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APPENDIX A: SETTING NOMINAL RATES OUT OF EQUILIBRIUM

REAL RATE RULES WORK AS COMBINING the rule with the Fisher equation leads the real
rate terms to cancel out. Could this cancellation mask a singularity that would prevent
the central bank from setting rates according to a real rate rule? To see the apparent
problem, suppose that the economy is currently in period 1, and that all in future periods,
the central bank’s behavior will be given by the simple real rate rule of equation (2).
Assume the Fisher equation (1) always holds. Then, for t > 1, rt +Etπt+1 = it = rt +φπt .

Our discussion up to now would naturally lead the reader to conclude that πt = 0 for all
t > 1, unconditional on whatever happens in period 1. Suppose this were true. Then, the
period 1 Fisher equation would imply that i1 = r1. Thus, apparently, nothing the central
bank could do in period 1 could ever produce i1 �= r1. In particular, it seems that the
central bank cannot apply a real rate rule in period 1 if π1 �= 0. This is incorrect, though,
as if a real rate rule applies from period 1 onward, it is only the case that πt = 0 for all
t > 1 if it happens that π1 = 0. This confusion stems from us having given an incomplete
description of equilibrium up to now. A full equilibrium description specifies the outcome
for every possible history, not just those on the equilibrium path.

A full description of the standard equilibrium of the Fisher equation (1) and real rate
rule (2) is as follows. Suppose the rule was introduced in period 1. Then, for all t ≥ 1, if
πs = 0 for all s ∈ {1� � � � � t − 1}, then πt = 0. Otherwise, πt = φπt−1. This implies that on
the equilibrium path, π1 = 0 (as with t = 1, the set {1� � � � � t−1} is empty), and hence πt =
0 for all t ≥ 1. However, suppose that off the equilibrium path, π1 �= 0. Then π2 = φπ1,
and hence the period 1 Fisher equation states that i1 − r1 = φπ1. Thus, i1 − r1 is not fixed;
it is a function of period 1 inflation, something that the central bank can affect in period
1 via open market operations. There is no singularity.1

APPENDIX B: LAGS IN THE PHILLIPS CURVE AND EULER EQUATION

The robust real rate rule of equation (6) is also robust to the presence of lags in the
Euler or Phillips curve. For example, suppose the Phillips curve and Euler equation are

Tom D. Holden: thomas.holden@gmail.com
The views expressed in this paper are those of the author and do not represent the views of the Deutsche

Bundesbank, the Eurosystem, or its staff.
1It is worth noting that there are other equilibria of equations (1) and (2) that imply an identical equilibrium

path but generate more plausible behavior off this path. Suppose that in period 1 when the rule is introduced,
the economy starts in state A. Suppose also that, each period, a biased coin is tossed which comes up heads
with probability q ∈ (0�1]. If the economy is in state A in period t, then πt = 0, whereas if the economy is
in state B in period t, then πt = φ

q
πt−1. For t > 1, the economy is in state A at t if and only if either (i) the

economy was in state A at t − 1 and πt−1 = 0, or (ii) the coin comes up tails. Otherwise, the economy is in state
B at t. Thus, in state B, Etπt+1 = qφ

q
πt + (1 − q)0 =φπt , as required. Hence, explosions need not last forever

following a deviation.

© 2024 The Author. Econometrica published by John Wiley & Sons Ltd on behalf of The Econometric Society.
Tom D. Holden is the corresponding author on this paper. This is an open access article under the terms of the
Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in
any medium, provided the original work is properly cited and is not used for commercial purposes.

https://www.econometricsociety.org/suppmatlist.asp
mailto:thomas.holden@gmail.com
https://creativecommons.org/licenses/by-nc/4.0/


2 TOM D. HOLDEN

given by

πt = β̃(1 −�π)Etπt+1 + β̃�ππt−1 + κxt + κωt�

xt = δ̃(1 −�x)Etxt+1 + δ̃�xxt−1 − ς(rt − nt)�
(15)

where β̃ and δ̃ may not have the same structural interpretation as β and δ (depending
on the precise micro-foundation). These equations have no impact on the solution for
inflation, which remains πt = − 1

φ−ρ
ζt . Instead, the lag in the Euler equation changes the

dynamics of the real interest rate, with no impact on inflation or output gaps, while the
lag in the Phillips curve affects both output gap and real rate dynamics, with no impact
on inflation. In particular, the output gap is given by xt = 1

κ(φ−ρ) [(β̃�π − ρ(1 − β̃(1 −
�π)ρ))ζt−1 − (1 − β̃(1 − �π)ρ)εζ�t] − ωt . As before, the output gap has a closed-form
solution in terms of the monetary policy and cost push shocks. Monetary policy shocks
are still always contractionary, but they only have a short-lived impact on the output gap
if �π is around ρ(1−β̃ρ)

β̃(1−ρ2) .

APPENDIX C: RESPONDING TO OTHER ENDOGENOUS VARIABLES

The original Taylor rule contained a response to output. Even with a unit coefficient on
the real interest rate, responding to output will change determinacy conditions, though it
still preserves some robustness. To see this, consider the monetary rule, it = rt + φππt +
φxxt + ζt . Suppose the lag-augmented NK Phillips curve (15) holds; then this monetary
rule is equivalent to the rule

it = rt +φππt + κ−1φx

[
πt − β̃(1 −�π)Etπt+1 − β̃�ππt−1

] −φxωt + ζt�

(This is produced by using the Phillips curve to substitute out the output gap.) Combined
with the Fisher equation, we have that

Etπt+1 = φππt + κ−1φx

[
πt − β̃(1 −�π)Etπt+1 − β̃�ππt−1

] −φxωt + ζt�

This has a determinate solution if the quadratic[
1 + κ−1φxβ̃(1 −�π)

]
A2 − (

φπ + κ−1φx

)
A+ κ−1φxβ̃�π = 0

has a unique solution for A inside the unit circle. It is sufficient that the quadratic is
positive at A = −1 but negative at A = 1, which holds if and only if 1 + κ−1φx(1 + β̃) +
φπ > 0 and 1 − κ−1φx(1 − β̃) − φπ < 0. So, if κ > 0, φx ≥ 0, and β̃ ∈ [0�1] as expected,
then it is sufficient that φπ > 1 as before.2 This is still considerable robustness. Providing
there is something like a Phillips curve linking inflation and the output gap, the standard
φπ > 1 condition will be sufficient for determinacy. This would not hold with a more
standard monetary rule; in that case, determinacy depends on δ̃ and ς, as shown by the
Bilbiie (2008, 2019) results discussed in Section 3.2 of the main text.

Responding to real rates provides additional robustness even with a response to output
as it disconnects the Euler equation from the rest of the model. The only remaining role

2This is stronger than necessary. The second condition states that φπ + κ−1φx(1 − β̃) > 1, so a response
to the output gap can substitute for a response to inflation. This condition is identical to that for the standard
(purely forward-looking) three-equation NK model with Taylor type rule found in Woodford (2001).
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of the Euler equation is to give a path for real rates, given the already determined paths of
output and inflation.3 The Fisher equation, not the Euler equation, is central to monetary
policy transmission under real rate rules.

