22�0�0) and t2 = (0�0�22�0). This ambiguous contract implements action 3 with
an expected payment equal to the agent’s cost, for a principal utility of R3 − c3 = 21�5.

In our next example, the principal gains from using an ambiguous contract to imple-
ment an action that cannot be implemented with a classic contract.

EXAMPLE 4—Action optimal with ambiguous contract but not implementable with clas-
sic contract: Consider the instance shown in Figure 4. Action 6 cannot be implemented
by a classic contract, with the half/half combination of actions 4 and 5 giving the same
distribution over outcomes at a lower cost. Actions 2 and 3 have a negative expected
welfare, and so will never be optimal for the principal. Actions 4 and 5 can both be im-
plemented with a classic contract, and yield the same maximal utility for the principal.
Optimal classic contracts for these actions include 〈(0�0�20�0)�4〉 and 〈(0�0�0�20)�5〉,
each giving the principal an expected utility of 1. In contrast, the optimal ambiguous con-
tract 〈{(0�0�22�0)� (0�0�0�22)}�6〉 implements action 6, for an expected utility of 10.

We conclude with an example showing that an ambiguous contract may benefit both the
principal and the agent. Clearly, this can only happen when the optimal action under an
ambiguous contract differs from the optimal action under classic contracts.

EXAMPLE 5—Ambiguous contracts may benefit both principal and agent: Consider
the instance shown in Figure 5. An optimal classic contract is 〈(0�2�0)�2〉, implement-
ing action 2 with utilities 0 and 3 to the agent and principal. The ambiguous contract
〈{(0�8�0)� (0�0�8)}�4〉 implements action 4 with utilities 0�2 and 4 to the agent and prin-
cipal.

FIGURE 4.—Instance (c� r�p) for Example 4.
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FIGURE 5.—Instance (c� r�p) for Example 5.

3.2. The Structure of Optimal Ambiguous Contracts

We now investigate the structure of optimal ambiguous contracts. We first introduce
the simplicity notion of a single-outcome payment contract.

DEFINITION 7—SOP payment function: A payment function t = (t1� t2� � � � � tm) is a
single-outcome payment function if there exists an outcome j ∈ [m] such that tj > 0, and
for any outcome j′ �= j, tj′ = 0.

An ambiguous contract is a single-outcome payment contract if all of its payment func-
tions have this property. Proposition 2 used SOP contracts to establish the sufficiency of
conditions for implementation under ambiguous contracts.

The following theorem shows that it is without loss of generality to consider ambiguous
SOP contracts, and that at most min{m�n− 1} payment functions are needed. In Propo-
sition 5 in Supplemental Appendix B, we show that this bound is tight.

THEOREM 1—Optimal ambiguous contracts: For every IC ambiguous contract 〈τ� i〉,
there exists an IC ambiguous contract 〈τ′� i〉, containing at most min{m�n − 1} payment
functions, such that:

1. Ti(τ′) = Ti(τ) (i.e., both contracts have the same expected payment and hence same
expected payoff to the principal).

2. For every t ′ ∈ τ′, t ′ is an SOP payment function.

PROOF: Let the ambiguous contract τ implement action i. Let J = {j ∈ [m]|pij > 0}.
For every j ∈ J, consider the SOP payment function with payment Ti (τ)

pij
for outcome j. Let

τ′ be the ambiguous contract consisting of these SOP payment functions. By construction,
τ′ satisfies properties (1)–(2). We show that τ′ implements i. Consider an action i′ �= i.
Because τ implements i, there exists t ∈ τ with

ci − ci′ ≤ Ti(τ) −
∑
j

tjpi′j =
∑
j

tjpij −
∑
j

tjpi′j�

To show that τ′ implements i, it suffices to show

ci − ci′ ≤ Ti(τ) − min
j∈J
pi′j

Ti(τ)
pij

=
∑
j

tjpij − min
j∈J

pi′j

pij

∑
j

tjpij�

Combining these, it suffices to show

min
j∈J

pi′j

pij

∑
j

tjpij ≤
∑
j

tjpi′j�



1980 DÜTTING, FELDMAN, PERETZ, AND SAMUELSON

which is equivalent to the obvious statement that

min
j∈J

pi′j

pij
≤

∑
j

tjpi′j

∑
j

tjpij
�

Notice that τ′ consists of at most m SOP payment functions (in fact, at most |J| payment
functions). If m> n− 1, one can eliminate from τ′ every payment function that does not
minimize the expected payoff to one of the alternatives i′ �= i, leaving at most n− 1 SOP
payment functions. Q.E.D.

An implication of this result is that if the agent has only two feasible actions, then there
exists an optimal ambiguous contract with at most n− 1 = 1 payment functions, which is
a classic contract. Hence, with only two actions, ambiguous contracts cannot improve on
classic contracts for the principal.

