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THIS SUPPLEMENTARY APPENDIX CONTAINS MATERIALS to support our main paper. Ap-
pendix C presents additional simulation results. Appendix D provides proofs of our results
on confidence sets in Section 4.3. Appendix E presents additional technical lemmas and
all the proofs.

APPENDIX C: ADDITIONAL SIMULATIONS

This section provides additional simulation results. All the simulation results are based
on 5000 Monte Carlo replications for every experiment and are at the nominal level α=
0�05.

C.1. Adaptive Testing for Monotonicity: Simulation Design II

We generate the dependent variable Y according to the NPIV model (2.1), where

h(x) = c0

(
x/5 + x2

)+ cA sin(2πx)� (C.1)

c0 ∈ {0�1}, cA ∈ [0�0�6], and W = �(W ∗), X = �(ξW ∗ + √
1 − ξ2ε), U = (0�3ε +√

1 − (0�3)2ν)/2, where (W ∗� ε� ν) follows a multivariate standard normal distribution.
This design with (c0� cA) = (1�0) and ξ ∈{0�3�0�5} is the one in Chetverikov and Wilhelm
(2017). The null hypothesis is that the NPIV function h(·) is weakly increasing on the
support of X . The null is satisfied when cA ∈ [0�0�184), and is violated when cA ≥ 0�184.
We note that c0 = 0, cA = 0�0 corresponds to the boundary of the null hypothesis. Note
that the degree of nonlinearity/complexity of h given in (C.1) becomes larger as cA > 0
increases.

We implement our adaptive test T̂n given in (2.12) in the main paper, and the Fang
and Seo (2021) test for monotonicity of a NPIV function, denoted as FS. The FS test is
computed using R language translation of their Matlab program code, with their deter-
ministically chosen J = 3,K ≥ 3 and other tuning parameter choices detailed in their 2019
arXiv version (also see the description in our main paper).

Table C.I reports the empirical size of our adaptive test T̂n, withK(J) ∈{2J�4J�8J}, and
using quadratic B-spline basis functions with varying number of knots for the unrestricted
NPIV h. We also report the empirical size of the FS test, using J = 3 andK ∈{5�12�24} as
comparison to our adaptive test’sK(J) ∈{2J�4J�8J}. From Table C.I, we observe that our
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TABLE C.I

TESTING MONOTONICITY—EMPIRICAL SIZE OF OUR ADAPTIVE TEST T̂n AND OF THE FS TEST (WITH J = 3).

T̂n Ĵ T̂n Ĵ T̂n Ĵ FS FS FS

n c0 cA ξ K(J) = 2J K(J) = 4J K(J) = 8J K = 5 K = 12 K = 24

500 0 0�0 0�3 0.004 3.01 0.012 3.03 0.011 3.21 0.005 0.013 0.018
0�5 0.016 3.32 0.018 3.38 0.021 3.40 0.035 0.035 0.036
0�7 0.025 3.57 0.030 3.58 0.026 3.49 0.050 0.049 0.042

1 0�0 0�3 0.002 3.01 0.005 3.03 0.003 3.12 0.000 0.000 0.000
0�5 0.004 3.38 0.004 3.36 0.004 3.25 0.000 0.000 0.000
0�7 0.004 3.71 0.004 3.65 0.004 3.38 0.000 0.000 0.000

1 0�1 0�3 0.002 3.01 0.006 3.03 0.005 3.12 0.000 0.000 0.000
0�5 0.007 3.37 0.007 3.35 0.007 3.25 0.001 0.001 0.001
0�7 0.009 3.64 0.008 3.59 0.008 3.34 0.000 0.000 0.000

1000 0 0�0 0�3 0.009 3.01 0.016 3.07 0.015 3.27 0.011 0.021 0.026
0�5 0.023 3.50 0.025 3.47 0.028 3.45 0.051 0.046 0.044
0�7 0.034 3.87 0.034 3.97 0.034 3.52 0.059 0.055 0.047

1 0�0 0�3 0.003 3.02 0.005 3.06 0.004 3.15 0.000 0.000 0.000
0�5 0.006 3.63 0.005 3.46 0.006 3.28 0.000 0.000 0.000
0�7 0.003 4.23 0.003 4.22 0.003 3.46 0.000 0.000 0.000

1 0�1 0�3 0.004 3.02 0.008 3.06 0.005 3.15 0.000 0.001 0.001
0�5 0.009 3.59 0.009 3.44 0.010 3.29 0.001 0.001 0.001
0�7 0.011 4.09 0.010 4.10 0.009 3.38 0.000 0.000 0.000

5000 0 0�0 0�3 0.020 3.38 0.019 3.42 0.026 3.39 0.040 0.040 0.044
0�5 0.038 3.56 0.036 3.62 0.035 3.49 0.056 0.057 0.055
0�7 0.045 4.14 0.042 4.12 0.035 3.75 0.056 0.059 0.058

1 0�0 0�3 0.005 3.44 0.006 3.35 0.006 3.23 0.000 0.001 0.000
0�5 0.004 3.81 0.003 3.80 0.003 3.47 0.000 0.000 0.000
0�7 0.002 4.74 0.002 4.69 0.002 3.98 0.000 0.000 0.000

1 0�1 0�3 0.009 3.42 0.008 3.35 0.009 3.24 0.001 0.002 0.001
0�5 0.013 3.70 0.013 3.69 0.011 3.40 0.000 0.000 0.000
0�7 0.008 4.52 0.006 4.46 0.006 3.75 0.000 0.000 0.000

Note: Monte Carlo average value Ĵ. Nominal level α = 0�05. Design from Appendix C.1 with NPIV function (C.1). Instrument
strength increases in ξ.

adaptive test T̂n is slightly under-sized across different sample sizes, different instrument
strength, different K(J), and different design specifications. The FS test is mostly under-
sized, but is slightly over-sized at the boundary (c0 = 0, cA = 0�0) for sample sizes n =
1000�5000 and strong instrument strength ξ = 0�7 even when J = 3, K = 5 (the most
powerful choice in the 2019 arXiv version of Fang and Seo (2021)).

Figure C.1 provides empirical rejection probabilities of our adaptive test T̂n (dashed
plus and solid circle lines) with K(J) ∈ {4J�8J} and of the FS test (with J = 3, K = 5;
dotted square lines). The power curves of all tests improve as the instrument strength ξ
increases. Our adaptive test with K(J) = 8J has better empirical power in finite samples
when instrument is weak, but the choice of K(J) is less significant as the sample size
or the instrument strength increases. For instrument strength ξ = 0�3, the FS test has
almost trivial power for cA ∈ [0�2�0�5] even for large sample size n = 5000, while our
adaptive test T̂n has non-trivial power for all cA ≥ 0�3. Moreover, the finite-sample power
of our adaptive test T̂n increases much faster than the FS test as cA > 0�2 becomes larger.
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FIGURE C.1.—Testing monotonicity—empirical power of our adaptive test T̂n with K(J) = 4J (dashed plus
lines) and K(J) = 8J (solid circle lines) and the FS test (with J = 3, K = 5, dotted square lines). Design from
Appendix C.1 model (C.1) with c0 = 1. The vertical dotted line indicates when the null hypothesis is violated
(when cA ≥ 0�184). Instrument strength increases in ξ.

Figure C.1 shows the substantial finite-sample power gains through adaptation even in
small sample size n= 500.

REMARK C.1: When testing for inequality restrictions (IR) H0 = {h ∈ H : ∂lh ≥ 0},
such as monotonicity and convexity, we could also compute our adaptive test T̂n using
modified critical values in Step 2 as follows: The estimator in (2.6) can be written as
ĥR
J (·) =ψJ(·)′β̂R. By construction of the estimator, we have ∂lĥR

J (Xi) ≥ 0, for all 1 ≤ i≤ n,
or equivalently ∂lβ̂R ≥ 0, where the application of the derivative operator is understood
elementwise and rank(∂l) ≤ J. Let act be a submatrix of  such that ∂lactβ̂

R = 0. Set
γ̂J = max(1� rank(∂lact)) and compute for a given nominal level α ∈ (0�1):

η̂J(α) = q
(
α/#(În)� γ̂J

)− γ̂J√
γ̂J

� (C.2)

where q(a�γ) denotes the 100(1 − a)%-quantile of the chi-squared distribution with γ
degrees of freedom. Assuming that Jc ≤ γ̂J , J ∈ In, for some constant 0 < c ≤ 1 with
probability approaching 1 uniformly for h ∈H, Breunig and Chen (2021) established size
control of the test statistic using the modified critical values given in (C.2). See Breunig
and Chen (2021) also for simulations and real data application of testing for monotonicity
and convexity using these modified critical values. The simulations and empirical findings
reported in Breunig and Chen (2021) are virtually the same, in terms of empirical size
and power, as the ones reported in this revised version for testing inequalities.
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C.2. Simulations for Multivariate Instruments

This section presents additional simulations for testing parametric hypotheses in the
presence of multivariate conditioning variable W = (W1�W2). We set Xi =�(X∗

i ), W1i =
�(W ∗

1i), and W2i =�(W ∗
2i), where⎛⎜⎝X

∗
i

W ∗
1i

W ∗
2i
Ui

⎞⎟⎠ ∼N

⎛⎜⎝
⎛⎜⎝0

0
0
0

⎞⎟⎠ �
⎛⎜⎝ 1 ξ 0�4 0�3
ξ 1 0 0

0�4 0 1 0
0�3 0 0 1

⎞⎟⎠
⎞⎟⎠ � (C.3)

We generate the dependent variable Y according to the NPIV model (2.1) where
h(x) = −x/5 + cAx2. We test the null hypothesis of linearity, that is, whether cA = 0.