For greater robustness, the central bank can replace the response to the output gap
with a response to the cost push shock ωt . With an appropriate response to ωt , this is ob-
servationally equivalent to responding to the output gap, but ensures determinacy under
the standard Taylor principle.

However, it may be hard for the central bank to observe the cost push shock. To get
around this, suppose that the central bank knows that a Phillips curve in the form of
Eq. (15) holds. (Our results would generalize to other links between real and nominal
variables.) For now, suppose the central bank also knows the coefficients in Eq. (15).
Then the central bank could use a rule of the form

it = rt +φππt +φx

[
xt − κ−1

[
πt − β̃(1 −�π)Etπt+1 − β̃�ππt−1

]] + ζt�

By Eq. (15), this implies that it = rt + φππt − φxωt + ζt , as desired. Of course, the cen-
tral bank is also unlikely to know the coefficients in the Phillips curve. However, we show
in Supplemental Appendix K.5 in Holden (2024) that the central bank can learn these
coefficients in real time, without changing the determinacy conditions, at least under rea-
sonable parameter restrictions.4

If the central bank wishes to respond to other endogenous variables, a similar approach
should be possible if they are aware of the broad form of the model’s structural equations.
However, the central bank may worry about having fundamental misconceptions about
how the economy works. They can be reassured, though, that the Taylor principle is suf-
ficient for determinacy if the response to other endogenous variables is small enough, no
matter the form of the model’s other equations. We prove this in Supplemental Appendix
K.1 in Holden (2024). This also implies that a precise unit response to real rates is not
needed for determinacy. Real rates are just another endogenous variable, so determinacy
only requires a response sufficiently close to 1.

Classic results on determinacy in monetary models can be reinterpreted through this
lens. Even if the central bank is not responding to real rates, it is still likely to be respond-
ing to variables that are correlated with them. Our results imply that rules sufficiently
close to a real rate rule must be determinate.

For example, many models contain a Euler equation of the form

1 = β(exp rt)Et

(
Ct

Ct+1

) 1
ς

�

where Ct is real consumption per capita and ς is the elasticity of intertemporal substitu-
tion. Additionally, in many models, in equilibrium, consumption growth roughly follows
an ARMA(1�1) process:

gt := log
(

Ct

Ct−1

)
= (1 − ρg)g + ρggt−1 + εg�t + θgεg�t−1� εg�t ∼ WN

(
0�σ2

g

)
�

3This is analogous to how the Euler equation is slack when solving for optimal monetary policy. In that case,
the combined Euler equation and Fisher equation give the level of nominal rates required to hit the optimal
output gap and inflation. The author thanks Florin Bilbiie for this observation.

4It is sufficient (but not necessary) that φx ≥ 0, φπ ≥ 0, κ ≥ 0, β̃ ∈ [0�1], �π ∈ [0�1), ρ ∈ [0�1), and φπ >

max{ 1
β̃(1−�π ) �2(1 −�π)� φx (1+β̃)

κ }.
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(This is a good approximation to U.S. post-war data.5) Combining these two equations
gives that

rt = − logβ+ 1 − ρg

ς
g − 1

2

(
σg

ς

)2

+ ρg

ς
gt + θg

ς
εg�t�

implying that a (roughly) ρg

ς
response to consumption growth can substitute for a

(roughly) unit response to real rates.
Of course, output (growth, level, or gap) is in turn highly correlated with consumption

growth, so output (growth, level, or gap) may also substitute for real rates. For example,
in the Smets and Wouters (2007) model of the U.S. economy, the monetary rule is of the
form it = φππt + zt + ζt , where zt is a linear combination of other endogenous variables
and ζt is the monetary shock. At the estimated posterior mode, the correlation between zt
and the real interest rate is 0�63, with both variables having standard deviation of 0�46%.6
Thus, the Smets and Wouters (2007) estimates imply that (in a sense) the Fed is already
about two thirds of the way to using a simple robust real rate rule.

There is one final way of allowing an interest rate response to other endogenous vari-
ables that is both simple and robust. Rather than placing the endogenous variables di-
rectly within the rule, the central bank can follow a time-varying inflation target which is
a function of these endogenous variables. We propose this approach in Section 2 of the
main text.

APPENDIX D: LEARNING AND BOUNDED RATIONALITY

Our results on Fisher wedges in the main paper (Section 3.3) suggested that as long as
θ is large enough, real rate rules should continue to work in the presence of departures
from perfect rationality. Here, we verify this for several popular models of learning and
bounded rationality.

D.1. Adaptive, Naïve, and Extrapolative Expectations

Branch and McGough (2009) supposed that aggregate inflation expectations are a
linear combination of rational expectations and an additional term capturing adaptive,
naïve, or extrapolative expectations. In particular, agents’ period t expectation of pe-
riod t + 1 inflation is given by αEtπt+1 + (1 − α)θπt−1. Here, α ∈ [0�1] gives the weight
on rational expectations, and θ ≥ 0 controls whether the non-rational part is adaptive
(θ < 1), naïve (θ = 1), or extrapolative (θ > 1). This leads to the behavioral Fisher equa-
tion it = rt + αEtπt+1 + (1 − α)θπt−1.

We suppose that the central bank follows the monetary rule of equation (6), it =
rt + φπt + ζt , where ζt is an AR(1) process with persistence ρ ∈ (−1�1), and where
φ > 0 at least. Combining this monetary rule with the behavioral Fisher equation then
gives that αEtπt+1 − φπt + (1 − α)θπt−1 = ζt . If α = 0 (meaning there are no rational

5Estimating on U.S. data from 1947Q1 to 2023Q4 (U.S. Bureau of Economic Analysis (2024)) with T-
distributed shocks gives ρg = 0�64, θg = −0�43 (p-values both below 0�001). Using Gaussian shocks on data
up to 2019Q4 gives similar results (ρg = 0�67, θg = −0�53). These results can be generated by running the
MATLAB script “Main.m” provided in this paper’s replication materials.

6These results can be generated by running the MATLAB script “Main.m” provided in this paper’s repli-
cation materials. The code for replicating Smets and Wouters (2007) is derived from code provided by Pfeifer
(2024), itself based on the authors’ original replication code (Smets and Wouters (2019)).
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agents), then this is purely backward-looking and hence has a unique solution, given by
πt = φ−1(1 − α)θπt−1 −φ−1ζt . For stability, we need φ> θ, which is stronger than φ> 1
if θ > 1. When α > 0, the system is determinate if and only if φ > α + (1 − α)θ, which
again may be stronger than φ > 1 if θ > 1.7 At least for sufficiently large φ, though, the
solution is unique and stable, even in the extrapolative case of θ > 1. Furthermore, as
φ → ∞, Varπt → 0. This means that sufficiently aggressive monetary policy is capable of
squashing the variance of inflation, even in the presence of adaptive, naïve, or extrapola-
tive expectations.