With the help of Theorem 1, we can show that the contract 〈τ� i〉 that we constructed
to establish the sufficiency of the conditions for implementation (in the proof of Proposi-
tion 2) is optimal.

PROPOSITION 3: Suppose action i ∈ [n] is implementable by an ambiguous contract. Let
A={i′ �= i|pi′ �= pi}. IfA= ∅, then ci = 0, and the IC contract 〈{(0� � � � �0)}� i〉 is optimal for
action i. Otherwise, for each i′ ∈A, let j(i′) be an outcome such that pij(i′)/pi′j(i′) is maximal.
Let

T = max
i′∈A

{
min

{
x≥ 0|pij(i′) · x

pij(i′)
− ci ≥ pi′j(i′) · x

pij(i′)
− ci′

}}
�

For each i′ ∈ A, let ti′j(i′) = T/pij(i′) and ti′j′ = 0 for j′ �= j(i′). Then the IC contract 〈τ� i〉 =
〈{ti′|i′ ∈A}� i〉 is optimal for action i.

The proof of Proposition 3 in Supplemental Appendix C relies on arguments similar to
those used to establish that in classic contracts, with two actions, it is optimal to pay only
for the maximum likelihood ratio outcome (e.g., Laffont and Martimort (2009, Chap-
ter 4.5.1), Dütting, Roughgarden, and Talgam-Cohen (2019, Full version, Proposition 5)).

We next show that optimal ambiguous contracts for instances satisfying the MLRP con-
dition admit an even simpler structure, namely an ambiguous contract composed of only
two SOP payment functions.

THEOREM 2—Optimal ambiguous contracts under MLRP: Let (c� r�p) be an instance
that satisfies the MLRP condition. For every IC ambiguous contract 〈τ� i〉, there exists an IC
ambiguous contract 〈τ′� i〉 = 〈{t1� tk}� i〉, such that:

1. Ti(τ′) = Ti(τ) (i.e., both contracts have the same expected payment and hence the same
expected payoff to the principal).

2. t1 and tk are SOP payment functions, where t1� = Ti(τ)
pi�

for �= min{j ∈ [m]|pij > 0}, and

tkh = Ti(τ)
pih

for h= max{j ∈ [m]|pij > 0}.

The proof of Theorem 2, which is deferred to Supplemental Appendix D, combines
the structural properties established in Theorem 1 with the MLRP condition to argue
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that two SOP payment functions, introduced in the proof of Theorem 1, suffice. Payment
function tk “defeats” all actions with smaller costs and payment function t1 “defeats” all
actions with higher costs.

The ability to restrict attention to SOP contracts allows us to show that optimal ambigu-
ous contracts are relatively easy to identify. Supplemental Appendix H shows that there
exists an algorithm capable of computing the optimal ambiguous contract in time O(n2m)
(and time O(n2 +m) under the MLRP condition). The key implication of these results is
that computation time increases polynomially rather than exponentially in the size of the
instance.

3.3. Optimal Monotone Ambiguous Contracts

In some scenarios, it is desired or even required, for reasons of fairness, robustness,
or regulation, to restrict attention to monotone payment functions. A contract whose
payment functions are monotone is a monotone contract. The monotonicity requirement
rules out SOP contracts. The following is a natural alternative simplicity notion for mono-
tone contracts.

DEFINITION 8—Step payment function: A payment function t = (t1� t2� � � � � tm) is a step
payment function if there exist an outcome k ∈ [m] and some x ≥ 0, such that tj = 0 for
every outcome j < k, and tj = x for every outcome j ≥ k.

A contract composed of step payment functions is a step contract.
The following theorem shows that it is without loss of generality to consider ambiguous

monotone contracts that are composed of step payment functions. In that sense, step
contracts are the analogue of SOP contracts for monotone contracts.

THEOREM 3—Optimal monotone ambiguous contracts: For every IC monotone am-
biguous contract 〈τ� i〉, there exists an IC monotone ambiguous contract 〈τ′� i〉 consisting
of at most min{m�n− 1} contracts, such that:

1. Ti(τ′) = Ti(τ) (i.e., both contracts have the same expected payment and hence the same
payoff to the principal).

2. Every payment function in τ′ is a step payment function.

Clearly, the theorem holds if we replace “monotone ambiguous contract” with “step
ambiguous contract.”