Horowitz (2006) assumed dx = dw and hence we cannot compare our adaptive test with
his for Design (C.3). Instead, we will compare our adaptive test T̂n against an adaptive
image-space test (IT), which is our proposed adaptive version of Bierens (1990)’s type
test for semi-nonparametric conditional moment restrictions.1 Specifically, our image-
space test (IT) is based on a leave-one-out sieve estimator of the quadratic functional
E[E[Y − hR(X)|W ]2], given by

D̂K = 2
n(n− 1)

∑
1≤i<i′≤n

(
Yi − ĥR(Xi)

)(
Yi′ − ĥR(Xi′)

)
bK(Wi)′(B′B/n

)−
bK(Wi′)�

where ĥR is a null restricted parametric estimator for the null parametric function hR. The
data-driven IT statistic is

ÎTn = 1
{
there exists K ∈ În such that nD̂K/V̂K >

(
q
(
α/#(În)�K

)−K)
/
√
K
}
�

with the estimator V̂K = ‖(B′B)−1/2
∑n

i=1(Yi − ĥR(Xi))2bK(Wi)bK(Wi)′(B′B)−1/2‖F , and
the adjusted index set În = {K ≤ K̂max : K = K2k where k = 0�1� � � � �kmax}, where K :=

√log logn�, kmax := �log2(n1/3/K), and the empirical upper bound K̂max = min{K >K :
10ζ2(K)

√
(logK)/n≥ smin((B′B/n)−1/2)}. Finally, q(a�K) is the 100(1 − a)%-quantile of

the chi-squared distribution withK degrees of freedom. In this simulation, it is convenient
to additionally weight the basis functions by (B′B/n)−1/2 to improve the finite-sample
performance of the IT statistic. Table C.II compares the empirical size of the adaptive
image-space test ÎTn with our adaptive structural-space test T̂n, at the 5% nominal level.
We see that both tests provide accurate size control. We also report the average choices
of sieve dimension parameters, as described in Section 5. The multivariate design (C.3)
leads to larger sieve dimension choices K̂ in adaptive image-space tests ÎTn, while the
sieve dimension choices Ĵ of our adaptive structural-space test T̂n are not sensitive to the
dimensionality (dw) of the conditional instruments.

Figure C.2 compares the empirical power of ÎTn and of T̂n, at the 5% nominal level,
using the sample sizes n = 500 (first and second rows) and n = 1000 (third and fourth
rows). The finite-sample empirical power curves of both tests increase with ξ and sam-
ple size n. For the scalar conditional instrument case, while our adaptive structural-space

1We refer readers to Breunig and Chen (2020) for the theoretical properties of the adaptive image-space
test.
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TABLE C.II

TESTING PARAMETRIC FORM—EMPIRICAL SIZE OF OUR ADAPTIVE TESTS T̂n AND OF ÎTn. NOMINAL LEVEL
α= 0�05. MONTE CARLO AVERAGE VALUE Ĵ. DESIGN FROM APPENDIX C.2. INSTRUMENT STRENGTH

INCREASES IN ξ.

n Design ξ T̂n, K(J) = 4J Ĵ ÎTn K̂

500 (5.1) 0�3 0.023 3.03 0.046 3�38
dx = dw 0�5 0.028 3.40 0.046 3�37

0�7 0.035 3.56 0.046 3�37

(C.3) 0�3 0.034 3.45 0.034 6�00
dx < dw 0�5 0.035 3.49 0.035 6�00

0�7 0.038 3.55 0.040 6�00

1000 (5.1) 0�3 0.022 3.07 0.053 3�40
0�5 0.027 3.48 0.051 3�39
0�7 0.037 3.58 0.049 3�39

(C.3) 0�3 0.039 3.47 0.032 6�93
0�5 0.040 3.50 0.038 6�92
0�7 0.043 3.58 0.037 6�90

5000 (5.1) 0�3 0.032 3.43 0.049 3�38
0�5 0.043 3.55 0.045 3�39
0�7 0.049 3.63 0.042 3�38

(C.3) 0�3 0.049 3.51 0.048 10�28
0�5 0.048 3.57 0.046 10�27
0�7 0.050 3.80 0.051 10�25

test T̂n is more powerful when ξ ∈ {0�3�0�5} (weaker strength of instruments), the finite-
sample power curves of both tests are similar when ξ = 0�7. For the multivariate con-
ditional instruments case, while the power of our adaptive structural-space test T̂n in-
creases with larger dimension dw, the adaptive image-space test ÎTn suffers from larger
dw and has lower power. The same patterns are also present when we compare the two
tests using size-adjusted empirical power curves (see our arXiv:2006.09587v3 version, Ap-
pendix C.3).

APPENDIX D: PROOFS OF INFERENCE RESULTS IN SECTION 4.3

PROOF OF COROLLARY 4.1: Proof of (4.8). We observe

lim sup
n→∞

sup
h∈H0

Ph
(
h /∈ Cn(α)

) = lim sup
n→∞

sup
h∈H0

Ph

(
max
J∈În

nD̂J(h)
η̂J(α)V̂J

> 1
)

≤ α�

where the last inequality is due to Step 1 and Step 3 of the proof of Theorem 4.1. In-
deed, in that proof, we can replace Ph0 by suph∈H0

Ph by adopting the uniform moment
conditions imposed in Assumption 2(i).

Proof of (4.9). Let J∗ be as in Step 2 of the proof of Theorem 4.1. We observe uniformly
for h ∈H1(δ◦rn) that

Ph
(
h /∈ Cn(α)

) = Ph

(
max
J∈În

nD̂J(h)
η̂J(α)V̂J

> 1
)

= 1 − Ph

(
max
J∈În

nD̂J(h)
η̂J(α)V̂J

≤ 1
)

= 1 − o(1)�

where the last equation is due to Step 2 and Step 3 of the proof of Theorem 4.1. Q.E.D.

http://arxiv.org/abs/2006.09587v3
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FIGURE C.2.—Testing parametric form—empirical power of our adaptive tests T̂n (solid circle lines) and
of ÎTn (dashed square lines). First and third rows: power comparisons in scalar IV case (dw = 1); second
and fourth rows: power comparisons in multivariate IV case (dw > 1). Design from Appendix C.2. Instrument
strength increases in ξ.

PROOF OF COROLLARY 4.2: For any h ∈H0, we analyze the diameter of the confidence
set Cn(α) under Ph. Lemma B.8 implies suph∈H0

Ph(Ĵmax > J) = o(1) and hence, it is suffi-
cient to consider the deterministic index set In given in (4.2). For all h1 ∈ Cn(α) ⊂ H0, it
holds for all J ∈ In by using the definition of the projection QJ given in (B.1):

‖h− h1‖L2(X) ≤ ∥∥QJ�J(h− h1)
∥∥
L2(X)

+ ‖�Jh− h‖L2(X) + ‖�Jh1 − h1‖L2(X)

≤ ∥∥QJ(h− h1)
∥∥
L2(X)

+O(
J−p/dx)� (D.1)
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due to the triangular inequality and the sieve approximation bound from the smoothness
restrictions imposed on H. By Theorem B.1, we have∣∣∥∥QJ(h− h1)

∥∥2

L2(X)
− D̂J(h1)

∣∣� n−1s−2
J

√
J + n−1/2s−1

J

(‖h− h1‖L2(X) + J−p/dx)
wpa1 uniformly for h ∈H0. Consequently, the definition of the confidence set Cn(α) with
h1 ∈ Cn(α) gives for all J ∈ In:∥∥QJ(h− h1)

∥∥2

L2(X)
� n−1η̂J(α)V̂J + n−1/2s−1

J

(‖h− h1‖L2(X) + J−p/dx)+ n−1s−2
J

√
J

� n−1
√

log logns−2
J

√
J + n−1/2s−1

J

(‖h− h1‖L2(X) + J−p/dx)
wpa1 uniformly for h ∈H0 by using Lemmas B.2, B.5, and B.4(ii). Consequently, inequal-
ity (D.1) yields for all J ∈ In:

‖h− h1‖2
L2(X) �

n−1
√

log logns−2
J

√
J + J−2p/dx

1 −CBn−1/2s−1
J

wpa1 uniformly for h ∈ H0. Now using that n−1/2s−1
J = o(1) for all J ∈ In, by Assump-

tion 4(i) we obtain ‖h− h1‖L2(X) � n−1/2(log logn)1/4s−1
J J

1/4 + J−p/dx with probability ap-
proaching 1 uniformly for h ∈ H0. Also, by Assumption 3 we have s−1

J � ν−1
J . We may

choose J = cJ◦ ∈ In for some constant c > 0 and n sufficiently large and hence, the result
follows. Q.E.D.

APPENDIX E: TECHNICAL RESULTS

Below, λmax(·) denotes the maximal eigenvalue of a matrix.

LEMMA E.1: Let Assumptions 1(ii)–(iii) and 2 hold. Then, wpa1 uniformly for h ∈H:

1
n(n− 1)

∑
i �=i′

(
Yi −�H0h(Xi)

)(
Yi′ −�H0h(Xi′)

)
bK(Wi)′(A′A− Â′Â

)
bK(Wi′)

� n−1VJ + n−1/2s−1
J

(‖h−�H0h‖L2(X) + J−p/dx)�
PROOF: Let �⊥

H0
:= id −�H0 . We establish an upper bound of

1
n2

∑
i�i′

(
Yi −�H0h(Xi)

)(
Yi′ −�H0h(Xi′)

)
bK(Wi)′(A′A− Â′Â

)
bK(Wi′)

= E
[
�⊥

H0
h(X)bK(W )

]′(
A′A− Â′Â

)
E
[
�⊥

H0
h(X)bK(W )

]
+ 2

(
1
n

∑
i

(
Yi −�H0h(Xi)

)
bK(Wi) − E

[
�⊥

H0
h(X)bK(W )

])′

× (
A′A− Â′Â

)
E
[
�⊥

H0
h(X)bK(W )

]
+

(
1
n

∑
i

(
Yi −�H0h(Xi)

)
bK(Wi)′ − E

[
�⊥

H0
h(X)bK(W )

]′
)(
A′A− Â′Â

)
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×
(

1
n

∑
i

(
Yi −�H0h(Xi)

)
bK(Wi)′ − E

[
�⊥

H0
h(X)bK(W )

]′
)

uniformly for h ∈ H. It is sufficient to bound the first summand on the right-hand side.
We make use of the decomposition

