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SEQUENTIALLY STABLE OUTCOMES

FRANCESC DILMÉ
Department of Economics, University of Bonn

This paper introduces and analyzes sequentially stable outcomes in extensive-form
games. An outcome ω is sequentially stable if, for any ε > 0 and any small enough per-
turbation of the players’ behavior, there is an ε-perturbation of the players’ payoffs and
a corresponding equilibrium with outcome close to ω. Sequentially stable outcomes
exist for all finite games and are outcomes of sequential equilibria. They are closely re-
lated to stable sets of equilibria and satisfy versions of forward induction, iterated strict
equilibrium dominance, and invariance to simultaneous moves. In signaling games, se-
quentially stable outcomes pass the standard selection criteria, and when payoffs are
generic, they coincide with outcomes of stable sets of equilibria.
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1. INTRODUCTION

EQUILIBRIUM REFINEMENTS PLAY A CENTRAL ROLE in the study of extensive-form
games. Among these, the concept of a sequential equilibrium, introduced by Kreps and
Wilson (1982), stands out because of its universality, simplicity, desirable properties (such
as existence, belief consistency, and sequential rationality), and ease of use. Sequential
equilibria have been widely used in analyzing games of incomplete information across a
broad range of applications.

We start by providing a characterization of sequential outcomes (i.e., outcomes of se-
quential equilibria), presenting them as behavior that is robust to some tremble sequence:
We show that an outcome ω is sequential if and only if there is some vanishing sequence
of (behavioral) trembles (ξn) for which there exist a sequence (εn) → 0 and a sequence
of strategy profiles (σn) with outcomes converging to ω, such that each σn is a sequential
εn-equilibrium of the game perturbed according to ξn.1 Note that if one requires εn = 0
for all n instead of εn → 0, our characterization of sequential outcomes coincides with the
definition of outcomes of perfect equilibria in Selten (1975).

We then introduce and analyze a strengthening of sequentiality suggested by our char-
acterization: We study behavior that is robust to all tremble sequences instead of just one.
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We say that an outcome ω is sequentially stable if, for any vanishing sequence of trem-
bles (ξn), there exist a sequence (εn) → 0 and a sequence of strategy profiles (σn) with
outcomes converging to ω, such that each σn is a sequential εn-equilibrium of the game
perturbed according to ξn.2 This paper’s main contribution is to propose sequential stabi-
lity as a new equilibrium concept and show that it significantly strengthens sequentiality
while keeping its ease of use. We relate sequentially stable outcomes to stable sets of equi-
libria (Kohlberg and Mertens (1986)) and also to the selection criteria for signaling games
introduced in Cho and Kreps (1987).

We first establish that all extensive-form games have at least one sequentially stable
outcome. To prove this, we perturb the payoffs of the agent-extensive form of the game.
We then use that, for a generic payoff perturbation, there is a connected stable set of
equilibria of the agent-extensive form of the game with the same outcome. We finally
show that a limit of such outcomes for some vanishing sequence of generic payoff per-
turbations exists and is sequentially stable in the original game. This existence property is
important not only because it ensures that sequential stability can be used in all games,
but also because it enables us to show that an outcome is sequentially stable by eliminat-
ing alternatives. Also, when an outcome is the unique limit equilibrium outcome along
some tremble sequence, it is the unique sequentially stable outcome.

Next, we provide some properties satisfied by sequentially stable outcomes. First, they
satisfy a version of the never a weak best response (NWBR) condition (Kohlberg and
Mertens (1986)): If ω is sequentially stable and an action a is not a best response in any se-
quential equilibrium with outcome ω, then ω is also sequentially stable in the game where
a is removed. We use this result to show versions of both forward induction and iterated
strict equilibrium dominance. We also establish that the restriction of a sequentially stable
outcome to an on-path subgame is sequentially stable in that subgame, and that a subgame
with a unique sequential outcome can be replaced by that outcome without affecting the
set of sequentially stable outcomes. Finally, we prove that the set of sequentially stable
outcomes is invariant to how simultaneous moves are represented in the extensive form
of the game. However, like sequential outcomes, sequentially stable outcomes may fail
admissibility and may not be invariant to coalescing consecutive moves. Through several
examples, we illustrate how these properties can be used to simplify proving or ruling out
the sequential stability of a given outcome.