PROOF OF THEOREM 3: We construct τ′ as follows. For every action i′ �= i, there must
be a monotone payment function ti′ ∈ τ, such that UA(i′|ti′) ≤UA(i|ti′) =UA(i|τ). By the
same arguments as in the proof of Theorem 1, it is now sufficient to show that there is
a step payment function t̂ i′ to put into τ′ such that (i) Ti(t̂ i

′) = Ti(ti
′) and (ii) Ti′ (t̂ i

′) ≤
Ti′ (ti

′).
For actions i′ �= i such that there exists an outcome ĵ ∈ [m] for which

∑m

�=ĵ pi� > 0 and∑m

�=ĵ pi′� = 0, set t̂ i′j = Ti (ti
′
)∑m

�=ĵ pi�
for all j ≥ ĵ and t̂ i′j = 0 for all j < ĵ. To see that Condition (i)
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is satisfied, observe that

Ti
(
t̂ i

′) =
m∑
j=1

pij · t̂ i′j =
m∑
j=ĵ
pij · Ti

(
ti

′)
m∑
�=ĵ
pi�

= Ti
(
ti

′) ·

m∑
j=ĵ
pij

m∑
�=ĵ
pi�

= Ti
(
ti

′)
�

Condition (ii) is satisfied, because
∑m

�=ĵ pi′� = 0 and t̂j = 0 for j < ĵ imply that Ti′ (t̂ i
′) = 0,

while Ti′ (ti
′) ≥ 0 by limited liability.

Consider next actions i′ �= i such that, for all ĵ ∈ [m] where
∑m

�=ĵ pi� > 0, it holds that∑m

�=ĵ pi′� > 0. Let

ĵ ∈ argmax
j′∈[m]:∑m

�=j′ pi�>0

m∑
�=j′
pi�

m∑
�=j′
pi′�

�

Define t̂ i as follows: Let t̂ i′j = Ti (ti
′
)∑m

�=ĵ pi�
for all j ≥ ĵ, and t̂ i′j = 0 for all j < ĵ. It is again easy

to verify that Condition (i) holds. Condition (ii) follows from noting that

Ti′
(
t̂ i

′) =
m∑
j=ĵ
pi′j

Ti
(
ti

′)
m∑
�=ĵ
pi�

=

m∑
j=ĵ
pi′j

m∑
�=ĵ
pi�

m∑
j=1

pijt
′ij

= min
j′∈[m]:∑m

�=j′ pi�>0

m∑
j=j′
p′j

m∑
j=j′
pi�

m∑
j=1

pi�jt
i′
j ≤

m∑
j=1

pijt
i′
j = Ti′

(
ti

′)
�

where the inequality follows by observing that one possible choice for j′ is the smallest
index such that pij′ > 0.

We still have to show that |τ′|≤ min{m�n− 1}. Clearly, |τ′|≤ n− 1 by the construction
of τ′ (we add one payment function for every i′ �= i). The fact that |τ′|≤m follows by the
consistency of τ′, combined with the fact that any payment function t ∈ τ′ is a step payment
function, that is, Ti(τ) combined with the outcome in which the step of a payment function
occurs, uniquely defines the payment function. Q.E.D.

We next show that optimal monotone ambiguous contracts for instances satisfying the
MLRP condition admit an even simpler structure. Namely, similarly to the unrestricted
case where we did not impose monotonicity, the MLRP condition implies that an optimal
ambiguous contract consists of only two payment functions.
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THEOREM 4—Optimal monotone ambiguous contracts under MLRP: Let (c� r�p) be
an instance that satisfies the MLRP condition. For every IC monotone ambiguous contract
〈τ� i〉, there exists an IC monotone ambiguous contract 〈τ′� i〉 = 〈{t1� tk}� i〉 such that:

1. Ti(τ′) = Ti(τ) (i.e., both contracts have the same expected payment and hence the same
payoff to the principal).

2. t1 and tk are step payment functions: t1j = Ti(τ) for all j ≥ �, where � = min{j ∈
[m]|pij > 0}, and tkj = Ti(τ)

pih
for all j ≥ h, where h= max{j ∈ [m]|pij > 0}.

The proof of Theorem 4 appears in Supplemental Appendix E, and proceeds by veri-
fying that the contract stated in the second bullet satisfies the condition in the first bullet
and implements action i. As in the case of Theorem 2, tk protects against all actions with
lower cost and t1 protects against all actions with higher cost.

EXAMPLE 6—Strict improvement under MLRP with monotone contracts: We return to
the instance shown in Figure 3, but now require contracts to be monotone. The payment
functions for the optimal classic monotone contracts implementing each of the various
actions, and the attendant payoffs for the principal, are:

action 1 : (0�0�0�0) 0�

action 2 : (0�5/3�5/3�5/3) 18�2�

action 3 : (0�25�25�25) 7�5�

action 4 : (0�0�0�30) 21�4�

An ambiguous contract allows us to improve on the cost of implementing (only) action 3.
An optimal ambiguous contract implements action 3 with the two step payment functions

t1 = (0�11�11�11)� and

tk = (0�0�22�22)�

for a payoff to the principal of 21�5.

4. THE AMBIGUITY GAP

Section 3.1 confirmed that it can be advantageous for the principal to offer ambiguous
contracts. To quantify the extent of the potential gains, we introduce the notion of the am-
biguity gap, defined as the worst-case ratio between the principal’s utility with and without
ambiguity.