E
[
�⊥

H0
h(X)bK(W )

]′(
A′A− Â′Â

)
E
[
�⊥

H0
h(X)bK(W )

]
= 2 E

[
�⊥

H0
h(X)bK(W )

]′
A′(A− Â) E

[
�⊥

H0
h(X)bK(W )

]
− E

[
�⊥

H0
h(X)bK(W )

]′
(A− Â)′(A− Â) E

[
�⊥

H0
h(X)bK(W )

] =: 2T1 − T2�

We first consider the term T1 as follows:

T1 = E
[
�⊥

H0
h(X)bK(W )

]′
A′(Â−A) E

[
�J�

⊥
H0
h(X)bK(W )

]
+ E

[
�⊥

H0
h(X)bK(W )

]′
A′(Â−A) E

[(
�⊥

H0
h−�J�

⊥
H0
h
)
(X)bK(W )

]
:=A1 +A2� (E.1)

We now consider the term A1. Recall that QJ�Jh = �Jh and ŜG−1〈h�ψJ〉L2(X) =
n−1

∑
i �Jh(Xi)bK(Wi). We have((
G−1/2
b S

)−
l

E
[
�⊥

H0
h(X)b̃K(W )

])′
G
((
G−1/2
b S

)−
l

− (
Ĝ−1/2
b Ŝ

)−
l
Ĝ−1/2
b G1/2

b

)
× E

[
�J�

⊥
H0
h(X)b̃K(W )

]
= 〈
QJ�

⊥
H0
h��J�

⊥
H0
h− (

ψJ
)′(
Ĝ−1/2
b Ŝ

)−
l
Ĝ−1/2
b E

[
�⊥

H0
h(X)bK(W )

]〉
L2(X)

= 〈
QJ�

⊥
H0
h�ψJ

〉′
L2(X)

(
Ĝ−1/2
b Ŝ

)−
l
Ĝ−1/2
b

×
(

1
n

∑
i

�J�
⊥
H0
h(Xi)bK(Wi) − E

[
�⊥

H0
h(X)bK(W )

])
= 〈
QJ�

⊥
H0
h�ψJ

〉′
L2(X)

(
G−1/2
b S

)−
l

×
(

1
n

∑
i

�J�
⊥
H0
h(Xi)b̃K(Wi) − E

[
�J�

⊥
H0
h(X)b̃K(W )

])
+ 〈
QJ�

⊥
H0
h�ψJ

〉′
L2(X)

(
G−1/2
b S

)−
l
G−1/2
b S′((Ĝ−1/2

b Ŝ
)−
l
Ĝ−1/2
b G1/2

b − (
G−1/2
b S

)−
l

)
×

(
1
n

∑
i

�J�
⊥
H0
h(Xi)b̃K(Wi) − E

[
�J�

⊥
H0
h(X)b̃K(W )

]) =:A11 +A12�

where we used the notation b̃K(·) =G−1/2
b bK(·). Consider A11; we have

E |A11|2 ≤ n−1 E
∣∣〈QJ�

⊥
H0
h�ψJ

〉′
L2(X)

(
G−1/2
b S

)−
l
�J�

⊥
H0
h(X)b̃K(W )

∣∣2

≤ 2n−1
∥∥〈QJ�

⊥
H0
h�ψJ

〉′
L2(X)

(
G−1/2
b S

)−
l

∥∥2∥∥�KT�
⊥
H0
h
∥∥2

L2(W )

+ 2n−1
∥∥〈QJ�

⊥
H0
h�ψJ

〉′
L2(X)

(
G−1/2
b S

)−
l

∥∥2∥∥�KT
(
�⊥

H0
h−�J�

⊥
H0
h
)∥∥2

L2(W )
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� n−1
∥∥〈QJ�

⊥
H0
h�ψJ

〉′
L2(X)

(
G−1/2
b S

)−
l

∥∥2
�

where the second bound is due to the Cauchy–Schwarz inequality and the third bound
is due to Assumption 2(iv). Consider A12; we infer from Chen and Christensen (2018,
Lemma F.10(c)) and Assumption 2(ii) that

|A12|2 ≤ ∥∥〈QJ�
⊥
H0
h�ψJ

〉′
L2(X)

(
G−1/2
b S

)−
l

∥∥2∥∥G−1/2
b S′((Ĝ−1/2

b Ŝ
)−
l
Ĝ−1/2
b G1/2

b − (
G−1/2
b S

)−
l

)∥∥2

×
∥∥∥∥1
n

∑
i

�J�
⊥
H0
h(Xi)bK(Wi) − E

[
�J�

⊥
H0
h(X)bK(W )

]∥∥∥∥2

�
∥∥〈QJ�

⊥
H0
h�ψJ

〉′
L2(X)

(
G−1/2
b S

)−
l

∥∥2 × n−1s−2
J ζ

2
J (logJ) × n−1ζ2

J

� n−1
∥∥〈QJ�

⊥
H0
h�ψJ

〉′
L2(X)

(
G−1/2
b S

)−
l

∥∥2

wpa1 uniformly for h ∈ H. Next, we consider the term A2 of (E.1). Following the upper
bound of A12, we obtain wpa1 uniformly for h ∈H:∣∣E[

�⊥
H0
h(X)bK(W )

]′
A′G(Â−A) E

[(
h−�H0h−�J�

⊥
H0
h
)
(X)bK(W )

]∣∣2

≤ ∥∥〈QJ�
⊥
H0
h�ψJ

〉′
L2(X)

(
G−1/2
b S

)−
l

∥∥2∥∥G−1/2
b S

((
Ĝ−1/2
b Ŝ

)−
l
Ĝ−1/2
b G1/2

b − (
G−1/2
b S

)−
l

)∥∥2

× ∥∥〈T (�⊥
H0
h−�J�

⊥
H0
h
)
� b̃K

〉
L2(W )

∥∥2

�
∥∥〈QJ�

⊥
H0
h�ψJ

〉′
L2(X)

(
G−1/2
b S

)−
l

∥∥2∥∥�KT
(
�⊥

H0
h−�J�

⊥
H0
h
)∥∥2

L2(W )
× n−1s−2

J ζ
2
J (logJ)

� n−1
∥∥〈QJ�

⊥
H0
h�ψJ

〉′
L2(X)

(
G−1/2
b S

)−
l

∥∥2
�

using that s−2
J ‖�KT (�⊥

H0
h − �J�

⊥
H0
h)‖2

L2(W ) � ‖�⊥
H0
h − �J�

⊥
H0
h‖2

L2(X) by Assump-
tion 2(iv) and ζ2

J (logJ)‖h − �Jh‖2
L2(X) = O(1) by Assumption 2(iii). Finally, we obtain

|T1|≤|A1|+|A2|� n−1/2‖〈QJ�
⊥
H0
h�ψJ〉′

L2(X)(G
−1/2
b S)−

l ‖ wpa1 uniformly for h ∈H.
We next consider the term T2 using the decomposition

T2 ≤ 2 E
[
�J�

⊥
H0
h(X)bK(W )

]′
(Â−A)′G(Â−A) E

[
�J�

⊥
H0
h(X)bK(W )

]
+ 2 E

[
�⊥
J �

⊥
H0
h(X)bK(W )

]′
(Â−A)′G(Â−A) E

[
�⊥
J �

⊥
H0
h(X)bK(W )

]
=: 2T21 + 2T22�

where �⊥
J = id −�J is the projection. We first bound T21 using Assumption 2(ii):

T21 ≤
∣∣∣∣〈�J�

⊥
H0
h�ψJ

〉′
L2(X)

((
Ĝ−1/2
b Ŝ

)−
l
Ĝ−1/2
b S − IJ

)′(
Ĝ−1/2
b Ŝ

)−
l
Ĝ−1/2
b

×
(

1
n

∑
i

�J�
⊥
H0
h(Xi)b̃K(Wi) − E

[
�J�

⊥
H0
h(X)b̃K(W )

])∣∣∣∣
≤ ∥∥〈�J�

⊥
H0
h�ψJ

〉
L2(X)

∥∥‖S − Ŝ‖∥∥(Ĝ−1/2
b Ŝ

)−
l
Ĝ−1/2
b

∥∥2
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×
∥∥∥∥1
n

∑
i

�J�
⊥
H0
h(Xi)b̃K(Wi) − E

[
�J�

⊥
H0
h(X)b̃K(W )

]∥∥∥∥
�

∥∥�J(h−�H0h)
∥∥
L2(X)

n−1/2s−2
J ζJ

√
logJ × n−1/2s−1

J ζJ

� n−1/2s−1
J

∥∥�J(h−�H0h)
∥∥
L2(X)

wpa1 uniformly for h ∈ H. For T22, we note that uniformly in h ∈ H, ‖E[�⊥
J �

⊥
H0
h(X) ×

b̃K(W )]‖ = ‖�KT (�J�
⊥
H0
h−�⊥

H0
h)‖L2(W ) � sJJ−p/dx by Assumption 2(iv). Thus, follow-

ing the upper bound derivations of T21, we obtain T22 � n−1/2s−1
J J

−p/dx wpa1 uniformly for
h ∈H. Q.E.D.

LEMMA E.2: Under Assumption 2(i), it holds for h̃ ∈{h��H0h} that

sup
J∈In

sup
h∈H

λmax

(
Eh

[(
Y − h̃(X)

)2
b̃K(J) (W )b̃K(J) (W )′]) ≤ σ2 <∞�

PROOF: We have for any γ ∈R
K where K =K(J) that

γ′ Eh

[(
Y − h̃(X)

)2
b̃K(W )b̃K(W )′]γ

≤ E
[
Eh

[(
Y − h̃(X)

)2
|W

](
γ′b̃K(W )

)2]
≤ σ2 E

[(
γ′b̃K(W )

)2] = σ2γ′G−1/2
b E

[
bK(W )bK(W )′]G−1/2

b γ = σ2‖γ‖2

uniformly for h ∈ H and J ∈ In, where the second inequality is due to Assumption 2(i).
Q.E.D.