D.2. Diagnostic Expectations

Under diagnostic expectations (Bordalo, Gennaioli, and Shleifer (2018), L’Huillier,
Singh, and Yoo (2023), Bianchi, Ilut, and Saijo (2023)), agents use the non-rational ex-
pectation operator Eθ

t defined by

E
θ
t vt+1 := Etv

RE:t+1
t+1 + θ

⎡⎢⎢⎢⎢⎢⎣Etv
RE:t+1
t+1 − 1

J∑
j=1

α̃j

J∑
j=1

α̃jEt−jv
RE:t−j+1
t+1

⎤⎥⎥⎥⎥⎥⎦ �

where vt is any endogenous variable, θ > 0 governs the overreaction to new information,
α̃1� � � � � α̃J govern the relative importance of memory at different horizons, and where
vRE:s
t is the value vt would take if all agents had rational expectations from period s on-

ward. (This definition follows Bianchi, Ilut, and Saijo (2023) in assuming agents take a
naïve approach to dealing with their own time inconsistency.) In the following, we will
take J = ∞, meaning that memory matters at all horizons. We set α̃j = (1 − α)αj−1 giving
geometric discounting to distant memories, governed by the parameter α ∈ (0�1). The
J = 1 case of L’Huillier, Singh, and Yoo (2023) is nested here as the limit α → 0.

As before, we are interested in the solution to the model governed by the monetary rule
of equation (6) with the diagnostic Fisher equation:

it = rt +E
θ
t pt+1 −pt�

where pt is the logarithm of the price level, so πt = pt − pt−1.8 We assume φ > 1. Note
that the Fisher equation is given in terms of expectations of the price level, not of inflation.
The two are not equivalent under diagnostic expectations, and it is the expectation of the
price level that emerges from the Euler equation (see L’Huillier, Singh, and Yoo (2023)
and Bianchi, Ilut, and Saijo (2023)).

Now, by the results of Section 3.1, for t ≥ s, pRE:s
t = pRE:s

t−1 − 1
φ−ρ

ζt = ps−1 − 1
φ−ρ

∑t

k=s ζk.
Hence, for j ≥ 0,

Et−jp
RE:t−j+1
t+1 = pt−j − 1

φ− ρ

t+1∑
k=t−j+1

Et−jζk = pt−j − ρ
ζt−j

φ− ρ

1 − ρj+1

1 − ρ
�

7For determinacy, the quadratic q(λ) := αλ2 −φλ+ (1−α)θ must have one root for λ inside the unit circle,
and another outside. Note q(0) = (1 − α)θ ≥ 0, q′′(0) > 0, and q′(λ) = 0 if and only if λ = φ

2α > 0. Thus, there
is determinacy if and only if 0 > q(1) = α−φ+ (1 − α)θ.

8Supplemental Appendix H.2 in Holden (2024) justifies introducing the price level in this way.
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So, from the Fisher equation and the definition of diagnostic expectations,

it = rt +Etp
RE:t+1
t+1 + θ

[
Etp

RE:t+1
t+1 − (1 − α)

∞∑
j=1

αj−1
Et−jp

RE:t−j+1
t+1

]
−pt

= rt − ρ
ζt

φ− ρ
+ θ

[
πt − ρ

ζt

φ− ρ
− (1 − α)st−1

]
�

where the auxiliary state st evolves according to st = αst−1 − α
1−α

πt − ρ(1 + ρ) ζt
φ−ρ

− zt−1,
and where the auxiliary state zt evolves according to zt = αρzt−1 + αρ3 ζt

φ−ρ
. Thus, by the

monetary rule,

πt = −
(

1 − θ

φ

)−1[(
1 + θ

φ
ρ

)
ζt

φ− ρ
+ θ

φ
(1 − α)st−1

]
�

so

st = α
φ

φ− θ
st−1 +

[
α

1 − α

(
1 − θ

φ

)−1(
1 + θ

φ
ρ

)
− ρ(1 + ρ)

]
ζt

φ− ρ
− zt−1�

Inflation πt is stationary if and only if st is stationary. Since zt is clearly stationary, for st
to be stationary, we need that α φ

φ−θ
∈ (−1�1). Given our assumptions, this requires that

φ> max{1� θ
1−α}. Bianchi, Ilut, and Saijo (2023) estimated θ = 1�97 and a mean memory

horizon of around 5�44, corresponding to α= 0�18, so we would need φ> 2�40. If φ were
below this value, then inflation would explode. This comes from compounding overreac-
tions to past overreactions.

Still, for φ large enough, inflation is stationary. Furthermore, as φ → ∞, Varπt → 0,
and Var((φ − ρ)πt + ζt) → 0 as well. The latter fact means that with even moderately
high φ, inflation’s dynamics are very close to its dynamics under rational expectations.
Hence, as long as the central bank is moderately aggressive, a real rate rule gets inflation
to target even in the presence of diagnostic expectations.

D.3. Finite Horizon Planning

Woodford (2019) gave a model of limited planning horizons. Agents are assumed to
optimize over decisions in finitely many future periods, using a learned value function to
evaluate outcomes at their planning horizon. We will focus on the simple case in which
planning horizons are heterogeneous across agents, with a fraction (1 − α)αj of house-
holds having planning horizon j∈ N, where α ∈ (0�1). With a learned terminal value func-
tion, this leads to the Fisher equation9

it − it = rt − rt + αEt (πt+1 −πt+1)�

where the (learned) trend levels of nominal rates, real rates, and inflation, it , rt , and πt ,
respectively satisfy φπt = it − rt = απt + (1 −α)μt−1, assuming the monetary rule is again

9We derive this by combining the Euler equation for nominal bonds in equation (61) of Woodford (2019)
with a Euler equation for real bonds produced by setting πt+1 = πt+1 = 0 in the same equation, (61).
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given by equation (6), where μt (a measure of the relative marginal value of real over
nominal bonds) evolves according to

μt = (1 − γ)μt−1 + γ(πt −πt)�

where γ ∈ (0�1) controls the speed of household learning.10 Thus, if we define m := 1−α
φ−α

,
then πt = mμt−1, so

Et

[
πt+1

μt

]
=

[
α−1[φ+ αγm] −α−1m

[
φ− α

[
1 − γ(1 +m)

]]
γ 1 − γ(1 +m)

][
πt

μt−1

]
+

[
α−1

0

]
ζt�

The large matrix here has eigenvalues 1−γ ∈ (0�1) and φ

α
. Thus, for determinacy, we just

need that φ> α, which is strictly weaker than φ> 1. The solution has

πt = mμt−1 − ζt

φ− αρ
� μt = (1 − γ)μt−1 − γ

ζt

φ− αρ
�

As with diagnostic expectations, as φ → ∞, Varπt → 0, and Var((φ − ρ)πt + ζt) → 0
as well, so again a large φ brings dynamics toward those under rational expectations. It
is particularly reassuring that with finite horizon planning, determinacy conditions are
weaker than under rational expectations. Given a mix of finite horizon expectations and
diagnostic or extrapolative ones, it is likely that φ not much larger than 1 would be suffi-
cient.

