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THIS SUPPLEMENTARY APPENDIX CONTAINS MATERIALS to support our main paper. Ap-
pendix C presents additional simulation results. Appendix D provides proofs of our results
on confidence sets in Section 4.3. Appendix E presents additional technical lemmas and
all the proofs.

APPENDIX C: ADDITIONAL SIMULATIONS

This section provides additional simulation results. All the simulation results are based
on 5000 Monte Carlo replications for every experiment and are at the nominal level a =
0.05.

C.1. Adaptive Testing for Monotonicity: Simulation Design 11
We generate the dependent variable Y according to the NPIV model (2.1), where

h(x) = co(x/5 + x*) + c4sin(2mx), (C.1)

c €{0,1}, ¢4 €[0,0.6], and W = ®(W*), X = O(EW* + /1 — &%), U = (0.3e +
V1 —1(0.3)?v)/2, where (W*, e, v) follows a multivariate standard normal distribution.
This design with (¢, c4) = (1, 0) and £ € {0.3, 0.5} is the one in Chetverikov and Wilhelm
(2017). The null hypothesis is that the NPIV function 4(-) is weakly increasing on the
support of X. The null is satisfied when ¢, € [0, 0.184), and is violated when ¢, > 0.184.
We note that ¢y =0, ¢4 = 0.0 corresponds to the boundary of the null hypothesis. Note
that the degree of nonlinearity/complexity of 4 given in (C.1) becomes larger as ¢4 > 0
increases.

We implement our adaptive test T, given in (2.12) in the main paper, and the Fang
and Seo (2021) test for monotonicity of a NPIV function, denoted as FS. The FS test is
computed using R language translation of their Matlab program code, with their deter-
ministically chosen J = 3, K > 3 and other tuning parameter choices detailed in their 2019
arXiv version (also see the description in our main paper).

Table C.I reports the empirical size of our adaptive test T,,, with K (J) e{2J,4J,8J}, and
using quadratic B-spline basis functions with varying number of knots for the unrestricted
NPIV h. We also report the empirical size of the FS test, usingJ =3 and K € {5, 12,24} as
comparison to our adaptive test’s K (J) € {2/, 4/, 8/}. From Table C.I, we observe that our
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TABLE C.I
TESTING MONOTONICITY—EMPIRICAL SIZE OF OUR ADAPTIVE TEST ’T\,, AND OF THE FS TEST (WITH J = 3).

T, T T, 7 T, 7 FS FS FS
n © ¢4 & K(J)=2] K(J)=4J K(J)=8 K=5 K=12 K=24

500 0 00 03 0.004 301 0012 303 0011 321 0.005 0.013 0.018
05 0016 332 0.018 338 0.021 340 0.035 0.035 0.036
0.7 0025 357 0030 358 0.026 349 0.050 0.049 0.042

1 00 03 0.002 3.01 0.005 3.03 0.003 312 0.000 0.000 0.000
0.5 0.004 338 0004 336 0004 325 0.000 0.000 0.000
0.7 0.004 371 0.004 3.65 0.004 338 0.000 0.000 0.000

1 01 03 0.002 3.01 0.006 3.03 0.005 312 0.000 0.000 0.000
0.5 0.007 337 0.007 335 0.007 325 0.001 0.001 0.001
0.7 0.009 3.64 0.008 359 0.008 334 0.000 0.000 0.000

1000 0 0.0 03 0009 301 0.016 3.07 0015 327 0.011 0.021 0.026
05 0.023 350 0.025 347 0.028 345 0.051 0.046 0.044
0.7 0.034 387 0.034 397 0.034 352 0.059 0.055 0.047

1 00 03 0.003 3.02 0.005 3.06 0.004 315 0.000 0.000 0.000
05 0.006 3.63 0.005 346 0.006 328  0.000 0.000 0.000
0.7 0.003 423 0.003 422 0.003 346 0.000 0.000 0.000

1 01 03 0.004 3.02 0.008 3.06 0.005 3.15 0.000 0.001 0.001
0.5 0.009 359 0.009 344 0.010 329 0.001 0.001 0.001
0.7 0011 409 0010 410 0.009 338 0.000 0.000 0.000

5000 0 0.0 03 0020 338 0019 342 0.026 339 0.040 0.040 0.044
05 0.038 356 0.036 362 0035 349  0.056 0.057 0.055
0.7 0045 414 0042 412 0035 3.75 0.056 0.059 0.058

1 00 03 0.005 344 0.006 335 0.006 323 0.000 0.001 0.000
0.5 0.004 381 0.003 380 0.003 347  0.000 0.000 0.000
0.7 0.002 474 0.002 4.69 0.002 398 0.000 0.000 0.000

1 01 03 0.009 342 0.008 335 0.009 324 0.001 0.002 0.001
05 0013 370 0.013 3.69 0.011 340  0.000 0.000 0.000
0.7 0.008 452 0006 446 0006 3.75 0.000 0.000 0.000

Note: Monte Carlo average value J. Nominal level = 0.05. Design from Appendix C.1 with NPIV function (C.1). Instrument
strength increases in &.

adaptive test T, is slightly under-sized across different sample sizes, different instrument
strength, different K (J), and different design specifications. The FS test is mostly under-
sized, but is slightly over-sized at the boundary (¢, = 0, ¢4 = 0.0) for sample sizes n =
1000, 5000 and strong instrument strength & = 0.7 even when J =3, K =5 (the most
powerful choice in the 2019 arXiv version of Fang and Seo (2021)).

Figure C.1 provides empirical rejection probabilities of our adaptive test T, (dashed
plus and solid circle lines) with K(J) € {4J, 8/} and of the FS test (with J =3, K = 5;
dotted square lines). The power curves of all tests improve as the instrument strength &
increases. Our adaptive test with K(J) = 8/ has better empirical power in finite samples
when instrument is weak, but the choice of K (/) is less significant as the sample size
or the instrument strength increases. For instrument strength ¢ = 0.3, the FS test has
almost trivial power for c, € [0.2,0.5] even for large sample size n = 5000, while our
adaptive test T, has non-trivial power for all ¢, > 0.3. Moreover, the finite-sample power
of our adaptive test T, increases much faster than the FS test as ¢, > 0.2 becomes larger.
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FIGURE C.1.—Testing monotonicity—empirical power of our adaptive test T,, with K (J) = 4J (dashed plus
lines) and K (J) = 8J (solid circle lines) and the FS test (with J =3, K =5, dotted square lines). Design from
Appendix C.1 model (C.1) with ¢y = 1. The vertical dotted line indicates when the null hypothesis is violated
(when c4 > 0.184). Instrument strength increases in &.

Figure C.1 shows the substantial finite-sample power gains through adaptation even in
small sample size n = 500.