PROOF OF THEOREM B.1: From the definition of QJ given in (B.1), we infer∥∥QJ(h−�H0h)
∥∥2

L2(X)
= ∥∥AEh

[(
Y −�H0h(X)

)
bK(W )

]∥∥2 = ∥∥Eh

[
UJ

]∥∥2

using the notation UJ
i = (Yi −�H0h(Xi))AbK(Wi). The definition of D̂J implies

D̂J(�H0h) − ∥∥QJ(h−�H0h)
∥∥2

L2(X)

= 1
n(n− 1)

J∑
j=1

∑
i �=i′

(
UijUi′j − Eh[U1j]2

)
(E.2)

+ 1
n(n− 1)

∑
i �=i′

(
Yi −�H0h(Xi)

)(
Yi′ −�H0h(Xi′)

)
× bK(Wi)′(A′A− Â′Â

)
bK(Wi′)� (E.3)

Consider the summand in (E.2); we observe∣∣∣∣∣
J∑
j=1

∑
i �=i′

(
UijUi′j − Eh[U1j]2

)∣∣∣∣∣
2

=
J∑

j�j′=1

∑
i �=i′

∑
i′′ �=i′′′

(
UijUi′j − Eh[U1j]2

)(
Ui′′j′Ui′′′j′ − Eh[U1j′]2

)
�
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We distinguish three different cases. First: i, i′, i′′, i′′′ are all different; second: either i= i′′
or i′ = i′′′; or third: i= i′ and i′ = i′′′. We thus calculate for each j� j′ ≥ 1 that∑

i �=i′

∑
i′′ �=i′′′

(
UijUi′j − Eh[U1j]2

)(
Ui′′j′Ui′′′j′ − Eh[U1j′]2

)
=

∑
i�i′�i′′�i′′′all different

(
UijUi′j − Eh[U1j]2

)(
Ui′′j′Ui′′′j′ − Eh[U1j′]2

)
+ 2

∑
i �=i′ �=i′′

(
UijUi′j − Eh[U1j]2

)(
Ui′′j′Ui′j′ − Eh[U1j′]2

)
+

∑
i �=i′

(
UijUi′j − Eh[U1j]2

)(
Uij′Ui′j′ − Eh[U1j′]2

)
�

The expectation of the first term on the right-hand side vanishes due to independent
observations and thus, we have

Eh

∣∣∣∣∣
J∑
j=1

∑
i �=i′

(
UijUi′j − Eh[U1j]2

)∣∣∣∣∣
2

= 2n(n− 1)(n− 2)
J∑

j�j′=1

Eh

[(
U1jU2j − Eh[U1j]2

)(
U3j′U2j′ − Eh[U1j′]2

)]
︸ ︷︷ ︸

I

+ n(n− 1)
J∑

j�j′=1

Eh

[(
U1jU2j − Eh[U1j]2

)(
U1j′U2j′ − Eh[U1j′]2

)]
︸ ︷︷ ︸

II

�

Now using ‖(G−1/2
b SG−1/2)−

l ‖ = s−1
J together with the notation ψ̃J =G−1/2ψJ , we obtain∥∥〈QJ(h−�H0h)�ψJ

〉′
L2(X)

(
G−1/2
b S

)−
l

∥∥
= ∥∥〈QJ(h−�H0h)� ψ̃J

〉′
L2(X)

(
G−1/2
b SG−1/2

)−
l

∥∥
≤ s−1

J

∥∥〈QJ(h−�H0h)� ψ̃J
〉
L2(X)

∥∥
� s−1

J

(‖h−�H0h‖L2(X) + J−p/dx)� (E.4)

where the last equation is due to Lemma B.1(i). Consequently, we bound the term I by

I =
J∑

j�j′=1

Eh[U1j] Eh[U1j′]Covh(U1j�U1j′)

= Eh

[
UJ

1

]′
Covh

(
UJ

1 �U
J
1

)
Eh

[
UJ

1

]
≤ λmax

(
Varh

((
Y −�H0h(X)

)
b̃K(W )

))∥∥(G−1/2
b SG−1/2

)−
l

Eh

[
UJ

1

]∥∥2

≤ σ2
∥∥((G−1/2

b S
)−
l

Eh

[(
Y −�H0h(X)

)
b̃K(W )

])′
G
(
G−1/2
b S

)−
l

∥∥2
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= σ2
∥∥〈QJ(h−�H0h)�ψJ

〉′
L2(X)

(
G−1/2
b S

)−
l

∥∥2

� s−2
J

(‖h−�H0h‖2
L2(X) + J−2p/dx

)
�

using UJ
i = (Yi −�H0h(Xi))(G−1/2

b SG−1/2)−
l b̃

K(Wi) and Lemma E.2. For term II, we ob-
serve

II =
J∑

j�j′=1

Eh[U1jU1j′]2 −
(

J∑
j=1

Eh[U1j]2

)2

≤
J∑

j�j′=1

Eh[U1jU1j′]2 = V 2
J �

Thus, the upper bounds derived for the terms I and II imply for all n≥ 2:

Eh

∣∣∣∣∣ 1
n(n− 1)

J∑
j=1

∑
i �=i′

(
UijUi′j − Eh[U1j]2

)∣∣∣∣∣
2

�
‖h−�H0h‖2

L2(X) + J−2p/dx

ns2
J

+ V 2
J

n2 � (E.5)

Thus, equality (E.3) implies the result by employing Lemma B.2 and Lemma E.1. Q.E.D.

PROOF OF LEMMA A.1: By Lemma E.1 and the decomposition (E.2)–(E.3), we obtain

Ph0

(
nD̂J(h0)
VJ

> ηJ(α)
)

= Ph0

(
1

VJ(n− 1)

J∑
j=1

∑
i �=i′
UijUi′j > ηJ(α)

)
+ o(1)�

Using the martingale central limit theorem (see, e.g., Breunig (2020, Lemma A.3)), we
obtain

Ph0

(
1√

2VJ(n− 1)

J∑
j=1

∑
i �=i′
UijUi′j > z1−α

)
= α+ o(1)�

where z1−α denotes the (1 − α)-quantile of the standard normal distribution. Further,
Lemma B.4(i) implies VJ/V̂J = 1 wpa1 uniformly for h ∈H, and since ηJ(α)/

√
2 = q(α�J)−J√

2J
converges to z1−α as J tends to infinity, the result follows. Q.E.D.

PROOF OF LEMMA B.1: Proof of (i): Using the notation b̃K(·) := G−1/2
b bK(·), we ob-

serve for all h ∈H that∥∥QJ(h−�H0h)
∥∥
L2(X)

= ∥∥(G−1/2
b SG−1/2

)−
l

E
[
b̃K(W )(h−�H0h)(X)

]∥∥
≤ ∥∥(G−1/2

b SG−1/2
)−
l

E
[
b̃K(W )(�Jh−�J�H0h)(X)

]∥∥
+ ∥∥(G−1/2

b SG−1/2
)−
l

E
[
b̃K(W )

(
(h−�H0h)(X) − (�Jh−�J�H0h)(X)

)]∥∥
≤ ‖�Jh−�J�H0h‖L2(X) + s−1

J

∥∥�KT
(
(h−�H0h) − (�Jh−�J�H0h)

)∥∥
L2(W )

≤ ‖�Jh−�J�H0h‖L2(X) +O(
J−p/dx)

by Assumption 2(iv).
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Proof of (ii): We observe ‖QJh− h‖L2(X) ≤ ‖QJ(h−�Jh)‖L2(X) + ‖�Jh− h‖L2(X) . The
result thus follows by replacing �H0h with �Jh in the derivation of (i). Q.E.D.

PROOF OF LEMMA B.2: For any J × J matrix M , it holds ‖M‖F ≤ √
J‖M‖ and hence

V 2
J = ∥∥(G−1/2

b SG−1/2
)−
l

Eh

[(
Y − h(X)

)2
b̃K(W )b̃K(W )′](G−1/2

b SG−1/2
)−
l

∥∥2

F

≤ J∥∥(G−1/2
b SG−1/2

)−
l

∥∥4∥∥Eh

[(
Y − h(X)

)2
b̃K(W )b̃K(W )′]∥∥2

�

The result now follows from ‖(G−1/2
b SG−1/2)−

l ‖ = s−1
J and Lemma E.2. Q.E.D.

PROOF OF LEMMA B.3: In the following, let ej be the unit vector with 1 at the jth po-
sition. Introduce a unitary matrix Q such that, by Schur decomposition, Q′AGbA

′Q =
diag(s−2

1 � � � � � s
−2
J ). We make use of the notation ŨJ

i = (Yi−h(Xi))Q′AbK(Wi). Now, since
the Frobenius norm is invariant under unitary matrix multiplication, we have

V 2
J =

J∑
j�j′=1

Eh[Ũ1jŨ1j′]2 ≥
J∑
j=1

Eh

[
Ũ2

1j

]2 =
J∑
j=1

(
Eh

∣∣(Y − h(X)
)
e′
jQ

′AbK(W )
∣∣2)2
�

Consequently, using the lower bound infw∈W infh∈H Eh[(Y − h(X))2|W =w] ≥ σ2 by As-
sumption 1(i), we obtain uniformly for h ∈H:

V 2
J ≥ σ4

J∑
j=1

(
E
[
e′
jQ

′AbK(W )bK(W )′A′Qej
])2

= σ4
J∑
j=1

(
e′
jQ

′AGbA
′Qej

)2

= σ4
J∑
j=1

(
e′
j diag

(
s−2

1 � � � � � s
−2
J

)
ej
)2 ≥ σ4

J∑
j=1

s−4
j �

which proves the result. Q.E.D.

Recall the definition Ch = maxe∈SK◦
∫ 1

0 (1 + logN[](ε‖Fh�e‖L2(Z)�Fh�e�L
2(Z)))1/2dε.