D.4. Least Squares Learning

Under least squares learning (Marcet and Sargent (1989), Evans and Honkapohja
(2001)), agents update their beliefs about the laws of motion of endogenous variables
via recursive least squares. We suppose the real rate rule of equation (6) is introduced
in period 1, and we allow agents to begin with prior beliefs that may not be centered on
the rational expectations solution. For simplicity, we assume agents can directly observe
the monetary shock ζt . (Without this assumption, we can still prove local convergence of
beliefs to rational expectations. With it, we will have global convergence.) We also assume
that the shock to ζt is normally distributed.

Since agents observe the exogenous process ζt , by the strong law of large numbers, their
estimates of the parameters of ζt ’s law of motion converge almost surely. Thus, without
loss of generality, we can assume that they already know these coefficients. Then, let v
be the known variance of ζt . We suppose that in period t, agents believe that for all s,
πs = at + btζs + εs, where they believe Es−1εs = 0. Allowing for a constant seems natural,
as they may not know the inflation target (here zero), or the size of the static Fisher
equation wedge (here also zero). They estimate the coefficients at and bt by recursive
least squares, given some initial prior beliefs a0 and b0 with weight w ≥ 0, and given the
known value of v. Hence,[

at

bt

]
=

[
at−1

bt−1

]
+ 1

t +w

1
v

[
v
ζt

]
(πt − at−1 − bt−1ζt)�

10The right-hand side of the equation for it − rt and the law of motion for μt are derived from subtracting
versions of equations (46), (59), (65) of Woodford (2019) for real bonds from the corresponding equations for
nominal bonds.
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Agents then approximate Etπt+1 by at + ρbtζt , so from the monetary rule, at + ρbtζt =
φπt + ζt . Thus, if we define mt := 1

t+w
(1 + ρ

ζ2
t

v
), then

πt = 1
φ

[
at + (ρbt − 1)ζt

] = 1
φ
mtπt + 1

φ

[
(1 −mt)at−1 + (ρ−mt)bt−1ζt − ζt

]
�

So πt = (φ−mt)−1[(1 −mt)at−1 + (ρ−mt)bt−1ζt − ζt]. Substituting this back into the law
of motion for [ at

bt
] gives a recurrence for these variables to which we can apply a slight

generalization of Theorem 6.10 of Evans and Honkapohja (2001). We do this in Supple-
mental Appendix K.11 in Holden (2024) and so prove that if φ> 1, then with probability
1, at converges to 0 and bt converges to − 1

φ−ρ
. Since mt converges in probability to zero,

this implies πt + ζt
φ−ρ

converges in probability to zero as well. Thus, agents succeed in
learning the rational expectations solution, no matter what the initial conditions are. This
guarantee of global stability under least squares learning is a large improvement over the
situation with standard monetary rules, for which at best local stability can be proven (see,
e.g., Bullard and Mitra (2002)).

D.5. Constant Gain Learning

If agents believe parameters may be non-stationary, then it is no longer reasonable to
perform standard least squares learning. Instead, it is natural to assume that they learn
with a constant gain coefficient on new observations (Evans and Honkapohja (2001)).
This replaces the 1

t+w
gain in the law of motion for [ at

bt
] above with some constant, γ > 0.

For simplicity, we start by looking at the ρ = 0 case. As before, we assume that agents
know the coefficients governing ζt , so they know that ρ = 0. Then at and bt evolve ac-
cording to[

at

bt

]
=

[
at−1

bt−1

]
+ γ

1
v

[
v
ζt

][
(1 − γ)at−1 − γbt−1ζt − ζt

φ− γ
− at−1 − bt−1ζt

]

=

⎡⎢⎢⎣1 − γ
φ− 1
φ− γ

−γ
φ

φ− γ
ζt

−γ
φ− 1
φ− γ

ζt

v
1 − γ

φ

φ− γ

ζ2
t

v

⎤⎥⎥⎦[
at−1

bt−1

]
− γ

φ− γ

⎡⎣ ζt
ζ2
t

v

⎤⎦ �

The results of Conlisk (1974) imply that the mean and variance of [ at
bt

] converge to finite
constants if and only if the eigenvalues of the expectation of the Kronecker product of the
transition matrix with itself are in the unit circle. These eigenvalues are 1− 2φ−1

φ
γ+O(γ2),

1 − 2φ−1
φ

γ + O(γ2), 1 − 2φ−1
φ
γ + O(γ2), 1 − 2γ + O(γ2) as γ → 0. So φ > 1 is sufficient

for the mean and variance of [ at
bt

] to converge to finite constants for all sufficiently low
γ. In this case, E0at → 0 and E0bt = − 1

φ
as t → ∞, as expected. Moreover, note that by

continuity in ρ, the convergence of means and variances generalizes from the ρ = 0 case.
In particular, for all φ> 1 and all ρ and γ sufficiently close to 0, the mean and variance
of [ at

bt
] will converge to finite values (continuous in ρ).

Finally, from the explicit formula for the variance given in Conlisk (1974), we have that
with ρ = 0, φ> 1, and γ sufficiently low, Var0[ at

bt
] → 0 as t → ∞, meaning that at and bt

converge in probability to the truth. (Note that if at−1 = 0 and bt−1 = − 1
φ

, then at = 0 and
bt = − 1

φ
as well.) Thus, even though agents are using a constant gain, they still manage to
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exactly learn the true parameters, whatever the initial conditions. It is easy for agents to
learn the rational expectations equilibrium under a real rate rule!

APPENDIX E: NON-LINEAR EXPECTATIONAL DIFFERENCE EQUATIONS

E.1. General Setup

We are interested in the non-linear expectational difference equation(
�∗

t|t−1

�t

)φ

= Et

�t+1

Et�t+1

�∗
t+1|t

�t+1
�

If we define Xt := �∗
t|t−1
�t

and Zt := �t+1
Et�t+1

, then this difference equation is a particular ex-
ample of the more general equation

Xφ
t = EtZt+1Xt+1�

We show in Appendix E.2 below that if Zt = 1 for all t, then this has a unique solution
for φ> 1, and we show in Appendix E.3 that it still has a unique solution for arbitrary Zt

under a few additional conditions, and that the solution is approximately unique under
even milder conditions.