We restrict attention throughout this section to instances for which the optimal classic
contract induces a non-negative utility for the principal. Let C(c� r�p) and A(c� r�p) be
the sets of incentive compatible classic contracts and incentive compatible ambiguous
contracts, for an instance (c� r�p).

DEFINITION 9—Ambiguity gap: The ambiguity gap ρ(c� r�p) of a given instance
(c� r�p), and the ambiguity gap ρ(I) of a class of instances I , are

ρ(c� r�p) =
max

〈τ�i〉∈A(c�r�p)
UP

(〈τ� i〉)
max

〈t�i〉∈C(c�r�p)
UP

(〈t� i〉) and ρ(I) = sup
(c�r�p)∈I

ρ(c� r�p)�
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FIGURE 6.—Instance (c� r�p) for Example 7.

4.1. Unbounded Ambiguity Gap in General

The following example shows that the ambiguity gap can be arbitrarily large.

EXAMPLE 7—Unbounded gap with negative rewards: Consider the instance shown in
Figure 6, where r ≥ 0 is a parameter we will allow to vary. Actions 2 and 3 generate neg-
ative welfare, and hence only action 4 is capable (depending on r) of producing positive
welfare. Welfare is given by

max{0�0�2r − 20}�

and is positive if and only if r > 100. An optimal classic contract implementing action 4 is
〈t�4〉 = 〈(0�0�0�100)�4〉, which gives

UP

(〈t�4〉) = 0�2r − 60�

which is positive if and only if r > 300. An optimal ambiguous contract implementing
action 4 is 〈τ�4〉 = 〈{t1� t2}�4〉 = 〈{(100�0�0�0)� (0�100�0�0)}�4〉, giving

UP

(〈τ�4〉) = 0�2r − 20�

which is positive if and only if r > 100. Hence, for r ∈ (100�300], the best classic contract
generates a payoff of 0, while the best ambiguous contract generates a positive payoff,
yielding an infinite ambiguity gap.

4.2. Tight Ambiguity Gap Under Non-Negative Rewards

In contrast to the unbounded ambiguity gap in general instances, we next show that, for
instances in which all rewards are non-negative, the ambiguity gap is at most n− 1 and
this is tight.

PROPOSITION 4: Fix n ≥ 2. Let I+
n denote the class of all instances with n actions and

non-negative rewards. The ambiguity gap of I+
n is

ρ
(
I+
n

) = n− 1�

The upper-bound direction of the argument makes use of the notion of a linear con-
tract, which is used to state the following lemma.

DEFINITION 10—Linear contract: Consider an instance (c� r�p) ∈ I+
n . A (classic) con-

tract 〈t� i〉 is linear if t = (αr1� � � � �αrm) for some α≥ 0.
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For an instance (c� r�p) ∈ I+
n , denote by L(c� r�p) the set of all incentive compatible

linear contracts. Let W = maxi∈[n]Wi denote the maximum welfare.
The following lemma shows that in instances in which the status-quo outcome has a

reward of zero, the principal can achieve a 1/(n− 1) fraction of the optimal welfare as
utility with a linear contract.

LEMMA 2: Consider instance (c� r�p) ∈ I+
n in which action 1 has a cost of c1 = 0

and invariably leads to reward r1 = 0. Then there exists a subset of actions A ⊆ [n] with
|A| ≤ n − 1 and a scalar αi ≥ 0 for each i ∈ A such that each linear contract 〈t� i〉 with
t = (αir1� � � � �αirm) is IC and

max
〈t�i〉∈L(c�r�p)

UP

(〈t� i〉) = max
i∈A

(1 − αi)Ri ≥ W

n− 1
� (2)

The proof of Lemma 2 is similar to arguments in (Dütting, Roughgarden, and Talgam-
Cohen (2019)). For completeness, we provide a proof of this lemma in Supplemental
Appendix F. We are now ready to prove Proposition 4.

PROOF OF PROPOSITION 4: We first show the upper bound on the ambiguity gap. To
this end, fix any n ≥ 2 and any instance (c� r�p) ∈ I+

n . Clearly, the maximum utility the
principal can achieve with an ambiguous contract satisfies max〈τ�i〉∈A(c�r�p)UP (〈τ� i〉) ≤W .
Thus, in order to prove the upper bound on the ambiguity gap, it suffices to show
that the maximum utility the principal can achieve with a classic contract satisfies
max〈t�i〉∈C(c�r�p)UP (〈t� i〉) ≥ W/(n − 1). Consider using a contract of the form 〈t� i〉 with
t = (α(r1 − r1)� � � � �α(rm− r1)), and let (c� r ′�p) be a modified instance in which r ′j = rj− r1
for all j ∈ [m]. Note that, from the agent’s perspective, applying contract 〈t� i〉 in the origi-
nal instance is equivalent to applying contract 〈t ′� i〉 with t ′ = (αr ′1� � � � � r