LEMMA E.3: Let Assumptions 1(ii)–(iii), 2(i), 4(i)(iii), and 5(ii) hold. Then, for J = J◦,
we have wpa1 uniformly for h ∈H1(δ◦rn):∣∣∣∣ 1

n(n− 1)

∑
i �=i′
Ui

(
ĥR
J

)
Ui′

(
ĥR
J

)
aJ�ii′ − Eh

[
Ui

(
ĥR
J

)
Ui′

(
ĥR
J

)
aJ�ii′

]∣∣∣∣
� n−1/2s−1

J Ch
(‖h−H0‖L2(X) + J−p/dx)+ n−1s−2

J

√
J�

where Ui(φ) = Yi −φ(Xi) and aJ�ii′ = bK(Wi)′A′AbK(Wi′).
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PROOF: For simplicity of notation, we write J instead of J◦ throughout the proof. We
observe for all h ∈H1(δ◦rn) that

1
n(n− 1)

∑
i �=i′
Ui

(
ĥR
J

)
Ui′

(
ĥR
J

)
aJ�ii′ − Eh

[
Ui

(
ĥR
J

)
Ui′

(
ĥR
J

)
aJ�ii′

]
= 1
n(n− 1)

∑
i �=i′
Ui(�H0h)Ui′ (�H0h)aJ�ii′ − Eh

[
Ui(�H0h)Ui′ (�H0h)aJ�ii′

]
+ 2
n(n− 1)

∑
i �=i′
Ui(�H0h)

(
�H0h− ĥR

J

)
(Xi′)aJ�ii′

− Eh

[
Ui(�H0h)

(
�H0h− ĥR

J

)
(Xi′)aJ�ii′

]
+ 1
n(n− 1)

∑
i �=i′

(
�H0h− ĥR

J

)
(Xi)

(
�H0h− ĥR

J

)
(Xi′)aJ�ii′

− Eh

[(
�H0h− ĥR

J

)
(Xi)

(
�H0h− ĥR

J

)
(Xi′)aJ�ii′

]
=: T1 + 2T2 + T3�

From the proof of Theorem B.1, we conclude suph∈H1(δ◦rn) Eh|T1| � n−1s−2
J

√
J. Con-

sider T2. Below, we let aJi = AbK(Wi) = (G−1/2
b SG−1/2)−

� b̃
K(Wi). By Assumption 5(ii),

suph∈H1(δ◦rn) Ph(ζJCh‖ĥR
J −�H0h‖L2(X) > C) → 0 and consequently may assume that ĥR

J ∈
H0�J(h) := {‖φ−�H0h‖L2(X) ≤ [ζJCh]−1 :φ ∈ H0�J}. We have for all h ∈ H1(δ◦rn) that the
absolute value of T2 is bounded by

sup
φ∈H0�J (h)

∣∣∣∣ 1
n(n− 1)

∑
i �=i′

(
Ui(�H0h)aJi − Eh

[
U (�H0h)aJ

])′

× (
(�H0h−φ)(Xi′)aJi′ − E

[
(�H0h−φ)(X)aJ

])∣∣∣∣
+

∣∣∣∣1
n

∑
i

(
Ui(�H0h)aJi − Eh

[
U (�H0h)aJ

])′
E
[(
�H0h− ĥR

J

)
(X)aJ

])∣∣∣∣
+ sup

φ∈H0�J (h)

∣∣∣∣1
n

∑
i

(
(�H0h−φ)(Xi)aJi − E

[
(�H0h−φ)(X)aJ

])′
Eh

[
U (�H0h)aJ

]∣∣∣∣
=: T21 + T22 + T23�

Below, we let ak�i = bK(Wi)′A′AG1/2
b ek. Note that E‖ak�i‖2 ≤ ‖(G−1/2

b SG−1/2)−
� ‖4 = s−4

J for
all k = 1� � � � �K. We obtain uniformly for h ∈ H1(δ◦rn) by van der Vaart and Wellner
(2000, Theorem 2.14.2) that

Eh T21 ≤
K∑
k=1

Eh

∣∣∣∣1
n

∑
i

Ui(�H0h)ak�i − Eh

[
U (�H0h)ak

]∣∣∣∣
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× Eh sup
φ∈H0�J (h)

∣∣∣∣ 1
n− 1

∑
i′

(�H0h−φ)(Xi′)b̃k(Wi′)

− Eh

[
(�H0h−φ)(X)b̃k(W )

]∣∣∣∣
� Ch
n

√√√√ K∑
k=1

Eh

[∣∣Ui(�H0h)
∣∣2∥∥G−1/2

b A′AbK(W )
∥∥2]

×
√√√√ K∑

k=1

Eh sup
φ∈H0�J (h)

∣∣(�H0h−φ)(X)b̃k(W )
∣∣2

� Ch
n
σs−2

J

√
JζJ‖�H0h−�J‖L2(X) � n−1s−2

J

√
J

for some �J ∈ H0�J(h) and using that Eh[|U (�H0h)|2|W ] ≤ σ2 by Assumption 2(i). Fur-
ther, we evaluate uniformly for h ∈H1(δ◦rn):

Eh T22 = σn−1/2
√

E|
(
aJ

)′
Eh

[(
�H0h− ĥR

J

)
(X)aJ

]
|2

≤ σn−1/2s−2
J sup

φ∈H0�J (h)
‖�KT (�H0h−φ)‖L2(W )

� n−1/2s−1
J

(‖h−H0‖L2(X) + J−p/dx)�
where, in the last equation, we used Assumption 2(iv) and ‖h − �H0h‖L2(X) = ‖h −
H0‖L2(X) . Consider T23. Below, we make use of the relation E[U (�H0h)aJ]′aJi = 〈QJ(h−
�H0h)�ψJ〉′

L2(X) (G
−1/2
b S)−

� b̃
K(Wi) and obtain uniformly for h ∈H1(δ◦rn):

Eh T23 ≤ ∥∥〈QJ(h−�H0h)�ψJ
〉′
L2(X)

(
G−1/2
b S

)−
�

∥∥
× Eh sup

e∈SK◦−1
sup

φ∈H0�J (h)

∣∣∣∣1
n

∑
i

(�H0h−φ)(Xi)b̃K(Wi)′e

− E
[
(�H0h−φ)(X)b̃K(W )′e

]∣∣∣∣
�

∥∥〈QJ(h−�H0h)�ψJ
〉′
L2(X)

(
G−1/2
b S

)−
�

∥∥× Chn−1/2ζJ‖�H0h−�J‖L2(X)

� Chn−1/2s−1
J

(‖h−H0‖L2(X) + J−p/dx)�
where we used that supw |̃bK(w)′e|≤ ζJ for all e ∈ SK◦ . Consider T3. We have

|T3| ≤ sup
φ∈H0�J (h)

∣∣∣∣ 1
n(n− 1)

∑
i �=i′

(
(�H0h−φ)(Xi)aJi − E

[
(�H0h−φ)(X)aJ

])′

× (
(�H0h−φ)(Xi′)aJi′ − E

[
(�H0h−φ)(X)aJ

])∣∣∣∣
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+ 2 sup
φ∈H0�J (h)

∣∣∣∣1
n

∑
i

(
(�H0h−φ)(Xi)aJi − E

[
(�H0h−φ)(X)aJ

])′

× E
[
(�H0h−φ)(X)aJ

]∣∣∣∣
=: T31 + T32�

We evaluate for the first term on the right-hand side that uniformly for h ∈H1(δ◦rn):

ET31 ≤ s−2
J

K∑
k=1

(
E sup
φ∈H0�J (h)

∣∣∣∣1
n

∑
i

(�H0h−φ)(Xi)b̃k(Wi) − E
[
(�H0h−φ)(X)b̃k(W )

]∣∣∣∣)2

� C2
h

ns2
J

E sup
φ∈H0�J (h)

∥∥(�H0h−φ)(X)b̃K(W )
∥∥2

� C2
h

ns2
J

ζ2
J‖�H0h−�J‖2

L2(X) �
√
J

ns2
J

�

for some�J ∈H0�J(h) and using that C2
h �

√
J. Further, we have E[(�H0h−φ)(X)aJ]′aJi =

〈QJ(�H0h−φ)�ψJ〉′
L2(X)(G

−1/2
b S)−

� b̃
K(Wi) and thus, following the derivation of the bound

of T23, we obtain

ET32 ≤ sup
φ∈H0�J (h)

∥∥〈QJ(φ−�H0h)�ψJ
〉′
L2(X)

(
G−1/2
b S

)−
�

∥∥
× E sup

e∈SK◦
sup

φ∈H0�J (h)

∣∣∣∣1
n

∑
i

(φ−�H0h)(Xi)b̃K(Wi)′e − E
[
(φ−�H0h)(X)b̃K(W )′e

]∣∣∣∣
� n−1/2s−1

J Ch
(‖h−�H0h‖L2(X) + J−p/dx)

uniformly for h ∈ H1(δ◦rn), where the last equation is due to Assumption 5(ii). Finally,
the result follows from an application of Markov’s inequality. Q.E.D.