Lastly, we apply our analysis to signaling games. We show that sequentially stable out-
comes pass the Intuitive Criterion, D1, and D2 (Cho and Kreps (1987)), and we provide
a full characterization of sequential stability without using trembles. Sequential stability
thus has the potential to provide a unified approach to selecting equilibria in signaling
games. Additionally, we obtain that a signaling game has a unique sequentially stable out-
come if and only if there is a unique joint outcome of a stable set of equilibria. We also
show that the set of sequentially stable outcomes coincides with the set of outcomes of
stable sets of equilibria in signaling games with generic payoffs.

Relationship to Kohlberg and Mertens (1986, KM): Sequential stability is closely re-
lated to the concept of stability, which from now on we will refer to as “KM-stability,”
introduced by Kohlberg and Mertens (1986). Roughly speaking, a set of Nash equilib-
ria is KM-stable if it is minimal with respect to the property that, for any vanishing se-
quence of normal-form trembles (assigning a positive probability to each contingent plan
of each player), there is a sequence of Nash equilibria approaching the set. KM-stable

2We show that this definition of sequentially stable outcome is equivalent to that in the abstract (see Propo-
sition 4.2).
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sets of equilibria exist for all games and have desirable properties (they satisfy forward
induction, iterated dominance, and invariance). Still, KM-stability is rarely applied as a
selection criterion in practice. The main reason is that KM-stable sets of equilibria are
difficult to characterize and use. In many extensive-form games, the number of sets of
Nash equilibria that may be KM-stable a priori is large. While forward induction and it-
erated dominance allow some of them to be ruled out, it is typically infeasible to identify
a KM-stable set by ruling out all alternatives. On the other hand, directly proving that a
given set of equilibria is KM-stable requires showing that it is minimal with respect to the
property that any perturbed version of the game has an equilibrium close by; this is often
impractical as well.3

Both sequential stability and KM-stability are based on the requirement of robustness
to all small perturbations of the game. However, these concepts differ in two important
ways. First, sequential stability requires ε-optimality along the sequence (for some ε → 0)
instead of exact optimality. This weakening permits the existence of an outcome-valued
concept for all games, which is much easier to work with than a set-valued concept, but it
also implies that sequential stability is not powerful in selecting equilibria in normal-form
games, where all Nash outcomes are sequentially stable. Nevertheless, sequential stabili-
ty offers significant selection power in extensive-form games; for example, it is stronger
than the standard selection criteria in signaling games. The requirement of ε-optimality
for some ε → 0 also makes it easier to construct supporting equilibrium sequences, since
as with sequential equilibria, exact sequential optimality is only required in the limit. We
are able to show that, if a game has a unique sequentially stable outcome, such an out-
come is the limit of a sequence of Nash outcomes (i.e., with εn = 0 for all n) along any
sequence of vanishing trembles. The second main difference between sequential stability
and KM-stability is that the former applies to the extensive form of the game, instead
of the reduced normal form. This permits us to use simpler, more intuitive arguments. It
also lets us apply methods such as NWBR or strict domination action by action, instead of
considering full contingent plans, and it lets us simplify the analysis by replacing subgames
with their sequentially stable outcomes.

Contribution to the Literature: Since the definition of Nash equilibria (Nash (1951)),
many equilibrium concepts have been developed to select equilibria without undesirable
properties. Important examples include subgame-perfect equilibria (Selten (1965)), per-
fect equilibria (Selten (1975)), proper equilibria (Myerson (1978)), sequential equilibria
(Kreps and Wilson (1982)), KM-stable sets (Kohlberg and Mertens (1986)), and perfect
Bayesian equilibria (Fudenberg and Tirole (1991b)).4 In signaling games, selection crite-
ria such as the Intuitive Criterion, D1, and D2 of Cho and Kreps (1987) or the divinity

3Okada (1981) defined strictly perfect equilibria as those that are robust against all perturbations. However,
such equilibria do not exist in many games of interest, even when payoffs are generic. Kohlberg and Mertens
(1986) show that “there exists a [KM-]stable set which is contained in a single connected component of the
set of Nash equilibria” (p. 1027) and that, generically in payoffs, “all equilibria in the same connected compo-
nent give rise to identical outcomes” (p. 1020). Nevertheless, joint outcomes of KM-stable sets contained in
connected sets of equilibria are difficult to compute, and cannot be used as a universal equilibrium concept
because many games of interest do not have generic payoffs due to quasilinear preferences, payoff-irrelevant
signals, assumed functional forms, or time-separable preferences with constant discount factors.