REMARK C.1: When testing for inequality restrictions (IR) Ho = {h € H : #'h > 0},
such as monotonicity and convexity, we could also compute our adaptive test T, using
modified critical values in Step 2 as follows: The estimator in (2.6) can be written as
h“( Y=y’ () B~ By construction of the estimator, we have alhR(X )>0,foralll <i<n,
or equivalently &' \I’ER > 0, where the application of the derivative operator is understood
elementwise and rank(&"l’ ) <J. Let ¥, be a submatrix of ¥ such that &' ‘I’ac[BR 0. Set
7y, = max(1, rank(#'V,)) and compute for a given nominal level « € (0, 1):

q(e/#Z), 1) =3
7

where g(a, y) denotes the 100(1 — a)%-quantile of the chi-squared distribution with y
degrees of freedom. Assuming that J¢ <%, J € Z,, for some constant 0 < ¢ < 1 with
probability approaching 1 uniformly for # € H, Breunig and Chen (2021) established size
control of the test statistic using the modified critical values given in (C.2). See Breunig
and Chen (2021) also for simulations and real data application of testing for monotonicity
and convexity using these modified critical values. The simulations and empirical findings

reported in Breunig and Chen (2021) are virtually the same, in terms of empirical size
and power, as the ones reported in this revised version for testing inequalities.

n(e) = (C.2)
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C.2. Simulations for Multivariate Instruments

This section presents additional simulations for testing parametric hypotheses in the
presence of multivariate conditioning variable W = (W, W,). We set X; = ®(X}), W; =
d(Wyr), and Wy, = ®(W5;), where

X O /1 & 04 03
wel _ffo) (¢ 1 0 o
we | N ol {os 0 1 o (€3)
U, o/ \o3 0 0 1

We generate the dependent variable Y according to the NPIV model (2.1) where
h(x) = —x/5 + c4x*. We test the null hypothesis of linearity, that is, whether ¢, = 0.

Horowitz (2006) assumed d, = d,, and hence we cannot compare our adaptive test with
his for Design (C.3). Instead, we will compare our adaptive test T, against an adaptive
image-space test (IT), which is our proposed adaptive version of Bierens (1990)’s type
test for semi-nonparametric conditional moment restrictions.! Specifically, our image-
space test (IT) is based on a leave-one-out sieve estimator of the quadratic functional
E[E[Y — A*(X)|W]?], given by

D= ﬁ S (Y= X)) (Ve — B (X)) 6K (W) (B B/n) b5 (W),

1<i<i’<n

where A® is a null restricted parametric estimator for the null parametric function A®. The
data-driven IT statistic is

o~

IT, = 1{there exists K € 7, such that nDy Vi > (q(a/#(fn), K) - K)/«/E},

with the estimator Vx = [|(B'B)"2 X" (Y; — h*(X,))*bX (W;)bX (W;) (B'B)"| s, and
the adjusted index set f,, ={K < I/(\max K =K2*where k =0,1, ..., kna), where K :=
L/loglogn], k. := [log,(n'?/K)1, and the empirical upper bound Koo = min{K > K :
10£*(K)/(10gK) /1 > Smin((B'B/n)~"/?)}. Finally, g(a, K) is the 100(1 — a) %-quantile of
the chi-squared distribution with K degrees of freedom. In this simulation, it is convenient
to additionally weight the basis functions by (B'B/n)~"/? to improve the finite-sample
performance of the IT statistic. Table C.II compares the empirical size of the adaptive
image-space test IT, with our adaptive structural-space test T,, at the 5% nominal level.
We see that both tests provide accurate size control. We also report the average choices
of sieve dimension parameters, as described in Section 5. The multivariate design (C.3)
leads to larger sieve dimension choices K in adaptive image-space tests IT,, while the
sieve dimension choices J of our adaptive structural-space test T, are not sensitive to the
dimensionality (d,,) of the conditional instruments.

Figure C.2 compares the empirical power of IT, and of T,, at the 5% nominal level,
using the sample sizes n = 500 (first and second rows) and n = 1000 (third and fourth
rows). The finite-sample empirical power curves of both tests increase with £ and sam-
ple size n. For the scalar conditional instrument case, while our adaptive structural-space

'We refer readers to Breunig and Chen (2020) for the theoretical properties of the adaptive image-space
test.
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TABLE C.II

TESTING PARAMETRIC FORM—EMPIRICAL SIZE OF OUR ADAPTIVE TESTS T, AND OF IT,. NOMINAL LEVEL
a = 0.05. MONTE CARLO AVERAGE VALUE J. DESIGN FROM APPENDIX C.2. INSTRUMENT STRENGTH
INCREASES IN ¢&.

n Design & D, K(J)=4J 7 T, K
500 (5.1) 0.3 0.023 3.03 0.046 3.38
d,=d, 0.5 0.028 3.40 0.046 3.37
0.7 0.035 3.56 0.046 3.37
(C3) 0.3 0.034 345 0.034 6.00
d, <d, 0.5 0.035 3.49 0.035 6.00
0.7 0.038 3.55 0.040 6.00
1000 (5.1) 0.3 0.022 3.07 0.053 3.40
0.5 0.027 3.48 0.051 3.39
0.7 0.037 3.58 0.049 3.39
(C3) 0.3 0.039 3.47 0.032 6.93
0.5 0.040 3.50 0.038 6.92
0.7 0.043 3.58 0.037 6.90
5000 (5.1) 0.3 0.032 3.43 0.049 3.38
0.5 0.043 355 0.045 3.39
0.7 0.049 3.63 0.042 3.38
(C3) 0.3 0.049 351 0.048 10.28
0.5 0.048 357 0.046 10.27
0.7 0.050 3.80 0.051 10.25

test T, is more powerful when & € {0.3, 0.5} (weaker strength of instruments), the finite-
sample power curves of both tests are similar when ¢ = 0.7. For the multivariate con-
ditional instruments case, while the power of our adaptive structural-space test T, in-
creases with larger dimension d,,, the adaptive image-space test IT, suffers from larger
d,, and has lower power. The same patterns are also present when we compare the two
tests using size-adjusted empirical power curves (see our arXiv:2006.09587v3 version, Ap-
pendix C.3).

APPENDIX D: PROOFS OF INFERENCE RESULTS IN SECTION 4.3
PROOF OF COROLLARY 4.1: Proof of (4.8). We observe

D, (h
limsup sup P, (% ¢ C,(a)) = limsup sup P, <m§x ”’—(2 > 1) <a,

PN
n—oo  heH n—oo  heH J€eZy T]](O[)I/]

where the last inequality is due to Step 1 and Step 3 of the proof of Theorem 4.1. In-
deed, in that proof, we can replace Py, by sup,, P, by adopting the uniform moment
conditions imposed in Assumption 2(i).

Proof of (4.9). Let J* be as in Step 2 of the proof of Theorem 4.1. We observe uniformly
for h € H,(6°r,) that

Py(h ¢ Ci(a)) = Ph(mgx,n\L(}Q > 1) =1-P, (mgxM < 1) =1-o0(1),
JeZ, nJ(a)VJ JeT, nj(a)VJ

where the last equation is due to Step 2 and Step 3 of the proof of Theorem 4.1. Q.E.D.


http://arxiv.org/abs/2006.09587v3
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FIGURE C.2.—Testing parametric form—empirical power of our adaptive tests T, (solid circle lines) and
of TT, (dashed square lines). First and third rows: power comparisons in scalar IV case (d,, = 1); second
and fourth rows: power comparisons in multivariate IV case (d,, > 1). Design from Appendix C.2. Instrument
strength increases in &.