For the results of Appendix E.3 to apply, we need that �t is bounded above. This is
true in any model with monopolistic competition in which at least some small fraction of
firms do not adjust their price each period. This does not seem an unrealistic assumption,
at least if the model’s time periods are sufficiently short. Even under hyper-inflation, it is
still unlikely that firms adjust prices many times per day.
�t is bounded above in such a model because the price level remains finite even if ad-

justing firms set an infinite price, as all demand switches to non-adjusting firms. For exam-
ple, the model of Fernández-Villaverde, Gordon, Guerrón-Quintana, and Rubio-Ramírez
(2015) contains the equation: 1 = θ�ε−1

t + (1 − θ)�̃1−ε
t , where �̃t is the relative price of

adjusting firms and ε > 1. This equation comes from the definition of the aggregate price.
As �̃t → ∞, �t → θ− 1

ε−1 <∞; thus, inflation is always bounded above, as required.

E.2. Uniqueness of the Solution of a Simple Non-Linear Expectational Difference Equation

Let φ> 1. We seek to prove that the non-linear expectational difference equation

Xφ
t = EtXt+1�

has a unique solution that is:
(1.) positive (i.e., Xt > 0 for all t∈ Z),
(2.) strictly stationary (so, e.g., EXt= EXs for all t, s�∈ Z),
(3.) and has bounded unconditional mean and log mean (i.e., EXt < ∞ and |E logXt |<

∞ for all t∈ Z).
Clearly Xt = 1 is one such solution.
Let Xt be a solution to Xφ

t = EtXt+1 satisfying (a), (b), and (c) above. Let xt := logXt .
Then, from taking logs, we have

φxt = logEt expxt+1 ≥ log expEtxt+1 = Etxt+1�
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by Jensen’s inequality. Therefore, by the law of iterated expectations, for any k∈ N,

φkxt ≥ Etxt+k = Etxt+k�

As k → ∞, the left-hand side tends to either plus infinity (if xt > 0), zero (if xt = 0),
or minus infinity (if xt < 0). On the other hand, as k → ∞, the right-hand side tends to
Ext > −∞, by stationarity. Thus, we must have that xt ≥ 0 for all t∈ Z, else this equation
would be violated. Hence, Xt ≥ 1 for all t∈ Z.

Now note that by stationarity, the law of iterated expectations, and Jensen’s inequality,

EXt= EXt+1= EEtXt+1= EXφ
t ≥ (EXt)φ�

so 1 ≥ (EXt)φ−1, meaning EXt ≤ 1. However, since Xt ≥ 1 for all t∈ Z, the only way we
can have that EXt ≤ 1 is if in fact Xt = 1 for all t∈ Z.

Therefore, Xt ≡ 1 is the unique solution to the original expectational difference equa-
tion satisfying (a), (b), and (c) above.

E.3. Uniqueness of the Solution of a More General Non-Linear Difference Equation

Let φ ≥ 1 and let (Zt)t∈Z be a stochastic process satisfying the following conditions:
(1.) Zt > 0, for all t∈ Z,
(2.) EtZt+1 = 1, for all t∈ Z,
(3.) (Zt)t∈Z is strictly stationary,
(4.) there exists Z ≥ 1, independent of the stochastic process (Xt)t∈Z (to be intro-

duced), such that for all φ>φ, and for all t∈ Z and all k∈ N with k> 0, EtZ
φ

φ−1
t+k ≤

Z
φ

φ−1 .
The larger is φ, the weaker is the moment boundedness assumption (iv). For example,

if φ = 2, then this just requires bounded second moments.
Let X ∈ (0�1) and let φ > φ. We seek to prove that the non-linear expectational dif-

ference equation,

Xφ
t = EtZt+1Xt+1�

has a unique solution that is:
(a) bounded below by X (so Xt >X > 0 for all t∈ Z),
(b) strictly stationary (so, e.g., EXt= EXs for all t, s�∈ Z),
(c) and has bounded unconditional mean, φth mean and log mean (i.e., EXt < ∞,

EXφ
t <∞ and |E logXt |<∞ for all t∈ Z).

Clearly Xt = 1 is one such solution. Note that Zt may be a function of Xt and its history,
so Zt and Xt are not guaranteed to be independent. The previous subappendix covers the
case with Zt ≡ 1 in which slightly weaker assumptions are needed.

First note that for all t∈ Z,

1 = EtZt+1 = Et[Zt+11] = Et

[
Zt+1Et+1[Zt+21]

] = Et

[
Et+1[Zt+1Zt+21]

]
= Et[Zt+1Zt+21] = Et

[
Zt+1Zt+2Et+2[Zt+31]

] = · · ·

= Et

[
k∏

j=1

Zt+j

]
� ∀k∈ N�

by assumption (ii) and the law of iterated expectations.
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Now let xt := logXt and x := logX . Then, from taking logs, we have

φxt = logEtZt+1 expxt+1 ≥ log expEtZt+1xt+1 = EtZt+1xt+1�

by Jensen’s inequality, as Et[Zt+1 × (·)] defines a measure since EtZt+1 = 1. Therefore, by
the law of iterated expectations, for any k∈ N,

φkxt ≥ Et

[
k∏

j=1

Zt+j

]
xt+k ≥ Et

[
k∏

j=1

Zt+j

]
x = x > −∞�

by the result of the previous paragraph. As k → ∞, the left-hand side tends to either plus
infinity (if xt > 0), zero (if xt = 0), or minus infinity (if xt < 0). Thus, we must have that
xt ≥ 0 for all t∈ Z, else this equation would be violated. Hence, Xt ≥ 1 for all t∈ Z.

Now, define z := logZ, and for all t∈ Z and all k∈ N with k> 0 define

z̃t�t+k := log
[
EtZ

φ
φ−1
t+k

]φ−1
φ < z�

by our assumptions (iv). Then by repeatedly applying Hölder’s inequality,

Xφ
t = EtZt+1Xt+1 ≤ [

EtZ
φ

φ−1
t+1

]φ−1
φ

[
EtX

φ
t+1

] 1
φ

≤ [
EtZ

φ
φ−1
t+1

]φ−1
φ

[
Et

[[
Et+1Z

φ
φ−1
t+2

]φ−1
φ

[
Et+1X

φ
t+2

] 1
φ
]] 1

φ

≤ [
EtZ

φ
φ−1
t+1

]φ−1
φ

[
EtZ

φ
φ−1
t+2

]φ−1
φ2

[
EtX

φ
t+2

] 1
φ2

≤ · · ·

≤
k∏

j=1

[
EtZ

φ
φ−1
t+j

]φ−1
φj

[
EtX

φ
t+k

] 1
φk �

for all k∈ N with k> 0. Thus, from taking logs and limits,

xt ≤
∞∑
j=1

φ−j z̃t�t+j + 1
φ

lim
k→∞

[
φ−k logEtX

φ
t+k

] =
∞∑
j=1

φ−j z̃t�t+j ≤ z

φ− 1
�

where the equality follows from the fact that by stationarity, limk→∞ EtX
φ
t+k = EXφ

t < ∞.

Thus, Xt ≤ Z
1

φ−1 for all t∈ Z. By assumption, Z is not a function of φ, so as φ → ∞, this
upper bound on Xt tends to 1. Hence, for large φ, Xt ≈ 1, giving approximate uniqueness.