4Sometimes, when a given equilibrium concept is not powerful enough as a selection criterion, additional
ad hoc requirements are imposed, such as the “no signaling what you do not know” and “never dissuaded
once convinced” conditions for perfect Bayesian equilibria (see Osborne and Rubinstein (1994)). Alternative
restrictions on belief updating off the path of play have been used in Cramton (1985), Rubinstein (1985),
Bagwell (1990), and Harrington (1993).
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criterion of Banks and Sobel (1987) may be used. This variety of concepts has made it
increasingly difficult to compare equilibrium predictions across different games.5

We contribute to the literature by providing a new equilibrium concept that is suited
for use across many applications, making it easier to compare predictions. There are
three main reasons for this. First, sequentially stable outcomes constitute a single-valued
equilibrium concept and always exist. Second, sequential stability is stronger than numer-
ous previous equilibrium concepts, including subgame-perfect, sequential, and perfect
Bayesian equilibria, and it passes commonly used selection criteria in signaling games.
It can therefore be used directly with previous work involving unique solutions; for ex-
ample, any game having a unique sequential outcome, or a unique outcome passing D1,
automatically has a unique sequentially stable outcome. Third, the properties of sequen-
tially stable outcomes—such as NWBR and forward induction, which are defined through
natural conditions on the optimality of actions in each information set instead of on the
global optimality of full contingent plans—make them easier to compute. We provide ex-
amples illustrating this throughout the paper. In a companion paper (Dilmé (2024b)), we
introduce (lexicographic) �-numbers as a tool for obtaining and using sequentially stable
outcomes without needing to work with vanishing trembles.

The rest of the paper is organized as follows. In Section 2, we establish our notation for
extensive-form games, define vanishing trembles and sequential ε-equilibria, and provide
a new characterization of sequential equilibria. In Section 3, we define sequentially sta-
ble outcomes, relate them to KM-stable sets of equilibria, and prove that all games have
a sequentially stable outcome. In Section 4, we obtain properties of sequentially stable
outcomes and describe techniques for finding them. In Section 5, we characterize sequen-
tial stability in signaling games and show that sequentially stable outcomes pass common
selection criteria. Finally, Section 6 concludes. The Appendix contains the proofs of the
results.

2. SEQUENTIAL ε-EQUILIBRIA AND SEQUENTIAL OUTCOMES

2.1. Extensive-Form Games

We now provide the definition and corresponding notation for an extensive-form game.
A (finite) extensive-form game G := 〈A�H�I�N� ι�π�u〉 has the following components:

(1) A finite set of actions A. (2) A finite set of histories H containing finite sequences of
actions such that, for all (aj)Jj=1 ∈ H with J > 0, we have (aj)J−1

j=1 ∈ H (hence ∅ =: (aj)0
j=1 ∈

H); the set of terminal histories is denoted by Z. (3) An information partition I of the set
of nonterminal histories such that there is a partition {AI|I ∈ I} of A with the property
that, for each I ∈ I and h ∈ H, we have (h�a) ∈ H for some a ∈ AI if and only if h ∈
I.6 (4) A finite set of players N �� 0. (5) A player assignment ι : I → N ∪ {0} assigning
each information set to a player or nature such that there is perfect recall.7 (6) A strategy
by nature π : ⋃

I∈ι−1({0}) A
I → (0�1] satisfying

∑
a∈AI π(a) = 1 for each I ∈ ι−1({0}). (7)

5Our analysis does not consider payoff uncertainty, which is studied in Fudenberg, Kreps, and Levine (1988).
Recently, Takahashi and Tercieux (2020) have shown the existence of outcomes robust to payoff uncertainty
for generic payoffs.

6Note that we assume, without loss of generality, that each action is available at a unique information set
(otherwise, one can rename actions).