PROOF OF COROLLARY 4.2: For any & € H,, we analyze the diameter of the confidence
set C,(«) under P,. Lemma B.8 implies SUPjepq, P, (ﬁnax > 7) = 0(1) and hence, it is suffi-
cient to consider the deterministic index set Z, given in (4.2). For all 4, € C,(«) C H,, it
holds for all J € Z, by using the definition of the projection Q; given in (B.1):

1A = Rallizoy < | Qo (= 1) | oy + 1T A = Rl 2y + TPy = B2y

= ” Qf(h - hl) ”LZ(X) + O(Jip/dx):

(D.1)
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due to the triangular inequality and the sieve approximation bound from the smoothness
restrictions imposed on ‘H. By Theorem B.1, we have

|| Qs (h —hl)”iz(x) — Dy (h)| St 2VT 4 n7 s (1 — Bl + 0 77%)

wpal uniformly for 4 € H,. Consequently, the definition of the confidence set C,(«) with
hy € C,(«) gives for all J € Z,:

1Qs(h = B2y S 7A@V + 17285 (1 = Billiagey +771%) + 0745, VT

< n'loglogns;*VJ +n~"?s TR = hillz g + I 77%)

wpal uniformly for / € ‘H, by using Lemmas B.2, B.5, and B.4(ii). Consequently, inequal-
ity (D.1) yields for all J € Z,:

n~'loglogns;*/J 4 J 20/

-1/2 —1
1— Cgn s

”h - hl”iZ()() rg

wpal uniformly for 4 € H,. Now using that n~'%s;' = o(1) for all J € Z,, by Assump-
tion 4(i) we obtain [|h — h|;2(x) S n”'/?(loglog n)l/“sj LJV4 4 J=P/4 with probability ap-
proaching 1 uniformly for & € H,. Also, by Assumption 3 we have s;' <v;'. We may
choose J = ¢J° € Z, for some constant ¢ > 0 and #n sufficiently large and hence, the result
follows. Q.E.D.

APPENDIX E: TECHNICAL RESULTS
Below, A () denotes the maximal eigenvalue of a matrix.
LEMMA E.1: Let Assumptions 1(ii)-(iii) and 2 hold. Then, wpal uniformly for h € H:
1 K K
=) - Z (Y: — Iy, (X)) (Yo — Ty h(X0)) b5 (W) (A’ 4 — A A)b* (W)

S ”_1VJ + 17257 (I1h = Ty Al 2y + T 72/%).
PROOF: Let II;; :=id — Il,,. We establish an upper bound of

—ZY Ty, h(X)) (Vi — Ty h(X:))bX (W) (A’ A — A A)bX (W)

il

= E[IL, h(X)b"(W)] (A'A — A’ A) E[IL,, h(X)b* (W)]

#2(( 3200 X)) — BT, h00M 1)

i

x (A'A— A A)E[IL, h(X)bX(W)]

+ (% > (Vi = Ty, (X)) b5 (W) — E[H;Oh(X)bK(W)]’> (44— )

i
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1 / :
X (; Z(K — [y, h (X)) b5 (W) — E[I1;, h(X)b" (W)] )

uniformly for 4 € H. It is sufficient to bound the first summand on the right-hand side.
We make use of the decomposition

E[IL, h(X)bX(W)] (A'A — A' A) E[11%, h(X )oK (W)]
= 2E[II4, h(X)bX(W)] A'(A — A)E[I1%, h(X)bK(W)]
— E[IT3, A(X)b* (W)] (A — AY (A — A) E[ITy, h(X)b* (W)] =: 2T, —
We first consider the term 7; as follows:
T, = E[IIL, h(X)bX(W)] A'(A — A)E[ILI1, h(X)bK(W)]
+E[IL, h(X)b*(W)] A (A— A) E[(IT;, h — TI,1T;, h) (X)b% (W)]
‘= Ay + A, (E.1)

We now consider the term A;. Recall that Q;II;A = II;A and :S’\G*'(h, )2 =
n~' Y I h(X;)bX (W). We have

((G;l/zs)l_E[H;Oh(X)EK(W)])/G(( 1/2S 1/2/) 1/2G1/2
x E[IL 1L, h(X)b* (W)]
(O3 1, TUTL 1= (87) (G, 8), G, B[, ()b (W)])

(Q; h lp LZ(X) 1/2’) 1/2

L2(X)

x <E Z I, 1L, h(X;)b" (W) — E[H;Oh(X)bK(W)D
={Q/, b ') 5 (G 2S),
x (% Z I TLL, h(X,) DX (W) — E[Hjn;oh(X)BK(W)])
O b )20 (G75), G778 (6,9, 677Gy = (G;78),)
(G S e on) - E[HJHiOMX)EK(W)]) = At A,
where we used the notation b5 (-) = G; ?bK(-). Consider A,;; we have

E|Aul® < n E|(Q/TH, b, 7)1 o (G, S), TUTL, R(X)BE (W)

<2 QL e )2 ) (G 2S), TG TIE

LX(W)
2

+ 207 (Q,TL, W)Lz(X)(Gb_”zS),_ H2 T T (115, ke — TLITL, R -
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2

b

Sn_l”<QJ h Y )LZ(X)(G 1/ZS)/ |

where the second bound is due to the Cauchy—Schwarz inequality and the third bound
is due to Assumption 2(iv). Consider Ai,; we infer from Chen and Christensen (2018,
Lemma F.10(c)) and Assumption 2(ii) that

A = QT 0] (G S), 1628 (G519), 6,761 - (G°s), )

2

1 1 K €L K
- ZHJHHOh(Xi)b (W) — E[ILIL,, h(X)bX(W)]

< Qi1 A, th),Lz(X)(G;l/zS);”z xn's;2(logd) x n' G
S QI ) (G 29),

wpal uniformly for # € H. Next, we consider the term A4, of (E.1). Following the upper
bound of A;,, we obtain wpal uniformly for & € H:

|E[1L;, h(X)bK(W)]AG(A A)E[(h — 1L h —II,11 )(X)bK(W)]|
< ||(QJ h lﬁJ)Lz(X)(G I/ZS) ” ||G 1/2S((G I/2S G 1/2G;/2_(G;1/2S)l—)H2
X H(T(Hinh - Hintnh)’ bK)L2(W) ”

< M@ s 07y (G 28), I T (1 =TT B) [, 175G (l0g )

<n_1 “(Qf h ¢ )LZ(X)(G I/ZS) \

using that ;%I T(IT;, A — TI,11 h)||L2(W) I, A — TIIL, hlle(X) by Assump-

tion 2(iv) and {7(logJ)|lh — 1L A|7, = =0(1) by Assumptlon 2(iii). Finally, we obtain
|T1| < | Ad] + [ Ao S n7 PIQITT, By 7)1 4, (G, 2S); || wpal uniformly for h € H.
We next consider the term 75 using the decomposition

T, < 2E[ILIL, h(X)bX(W)] (A — A) G(A — A)E[ILIL, h(X)bX(W)]
+2E[II} 11, A(X)bX(W)] (A — A)Y G(A — A)E[II} 1T, h(X)bX (W)]
=:2T5 + 2Ty,

where I1; =id — I, is the projection. We first bound 75; using Assumption 2(ii):

T = <H1Hioh’¢’1>;2(x) ,'’8),G,'"*s - 1,) (G,"*S), G,"*

<5 DI KB 07~ E[HJHiLOMX)EK(W)])‘

< (0T, 2, ), 0 [0S = SU(G, 2S), G2
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X

1 1L TK 1L TK
- Zﬂfﬂﬂnhmb (W) = E[I1,1T5, h(X)b" (W)] H

< | (h - HHOh)HLZ(X)n‘l/zsj‘zgh/logJ xn sty
<n st HH](h — Iy, h) HL2

X)

wpal uniformly for 4 € H. For T5,, we note that uniformly in 2 € H, || E[1I; 113, A(X) x
XNl = 1Tk TAL L, A — 1Ly, Al 2wy S 8/ 77/% by Assumption 2(iv). Thus, follow-
ing the upper bound derivations of Ty, we obtain T, < n~"/2s;'J~7/% wpal uniformly for
heH. Q.E.D.