′
m) in the modified

instance.
Let R′

i and W ′
i for i ∈ [n] denote the expected reward and welfare of action i in the

modified instance, and let W ′ = maxi∈[n]W
′
i . Note that Ri = r1 +R′

i and Wi = r1 +W ′
i for

all i ∈ [n], and hence also W = r1 +W ′. Applying Lemma 2 to the modified instance, we
know that there exist a set A⊆ [n] and scalars αi for i ∈A such that

max
〈t�i〉∈C(c�r�p)

UP

(〈t� i〉) ≥ max
i∈A

(
r1 + (1 − αi)R′

i

)
= r1 + max

i∈A
(
(1 − αi)R′

i

)
≥ r1 + 1

n− 1
W ′

≥ 1
n− 1

(
r1 +W ′) = 1

n− 1
W�

where in the last step we used that r1 ≥ 0. This completes the proof of the upper bound
on the ambiguity gap.

We next show the lower bound on the ambiguity gap. To this end, we vary a lower-bound
construction due to Dütting, Roughgarden, and Talgam-Cohen (2021). For n= 2, there is
nothing to show, so fix any n≥ 3. Let γ�ε ∈ (0�1) and let δ= ε ·γn−2. Consider the param-
eterized instance (c� r�p) with n actions depicted in Figure 7. Lemma 3 in Supplemental
Appendix G shows that the maximal utility the principal can achieve in this instance with



1986 DÜTTING, FELDMAN, PERETZ, AND SAMUELSON

FIGURE 7.—Instance (c� r�p) used in the proof of Proposition 4.

a classic contract is at most 1. The argument proceeds by showing an upper bound of 1
for each action i ∈ [n]. For actions i= 1�2, the upper bound is immediate, as the welfare
of these actions is W1 ≤W2 ≤ 1. For actions i ∈ {3� � � � � n}, the upper bound can be shown
by considering only a subset of the IC constraints.

The proof is completed by observing that, with an ambiguous contract, the principal
can implement action n, with an expected payment equal to cn. This is enough to show
the claim, as the welfare from that action isWn = (n−1) − (n−2)γ−ε, andWn → n−1 as
γ�ε→ 0. The ambiguous contract that achieves this is 〈{t1� t2}� n〉 with t1 = ( cn

δ
�0�0) and

t2 = (0�0� cn
1−δ). It is easy to verify that this contract is consistent, and entails an expected

payment of cn for action n. It is IC, because for all actions i �= n, it gives a minimum
payment of zero. Q.E.D.

5. AMBIGUITY PROOFNESS

In this section, we explore which classes of contracts are amenable to improvements via
ambiguous contracts. We phrase our results in terms of properties of payment functions.

It simplifies the exposition to restrict attention to payment functions with the property
that two outcomes that induce the same reward also induce the same payment. We can
thus think of a payment function as mapping from R into R+. Within this setting, a class
of payment functions T is a set (possibly of infinite size) of payment functions t :R→ R+.

We first give the definition of an ambiguity-proof class of payment functions. For a
given instance (c� r�p), let CT (c� r�p) denote the set of all incentive compatible classic
contracts with payment functions from T . Let AT (c� r�p) be the analogous definition for
ambiguous contracts.

DEFINITION 11—Ambiguity-proof: A class of payment functions T is ambiguity-proof
if, for any instance (c� r�p) and any action i ∈ [n], it holds that

max
τ:〈τ�i〉∈AT (c�r�p)

UP

(〈τ� i〉) ≤ max
t:〈t�i〉∈CT (c�r�p)

UP

(〈t� i〉)�
that is, the principal cannot gain from implementing any action i with an ambiguous rather
than a classic contract.

For example, the principal-agent setting in Example 2 shows that the contract class of
all contracts is not ambiguity-proof.

Our condition for ambiguity-proofness will be the following:

DEFINITION 12—Ordered class of payment functions: A class of payment functions T
is ordered if, for any two payment functions t� t ′ ∈ T , it holds that

t(x) ≥ t ′(x) for all x ∈ R or t(x) ≤ t ′(x) for all x ∈ R�
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THEOREM 5—Ambiguity-proofness characterization: A class of payment functions T is
ambiguity-proof if and only if it is ordered.