7Perfect recall requires that for all I� I ′ ∈ I with ι(I) = ι(I ′) and all h� ĥ ∈ I , if (h′� a) � h for some h′ ∈ I ′

and a ∈A, then (ĥ′� a) � ĥ for some ĥ′ ∈ I ′, where (h′� a) � h indicates that (h′� a) precedes or is equal to h.
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For each player i ∈ N , a (von Neumann–Morgenstern) payoff function ui : Z → R. For
convenience, we set u0(z) = 0 for all z ∈ Z.

A strategy profile is a map σ : A → [0�1] such that
∑

a∈AI σ (a) = 1 for all I ∈ I (i.e.,
it is a probability distribution for each set of actions available at each information set)
and σ (a) = π(a) for all a played by nature (i.e., nature plays according to π). We let

 be the set of strategy profiles. An outcome ω (of G) is a probability distribution over
terminal histories. We use � := �(Z) to denote the set of outcomes. Each strategy profile
σ ∈ 
 generates a unique outcome ωσ , where each terminal history (aj)Jj=1 ∈ Z is assigned
probability ωσ ((aj)Jj=1) := ∏J

j=1 σ (aj) ∈ [0�1].

2.2. Trembles and Vanishing Trembles

Next, we define trembles and vanishing trembles. The analysis of trembles and the cor-
responding perturbed games was initiated by Selten (1975). For each a ∈A, we let Ia ∈ I
be the unique information set where a is available, that is, satisfying a ∈ AIa .

DEFINITION 2.1: A (behavioral) tremble of G is a function ξ : A → (0�1] satisfying∑
a∈AI ξ(a) ≤ 1 for all I ∈ I and ξ(a) ≤ π(a) for all a ∈ A such that ι(Ia) = 0.

As is common, we interpret ξ(a) ∈ (0�1] as the smallest probability with which player
ι(Ia) can decide to select action a ∈ A. A tremble thus represents the probability with
which players make mistakes. We denote by 
(ξ) the set of strategy profiles σ ∈ 
 such
that, for all a ∈ A, σ (a) ≥ ξ(a). For each tremble, G(ξ) denotes the perturbed game de-
fined by G together with the set of strategy profiles 
(ξ). As we are interested in small
trembles, we will often work with vanishing trembles.

DEFINITION 2.2: A vanishing tremble is a sequence of trembles (ξn) such that ξn(a) → 0
for all a ∈A.

A vanishing tremble (ξn) generates a sequence of perturbed games (G(ξn)). Such a
sequence approaches G (with the set of strategy profiles 
), in the sense that the sets of
strategy profiles 
(ξn) approach 
 (under the Hausdorff distance) as n→ ∞.8

2.3. Sequential ε-Equilibria

We now define almost-optimal behavior in a perturbed game. Because a player chooses
an action a only if the corresponding information set Ia (i.e., the information set where
a is available) is reached, we will require ε-optimality at each information set given the
continuation payoffs.

Fix a tremble ξ. Note that all information sets are reached with positive probability
under any strategy profile σ ∈ 
(ξ). Then, for each action a ∈ A, the expected payoff
of player ι(Ia) from playing a conditional on Ia being reached, is uniquely defined. This
payoff is

u(a|σ) :=
∑
z∈Za

Prσ (z)
Prσ

(
Ia

)
σ (a)

uι(Ia) (z)� (2.1)

8Our results hold under any normed distances on the spaces of strategy profiles, outcomes, and payoff
functions (since all normed distances generate the same topology in R

n). For concreteness, we take the sup-
norm and sup-distance.
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where Za ⊂ Z is the set of terminal histories containing a, and where Prσ (·) indicates
probability under σ . We omit the subindex ι(Ia) in u(a|σ) as it is uniquely determined by
a.

DEFINITION 2.3: Fix ε > 0 and ξ. We say that σ ∈ 
(ξ) is a sequential ε-equilibrium of
G(ξ) if, for all a ∈ A, we have σ (a) > ξ(a) only if u(a|σ) ≥ u(a′|σ) − ε for all a′ ∈AIa .

The set of sequential ε-equilibria of G(ξ) is denoted by 
∗
ε(ξ). In a sequential ε-

equilibrium, each player chooses an action a with a probability higher than the trembling
probability only if the action is sequentially ε-optimal, that is, if a is ε-optimal conditional
on the corresponding information set being reached. Because σ (a) ≥ ξ(a) > 0 for all
a ∈ A and σ ∈ 
(ξ), the ε-optimality of an action can be evaluated in all information sets
without the need to specify a belief system, as all information sets are on path under σ .
We will refer to 
∗

0(ξ) as the set of Nash equilibria of G(ξ).