LEMMA E.2: Under Assumption 2(i), it holds for he {h, 115, h} that

Sup Sup Amax (Ej [ (Y — %(X))ZEK(”(W)EK(])(W)’]) <7 <co.

JeZ, heH
PROOF: We have for any y € R¥ where K = K(J) that
YE[(Y = (X)) B (WK (W) Ty
<E[E[(Y = (X)) |W](¥BK(W))]
<@ E[(yB* W) =7y G, PE[b* ()b (W) ]G, Py = Iyl

uniformly for 2 € H and J € Z,, where the second inequality is due to Assumption 2(i).

Q.E.D.
PROOF OF THEOREM B.1: From the definition of Q, given in (B.1), we infer
Qs (= Th 1) [, = [ ABA[(Y = T, h(XO))B* W] | = [E[U7]|
using the notation U] = (Y; — Iy, h(X;)) AbX (W;). The definition of D, implies
Dy (I, h) = | Qs (h = Ty 1),
1 J
= ng(w —E,[U,]) (E2)
gy 0 ) (7 = )

x bX (W) (A A — A A)bX (W,). (E.3)

Consider the summand in (E.2); we observe

YD (UsUsi —EllUGP)| =Y > Y (UyUsj — Eu[Uy ) (Uiny Uiy — E4[U; 7).

j=1 i’ Joj'=1 i’ i #i"
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! // ///

We distinguish three different cases. First: i, 7/, are all different; second: either i = i”
or i’ =1{";orthird: i=7 and i’ =i". We thus calculate for each j, j/ > 1 that

> (UsUs; = EAlUGT) (Usp Uiy — E4[Uy; 1)

i#i! i”;éi”/

= Z (UijUi’j _Eh[Ulj]z)(Ui”j’Ui”’j’ _Eh[Ulj’]z)

i,i',i"” ,i" all different
+2 Z (U,‘/U,’/j — Eh[Ulj]z)(Ui///'/U[/j/ — Eh[Ulj/]z)
ii £
+ Y (UUs = BA[U,P) (Uy Uiy — Ef[Uy ).
i#l

The expectation of the first term on the right-hand side vanishes due to independent
observations and thus, we have

2

E, ZZ i l] Ul/])

Jj=1 i’

=2n(n—1)(n—2) > Es[(Uy;Uy; — Es[UyT) (Usy Uyy — B[ U 1) ]

J.'=1

1

+n(n—1) Y Ey[(UyUy — Eo[UyT) (Usy Uy — Eu[Uy T)].

Ji'=1

1
Now using [|(G,"?SG~"/2); || = s;" together with the notation ¢’ = G~'/2, we obtain
“(QJ (h =1y, h), ‘pj)/LZ(X)(Gl;I/ZS); “
~ 12 et

= ||<Qf(h — 1Ly, h), ¢J>L2(x)(Gb SG 1/2)1 ”

S S;1 ||(Qf(h - H'Hoh)’ ¢J>L2(X) ||

S,Sfl(”h — Iy hllr20xy +pr/dx)a (E4)
where the last equation is due to Lemma B.1(i). Consequently, we bound the term I by

J
I = Z Eh[Ulj]Eh[Ulj’] (COVh(Ulj, Ulj’)

Ji'=1
=E,[U]] Cov, (U], U}) E,[U!]
< Amax(Var, (Y — Iy h(X))BX (W) (G, *SG2), E4[U7]])°

<@|((G,"S), Bal(¥ ~ Ty, h(X))B* (1)]) G(G, S), |
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_0-2”<Qf(h Iy, ), ¢ )LZ(X)( 1/2S)/ ”2
<572 (I1h = Mg Al 2oy + 0 7200%),

using U/ = (Y; — HHUh(X,-))(G;I/ZSG‘“Z),‘EK(W,-) and Lemma E.2. For term II, we ob-
serve

2

J
I = Z E,.[U,;Uy; ] — (ZEh U] ) < > EJU U =V}

J,J'=1 JJ'=1

Thus, the upper bounds derived for the terms / and I imply for all n > 2:

h — 11, h JEi g
Z Z Ui — Ea[Uy] ) ” ® ”LZ(X) * + V—] (E.5)
n(n— 1) ey ns; n’

Thus, equality (E.3) implies the result by employing Lemma B.2 and Lemma E.1. Q.E.D.

PROOF OF LEMMA A.1: By Lemma E.1 and the decomposition (E.2)—(E.3), we obtain

Pho(nD;/ihO) > 7)](0()> = Ph(]( ! ZZ U,Uyj > n,(a)) +o(1).

Jj=1 A

Using the martingale central limit theorem (see, e.g., Breunig (2020, Lemma A.3)), we
obtain

1 J
_ E E UiUp; > z1_o | =a+ o(1),
h(](\/EVJ(”_l) j=1 i Y 1 )

where z;_, denotes the (1 — a)-quantile of the standard normal distribution. Further,

Lemma B.4(i) implies V)V, =1 wpal uniformly for 4 € H, and since 7, (a)/v/2 = %
converges to z;_, as J tends to infinity, the result follows. O.E.D.

PROOF OF LEMMA B.1: Proof of (i): Using the notation bX(-) := G;"?bX(-), we ob-
serve for all 4 € H that

10s(h =Ty 1) | 1y,
= (G, "SG™"2) E[B* (W) (h — Ty, 1) (X)]|
<[(G,"2SG™12), E[b* (W) (I, h = 1,1, h) (X)] |
+ (G, "2SG™2), E[B* (W) ((h — Ty, h) (X) — (T =TI, ML, 1) (X))
< LA = TL L hll 2y + 55 [Tk T ((h =gy h) — (k= Ty, 1) |,

< LA — M0 Al 200 + O(J7/%)

by Assumption 2(iv).
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Proof of (ii): We observe |Q;h — hll2(x) < 1Q;(h — 1L h) |l 12(x) + 1L A — All;2(x). The
result thus follows by replacing I1;, 4 with 1,4 in the derivation of (i). Q.E.D.

PROOF OF LEMMA B.2: For any J x J matrix M, it holds |[M || < JJ| M| and hence

VP =1(G,2SG™2), Eu(Y = h(X)) DX (W)X (W)](G, G 7), |

F

<J|(G,"*SG2), | [EA[(Y — h(X))'B* (W)BE (W]

The result now follows from [|(G,"*SG~"/?)7 || = s;' and Lemma E.2. Q.E.D.