LEMMA E.4: Let Assumptions 1(ii)–(iii), 2(i), 4(i)(iii), and 5(ii) hold. Then, for J = J◦,
we have wpa1 uniformly for h ∈H1(δ◦rn):

1
n(n− 1)

∑
i �=i′

(
Yi − ĥR

J (Xi)
)(
Yi′ − ĥR

J (Xi′)
)
bK(Wi)′(A′A− Â′Â

)
bK(Wi′)

� n−1/2s−1
J Ch

(‖h−H0‖L2(X) + J−p/dx)+ n−1s−2
J

√
J�

PROOF: For simplicity of notation, we write J instead of J◦ throughout the proof. Fol-
lowing the proof of Lemma E.1, it is sufficient to control

Eh

[(
h− ĥR

J

)
(X)bK(W )

]′(
A′A− Â′Â

)
Eh

[(
h− ĥR

J

)
(X)bK(W )

]
= 2 Eh

[(
h− ĥR

J

)
(X)bK(W )

]′
A′(A− Â) Eh

[(
h− ĥR

J

)
(X)bK(W )

]
− Eh

[(
h− ĥR

J

)
(X)bK(W )

]′
(A− Â)′(A− Â) Eh

[(
h− ĥR

J

)
(X)bK(W )

] =: 2T1 − T2�
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We first consider the term T1 using the decomposition:

T1 = Eh

[(
h− ĥR

J

)
(X)bK(W )

]′
A′(Â−A) Eh

[
�J

(
h− ĥR

J

)
(X)bK(W )

]
+ Eh

[(
h− ĥR

J

)
(X)bK(W )

]′
A′(Â−A)

× Eh

[(
h− ĥR

J −�J

(
h− ĥR

J

))
(X)bK(W )

]
� (E.6)

Consider the first summand on the right-hand side of equation (E.6). By Assumption 5(ii),
suph∈H1(δ◦rn) Ph(ζJCh‖ĥR

J −�H0h‖L2(X) > C) → 0 and consequently may assume that ĥR
J ∈

H0�J(h) :={φ ∈H0�J : ‖φ−�H0h‖L2(X) ≤ [ζJCh]−1}. We calculate

sup
φ∈H0�J (h)

∣∣((G−1/2
b S

)−
l

E
[
(h−φ)(X)b̃K(W )

])′
G
((
G−1/2
b S

)−
l

− (
Ĝ−1/2
b Ŝ

)−
l
Ĝ−1/2
b G1/2

b

)
× E

[
(h−φ)(X)b̃K(W )

]∣∣
= sup

φ∈H0�J (h)

∣∣∣∣〈QJ(h−φ)�ψJ
〉′
L2(X)

(
G−1/2
b S

)−
l

×
(

1
n

∑
i

�J(h−φ)(Xi)b̃K(Wi) − E
[
�J(h−φ)(X)b̃K(W )

])∣∣∣∣
+ sup

φ∈H0�J (h)

∣∣∣∣〈QJ(h−φ)�ψJ
〉′
L2(X)

(
G−1/2
b S

)−
l
G−1/2
b S

((
Ĝ−1/2
b Ŝ

)−
l
Ĝ−1/2
b G1/2

b − (
G−1/2
b S

)−
l

)
×

(
1
n

∑
i

�J(h−φ)(Xi)b̃K(Wi) − E
[
�J(h−φ)(X)b̃K(W )

])∣∣∣∣ =: T11 + T12�

Consider T11, which coincides with the term T32 in the proof of Lemma E.3 and thus, we
have E|T11|� n−1/2s−1

J Ch(‖h−H0‖L2(X) + J−p/dx). To establish an upper bound for T12, we
infer from Chen and Christensen (2018, Lemma F.10(c)) that

|T12|2 ≤ sup
φ∈H0�J (h)

∥∥〈QJ(h−φ)�ψJ
〉′
L2(X)

(
G−1/2
b S

)−
l

∥∥2

× ∥∥G−1/2
b S

((
Ĝ−1/2
b Ŝ

)−
l
Ĝ−1/2
b G1/2

b − (
G−1/2
b S

)−
l

)∥∥2

× sup
φ∈H0�J (h)

∥∥∥∥1
n

∑
i

�J(h−φ)(Xi)bK(Wi) − E
[
�J(h−φ)(X)bK(W )

]∥∥∥∥2

� sup
φ∈H0�J (h)

∥∥〈QJ(h−φ)�ψJ
〉′
L2(X)

(
G−1/2
b S

)−
l

∥∥2 × n−1s−2
J ζ

2
J (logJ) × n−1ζ2

JC2
h

� n−1s−2
J C2

h

(‖h−�H0h‖2
L2(X) + J−2p/dx

)
wpa1 uniformly for h ∈ H1(δ◦rn), where the last equation is due to s−1

J ζ
2
J

√
(logJ)/n =

O(1) from Assumption 4(i). Consider the second summand on the right-hand side of
equation (E.6). Following the upper bound of T12, we obtain

sup
φ∈H0�J (h)

∣∣E[
(h−φ)(X)bK(W )

]′
A′G(Â−A) E

[(
h−φ−�J(h−φ)

)
(X)bK(W )

]∣∣2
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≤ sup
φ∈H0�J (h)

∥∥〈QJ(h−φ)�ψJ
〉′
L2(X)

(
G−1/2
b S

)−
l

∥∥2

× ∥∥G−1/2
b S′((Ĝ−1/2

b Ŝ
)−
l
Ĝ−1/2
b G1/2

b − (
G−1/2
b S

)−
l

)∥∥2

× sup
φ∈H0�J (h)

∥∥〈T (h−φ−�J(h−φ)
)
� b̃K

〉
L2(W )

∥∥2

� sup
φ∈H0�J (h)

∥∥〈QJ(h−φ)�ψJ
〉′
L2(X)

(
G−1/2
b S

)−
l

∥∥2
sup

φ∈H0�J (h)

∥∥�KT
(
h−φ−�J(h−φ)

)∥∥2

L2(W )

× n−1s−2
J ζ

2
J (logJ)

� n−1s−2
J

(‖h−�H0h‖2
L2(X) + J−2p/dx

)
wpa1 uniformly for h ∈H1(δ◦rn), using that s−2

J ‖�KT (h−�H0h−�J(h−�H0h))‖2
L2(W ) �

‖h−�H0h−�J(h−�H0h)‖2
L2(X) by Assumption 4(i) and ζ2

J (logJ)‖h−�Jh‖2
L2(X) =O(1)

by Assumption 4(iii).
We now consider the term T2 using the decomposition

T2 ≤ 2 sup
φ∈H0�J (h)

∣∣E[
�J(h−φ)(X)bK(W )

]′
(Â−A)′G(Â−A) E

[
�J(h−φ)(X)bK(W )

]∣∣
+ 2 sup

φ∈H0�J (h)

∣∣E[
�⊥
J (h−φ)(X)bK(W )

]′
(Â−A)′G(Â−A)

× E
[
�⊥
J (h−φ)(X)bK(W )

]∣∣
=: 2T21 + 2T22�

where �⊥
J = id −�J is the projection. We bound T21 as follows:

T21 ≤ sup
φ∈H0�J (h)

∣∣∣∣〈�J(h−φ)�ψJ
〉′
L2(X)

((
Ĝ−1/2
b Ŝ

)−
l
Ĝ−1/2
b S − IJ

)′(
Ĝ−1/2
b Ŝ

)−
l
Ĝ−1/2
b

×
(

1
n

∑
i

�J(h−φ)(Xi)b̃K(Wi) − E
[
�J(h−φ)(X)b̃K(W )

])∣∣∣∣
≤ sup

φ∈H0�J (h)

∥∥〈�J(h−φ)�ψJ
〉
L2(X)

∥∥‖S − Ŝ‖∥∥(Ĝ−1/2
b Ŝ

)−
l
Ĝ−1/2
b

∥∥2

×
∥∥∥∥1
n

∑
i

�J(h−φ)(Xi)b̃K(Wi) − E
[
�J(h−φ)(X)b̃K(W )

]∥∥∥∥
� sup

φ∈H0�J (h)

∥∥�J(h−φ)
∥∥
L2(X)

× n−1/2s−2
J ζJ

√
logJ × n−1/2ζJCh

� n−1/2s−1
J Ch

(‖h−�H0h‖L2(X) + J−p/dx)
wpa1 uniformly for h ∈ H1(δ◦rn). For T22, we note that uniformly in h ∈ H and
φ ∈ H0�J(h), ‖E[�⊥

J (h − φ)(X)b̃K(W )]‖ = ‖�KT�
⊥
J (h − φ)‖L2(W ) � sJJ

−p/dx by As-
sumption 2(iv). Thus, following the upper bound derivations of T21, we obtain T22 �
n−1/2s−1

J J
−p/dx wpa1 uniformly for h ∈H1(δ◦rn). Q.E.D.
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LEMMA E.5: Let Assumptions 1(i)–(iii), 2(i), and 4 be satisfied. Then, using the notation
So :=G−1/2

b SG−1/2, we have for some constant C > 0:

(i) P
(

max
J∈In

{
s2
J

√
n

ζJ
√

logJ

∥∥(Ĝ−1/2
b ŜĜ−1/2

)−
l
Ĝ−1/2
b G1/2

b − (
So

)−
l

∥∥}>C)
= o(1)�

(ii) P
(

max
J∈In

{
s2
J

√
n

ζJ
√

logJ

∥∥So((Ĝ−1/2
b ŜĜ−1/2

)−
l
Ĝ−1/2
b G1/2

b − (
So

)−
l

)∥∥}>C)
= o(1)�

PROOF: The results can be established by following the same proof from Chen,
Christensen, and Kankanala (2024, Lemma C.4) with their (τJ�

√
J) replaced by our

(s−1
J � ζJ). Q.E.D.

LEMMA E.6: Let Assumptions 1(i)–(iii), 2(i), and 4(i) hold. Then, we have

Ph

(
max
J∈In

∣∣∣∣ (log logJ)−1/2

(n− 1)VJ

∑
i �=i′
Ui(�H0h)Ui′ (�H0h)bK(Wi)′(A′A− Â′Â

)
bK(Wi′)

∣∣∣∣> 1 − c0

8

)
= o(1)

uniformly for h ∈H0, where Ui(φ) = Yi −φ(Xi) and c0 is as in the proof of Theorem 4.1.