We can derive even stronger results in the case in which φ = 1 (in our assumptions) and
one additional assumption holds. First note that with φ = 1, from taking limits as φ → 1
in assumption (iv), we must have that Zt ≤ Z with probability 1 (for all t∈ Z).

Let Z∗
t be the value that would be taken by Zt if it were the case that Xt = 1 for all t∈ Z.

So, it is also the case that Z∗
t ≤Z with probability 1 (for all t∈ Z), by our assumption (iv).

Suppose further that there exists κ≥ 0 such that

E
∣∣Zt −Z∗

t

∣∣ ≤ κE(Xt − 1)�
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This is reasonable, since if Xt → 1 (almost surely), we expect that Zt →Z∗
t (almost surely)

as well.
Now note that

E(Xt − 1)= E
[
(EtZt+1Xt+1)

1
φ − 1

]≤ E

[
1
φ

(EtZt+1Xt+1 − 1)
]
= 1

φ
[EZtXt − 1]

(using stationarity and the law of iterated expectations in the final equality). Thus,

E(Xt − 1) = E
[
(EtZt+1Xt+1)

1
φ − 1

]≤ E

[
1
φ

(EtZt+1Xt+1 − 1)
]

= 1
φ

[EZtXt − 1]

= 1
φ

[
EZtXt−EZ∗

t

] = 1
φ

[
E
(
Zt −Z∗

t

)
Xt+EZ∗

t (Xt − 1)
]

≤ 1
φ

[
E
∣∣Zt −Z∗

t

∣∣Xt+EZ∗
t (Xt − 1)

]
≤ 1

φ

[
κE(Xt − 1)Z

1
φ−1 +ZE(Xt − 1)

]
= 1

φ

[
κZ

1
φ−1 +Z

]
E(Xt − 1)

(from, respectively, the convexity of y �→ y
1
φ , stationarity, and the law of iterated expec-

tations, the fact that EZ∗
t = 1, algebra, that y ≤|y|, our bounds on Xt , E|Zt − Z∗

t |, and

Z∗
t , and more algebra). As φ → ∞, κZ

1
φ−1 + Z → κ + Z < ∞, so for large φ it must

be the case that 1
φ

[κZ
1

φ−1 + Z] < 1. Hence, if φ is large enough for this to hold, then
E(Xt − 1) ≤ 0. However, since Xt ≥ 1 for all t∈ Z, the only way we can have that EXt ≤ 1
is if in fact Xt = 1 for all t∈ Z.

Therefore, for large enough φ, Xt ≡ 1 is the unique solution to the original expecta-
tional difference equation satisfying (a), (b), and (c) above.

APPENDIX F: DETERMINACY WITHOUT THE RESPONSE TO THE CHANGE IN
RELATIVE INFLATION

We suppose that the central bank sets nominal interest rates using the rule

it|t−S = max

{
0� rt|t−S + νt|t−S + (it−1|t−1−S − rt−1|t−1−S − νt−1|t−1−S)

+Et−S

1
T

T∑
k=1

π̌∗
t+k−L −Et−1−S

1
T

T∑
k=1

π̌∗
t−1+k−L + θ

(
πt−S − π̌∗

t−S

)}
�

with θ > 0. Define �t := (νt+S|t − νt+S|t) − (νt−1+S|t−1 − νt−1+S|t−1) (as in the main text), and

ẽt := Et

1
T

T∑
k=1

(
πt+k−L+S − π̌∗

t+k−L+S

)
�
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Then, combining the monetary rule with the multi-period Fisher equation from Sec-
tion 5.2 gives

ẽt +�t = ẽt−1 + θ
(
πt − π̌∗

t

)
�

And substituting this back into the definition of et then implies

θT ẽt = Et

T∑
k=1

(̃et+k−L+S − ẽt+k−L+S−1 +�t+k−L+S)�

When �t is exogenous, this expectational difference equation has a unique solution if and
only if it has a unique solution when �t = 0 for all t. In this case, via the substitution
et = cλt , we have the characteristic polynomial, θTλL−S = λT − 1. (Note, our assumptions
imply T ≥ L− S ≥ 0 and T ≥ 1.) The roots of this equation decide the determinacy of et
(and hence πt). For determinacy, we need L − S ≥ 0 roots strictly inside the unit circle,
corresponding to the lags of et in our difference equation, and T −L+S ≥ 0 roots strictly
outside the unit circle, corresponding to the leads of et in our difference equation.

We will prove that the polynomial

λT − 1 = θTλL−S

has L− S roots strictly inside the unit circle and T −L+ S roots strictly outside the unit
circle, if either L− S = 0 or θ > 2

T
.

First, note that in the special case of L − S = 0, the result is trivial, as the polynomial
becomes λT = 1 + θT , so |λ|= (1 + θT )

1
T > 1 as required. (This case overlaps with the

result of the main text.)
Next, note that as θ → ∞, L − S roots go to 0, so at least for large θ, L − S roots are

strictly inside the unit circle, as needed. What happens to the other T − L + S roots as
θ → ∞? If T = L − S, then there are no such roots, so assume T > L − S. To examine
what happens to these roots, first define κ := θ− 1

T−L+S , so κ→ 0 as θ → ∞, and(
λT − 1

) − Tκ−(T−L+S)λL−S = 0�

Next, suppose λ = zκ−1 where z = z0 +O(κ) as κ → 0, so((
zT

0 +O(κ)
)
κ−T − 1

) − T
(
zL−S

0 +O(κ)
)
κ−T = 0�

as κ → 0. Multiplying by κT then gives

zT
0 − κT − TzL−S

0 +O(κ) = 0�

as κ → 0. Hence, as T ≥ 1, we must have that zT
0 − TzL−S

0 = 0, so

z0 ∈
{

exp
(

log(T ) + 2iπk
T −L+ S

)∣∣∣k ∈{0� � � � � T −L+ S − 1}
}
�

where π is the mathematical constant usually denoted by π, and i := √−1. Thus, as λ =
z0κ

−1 +O(1), as κ → 0 (meaning θ → ∞), |λ|→ ∞. So, as required, for large enough θ,
the other T − L + S roots are strictly outside the unit circle. That is, we are guaranteed
determinacy for sufficiently large θ.
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Now, suppose θ is large enough to give determinacy, and consider what happens as θ is
continuously reduced toward zero. There are two possibilities: either for some critical θ a
root crosses the unit circle, or there is determinacy for all positive θ. In the former case,
there must be some λ∈ C with |λ|= 1 such that the critical value of θ is

θ∗ := λT − 1
TλL−S

�

But then by the triangle inequality,

θ∗ = ∣∣θ∗∣∣ ≤ |λ|T + 1
T |λ|L−S

= 2
T
�

Hence, in either case, for any θ > 2
T

, we must have L−S roots strictly inside the unit circle
and T −L+ S roots strictly outside the unit circle, as required.