PROOF OF LEMMA B.3: In the following, let e; be the unit vector with 1 at the jth po-
sition. Introduce a unitary matrix Q such that, by Schur decomposition, Q' 4G, A'Q =
diag(s;?, ..., s;?). We make use of the notation U’ = (Y;— h(X,))Q Ab* (W;). Now, since
the Frobemus norm is invariant under unitary matrix multiplication, we have

V= Z E,[0,;U; ) = ZE,,[ﬁfj]2 = Z(Eh|(Y — h(X))e,Q AKX (W)Y’

bi'=1 j=1 j=1

Consequently, using the lower bound inf,,y, inf,cy EL[(Y — h(X))*|W = w] > o by As-
sumption 1(i), we obtain uniformly for & € H:

J
Vi =gty (E[e[Q AbS (W)bX (W) A'Qe;])’
j=1

~

* Y (60 4G, A'Qe;)’

j=1

~
~

=o' ) (¢ diag(s;? ..., s,‘z)ej)2 > o' st

j=1 j=1

which proves the result. Q.E.D.
Recall the definition C;, = max,gxe fol(l +10g Ny (€llFnellr2z)> Fer L*(Z)))"?de.

LEMMA E.3: Let Assumptions 1(ii)-(iii), 2(i), 4(i)(iii), and 5(ii) hold. Then, for J = J°,
we have wpal uniformly for h € H,(8°r,):

I’l(l’l 1) Z U (A hR a] i Eh l Uz/ (A a] u’

Snil/zsjflch(”h_HOHLZ(X)+J7p/dx)+l’l Sy «/_

where U;(¢) = Y; — ¢(X,) and a; ;i = bX(W;) A’ AbX (W}).
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PROOF: For simplicity of notation, we write J instead of J° throughout the proof. We
observe for all & € H,(6°r,) that

n(n—l)ZU (KU (RS ay — EA[U(RS) Uy (RS a0

(n 7 2 Z Ui, h)Us (T, B ay i — By [Ui(Ty, YUy (Mg 1) ay i |

+n(n )ZU(HHUh)(HHUh 1) (Xi)ag

— Ey[Ui(Is, h) (T h — BY) (X )as ]
1
+ n(n—1)

Z HHOh hR)(X )(HHOh hR) (X )af it
il

— By[ (Mg h — B (X (T e — 1) (X))
= T1 + 2T2 + T3.

From the proof of Theorem B.1, we conclude SUP ey, (oe oy B | Th| S n7's; 72V/J. Con-
sider T5. Below, we let a/ = AbK(W) = (G, *SG~2),; b (W;). By Assumption 5(ii),
SUPepy, 5y P (L1ChIIAT — HHOhHLz(X) > C) — 0 and consequently may assume that hR

Moy (h) :={ll¢ — Iy, hll 2y < [LC] 7" 2 & € Ho s} We have for all & € H,(8°r,) that the
absolute value of 7, is bounded by

WZ Ui(Ty, hya] — EA[U (T, h)a])

sup
peHo, 7 (h) it

x (T, h — ¢)(Xi)a; — E[(Thy, h — ¢)(X)a'])

+ ‘% > (Ui, h)a] — By [U (T, h)a’]) B[ (I, h — 7%) (X)a’])

i

+ sup EZ((HHOh $)(X)a' — E[(TLy,h — d)(X)a']) Ex[U (I, h)a’]

beH g,y (h)

=T + Ty + Tys.

Below, we let a; ; = bK(I/V,-)’A’AG,lj/zek. Note that E [la; ;[|> < || (G;l/zSG‘l/z); |*=s;* for
all k =1,..., K. We obtain uniformly for 4 € H,(6°r,) by van der Vaart and Wellner
(2000, Theorem 2.14.2) that

K
E, T, < ZEh
k=1

1
- > Uiy hyar; — Ex[U Ty, h)a]
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1
n—1

x E;, sup
beHq,s(h)

D (Mg = $)(Xi)bi (W)

— B[ (T, 1 — ¢)(X)5k(W)]‘

C | & _
<2 S E[|UL )] G, A bk (W) |

n\ k=1

K

x |3 Ei sup |(Myh— ¢)(X)be(W)[
\ k=1 deHq g (h)

C
< ;hﬁsfﬁ UMy h — )l 2 S n's VT

for some ®; € H,,(h) and using that E,[|U(IL;,,h)|*|W] < & by Assumption 2(i). Fur-
ther, we evaluate uniformly for & € H,(6°r,):

E) T = 71\ JE|(¢!) B[ (TLy h — ) (X)a' ]

<on s sup  TIkT (I h — &)l 20w
deH s (h)

Sn s (I1h — Holl 20x) + Jﬁp/dx)y

where, in the last equation, we used Assumption 2(iv) and ||h — 1L, Al 2 = |h —
Holl12(x)- Consider T»3. Below, we make use of the relation E[U (11, h)a’) a] = (Q,(h —
[y4yh)s 7)1, (G, 2S); ¥ (W;) and obtain uniformly for h € H,(8°r,):

EyTys < H(Ql(h — Iy h), ¢1>/Lz(X)(G;1/2S);H

x E, sup sup

ecsSK°—1 pet j(h)

S ) (XF (e

i

— E[(Il,h — ¢)(X)BX(W)'e]

S ||(Q1(h — 1y, h), ¢N>’L2(X)(G;1/2S); || x Cunt 24, [T — Bl
SCun P (1 — Holl 2y +J7715),

where we used that sup,, |bK (w)'e| < ¢, for all e € SX°. Consider T5. We have

T sup | Sk = 9)(X)a! — B[~ 9)(X)a"))
il

beH, 7 (h)

x (T, h — ) (Xi)a; — E[(Ty,h — $)(X)a'])
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LS (k= $)(X)a! —E[(Tyh — $)(X)a'])

n =
i

+2 sup
$eH ), (h)

x E[(Ily,h — ¢)(X)a']

=: T3 + T3,.

We evaluate for the first term on the right-hand side that uniformly for 4 € H,(6°r,):

K

ET; <s;? Z (E sup

S 1 D~ (Mg h = $)(X)bi(W:) — E[ (o, o = ) (X)bi(W)] )

1

c? ~ 2
SEE sup |(Iy,h — $)(X)DX(W)|

nsy  gerg  (h)

Czl \/.7
S _§2|| h— ||2 S—
~ I, D, ~

27 0 L2(X) 2’

for some ®; € H, ; () and using that C? < +/J. Further, we have E[(I1,,,h— ¢)(X)a’']a] =
Qs h— ), ¥7) )5, X>(G;1/ 28); bX (W;) and thus, following the derivation of the bound
of T,;, we obtain

ETo< sup [{Qi(d —Thyh), o)y (G, 7), |

deHg s (h)
1 ~ ~
xEsup sup = (¢ =Ty, h)(X)b" (W)'e — E[(¢ — Ty, i) (X)bX (W)'e]
eesK® pety ()| 1

N ”71/25flch(||h — Iy hll2x) + Jﬁp/dx)

uniformly for 4 € H,(8°r,), where the last equation is due to Assumption 5(ii). Finally,
the result follows from an application of Markov’s inequality. Q.E.D.