PROOF: Let IsJ denote the J-dimensional identity matrix multiplied by the vector
C0(s1� � � � � sJ)′ for some sufficiently large constant C0 and where s−1

j , 1 ≤ j ≤ J, are the
nondecreasing singular values of AG1/2

b = (G−1/2
b SG−1/2)−

l . There exists a unitary matrix
Q such that∑

i �=i′
Ui(�H0h)Ui′ (�H0h)bK(Wi)′(A′A− Â′Â

)
bK(Wi′)

≤
∥∥∥∥∑

i

Ui(�H0h)b̃K(Wi)′QI−1
sJ

∥∥∥∥2∥∥IsJQ′G1/2
b

(
A′A− Â′Â

)
G1/2
b QIsJ

∥∥
=

∑
i �=i′
Ui(�H0h)Ui′ (�H0h)b̃K(Wi)′QI−2

sJ
Q′b̃K(Wi′)

∥∥IsJQ′G1/2
b

(
A′A− Â′Â

)
G1/2
b QIsJ

∥∥
+

∑
i

∥∥Ui(�H0h)b̃K(Wi)QI−1
sJ

∥∥2∥∥IsJQ′G1/2
b

(
A′A− Â′Â

)
G1/2
b QIsJ

∥∥�
The fourth moment condition imposed in Assumption 2(i) implies uniformly for h ∈H0:

Eh max
J∈In

∣∣∣∣ 1
nVJ

∑
i

(∥∥Ui(�H0h)b̃K(Wi)QI−1
sJ

∥∥2 − Eh

∥∥U (�H0h)b̃K(W )QI−1
sJ

∥∥2)∣∣∣∣2

� n−1ζ2
J

∑
J∈In

V −2
J s−4

J

� n−1ζ2
J

∑
J∈In

(
J∑
j=1

s4
Js

−4
j

)−1

� n−1ζ2
J

∑
J∈In

J−1 = o(1)�
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due to Lemma B.3 and the definition of the index set In. Consequently, from the second
moment condition imposed in Assumption 2(i), we obtain uniformly for J ∈ In:

n−1
∑
i

∥∥(Yi −�H0h(Xi)
)
b̃K(Wi)QI−1

sJ

∥∥2 ≤ σ2c−1
0 ζJ

(
J∑
j=1

s−4
j

)1/2

≤ σ2σ−2c−1
0 ζJVJ

with probability approaching 1 (under h ∈H0), by making use of Lemma B.3. Further, we
obtain uniformly for h ∈H0:

Ph

(
max
J∈In

∣∣∣∣ (log logJ)−1/2

(n− 1)VJ

∑
i�i′
Ui(�H0h)Ui′ (�H0h)bK(Wi)′(A′A− Â′Â

)
bK(Wi′)

∣∣∣∣> 1 − c0

8

)

≤ Ph

(
max
J∈In

∣∣∣∣ (log logJ)−1/2

(n− 1)VJ

∑
i �=i′
Ui(�H0h)Ui′ (�H0h)b̃K(Wi)′QI−2

sJ
Q′b̃K(Wi′)

∣∣∣∣> 1 − c0

8

)

+ Ph

(
max
J∈In

(∥∥IsJQG1/2
b

(
A′A− Â′Â

)
G1/2
b QIsJ

∥∥)> 1 − c0

16

)
+ Ph

(
max
J∈In

(
σ2σ−2c−1

0 ζJ(log logJ)−1/2
∥∥IsJQG1/2

b

(
A′A− Â′Â

)
G1/2
b Q

′IsJ
∥∥)> 1 − c0

16

)
+ o(1)

=: T1 + T2 + T3 + o(1)�

Note that T1 is arbitrarily small for C0 sufficiently large by following Step 1 in the proof of
Theorem 4.1. Consider T2. We make use of the inequality∥∥IsJQG1/2

b

(
Â′Â−A′A

)
G1/2
b Q

′IsJ
∥∥

≤ 2
∥∥IsJQG1/2

b (Â−A)′AG1/2
b Q

′IsJ
∥∥+ ∥∥(Â−A)G1/2

b QIsJ
∥∥2
�

It is sufficient to consider the first summand on the right-hand side. Note that ‖AG1/2
b ×

Q′IsJ‖ ≤ C−1
0 . Consequently, from Lemma E.5(ii) we infer

P
(

max
J∈In

{
s2
J

√
n

ζJ
√

logJ

∥∥IsJQG1/2
b (Â−A)′AG1/2

b Q
′IsJ

∥∥}>C)
= o(1)�

Assumption 4(i), that is, s−1
J ζ

2
J

√
(logJ)/n= O(1) uniformly for J ∈ In, thus implies T3 =

o(1). Q.E.D.

PROOF OF LEMMA B.4: It is sufficient to prove (ii). Let �= Eh[(Y−h(X))2bK(J) (W ) ×
bK(J) (W )′] and �̂ = n−1

∑
i(Yi − ĥJ(Xi))2bK(J) (Wi)bK(J) (Wi)′. Then VJ = ‖A�A′‖F and

V̂J = ‖Â�̂Â′‖F . For all J ∈ In, the triangular inequality implies

|V̂J − VJ| ≤
∥∥Â�̂Â′ −A�A′∥∥

F

≤ 2
∥∥(Â−A)�̂A′∥∥

F
+ ∥∥(Â−A)�̂1/2

∥∥2

F
+ ∥∥A(�̂−�)A′∥∥

F
�
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In the remainder of this proof, it is sufficient to consider ‖(Â − A)�A′‖F + ‖A(�̂ −
�)A′‖F =: T1 + T2. Consider T1. By Lemma E.2, we have the upper bound ‖G−1/2

b �×
G−1/2
b ‖ ≤ σ . Below, we make use of the inequality ‖m1m2‖F ≤ ‖m1‖‖m2‖F for matricesm1

and m2. Since the Frobenius norm is invariant under rotation, we calculate uniformly for
J ∈ In that

T1 = ∥∥(G1/2
b SG

1/2
)
(Â−A)�A′AG1/2

b

∥∥
≤ ∥∥(G1/2

b SG
1/2

)
(Â−A)G1/2

b

∥∥∥∥G−1/2
b �G−1/2

b

∥∥∥∥(G1/2
b SG

1/2
)−2

l

∥∥
F

� ζJ

sJ

(
log(J)
n

J∑
j=1

s−4
j

)1/2

wpa1 uniformly for h ∈H, by making use of Lemma E.5(i) and the Schur decomposition
as in the proof of Lemma B.3. From Assumption 4(i), that is, s−1

J ζ
2
J

√
(logJ)/n = O(1),

uniformly for J ∈ In, we infer T1/VJ = J−1/2(
∑J

j=1 s
−4
j )1/2/VJ → 0 wpa1 uniformly for h ∈

H, where the last equation is due to Lemma B.3. Consider T2. Again using Lemma B.3, we
obtain T2 ≤ σ−2‖G−1/2

b (�̂−�)G−1/2
b ‖ by using the upper bound as derived for T1. Further,

evaluate

∥∥G−1/2
b (�̂−�)G−1/2

b

∥∥ =
∥∥∥∥1
n

∑
i

((
Yi − ĥJ(Xi)

)2 − (
Yi − h(Xi)

)2)
b̃K(Wi)b̃K(Wi)′

∥∥∥∥
≤

∥∥∥∥1
n

∑
i

(
ĥJ(Xi) − h(Xi)

)2
b̃K(Wi)b̃K(Wi)′

∥∥∥∥
+ 2

∥∥∥∥1
n

∑
i

(
ĥJ(Xi) − h(Xi)

)(
Yi − h(Xi)

)
b̃K(Wi)b̃K(Wi)′

∥∥∥∥
=: T21 + T22�

Consider T21. The definition of the unrestricted sieve NPIV estimator in (2.5) implies
uniformly for J ∈ In:

T21 ≤
∥∥∥∥1
n

∑
i

(
ĥJ(Xi) −QJh(Xi)

)2
b̃K(Wi)b̃K(Wi)′

∥∥∥∥
+

∥∥∥∥1
n

∑
i

(
QJh(Xi) − h(Xi)

)2
b̃K(Wi)b̃K(Wi)′

∥∥∥∥
≤ ζ2

J

∥∥∥∥Â1
n

∑
i

Yib
K(Wi) −AEh

[
YbK(W )

]∥∥∥∥2

×
∥∥∥∥1
n

∑
i

ψJ(Xi)ψJ(Xi)′
∥∥∥∥

+ ζ2
J

∥∥∥∥1
n

∑
i

(
QJh(Xi) − h(Xi)

)2
∥∥∥∥

� ζ4
J
s−2
J
n−1 + max

J∈In

{
ζ2
J‖QJh− h‖L2(X)

}
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wpa1 uniformly for h ∈ H, where the right-hand side tends to zero. This follows by the
rate condition imposed in Assumption 4(i) and that ‖QJh−h‖L2(X) =O(J−p/dx) uniformly
for J ∈ In and h ∈H by Lemma B.1(ii). Analogously, we obtain that maxJ∈In T22 vanishes
wpa1 uniformly for h ∈H. Q.E.D.

PROOF OF LEMMA B.5: We first prove the lower bound. By the definition of the RES
index set În, we have that any element J ∈ În tends slowly to infinity as n → ∞. Let
ĵmax ≤ jmax be the largest integer such that J2ĵmax ≤ Ĵmax. Consequently, the definition of
the RES index set implies for all J ∈ În that

log(J) ≤ log
(
J2ĵmax

) = ĵmax log(2) + log(J) ≤ ĵmax + 1 = #(În)

for n sufficiently large. From the lower bounds for quantiles of the chi-squared distribu-
tion established in Inglot (2010, Theorem 5.2), we deduce for all J ∈ În and n sufficiently
large:

η̂J(α) = q
(
α/#(În)� J

)− J√
J

≥ q
(
α/(logJ)� J

)− J√
J

≥
√

log
(
(logJ)/α

)
4

+ 2 log
(
(logJ)/α

)
√
J

≥
√

log log(J) − log(α)

4

using the lower bounds for quantiles of the chi-squared distribution established in Inglot
(2010, Theorem 5.2). We now consider the upper bound. From the definition of #(În),
we infer #(În) = ĵmax + 1 ≤ �log2(n1/3/J) + 1 ≤ log(n1/3/J) + 1 and thus #(În) ≤ log(n).
Consequently, we calculate for all J ∈ În and n sufficiently large:

η̂J(α) ≤ q
(
α/(logn)� J

)− J√
J

≤ 2
√

log
(
(logn)/α

)+ 2 log
(
(logn)/α

)
√
J

≤ 2
√

log
(
(logn)/α

)(
1 + o(1)

) ≤ 4
√

log log(n) − log(α)�

where the second inequality is due to Laurent and Massart (2000, Lemma 1). Q.E.D.

PROOF OF LEMMA B.6: Result B.6(i) directly follows from Houdré and Reynaud-
Bouret (2003, Theorem 3.4); see also Gine and Nickl (2016, Theorem 3.4.8). We next
prove the bounds on �1, �2, �3, �4 for Result B.6(ii).