APPENDIX G: FISCAL THEORY OF THE PRICE LEVEL (FTPL) RESULTS

G.1. Exact Equilibria Under Active Fiscal Policy With Geometric Coupon Debt and Flexible
Prices

Suppose the representative household supplies one unit of labor, inelastically. Produc-
tion of the final good is given by yt = lt (= 1). In period 0, the representative household
maximizes E0

∑∞
t=0 β

t log ct , subject to the budget constraint

Ptct +At +QtBt + Ptτt = Ptyt + It−1At−1 + (1 +ωQt)Bt−1�

where ct is consumption, τt are real lump sum taxes, Pt is the price of the final good, At

is the number of one-period nominal bonds purchased by the household at t, which each
return It in period t + 1, Qt is the price of a long (geometric coupon) bond, and Bt are the
number of units of this long bond purchased by the household at t. One unit of the period
t long bond bought at t returns $1 at t + 1, along with ω units of the period t + 1 bond.

The household first-order conditions imply

1 = βItEt

Ptct

Pt+1ct+1
� Qt = βEt

Ptct

Pt+1ct+1
(1 +ωQt+1)�

The household transversality conditions are that

lim
t→∞

βt At

Ptct
= 0� lim

t→∞
βt QtBt

Ptct
= 0�

The government fixes taxes at a constant positive level τt = τ, where τ > 0. The govern-
ment issues no one-period bonds, so At = 0. The central bank pegs nominal interest rates
at It = β−1. (We will discuss active monetary policy later.)

The final goods market clears, so yt = ct = 1. Thus, from the household budget con-
straint, we have the following government budget constraint:

QtBt + Ptτ = Bt−1(1 +ωQt)�

We look for an equilibrium in which Pt = P for all t ≥ 0. We do not impose a priori that
P = P−1.
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With Pt = P for t ≥ 0, the household Euler equations simplify to (respectively)

1 = βIt� Qt = βEt (1 +ωQt+1)�

The former equation is consistent with the CB’s peg of It = β−1.
We consider the following solution to the latter equation:

Qt = β

1 −βω
+

(
Q0 − β

1 −βω

)
(βω)−t �

We wish to find Q0, which is free to jump. There are three cases to consider:
Case 1: Q0 <

β

1−βω
. Then Qt eventually goes to zero (and then negative), which certainly

cannot be consistent with a world in which It > 0. Thus, this case is ruled out.
Case 2: Q0 = β

1−βω
. Then Qt is constant, and the government budget constraint becomes

Bt = β−1Bt−1 −β−1(1 −βω)Pτ�

Thus,

Bt = Pτ
1 −βω

1 −β
+

(
B−1 − Pτ

1 −βω

1 −β

)
β−t−1�

So,

βt QtBt

Ptct
= β

1 −βω

1
P

[
Pτ

1 −βω

1 −β
βt +

(
B−1 − Pτ

1 −βω

1 −β

)
β−1

]
→ 1

1 −βω

1
P

(
B−1 − Pτ

1 −βω

1 −β

)
as t → ∞. Thus, from the transversality constraint, P = B−1

τ

1−β

1−βω
. This is the standard

FTPL equilibrium. Equilibrium type 1!
Case 3: Q0 >

β

1−βω
.

Define z := Q0
1−βω

β
− 1, so Q0 = (z+1)β

1−βω
and z > 0, and define qt := Qt (βω)t = β

1−βω
[z +

(βω)t], and bt := Btω
−t . Then the government budget constraint states

bt =
(

1 + (βω)t

ωqt

)
bt−1 − βtPτ

qt

�

and the transversality constraint states 1
P

limt→∞ qtbt = 0. By our solution for qt , we know
that qt → βz

1−βω
> 0. Thus, the transversality condition requires limt→∞ bt = 0. Now define

b̂t := bt

t∏
k=0

(
1 + (βω)k

ωqk

) = bt

t∏
k=0

(
βω

[
z + (βω)k−1

]
βω

[
z + (βω)k

] ) = bt

z + (βω)−1

z + (βω)t

�

with b̂−1 = b−1 = ωB−1. The denominator in the definition of b̂t is greater than 1, so if
bt → 0 as t → ∞, then certainly b̂t → 0. Likewise, if b̂t → 0 as t → ∞, then also bt → 0,
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since, for all t,

|bt | = |̂bt |z + (βω)−1

z + (βω)t
≤ |̂bt |z + (βω)−1

z
�

So, the transversality condition is equivalent to limt→∞ b̂t = 0.
Now, substituting the definition of b̂t into the law of motion for bt gives

b̂t = b̂t−1 − βtPτ

qt

t∏
k=0

(
1 + (βω)k

ωqk

) = b̂t−1 −βt−1 (1 −βω)Pτ
z + (βω)−1 �

so

b̂t = b̂−1 − (1 −βω)Pτ
z + (βω)−1

t∑
j=0

βj−1 = b̂−1 − (1 −βω)Pτ
z + (βω)−1

1 −βt+1

β(1 −β)

→ b̂−1 − (1 −βω)Pτ
z + (βω)−1

1
β(1 −β)

�

as t → ∞. For transversality, we thus need that b̂−1 − (1−βω)Pτ
z+(βω)−1

1
β(1−β) = 0, meaning

P = β(1 −β)
[
z + (βω)−1

]
(1 −βω)τ

b̂−1 = (1 −β)(1 +Q0ω)
τ

B−1�

Hence, one equilibrium is for Q0 >
β

1−βω
to be arbitrary and for P to jump to satisfy this

expression. Equilibrium type 2!
Note that this implies that, for all t,

(1 +ωQt)Bt−1

P
= 1 +ωqt (βω)−t

P
b̂t−1

z + (βω)−1

z + (βω)t−1ω
t−1 = τ

1 −β
�

so, it is still always the case that the real value of debt equals the present value of current
and future taxes.

Alternatively, suppose P is given. Then, from the previous solution for P , we have that
if Q0 jumps to

Q0 = 1
ω

[
Pτ

(1 −β)B−1
− 1

]
≥ β

1 −βω
�

then the transversality condition will be satisfied. This just requires that

P ≥ B−1

τ

1 −β

1 −βω
�

Hence, inflation is unbounded above in the initial period. Therefore, the FTPL implies a
lower bound on the price level, not an upper bound, and so with passive monetary policy,
there are multiple equilibria.

Now suppose that monetary policy is active, with It = β−1�φ
t , with φ> 1 and �t := Pt

Pt−1
.