LEMMA E.4: Let Assumptions 1(ii)-(iii), 2(i), 4(i)(iii), and 5(ii) hold. Then, for J = J°,
we have wpal uniformly for h € H,(8°r,):
1 ~ ~ ~
_— Y: — B3 (X))(Yr — h¥( X)) b5 (W) (A’ A — A A)bX (W,
Y g( F= By (XD) (Y = (X)) b (W) ( Ao (Wr)

<n 257 Ch(Ilh — Holl gy + T 72/%) + n7's2VT .

PROOF: For simplicity of notation, we write J instead of J° throughout the proof. Fol-
lowing the proof of Lemma E.1, it is sufficient to control

E,[(h = 1)) (X)b"(W)] (A'A = A A) B[ (h = ) (X)X ()]
= 2E,[(h — B (X)bX(W)] A'(A — A)E,[(h — B (X)bX (W)]
—Eu[(h = B5)(X)bX(W)] (A — AY (A — A)Ey[(h — B)(X)bX (W)] =: 2T, — T,
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We first consider the term 7; using the decomposition:
Ty = Eu[(h — B (X)bX(W)] A'(A — A)E,[IL, (h — h3)(X)bX(W)]
+Eu[(h = B (X)bK(W)] A'(A - A)
x B[ (h = B =11, (h — B3))(X)bX (W)]. (E.6)

Consider the first summand on the right-hand side of equation (E.6). By Assumption 5(ii),

SUP jept, (5) Ph(§,Ch||hR I, 2l 12(x) > C) — 0 and consequently may assume that hR
HO,J(h) ={¢p¢€ HO,J P — HHOh”LZ(X) =< [§JC;,]*1}. We calculate

sup [((G;"7), E[(h = )(X)B“N]) G((G,S), = (G,'8), G, Gy%)

beH j(h)

E[(7 - ¢)(X)BE(W)]|
(Os(h - ¢), ‘//J)Lz(X)( 1/ZS)I

= sup
deH, s (h)

x <% ZHJ(h — ) (X)bK (W) — E[IL,(h — ¢)(X)EK(W)]>‘

+ sup

beH, s (h)

(Qi(h = ), )1, (G,'7S5), G, 'S((G,'S), G, *G}* - (G,S),)

X <% ZHJ(h - ¢)(XI)5K(I/Vl) - E[Hl(h — (i))(X)EK(W)])‘ =Ty + Th,.

Consider Ty, which coincides with the term 73, in the proof of Lemma E.3 and thus, we
have E|Ti| < n="2s;'Ch(Ilh — Holl 12(x) + J ~#/**). To establish an upper bound for 7;,, we
infer from Chen and Christensen (2018, Lemma F.10(c)) that

TaP < sup [(Qs(h— ). 4., (G,S), |

beH j(h)

% “G;uzs 1/2A) 1/2 1/2 G 1/2S) )”

2

N Zﬂf(h &) (X)b* (W) — E[I1;(h — ¢)(X)bX (W)]
beH g

= sup(/)H(Qf(h =) 07,200 (G, 2S), |7 = 1572 G (log ) x n7' 3C

St = Ty bl oy +T720%)

wpal uniformly for & € H,(8°r,), where the last equation is due to s;'¢?\/(logJ)/n =
O(1) from Assumption 4(i). Consider the second summand on the right-hand side of
equation (E.6). Following the upper bound of T,, we obtain

sup [E[(h— $)(X)b“(W)] A'G(A - A E[(h— ¢ — L, (h— $))(X)b*(W)]|}

beH s (h)
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< sup (k= ). ), (G128

beH j(h)

% HG;UZS 1/2’) 1/2 1/2 G 1/2S) )”2

x sup |(T(h—¢—T0(h— ). 5%, |

beH, j(h)
S sup [(Qrlh = d), 0) 2y (G5 2S), |7 sup |TkT(h— ¢ —T1,(h = ) [},
deHg s (h) petg, s (h)

x 15,3 (log )
< n_l _Z(Hh H'Hoh” Z(X) + ]—217/(1;;)

wpal uniformly for & € H,(8°r,), using that s, || TIx T'(h — Iy, h — 11, (h =1L, b))
| — 1Ly h — 11, (h — 1y, h) ||, ., Dy Assumptlon 4(i) and {Z(logJ)||h — 11, A|?

by Assumption 4(iii).
We now consider the term 7; using the decomposition

LZ(W) N

L2(X) LZ(X) _0(1)

T,<2 sup [E[T(h— )(X)B(W)] (A~ AYG(A ~ A)E[I, (h - $)(X)b*(W)]|

deHo s (h)

+2 sup [E[TT} (h— $)(X)bX(W)] (A - A)G(A - A)

deHq,s(h)
x E[IT; (h — ¢)(X)b* (W)]|
=:2T5 + 2Ty,

where [I; =id — 11, is the projection. We bound 7>, as follows:

T < sup
PeH, j(h)

g (1 2T (= ) (X" () — BT~ ¢><X>EK(W>])'

(I, (h — ¢), l/’]>/L2(X) 1/2’3 G, s — L)( 1/2’) el

< sup (T =), ) [1S = SIN(GFS), G2

deH,s(h)

. 2Tk = $YXDBE (W)~ E[IL, (1 = ) ()5 ()] H

S sup ”H](h d))”LZ(X) x n 2572\ /logd x n”'2¢,C)

peH, 7 (h)
N nfl/zsflch(nh — Iy hll2x) + Jﬁp/dx)

wpal uniformly for 4 € 7—[1(8°rn~). For Ty, we note that uniformly in & € H and
b € Hoy(h), IE[IEE(h — $)(X)BX W)l = ITKTTE (h — §) gy S 8,774 by As-
sumption 2(iv). Thus, following the upper bound derivations of 7,;, we obtain Ty <
n~12s;1J-P/4 wpal uniformly for h € H,(8°r,). Q.E.D.
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LEMMA E.5: Let Assumptions 1(i)—(iii), 2(i), and 4 be satisfied. Then, using the notation
§°:= G, "*SG~2, we have for some constant C > 0:

0 P(pe] L1656, 6 6 - ()]} - €) = ot
@ p(pad ]

PROOF: The results can be established by following the same proof from Chen,
Christensen, and Kankanala (2024, Lemma C.4) with their (7,,+/J) replaced by our

(6,561, 6,261 - (59| > €) = o(1).

(s7%, &). Q.E.D.
LEMMA E.6: Let Assumptions 1(i)—(iii), 2(i), and 4(i) hold. Then, we have
(loglogJ)~'? K K o
P, <r]ngx T ; Ui(Tyy h) Uy (T, h)DK (W) (A’ A — A A)bX (W,)| >

=o0(1)
uniformly for h € Hoy, where U;($p) = Y; — ¢(X;) and ¢, is as in the proof of Theorem 4.1.