2.4. A Characterization of Sequential Outcomes

Kreps and Wilson (1982) defined belief system μ as a map assiging a probability μ(h) ∈
[0�1] to each nonterminal history h ∈ H\Z satisfying that

∑
h∈I μ(h) = 1 for all I ∈ I .

They also defined a sequential equilibrium as a pair consisting of a belief system μ and
a strategy profile σ that is consistent and sequentially rational. Part of their motivation
was to make the new equilibrium concept similarly powerful but simpler to use than the
concept of (trembling-hand) perfect equilibria (Selten (1975)): as Kreps and Wilson state,
“It is vastly easier to verify that a given equilibrium is sequential than that it is perfect”
(p. 264). The following characterization brings the concepts of perfect and sequential
equilibria closer together.

PROPOSITION 2.1: An outcome ω is sequential if and only if there exist a vanishing tremble
(ξn), a sequence (εn) → 0, and a sequence (σn ∈ 
∗

εn
(ξn)) such that (ωσn) converges to ω.

This proposition makes it evident that sequential equilibria are a weakening of perfect
equilibria (as shown by Kreps and Wilson (1982)), requiring only εn-optimality along the
sequence for some (εn) → 0 instead of exact optimality (i.e., εn = 0). See Blume and
Zame (1994) for an analogous characterization of sequential equilibria as limits of Nash
equilibria of games with perturbed actions and payoffs, and Myerson and Reny (2020) for
a characterization of sequential equilibria in terms of conditional ε-equilibria.9

EXAMPLE 2.1: Figure 1 shows the beer–quiche game of Cho and Kreps (1987). In this
game, nature chooses whether player 1’s type is strong or weak; then player 1 chooses
either beer or quiche, and player 2, observing player 1’s choice but not her type, chooses
either to fight or to run. We now use an explicit vanishing tremble to show that the

9Myerson and Reny (2020) show that ω is sequential if and only if, for some vanishing tremble, it is the
limit of a corresponding sequence of outcomes of conditional ε-equilibria for some ε → 0, where they define
σ to be a conditional ε-equilibrium if

∑
a∈AI σ (a)u(a|σ) ≥ maxσ̂I∈�(AI )

∑
a∈AI σ̂I (a)u(a|σ) − ε for all I ∈ I . It

is not difficult to verify that, in fact, ω is sequential if and only if, for any vanishing tremble, it is the limit of
a corresponding sequence of outcomes of conditional ε-equilibria for some ε → 0. As we shall see, requiring
instead that ω is the limit of outcomes of sequential ε-equilibria for some ε → 0 along all vanishing trembles
will significantly refine the set of sequential outcomes.



SEQUENTIALLY STABLE OUTCOMES 1103

FIGURE 1.—Game tree from Example 2.1.

quiche outcome ωq—in which player 1 chooses qs and qw, and then player 2 chooses rq—
is sequential. Let (ξn) satisfy ξn(bs) = ξn(qs) = (n + 1)−2 and ξn(a) = (n + 1)−1 for all
a �= bs�qs. Note that the weak type trembles with an asymptotically infinitely higher like-
lihood than the strong type. Consider the sequence of strategy profiles (σn) pinned down
by σn(a) := ξn(a) for all a ∈ {bs� bw� rb� fq}. It is then easy to see that σn ∈ 
∗

0(ξn) for all
large enough n and that σn tends to ωq. Hence, by Proposition 2.1, the quiche outcome
is sequential. (Note that the beer–quiche game is simple enough to allow us to construct
a sequence that is exactly optimal for all n, hence ωq is also perfect.) Intuitively, along
the sequence of strategy profiles, the probability that player 2 assigns to the strong type
after observing beer tends to 0, while the probability she assigns to the strong type after
observing quiche tends to 09. This makes rq and fb asymptotically optimal for player 2,
and hence qs and qw are asymptotically optimal for player 1.

3. SEQUENTIALLY STABLE OUTCOMES

In this section, we introduce the concept of sequentially stable outcomes and prove that
they exist in any game. We also discuss their relationship to KM-stable sets of equilibria
(Kohlberg and Mertens (1986); see van Damme (1991), for a textbook treatment).