PROOF: We first show that an ordered class of payment functions is ambiguity-proof.
Suppose T is ordered. Consider a (consistent) incentive compatible ambiguous contract
〈τ� i〉 = 〈{t1� � � � � tk}� i〉 ∈ AT (c� r�p) with k ≥ 2. Since T is ordered, there must exist a
payment function in τ, say t1, with the property that t1j ≤ tj for all j ∈ [m] and all t ∈ τ.
Hence, for every action i′ ∈ [n], we have

UA

(
i′|t1

) =
m∑
j=1

pi′jt
1
j − ci′ = min

t∈τ

m∑
j=1

pi′jtj − ci′ = min
t∈τ
UA

(
i′|t

) =UA

(
i′|τ

)
�

which implies that the classic contract 〈t1� i〉 ∈ CT (c� r�p) is incentive compatible. More-
over, by consistency of 〈τ� i〉, it also holds that

UP

(〈
t1� i

〉) =UP

(
i|t1

) =UP (i|τ) =UP

(〈τ� i〉)�
Hence, the classic contract 〈t1� i〉 implements action i at the same cost as does 〈τ� i〉, and
so T is ambiguity-proof.

We next show that ambiguity-proofness implies ordering, by proving the contrapositive.
Suppose T violates ordering. Then there exist t� t ′ ∈ T and x1�x2 ∈ R such that t(x1) >
t ′(x1) and t(x2) < t ′(x2). Letting δ1 = t(x1)− t ′(x1) > 0, δ2 = t(x2)− t ′(x2) < 0, q1 = −δ2

δ1−δ2
,

and q2 = δ1
δ1−δ2

, we obtain values q1� q2 > 0 with q1 + q2 = 1 satisfying

q1t(x1) + q2t(x2) = q1t
′(x1) + q2t

′(x2)� (3)

Let κ= minj=1�2 min{t(xj)� t ′(xj)}. Note that κ ≥ 0 by limited liability. Now consider the
following instance with two outcomes, with r1 = x1 and r2 = x2, and three actions as fol-
lows:

• Action i ∈{1�2}: pii = 1 and ci = min{t(ri)� t ′(ri)}− κ.
• Action 3: for j ∈{1�2}, p3j = qj , and c3 = ∑2

j=1 qjt(rj) − κ.
Note that this construction ensures that ci ≥ 0 for all i ∈{1�2�3}, and that ci = 0 for some
i ∈{1�2}, which we can take to be the default action.

We argue that action 3 can be implemented by an ambiguous contract and cannot be
implemented by any classic contract. We first show that action 3 can be implemented with
the ambiguous contract 〈τ�3〉 where τ ={t� t ′}, with an expected payment equal to c3 +κ.
To see that 〈τ�3〉 is consistent, note that

T3(t) =
2∑
j=1

qj · t(rj) (3)=
2∑
j=1

qj · t ′(rj) = T3

(
t ′
)
�

Since t and t ′ have the same expected payment for action 3, the agent’s expected utility
for taking action 3 under t and t ′ is the same, and equals

UA(3|t) =UA

(
3|t ′

) =
2∑
j=1

qj · t(rj) − c3 = κ�

It remains to show that for any action i ∈{1�2}, the agent’s utility under 〈τ�3〉 is at most κ.
If t(ri) < t ′(ri), then ci = t(ri) −κ, and the agent’s expected utility for action i isUA(i|τ) =
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UA(i|t) = t(ri)−ci = κ. Similarly, if t ′(ri) ≤ t(ri), then ci = t ′(ri)−κ, and the agent’s utility
for action i isUA(i|τ) =UA(i|t ′) = t ′(ri) −ci = κ. So in either case, the agent’s utility from
the ambiguous contract is at most κ.

We complete the argument by showing that action 3 cannot be implemented by any
classic contract (even if we do not restrict the classic contract to come from class T ). We
have

2∑
j=1

qjcj =
(

2∑
j=1

qj · min
(
t(rj)� t ′(rj)

)) − κ <
(

2∑
j=1

qj · t(rj)
)

− κ= c3�

The convex combination of actions 1, 2 via vector (q1� q2) thus yields the same distribution
over rewards as action 3, but at a strictly lower cost. By Proposition 1, this means that
action 3 is not implementable by any classic contract. Q.E.D.

As an immediate corollary of our characterization, we obtain that for any fixed d ∈ R+
andβ≤ r1, the class of payment functions Td(β) ={t(x) = α · (x−β)d|α≥ 0} is ambiguity-
proof. If all rewards are non-negative, then we can set β= 0 to see that the class of linear
contracts T1(0) is ambiguity-proof. For general rewards, if β< 0, then T1(β) describes an
ambiguity-proof class of affine contracts. This is cast in the following corollary.

COROLLARY 1: For any fixed d ∈R+, and β≤ r1, the class of payment functions Td(β) =
{t(x) = α · (x− β)d|α ≥ 0} is ambiguity-proof. In particular, when all rewards are positive,
the class of linear payment functions (corresponding to T1(0)) is ambiguity-proof.

On the other hand, our characterization implies that many natural classes of contracts,
such as the class of all affine contracts, all polynomial contracts, or the class of all mono-
tone contracts, fail to be ambiguity-proof.