PROOF: Let I, denote the J-dimensional identity matrix multiplied by the vector
Co(sy, - .., 87) for some sufficiently large constant C, and where s]f', 1 <j</J, are the

nondecreasing singular values of AG,”> = (G, ">SG~"/?);. There exists a unitary matrix
QO such that

> Ui(TLy h) Uy (T, YOX (W) (A" A — A A)bN (W)
i

2
MKWy QL |1,Q G (A A~ A A4)G 0L, |

= > Ui(ILyy, i) Uy (T, h)DX (W) QI QDK (W) |
i#i!

+ 3 UL, B (W) QI |1, Q' G (A’ A — A A) G, QL |.

1,0 G (A A - A A)G0L,|

The fourth moment condition imposed in Assumption 2(i) implies uniformly for /z € H,:

2
Bumax| iz 2 (1 UM BT (W)L, S =B U, B 001 )
< n71§1 Z V 2 74

Jez,

Sn‘léfz<2s“ ) a2 I — o),

JeZ, JeIy
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due to Lemma B.3 and the definition of the index set Z,,. Consequently, from the second
moment condition imposed in Assumption 2(i), we obtain uniformly for J € Z,:

J 1/2
n (Y = Ty, (X)) DX (W) Q1! (e (Z sj‘4) <o 'LV,
i j=1

with probability approaching 1 (under & € H,), by making use of Lemma B.3. Further, we
obtain uniformly for / € H,:

(log lOgJ)71/2 K , ' - K 1-— Co
P, (rjn%x NS Z Ui (T, k) Uy (T R)BK (W) (A A — A A) b5 (W) | > <
(loglog /)~ Ky 20 5 -
=P, (I}é%)f (n—1)V, ; Ui(HHoh) Ui (Hﬂoh)b (W) le, ob"(Wr)| > 8

/ 5 1—¢
+ 2y (max(|1,06} (44 - TA)GY0L, ) » 2

~ 1—
+P, (51121134(522—2%—1@ (loglogJ)~'/? ||]s/ QG;/2 (A'A- A/@ GZ/ZQ,ISI H) > 1660)

+o(1)
=: T1 + T2 + T3 + 0(1)
Note that 7 is arbitrarily small for C sufficiently large by following Step 1 in the proof of
Theorem 4.1. Consider 7,. We make use of the inequality
|11,0G (A A~ A A)G 01, |
<2|I,0G) (A - AY AG*Q'L, | + |(A - A)G}0L,|".
1/2

It is sufficient to consider the first summand on the right-hand side. Note that | 4G~ x
Q' || < C,'. Consequently, from Lemma E.5(ii) we infer

sa/n ~
P( max{ —X—|1,, 0G\/*(A — A) AG,*Q'I, } > c) =o(1).
(JEIn{é’]\/@H T b ( ) b J” ()
Assumption 4(i), that is, s;" ¢2,/(logJ)/n = O(1) uniformly for J € Z,, thus implies T3 =
o(1). Q.E.D.

PROOF OF LEMMA B.4: It is sufficient to prove (ii). Let % = E,[(Y — 2(X))*b*D (W) x
bEOW Y] and S = 7 Tu(Y; — iy (X))*05O (Wb (W) Then V, = | ASA'|; and

V, = ||222’|| 7. For all J € Z,, the triangular inequality implies

V=Vl < |ASA — AS 4|

F

<2|(A- DSA|, + (A= A%+ |AE -) A,
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In the remainder of this proof, it is sufficient to consider (A — A)SA'|r + ||A(§ —
3)A'|lr =: T + T,. Consider T;. By Lemma E.2, we have the upper bound ||G;"*S x
1/2|| < 0. Below, we make use of the inequality ||m;m;||r < ||m||||m, | for matrices m,

and m,. Since the Frobenius norm is invariant under rotation, we calculate uniformly for
J €T, that

T, = |(G}’SG"?)(4 — A)3A AG,"|
= (61°567) A~ 671G 36, 11656,

& (log() <~
()

wpal uniformly for /& € H, by making use of Lemma E.5(i) and the Schur decomposition
as in the proof of Lemma B.3. From Assumption 4(i), that is, s;'{2\/(logJ)/n = O(1),
uniformly for J € Z,, we infer T, /V; =J~ I/Z(Zj L5 N2V, — 0 wpal uniformly for 4 €
, where the last equation is due to Lemma B.3. Consider 7. Again using Lemma B.3, we
obtain T; < 072G, "*(2 — 2) G, "*|| by using the upper bound as derived for 7. Further,
evaluate

e

” G;l/z(i _ E)G;UZ H _ H % Z((Y’ — il\_](Xi))z _ (Yi — h(Xi))Z)EK(W)gK

< |3 ) - hG) B mBe

i

#2300 — HOO) (Y~ ) B (B

=Ty + T».

Consider 7T»;. The definition of the unrestricted sieve NPIV estimator in (2.5) implies
uniformly for J € Z,,:

Ty < ” H S X) — QX)) B (1)

+ H - D (Qh(X) = h(X)) DK (W)b¥

2

Z Y:bX (W) — AE,[YDX (W)] Z o (XY

<§]

+4, Z(QJMX,) ~ (X))’

SGstnT 4 maX{§Jz||QJh — A2 }
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wpal uniformly for & € ‘H, where the right-hand side tends to zero. This follows by the
rate condition imposed in Assumption 4(i) and that [|Q,;/ — hl| ;2(x) = O(J~?/*) uniformly
for J € 7, and h € H by Lemma B.1(ii). Analogously, we obtain that max;.;, 75, vanishes
wpal uniformly for 4 € H. Q.E.D.

PROOF OF LEMMA B.5: We first prove the lower bound. By the definition of the RES
index set 7,, we have that any element J € I tends slowly to infinity as n — co. Let
]max < Jjmax D€ the largest integer such that J' D jmax < Jmax Consequently, the definition of
the RES index set implies for all J € 7, that

10g(J) <10g(J27) = s 10g(2) +108(J) < juu + 1 = #(Z,)

for n sufficiently large. From the lower bounds for quantiles of the chi-squared distribu-

tion established in Inglot (2010, Theorem 5.2), we deduce for all J € 7, and n sufficiently
large:

q(e/#(Z,),7) =7

() = I
_ ale/(log]),]) —
- Vi
. log((logJ)/e) . 2log((logJ)/a)
> ; -
> JJloglog(J) —log(e)
= 4

using the lower bounds for quantiles of the chi-squared distribution established in Inglot
(2010, Theorem 5.2). We now consider the upper bound. From the definition of #(f,,),
we infer #(Z,) = jmax + 1 < [log,(n'3/1)] + 1 <log(n'?/J) + 1 and thus #(Z,) < log(n).
Consequently, we calculate for all J € Z, and n sufficiently large:
Q(a/(IOgn)sj) -

Vi

<2,/log((logn)/a) + %\/5”)@
=2 IOg((logn)/a) (1 + 0(1)) = 4\/loglog(n) —log(a),

where the second inequality is due to Laurent and Massart (2000, Lemma 1). Q.E.D.

ns(a) <

PROOF OF LEMMA B.6: Result B.6(i) directly follows from Houdré and Reynaud-
Bouret (2003, Theorem 3.4); see also Gine and Nickl (2016, Theorem 3.4.8). We next
prove the bounds on A;, A,, Az, A, for Result B.6(ii).