3.1. Definition of Sequentially Stable Outcomes

We now define sequentially stable outcomes, the main object of study of the current
paper.

DEFINITION 3.1: An outcome ω ∈ � is sequentially stable if, for any vanishing tremble
(ξn), there are two sequences (εn) → 0 and (σn ∈ 
∗

εn
(ξn)) such that (ωσn) converges to

ω.

In words, an outcome is sequentially stable if, for any vanishing tremble, it can be ap-
proximated (under the sup-distance; see footnote 8) by a sequence of sequential epsilon-
outcomes of the corresponding perturbed games, for some vanishing sequence of ep-
silons. Our definition of sequentially stable outcomes is analogous to the characterization
of sequential outcomes in Proposition 2.1 but requires robustness for all vanishing trem-
bles instead of for one of them. As the following corollary states, this implies that sequen-
tial stability is a refinement of sequential equilibrium. In other words, a sequentially stable
outcome conforms to the requirement of “backward induction” in Kohlberg and Mertens
(1986) (van Damme (1991), calls such a property “sequential rationality,” requiring that
“any solution contains a sequential equilibrium”).
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COROLLARY 3.1: A sequentially stable outcome is sequential.

EXAMPLE 3.1—Continuation of Example 2.1: In Example 2.1, we showed that the
quiche outcome ωq is sequential by showing it is robust to a particular vanishing tremble.
We now prove that ωq is not sequentially stable by showing it is not robust to another va-
nishing tremble. Consider the vanishing tremble (ξn) where ξn(bw) = ξn(qw) = (n+ 1)−2

and ξn(a) = (n + 1)−1 for all a �= bw�qw. Note that now the strong type trembles with
an asymptotically infinitely higher likelihood than the weak type. Assume for the sake of
contradiction that there are two sequences (εn) → 0 and (σn ∈ 
∗

εn
(ξn)) with ωσn → ωq.

If there were a strictly increasing sequence (kn) with σkn (bw) = ξkn (bw), then we would
have σkn (fb) = ξkn (fb) for n large enough: because beer would become an increasingly
strong signal that player 1 is strong, player 2 would respond to it by running. Thus, the
strong type’s payoff from choosing bs would tend to 3 along this subsequence, which
is strictly higher than her payoff from choosing qs, contradicting the assumption that
choosing qs is asymptotically optimal (i.e., there cannot be some (εn) → 0 such that
u(qs|σn) ≥ u(bs|σn)−εn for all n). We conclude that if n is large enough, σn(bw) > ξn(bw),
and so bw must asymptotically optimal. However, since σn(rq) → 1 as n→ ∞ in the quiche
outcome, the weak type’s payoff from choosing qw (which converges to 3) is larger than
her payoff from choosing bw (which is at most 2), contradicting the assumption that choos-
ing bw is asymptotically optimal. Intuitively, choosing quiche is asymptotically optimal for
the strong type only if player 2 fights after beer with a high enough probability. This means
player 2’s asymptotic posterior about player 1 being strong after beer must be lower than
05; hence, choosing beer must be asymptotically optimal for the weak type. But the weak
type obtains 3 by choosing quiche, which is more than her payoff from choosing beer.

EXAMPLE 3.2—Continuation of Example 3.1: We now prove that the beer outcome
ωb—in which player 1 chooses bs and bw, and then player 2 chooses rb—is sequentially
stable. Fix an arbitrary vanishing tremble (ξn). For each n with ξn(qw) ≥ 9ξn(qs), de-
fine σn(a) := ξn(a) for all a ∈ {qs�qw� rq� fb}, which pins down the value of σn(a) for all
a. Note that, under such σn, if n is large enough, then both types of player 1 strictly
lose from choosing quiche, and player 2 assigns a probability greater than or equal to
0.5 to (s� qs) after quiche. For each n with ξn(qw) < 9ξn(qs), define σn(qw) := 9ξn(qs),
σn(rq) := 05 − ξn(fb), and σn(a) := ξn(a) for a ∈ {qw� fb}, which again pins down the
value of σn(a) for all a. Now, under σn and for n large enough, the strong type strictly
loses from choosing quiche, while the weak type is indifferent between beer and quiche.
Also, player 2 assigns a probability of 0.5 to (s� qs) after quiche. It is easy to see that
σn ∈ 
∗