6. MIXING HEDGES AGAINST AMBIGUITY

In this section, we explore the power of ambiguity when the agent is allowed to select
a mixed action and the principal is allowed to implement mixed actions. Our main re-
sult (Theorem 6) is that in this case, the principal cannot gain from using an ambiguous
contract. Bade (2023) obtained a similarly spirited result in a mechanism design context,
showing that if agents are dynamically consistent, meaning that they update their beliefs
in response to information so as to make it optimal to continue with their ex ante optimal
plan of action, then ambiguity does not expand the set of implementable social choice
functions. In contrast, Kambhampati (2023) showed that a principal who entertains am-
biguous beliefs about the actions available to an agent can typically improve her payoff by
offering a random contract to the agent.

6.1. Extension to Mixed Actions

The definition of a payment function remains the same: t = (t1� � � � � tm) ∈ R
m
+ defines a

non-negative transfer tj for each outcome j ∈ [m]. A mixed action of the agent, denoted
by ψ ∈ �n, is a convex combination over actions i ∈ [n], so that ψi denotes the probability
with which the agent chooses action i. A pure action is the special case of a mixed action
in which ψi = 1 for some i and ψi′ = 0 for all other i′ �= i. The expected reward of mixed
action ψ is Rψ = ∑n

i=1ψiRi. We write Tψ(t) = ∑n

i=1ψiTi(t) for the expected payment for
mixed action ψ under payment function t.
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The agent’s expected utility for mixed action ψ′ under classic contract 〈t�ψ〉 is
UA(ψ′|t) = ∑n

i=1ψ
′
iUA(i|t). Classic contract 〈t�ψ〉 is incentive compatible if, for any mixed

action ψ′, it holds that UA(ψ′|t) ≤UA(ψ|t). We use UA(〈t�ψ〉) for the agent’s utility un-
der incentive compatible contract 〈t�ψ〉, andUP (〈t�ψ〉) = ∑

i ψiUP (i|t) for the principal’s
utility.

We define the agent’s expected utility for mixed action ψ′ under ambiguous contract
〈τ�ψ〉 to be the minimum utility under any payment function t ∈ τ. That is, the agent’s
expected utility is UA(ψ′|τ) = mint∈τ UA(ψ′|t).

We say that ambiguous contract 〈τ�ψ〉 implements mixed action ψ if, for every mixed
action ψ′, it holds that UA(ψ′|τ) ≤ UA(ψ|τ). An incentive compatible contract 〈τ�ψ〉
is consistent if, for any two contracts t� t ′ ∈ τ, it holds that UP (ψ|t) = UP (ψ|t ′) and,
thus, Tψ(t) = Tψ(t ′). For a (consistent) incentive compatible contract 〈τ�ψ〉, we write
UA(〈τ�ψ〉) for the agent’s utility under ψ, and Tψ(τ) for the resulting expected payment.
The principal’s expected utility under (consistent) incentive compatible contract 〈τ�ψ〉 is
UP (〈τ�ψ〉) =UP (ψ|τ) =Rψ − Tψ(τ).

In what follows, without loss, we restrict attention to consistent incentive compatible
contracts.

6.2. Mixing Hedges Against Ambiguity

When the agent can choose mixed actions, the principal cannot gain by employing an
ambiguous contract. To prove this result, we make use of the min-max theorem applied
to a suitably defined zero-sum game.

THEOREM 6: Consider an incentive compatible ambiguous contract 〈τ�ψ〉, with payoffs
UA(ψ|τ) and UP (ψ|τ). Then there exists an incentive compatible classic contract 〈t̂�ψ〉 with
the same agent and principal payoffs.

PROOF: Let 〈τ�ψ〉 be an incentive compatible ambiguous contract with payoffs
UA(ψ|τ) and UP (ψ|τ).

Consider a zero-sum game played by the agent and the principal. The agent’s (con-
vex and compact) strategy set is the set of mixed actions ψ′ ∈ �n, while the principal’s
(also convex and compact) strategy set is the set of payment functions T̂ = {t ∈ R

m
+ :∑n

i=1

∑m

j=1ψipijtj = Tψ(τ)}. This is the set of payment functions that preserve the prin-
cipal’s payoff UP (ψ|τ) when the agent plays action ψ. Note that T̂ is non-empty since
every payment function t ∈ τ has the same expected payment under ψ (namely Tψ(τ)).
The agent’s payoff in this game is

∑n

i=1

∑m

j=1ψi(pijtj − ci), while the principal’s payoff is
the negative of this quantity. Note that this way, the agent’s payoff in this game is precisely
the agent’s utility in the principal-agent setting, while the principal’s payoff differs from
that in the principal-agent setting.

The min-max theorem implies

max
ψ′∈�n

min
t∈T̂

n∑
i=1

m∑
j=1

ψ′
i(pijtj − ci) = min

t∈T̂
max
ψ′∈�n

n∑
i=1

m∑
j=1

ψ′
i(pijtj − ci)� (4)

Note that T̂ is just a set of payment functions, so we can interpret it as a (potentially
infinite-size) set that constitutes the payment functions within an ambiguous contract.
Moreover, by the construction of T̂ , we have UA(ψ|T̂ ) =UA(ψ|τ), since ψ ensures utility
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UP (ψ|τ) against every element of T̂ to the principal, thus utility UA(ψ|τ) against every
element of T̂ to the agent.