β−1 is the real interest rate in this model, so this is a non-linear real rate rule. Given that
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ct = 1, the Euler equation for one-period bonds implies the nonlinear Fisher equation:

1 = βItEt

1
�t+1

�

so, for t ≥ 0,

Et

1
�t+1

=
(

1
�t

)φ

�

�t = 1 is the unique stationary solution to this equation, by the results of Appendix E.2
(with Xt := 1

�t
). In this candidate equilibrium, It = β−1, so �t and It have the same path

as under the passive policy in the special case in which P = P−1. Consequently, if P−1 ≥
B−1
τ

1−β

1−βω
, then by the above results, there exists a Q0 under which all equilibrium conditions

and transversality conditions are satisfied. Thus, even with active monetary and active
fiscal policy, there is still a stable equilibrium for inflation and real variables.

G.2. Linearized Equilibria Under Active Fiscal Policy With Geometric Coupon Debt and
Sticky Prices

We now examine the fiscal theory of the price level in a richer model with sticky prices.
We just give the linearized equations of the model. These follow equations (5.17) to (5.21)
of Cochrane (2023), and the reader is referred there for the derivations. All shocks (vari-
ables of the form ε·�t) are assumed to be mean zero and independent, both across time
and across shocks. The equations follow:

• Euler: xt = Etxt+1 − σrt .
• Phillips: πt = βEtπt+1 + κxt .
• Fisher: it = rt +Etπt+1.
• Robust real rate rule: it = rt +φπt + εi�t .
• Exogenous real government surplus: st = εs�t .
• Debt evolution (vt is the value of debt to GDP, et is the ex post nominal return on

government debt): βvt = vt−1 + et −πt − st .
• Equal returns: Etet+1 = it .
• Bond pricing (ω controls the maturity structure. ω = 0 is one-period debt, ω = 1 is a

perpetuity): et = ωqt − qt−1.
We assume that ω> 0. Then, for any φ �= 0, the following solves these linear expecta-

tional difference equations:

πt = −εi�t

φ
� xt = − εi�t

κφ
� rt = εi�t

σκφ
� vt = − εi�t

σκφ
�

et = εs�t −
(

β

σκφ
+ 1

φ

)
εi�t + εi�t−1

σκφ
�

qt = 1
ω

[
qt−1 + εs�t −

(
β

σκφ
+ 1

φ

)
εi�t + εi�t−1

σκφ

]
�

As in the non-linear, flexible price case, the bond price is exploding. However, the real
value of government debt remains stationary, which is sufficient for the transversality con-
straint to be satisfied. Inflation and all real variables are also stationary. Thus, if monetary
policy is passive (φ ∈ (0�1)), then the linearized model has multiple valid equilibria, this
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one, and the standard “FTPL” one in which qt is stationary (see Cochrane (2023)). Con-
versely, if monetary policy is active (φ> 1), then the model possesses a valid equilibrium
with stationary inflation and real variables.

G.3. Stability Under Real Rate Rules for Generic Models

When is the real rate rule it = rt + φπt + εζ�t with φ > 1 consistent with stable real
variables?

We need to impose at least some additional structure on the rest of the model in order
to make progress on this question for general models. In particular, we assume that the
other endogenous variables of the model can be partitioned into two groups, zt and qt ,
where zt may affect qt but not vice versa. The variables in zt must be stationary in equi-
librium, but always have a unique stationary solution if πt is stationary. The variables in
qt need not be stationary in equilibrium. These restrictions are satisfied by models of the
fiscal theory of the price level, for example, in which case hours, output, consumption,
investment, debt-to-GDP, inflation, nominal and real rates, and so on will be in zt , while
bond prices and quantities will be in qt . That bond prices and quantities need not be sta-
tionary under the fiscal theory of the price level was carefully established from transver-
sality conditions in Appendix G.1, under the assumption of geometric coupon debt. The
calculations of Appendices G.1 and G.2 also show that only the value of government debt
matters for “zt” variables, not its decomposition into bond prices and quantities.

Then, without loss of generality, the linearized model (without the monetary rule) must
have a representation in the following form:11

0 = AzzEtzt+1 +Bzzzt +Czzzt−1 + dzπt +Ezνt� (16)

0 = AqqEtqt+1 +Bqqqt +Cqqqt−1 +AqzEtzt+1 +Bqzzt +Cqzzt−1 + dqπt +Eqνt� (17)

where νt is a vector of exogenous shocks with Et−1νt = 0, and where the coefficient matri-
ces are such that there is a unique matrix Fz with eigenvalues in the unit circle such that
Fz = −(AzzFz +Bzz)−1Czz . This condition on Fz imposes that zt has a stationary solution
if πt is stationary; in other words, it ensures there is no real indeterminacy in the model.
Note that qt (and its lags and leads) do not enter the equation for zt , by our assumption
that qt does not affect zt .

We want to see if πt = − 1
φ
εζ�t is consistent with (16) and (17). This is the only possible

stationary solution for inflation under the real rate rule it = rt + φπt + εζ�t with φ > 1.
From this solution for πt , (9) and the definition of Fz ,

zt = Fzzt−1 + (AzzFz +Bzz)−1

(
1
φ
dzεζ�t −Ezνt

)
�

Hence, from (10),

0 = AqqEtqt+1 +Bqqqt +Cqqqt−1 + (
(AqzFz +Bqz)Fz +Cqz

)
zt−1

+ (AqzFz +Bqz)(AzzFz +Bzz)−1

(
1
φ
dzεζ�t −Ezνt

)
− 1

φ
dqεζ�t +Eqνt�

11The lack of terms in Etπt+1 and πt−1 is without loss of generality, as such responses can be included by
adding an auxiliary variable zt�j with an equation of the form zt�j = πt .



ROBUST REAL RATE RULES 19

If there is a real matrix Fq solving Fq = −(AqqFq +Bqq)−1Cqq, then qt admits a solution of
the form

qt = Fqqt−1 +Gzt−1 + hεζ�t + Jνt�

for some matrices G and J and some vector h. This may be explosive, but that is allowed
by our assumptions. (In the fiscal theory of the price level contexts, this corresponds to
explosions in bond prices and quantities of opposite signs, producing stable debt values.)
In this case, there is no inconsistency with the solution for inflation implied by our real rate
rule. So, the answer to the question “is a real rate rule consistent with stable zt variables?”
is the same as the answer to the question “does AqqF

2
q +BqqFq +Cqq have a real solution

for Fq?”
When Aqq = 0, this is simple. A real solution exists if and only if Bqq is full rank. Gener-

ically, matrices are full rank, so except in knife edge cases, a real solution exists when
Aqq = 0. Furthermore, by continuity, for almost all Aqq with sufficiently small norm, a
real solution must exist. Under standard models of the fiscal theory of the price level,
Aqq = 0, since the geometric coupon bond first-order condition Qt = Et

�t+1
�t+1

(1 + ωQt+1)

can be rewritten as the two equations Et = 1+ωQt

Qt−1
and 1 = Et

�t+1
�t+1

Et+1 (Et is in zt , while
Qt is in qt ; also see Appendices G.1 and G.2). Thus, generically, all models sufficiently
close to a standard fiscal theory of the price level model must have a real solution for Fq.
Therefore, for all such models, a real rate rule is consistent with a stationary path for zt
variables.
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