0(ξn) for all n large enough and that ωσn →ωb; hence, ωb is sequentially stable.10

A Characterization of Sequential Stability

To give further intuition for sequential stability, we now characterize sequentially stable
outcomes without using vanishing trembles: An outcome ω is sequentially stable if, for all
ε > 0, any slightly perturbed version of G has a sequential ε-equilibrium with outcome
close to ω. In other words, a sequentially stable outcome is such that, for any degree of
optimality and precision, any perturbed game with small enough tremble has a nearby
almost-optimal outcome.

10It is also easy to see that in the beer–quiche game, the sets of limits of sequences of sequential εn-equilibria
for different vanishing trembles may have empty intersection. This fact and Proposition 3.4 motivates applying
sequential stability (i.e., robustness to small trembles) to outcomes instead of to strategy profiles to guarantee
existence in all games.
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PROPOSITION 3.1: An outcome ω is sequentially stable if and only if for all ε�ε′ > 0 there
is some δ > 0 such that, if ‖ξ‖ < δ, then G(ξ) has a sequential ε-equilibrium with outcome
ε′-close to ω.

Extensive-Form Stable Outcomes

It will often be useful to consider the following natural strengthening of sequential sta-
bility.

DEFINITION 3.2: We say that ω is extensive-form stable if, for any vanishing tremble
(ξn), there is a sequence (σn ∈ 
∗

0(ξn)) such that (ωσn) converges to ω.

That is, ω is extensive-form stable if there is a sequence of Nash outcomes of the cor-
responding perturbed games converging to ω. It is clear that extensive-form stability is
stronger than sequential stability, as it requires εn = 0 instead of εn → 0. We record this
observation in the following proposition.

PROPOSITION 3.2: Every extensive-form stable outcome is sequentially stable.

The following result establishes that, while sequential stability is weaker than extensive-
form stability, the two concepts coincide when there is a unique sequentially stable out-
come.

PROPOSITION 3.3: If there is a unique sequentially stable outcome, it is the unique
extensive-form stable outcome.

The intuition for Proposition 3.3 is as follows. If there is a unique sequentially stable
outcome ω, then by Proposition 3.2, either ω is the unique extensive-form stable outcome
(in which case the result holds), or the game has no extensive-form stable outcome. If the
latter, then there is a vanishing tremble with no corresponding sequence of Nash equilib-
ria converging to ω. Combining this vanishing tremble with a sequence of perturbations
of payoffs, we can construct a sequence of sequentially stable outcomes of nearby games
converging to an outcome ω′ different from ω. However, we show that the correspon-
dence that maps payoffs to the set of sequentially stable outcomes is upper hemicontinu-
ous, and so ω′ must be sequentially stable. This contradicts the assumption that ω is the
unique sequentially stable outcome.

3.2. Existence of Sequentially Stable Outcomes

We now prove that sequentially stable outcomes always exist.

PROPOSITION 3.4: Any game G has a sequentially stable outcome.

The proof of Proposition 3.4 is divided into two steps. We first argue that the agent-
extensive form of G, denoted by Ĝ, has an outcome that is the limit of extensive-form
stable outcomes along a sequence of generically perturbed payoffs.11 To prove this result,

11That is, Ĝ has the same game tree and moves by nature as G, but it has a larger number of strategic
players, each of them possessing at most one information set, and each strategic player associated with a given
information set has the same payoff for each terminal history as the player associated to this information set
in G.



1106 FRANCESC DILMÉ

we first argue that, if the payoffs of Ĝ are generically perturbed, it has an extensive-form
stable outcome.12 We then take a generic sequence of payoff functions (ûk : Z → R

N̂)
converging to û, and for each k, an extensive-form stable outcome ωk of Ĝ with payoffs
ûk. Taking a subsequence if necessary, we may assume that (ωk) converges to some ω ∈
�. The second step of the proof shows that ω is sequentially stable in G. In this step,
we take a vanishing tremble (ξn) and fix, for each k, a sequence (σk�n) with outcomes
converging to ωk and with σk�n ∈ 
∗