We next show that the value of the zero-sum game is also equal to this quantity. To this
end, we show that

UA(ψ|τ) ≥ max
ψ′∈�n

min
t∈T̂

n∑
i=1

m∑
j=1

ψ′
i(pijtj − ci) ≥UA(ψ|T̂ )�

To see this, observe that

UA(ψ|τ) = min
t∈τ

n∑
i=1

m∑
j=1

ψi(pijtj − ci) = max
ψ′∈�n

min
t∈τ

n∑
i=1

m∑
j=1

ψ′
i(pijtj − ci) (5)

≥ max
ψ′∈�n

min
t∈T̂

n∑
i=1

m∑
j=1

ψ′
i(pijtj − ci) ≥ min

t∈T̂

n∑
i=1

m∑
j=1

ψi(pijtj − ci) (6)

= UA(ψ|T̂ )� (7)

The second equality in (5) holds by the fact that τ implements ψ, the first inequality in
(6) follows from comparing feasible sets for the corresponding minimizations, and the
following inequality holds because ψ is feasible in the maximization.

Consider the payment function t̂ ∈ argmint∈T̂ maxψ′∈�n
∑n

i=1

∑m

j=1ψ
′
i(pijtj − ci). From

(4), there is no action in �n giving the agent a payoff against t̂ higher than
maxψ′∈�n mint∈T̂

∑n

i=1

∑m

j=1ψ
′
i(pijtj − ci) =UA(ψ|τ). By construction, mixed action ψ gives

this payoff when facing the payment function t̂. Hence, 〈t̂�ψ〉 is an incentive compatible
classic contract with payoffs UA(ψ|τ) to the agent and UP (ψ|τ) to the principal. Q.E.D.

The ability to mix provides the agent with more alternative actions, tightening the in-
centive constraints enough to dissipate any advantage the principal gains from ambiguous
contracts. The following example illustrates this.

EXAMPLE 8: Return to Example 2. Suppose the agent is restricted to pure ac-
tions. As we have seen, the uniquely optimal ambiguous contract is 〈τ�4〉, with τ =
{(0�3/2�0)� (0�0�3/2)}. The agent’s payoffs to actions 1, 2, 3, and 4 under τ are 0, −1/4,
−1/4, and 0. Pure actions 2 and 3 are thus strictly inferior to action 4 for the agent.

Now suppose the agent can choose a mixed action. If the payoffs to the pure actions
had been generated by classic contracts, then no mixture over actions 2 and 3 could give
a payoff higher than −1/4, and hence no such mixture could be superior to action 4.
Under ambiguity, this familiar property of mixed actions breaks down. The mixture that
places probability 1/2 on each of actions 2 and 3 gives an expected payoff of 1/8, strictly
larger than the payoffs to any pure strategy in the support of the mixture, ensuring that
the ambiguous contract 〈τ�4〉 no longer implements action 4. Indeed, given the agent’s
ability to choose this mixture, action 4 cannot be implemented at any expected payment
less than 1, matching the payment under classic contracts.

6.3. Relation to Ellsberg Paradox and Raiffa’s Critique
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Ellsberg (1961) pioneered the argument that humans tend to prefer choices with quan-
tifiable risks over those with unquantifiable, incalculable risks, giving rise to the ambiguity
aversion literature. We have shown that the principal can take advantage of the agent’s
ambiguity aversion if, but only if, the agent is restricted to pure actions.

A critique of Ellsberg’s experiments, raised by Raiffa (1961), is that when faced with
the Ellsberg urns, a player could mentally flip a coin and implement a mixed action that
induces an objective probability distribution over outcomes. Doing so removes all of the
ambiguity from the decision, and with it any need for ambiguity aversion. Raiffa’s argu-
ment highlights the potential power an ambiguity-averse agent can derive from engaging
in mixed actions. Indeed, Theorem 6 shows that engaging in mixed strategies completely
eliminates the principal’s power stemming from ambiguous contracts.

Raiffa’s argument has given rise to a discussion, centered around the question of
whether such mental coin flips are indeed effective in banishing uncertainty (e.g., Ke and
Zhang (2020), Saito (2015)). One way of formalizing this “critique of Raiffa’s critique,” is
Bade (2023)’s notion of dynamic semi-consistency. According to this behavioral assump-
tion, agents should not update their beliefs in response to signals that are independent
of the environment (such as an independent coin flip). This notion rules out the type of
mixing required for Theorem 6, but aligns with our behavioral assumptions underlying
the results in Sections 2–5.
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