For the bound on A, we recall the notation U/ = U; Ab* (W;) with Uj; as its jth entry
forl<j<J,and U;=Y; — h(X;) for h € H,. Then under H,, we have

EA[RX(Z1, Z,)] < Ea|UibX (Wh) A’ ALK (W) Us|*
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=E[(U) E/[U" (U')]U]

J
Y EJUUy P =V7
ji=1

For the bound on A,, for any function v and « with ||v||;2z <1 and ||«||;2z < 1, respec-
tively, we obtain

|E,[Ri(Z1, Z)v(Z))k(Zy)]]
< |EA[ULu X (W) v(Z)] A AE,[ULyb*(W)k(Z)]|
< [AE[UL,b* (W)x(2)]]| HAEh[UanK(W)v(zn n

< 4G \/E [E[ULux(Z)|W][] \/E [EA[ULun(Z)|W]|"]-
Now observe E[|E,[U1,«(Z)|W]|*] < E[E,[U?|W]«k*(Z)] < &* by Assumption 2(i) and
using that | «||,2(z) < 1, which yields the upper bound by using ||AG1/ 2|| =5,

For the bound on A3, observe that, for any z = (i, w),

[EA[R3(Z1, 2)]| <EA|UL{JU| < M, }b5 (W) A’ Ab* (wyut {Ju| < M, }|’

< | b wyut{jul < M,}|* E,\| 46X (W)U |’

—2 2 ¢2
<M. «|

again by using Assumption 2(i) and hence the upper bound on A; follows.
For the bound on A4, observe that for any z; = (u;, wy) and z, = (u,, w,), we get

|R1(Zl, Zz)| = |U1]1{|M1| 5M,,}bK(w1)/A’AbK(w2)u2]l{|u2| SMnH
< supHAbK(w)u]l{lul < M,,} Hz < Mfl{,f,,( HAG,I,/2 g

u,w

which completes the proof. Q.E.D.

PROOF OF LEMMA B.7: It suffices to prove (ii) for a simple null ‘Hy, = {h¢}. For any
h € H(8°r,), we denote B, = (I|E,[U’]Il — lh — holl;2xy)*. Recall J° < J* < 2J°, ap-
plying | E,[U”]I1> = | Qs+ (h — h0)||L2(X) and Lemma B.1(i), we obtain: B = (||Q(h —

ho)llr2xy — I1h — holl2(x))* < Cpr? for some constant Cg. By the inequality || E,[U”"]||* >
A — h0||iz(X)/2 — By+, we have uniformly for & € H,(6°r,):

P, (nﬁ,* (ho) <2ciy/loglognV:)
—ri (U] -

S (P

Dy (ho) > |EL[U”]

2 2c1y/loglognVs )
n

> Ph)

n(n — 1) ZZ UlJUl/I Eh[U1]] )

j=1 i<
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+Ph<

x bX (W) (A'A — A A)bX (W)

4
n(n —

fy 2= mOO) (i (X,
> Ph)

where p, = ||h — h0||iz(X)/2 —2¢in7'/loglognV;« — By«. To bound term T}, we apply in-
equality (E.5) and Markov’s inequality:

=T1+71,

1 .2 «\ —2p/dx _ _
T Sn'si2p (Ih = Bl ey + (7)) + 072V p, % (E7)

In the following, we distinguish between two cases. First, consider the case where
n~2V2p;,? dominates the right-hand side. For any h € 1,(8°r,), we have [|h — holl;2(x) >
8°r, and hence, we obtain the lower bound

pn=Ih— h0||iz(X)/2 —2¢in”'loglognVy« — By > kor2, (E.8)

where ky := (6°)?/2 — C — Cj for some constant C > 0 and k, > 0 whenever &° >
V2(C + Cp). From inequality (E.7), we infer T} < n=2V3(J*)*"/% = o(1). Second, con-

sider the case where n's;2p,*(|lh — holl? o T (J*)‘ZP/”X) dominates. For any & €
H,(6°r,), we have ||h — h0||L2(X)

> (8°)*r2 > 5¢,n~ 'V /loglogn for &° sufficiently large
and hence, we obtain p;, > k;||h — h0||L2<X) for some constant «; := 1/5 — Cg/(8°)?, which

is positive for any 6° > +/5Cp. Under Assumption 3, inequality (E.7) yields uniformly for
h € H,(6°,) that
(J*)” 2p/dx) <nlsiirr=o(1).

Ty Sn7lsi2(I1h = holl 3y, + 1A = holl

L2(X) L2(X)

Finally, 7, = o(1) uniformly for 4 € H,(6°r,) by making use of Lemma E.1. Q.E.D.

PROOF OF LEMMA B.8: Recall the definition of J = sup{J : £*(J),/(logJ)/n < Cs;}.
Following the proof of Chen, Christensen, and Kankanala (2024, Lemma C.6), using
Weyl’s inequality (see, e.g., Chen and Christensen (2018, Lemma F.1)) together with Chen
and Christensen (2018, Lemma E.7), we obtain that [s; — s;| < ¢ys; uniformly in J € Z, for
some 0 < ¢y < 1 with probability approaching 1 unlformly for h e H.

Proof of (i). By making use of the definition of J,,, given in (2.11), we obtain uniformly
for h e H:

P = 7) = Pu (£ oe@/n < 35
=i £@)oe@/n <50+ @) ) + o)

The upper bound imposed on the growth of J is determined by a sufficiently large constant
¢ > 0 and hence, there exists a constant ¢ > 3(1 + ¢,)/2 such that s' £2(J),/log(J)/n > c.
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Consequently, we obtain
P =) < P45 €0 og) /< S0+ @) ) + o (1) =00

Proof of (ii). From the definition of J° given in (4.3), we have uniformly for 4 € H:

Py(J° > j:ndx) <P,(n"'Vloglog nJ2PIB2 < vi ).
By Assumption 3 there is a constant ¢ > 0 such that v7 < s?/c for all J. We infer as above

for some constant 0 < ¢y < 1 and uniformly inJ € Z,, that v7 < (1—¢,)~'s? with probability
approaching 1, and hence uniformly for & € H:

Pi(J° > Tuwx) < Pu((1 = co)n"y/loglognT22/4+12 <52 ) 4 o(1).
Consider the case ¢(J) = +/J. The definition of Trax I (2.11) yields uniformly for & € H:

Py(7° > Joa) < Pi((1 = ¢p)v/loglog nJ 22432 < (log 7)) + o(1)
2 — lOgj )1/(2P/dx—3/2)>
1—c))sr /n< logJ| ——— +o(1
=Py ((1 - @)= 3y loaT (B 0
=/ logl \Veridsn
1—=cy)’s74/n < \/lo J(—) >+01
<( 0)'s7 & loglogn M

N2 - 1/Q2p/dx—3/2)
< Ph<(1 )y %< log/ ) ) +o(1),
c 3\ Vloglogn

where the last inequality follows from the definition of J, that is, s; > ¢ 'J,/log(J)/n.
From AssumE‘Eion 4(iii), that is, p > 3d, /4, we infer P,(J° > j:ndx) = 0(1) and, in particu-
lar, P, (2J° > Jiax) = 0(1) uniformly for 4 € H. The proof of {(J) = J follows analogously
using the condition p > 7d, /4. QE.D.

<P,
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