For the bound on �1, we recall the notation UJ
i = UiAb

K(Wi) with Uij as its jth entry
for 1 ≤ j ≤ J, and Ui = Yi − h(Xi) for h ∈H0. Then, under H0, we have

Eh

[
R2

1(Z1�Z2)
] ≤ Eh

∣∣U1b
K(W1)′A′AbK(W2)U2

∣∣2
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= Eh

[(
UJ

)′
Eh

[
UJ

(
UJ

)′]
UJ

]
=

J∑
j�j′=1

Eh[U1jU1j′]2 = V 2
J �

For the bound on �2, for any function ν and κ with ‖ν‖L2(Z) ≤ 1 and ‖κ‖L2(Z) ≤ 1, respec-
tively, we obtain∣∣Eh

[
R1(Z1�Z2)ν(Z1)κ(Z2)

]∣∣
≤ ∣∣Eh

[
U1Mb

K(W )′ν(Z)
]
A′AEh

[
U1Mb

K(W )κ(Z)
]∣∣

≤ ∥∥AEh

[
U1Mb

K(W )κ(Z)
]∥∥∥∥AEh

[
U1Mb

K(W )ν(Z)
]∥∥

≤ ∥∥AG1/2
b

∥∥2
√

E
[∣∣Eh

[
U1Mκ(Z)|W

]∣∣2]×
√

E
[∣∣Eh

[
U1Mν(Z)|W

]∣∣2]
�

Now observe E[|Eh[U1Mκ(Z)|W ]|2] ≤ E[Eh[U2|W ]κ2(Z)] ≤ σ2 by Assumption 2(i) and
using that ‖κ‖L2(Z) ≤ 1, which yields the upper bound by using ‖AG1/2

b ‖ = s−1
J .

For the bound on �3, observe that, for any z = (u�w),∣∣Eh

[
R2

1(Z1� z)
]∣∣ ≤ Eh

∣∣U1
{|U | ≤Mn

}
bK(W )′A′AbK(w)u1

{|u| ≤Mn

}∣∣2

≤ ∥∥AbK(w)u1
{|u| ≤Mn

}∥∥2
Eh

∥∥AbK(W )U
∥∥2

≤ σ2M2
nζ

2
b�K

∥∥AG1/2
b

∥∥4
�

again by using Assumption 2(i) and hence the upper bound on �3 follows.
For the bound on �4, observe that for any z1 = (u1�w1) and z2 = (u2�w2), we get∣∣R1(z1� z2)

∣∣ ≤ ∣∣u11
{|u1| ≤Mn

}
bK(w1)′A′AbK(w2)u21

{|u2| ≤Mn

}∣∣
≤ sup

u�w

∥∥AbK(w)u1
{|u| ≤Mn

}∥∥2 ≤M2
nζ

2
b�K

∥∥AG1/2
b

∥∥2
�

which completes the proof. Q.E.D.

PROOF OF LEMMA B.7: It suffices to prove (ii) for a simple null H0 = {h0}. For any
h ∈ H1(δ◦rn), we denote BJ = (‖Eh[UJ]‖ − ‖h − h0‖L2(X))2. Recall J◦ ≤ J∗ < 2J◦, ap-
plying ‖Eh[UJ∗]‖2 = ‖QJ∗ (h− h0)‖2

L2(X) and Lemma B.1(i), we obtain: BJ∗ = (‖QJ∗ (h−
h0)‖L2(X) − ‖h− h0‖L2(X))2 ≤ CBr2

n for some constant CB. By the inequality ‖Eh[UJ∗]‖2 ≥
‖h− h0‖2

L2(X)/2 −BJ∗ , we have uniformly for h ∈H1(δ◦rn):

Ph
(
nD̂J∗ (h0) ≤ 2c1

√
log lognVJ∗

)
= Ph

(∥∥Eh

[
UJ∗]∥∥2 − D̂J∗ (h0) >

∥∥Eh

[
UJ∗]∥∥2 − 2c1

√
log lognVJ∗

n

)

≤ Ph

(∣∣∣∣∣ 4
n(n− 1)

J∗∑
j=1

∑
i<i′

(
UijUi′j − Eh[U1j]2

)∣∣∣∣∣> ρh
)
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+ Ph

(∣∣∣∣ 4
n(n− 1)

∑
i<i′

(
Yi − h0(Xi)

)(
Yi′ − h0(Xi′)

× bK∗
(Wi)′(A′A− Â′Â

)
bK

∗
(Wi′)

∣∣∣∣> ρh)
= T1 + T2�

where ρh = ‖h− h0‖2
L2(X)/2 − 2c1n

−1
√

log lognVJ∗ − BJ∗ . To bound term T1, we apply in-
equality (E.5) and Markov’s inequality:

T1 � n−1s−2
J∗ ρ

−2
h

(‖h− h0‖2
L2(X) + (

J∗)−2p/dx)+ n−2V 2
J∗ρ

−2
h � (E.7)

In the following, we distinguish between two cases. First, consider the case where
n−2V 2

J∗ρ
−2
h dominates the right-hand side. For any h ∈ H1(δ◦rn), we have ‖h− h0‖L2(X) ≥

δ◦rn and hence, we obtain the lower bound

ρh = ‖h− h0‖2
L2(X)/2 − 2c1n

−1
√

log lognVJ∗ −BJ∗ ≥ κ0r2
n� (E.8)

where κ0 := (δ◦)2/2 − C − CB for some constant C > 0 and κ0 > 0 whenever δ◦ >√
2(C +CB). From inequality (E.7), we infer T1 � n−2V 2

J∗ (J∗)4p/dx = o(1). Second, con-
sider the case where n−1s−2

J∗ ρ−2
h (‖h − h0‖2

L2(X) + (J∗)−2p/dx) dominates. For any h ∈
H1(δ◦rn), we have ‖h − h0‖2

L2(X) ≥ (δ◦)2r2
n ≥ 5c1n

−1VJ∗
√

log logn for δ◦ sufficiently large
and hence, we obtain ρh ≥ κ1‖h−h0‖2

L2(X) for some constant κ1 := 1/5 −CB/(δ◦)2, which
is positive for any δ◦ >

√
5CB. Under Assumption 3, inequality (E.7) yields uniformly for

h ∈H1(δ◦rn) that

T1 � n−1s−2
J∗
(‖h− h0‖−2

L2(X) + ‖h− h0‖−4
L2(X)

(
J∗)−2p/dx)� n−1s−2

J∗ r−2
n = o(1)�

Finally, T2 = o(1) uniformly for h ∈H1(δ◦rn) by making use of Lemma E.1. Q.E.D.

PROOF OF LEMMA B.8: Recall the definition of J = sup{J : ζ2(J)
√

(logJ)/n ≤ csJ}.
Following the proof of Chen, Christensen, and Kankanala (2024, Lemma C.6), using
Weyl’s inequality (see, e.g., Chen and Christensen (2018, Lemma F.1)) together with Chen
and Christensen (2018, Lemma F.7), we obtain that |̂sJ − sJ|≤ c0sJ uniformly in J ∈ In for
some 0< c0 < 1 with probability approaching 1 uniformly for h ∈H.

Proof of (i). By making use of the definition of Ĵmax given in (2.11), we obtain uniformly
for h ∈H:

Ph(Ĵmax > J) ≤ Ph

(
ζ2(J)

√
log(J)/n <

3
2
ŝJ

)
≤ Ph

(
ζ2(J)

√
log(J)/n <

3
2

(1 + c0)sJ

)
+ o(1)�

The upper bound imposed on the growth of J is determined by a sufficiently large constant

c > 0 and hence, there exists a constant c ≥ 3(1 + c0)/2 such that s−1
J
ζ2(J)

√
log(J)/n≥ c.
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Consequently, we obtain

Ph(Ĵmax > J) ≤ Ph

(
s−1
J
ζ2(J)

√
log(J)/n <

3
2

(1 + c0)
)

+ o(1) = o(1)�

Proof of (ii). From the definition of J◦ given in (4.3), we have uniformly for h ∈H:

Ph
(
J◦ > Ĵmax

) ≤ Ph
(
n−1

√
log lognĴ2p/dx+1/2

max ≤ ν2
Ĵmax

)
�

By Assumption 3 there is a constant c > 0 such that ν2
J ≤ s2

J/c for all J. We infer as above
for some constant 0< c0 < 1 and uniformly in J ∈ In, that ν2

J ≤ (1−c0)−1̂s2
J with probability

approaching 1, and hence uniformly for h ∈H:

Ph
(
J◦ > Ĵmax

) ≤ Ph
(
(1 − c0)n−1

√
log lognĴ2p/dx+1/2

max ≤ ŝ2
Ĵmax

)+ o(1)�

Consider the case ζ(J) = √
J. The definition of Ĵmax in (2.11) yields uniformly for h ∈H:

Ph
(
J◦ > Ĵmax

) ≤ Ph
(
(1 − c0)

√
log lognĴ2p/dx−3/2

max ≤ (logJ)
)+ o(1)

≤ Ph

(
(1 − c0)̂sĴmax

√
n≤ 2

3

√
logJ

(
logJ√

log logn

)1/(2p/dx−3/2))
+ o(1)

≤ Ph

(
(1 − c0)2sJ

√
n≤ 2

3

√
logJ

(
logJ√

log logn

)1/(2p/dx−3/2))
+ o(1)

≤ Ph

(
(1 − c0)2

c
J ≤ 2

3

(
logJ√

log logn

)1/(2p/dx−3/2))
+ o(1)�

where the last inequality follows from the definition of J, that is, sJ ≥ c−1J
√

log(J)/n.
From Assumption 4(iii), that is, p≥ 3dx/4, we infer Ph(J◦ > Ĵmax) = o(1) and, in particu-
lar, Ph(2J◦ > Ĵmax) = o(1) uniformly for h ∈H. The proof of ζ(J) = J follows analogously
using the condition p≥ 7dx/4. Q.E.D.
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