0(ξn� ûk) for all n, where 
∗
ε(ξn� ûk) indicates the set of

sequential ε-equilibria of Ĝ perturbed according to ξn with payoff ûk. (Such a sequence
exists because ωk is extensive-form stable.) We use a standard diagonal argument to prove
that there exist an increasing sequence (nk) and a sequence (εk) → 0 such that σk�nk ∈

∗

εk
(ξnk� û) for all k and ωσk�nk converges to ω as k → ∞. Since the argument holds for

any vanishing tremble, we argue that ω is sequentially stable in G.
The existence of a sequentially stable outcome in all games contrasts with the fact that

KM-stable sets of equilibria with a common outcome only exist for generic payoffs. This
negative result motivated Kohlberg and Mertens (1986) to favor a set-valued equilibrium
concept, which is more difficult to interpret and use. It is thus clear that the converse of
Proposition 3.2 is not true in general: while all games have sequentially stable outcomes,
some may not be common outcomes of KM-stable sets of equilibria.

EXAMPLE 3.3—Continuation of Example 3.2: Cho and Kreps (1987) show that the
beer–quiche game has two sequential outcomes (the beer and the quiche outcomes de-
scribed in Exercises 2.1 and 3.2). Because, by Example 3.1, the quiche outcome is not
sequentially stable, Proposition 3.4 implies that the beer outcome is the unique sequen-
tially stable outcome. We now explicitly show that the beer outcome is the unique se-
quentially stable outcome by showing it is the unique limit equilibrium outcome along a
particular vanishing tremble. We consider the vanishing tremble (ξn) given by ξn(bw) =
ξn(qw) = (n + 1)−2 and ξn(a) = (n + 1)−1 for all a �= bw�qw (which is also considered in
Example 3.1). Note that the strong type trembles asymptotically infinitely more than the
weak type. Let (εn) → 0 and (σn ∈ 
∗

εn
(ξn)) such that (ωσn) converges to some outcome

ω. If σkn (bw) = ξkn (bw) along a sequence (kn), then player 2 assigns a vanishing proba-
bility to (w�bw) after beer along this sequence, hence it must be that σkn (rb) → 1. It then
follows that σkn (bs) → 1, which necessarily implies that σkn (bw) → 1, contradicting that
σkn (bw) = ξkn (bw) for all n. It must then be that σn(bw) > ξn(bw) for all n large enough.
Then, because the weak type asymptotically weakly prefers beer to quiche, the strong
type strictly prefers beer to quiche for n large enough. Again, this implies σn(bs) → 1 and
σn(bw) → 1, so ω is the beer outcome. Because the beer outcome is the unique limit equi-
librium outcome for (ξn), it is the unique sequentially stable outcome of the beer–quiche
game. By Proposition 3.3, it is also the unique extensive-form stable outcome.

EXAMPLE 3.4: The proof of Proposition 3.4 illustrates how the requirement of εn-
optimality (instead of exact optimality) in the definition of sequential stability permits
us to simultaneously perturb a game’s strategies and payoffs to show that the limit of

12This follows from the results in Kohlberg and Mertens (1986) provided in footnote 3. Hence, using that
the sets of mixed and behavior trembles of Ĝ coincide, we have that, for a generic payoff perturbation of Ĝ,
the joint outcome of a KM-stable set of equilibria contained in a connected set is extensive-form stable. Note
that this observation does not imply that extensive-form stable outcomes exist in games with generic payoffs;
instead, it implies that they exist in games with generic payoffs that coincide with their agent-extensive form.
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FIGURE 2.—Game tree from Example 3.4.

a sequence of extensive-form stable outcomes of nearby games is a sequentially stable
outcome. Such an argument would not apply to extensive-form stable outcomes, which
may not exist in games with nongeneric payoffs. To see this, consider the game in Fig-
ure 2, which corresponds to Figure 6.4.1 in van Damme (1991). Fix an outcome ω as-
signing a positive probability to action T1. Consider a vanishing tremble (ξn) such that
ξn(B2) > ξn(B′

2), that is, such that player 2 trembles more toward B2 than toward B′
2.

Because it is optimal for player 2 to choose T2 and T′
2 in any Nash equilibrium for any n,

player 1 prefers choosing B1 (which gives her a payoff of 1−ξn(B′
2)) to choosing T1 (which

gives her 1 −ξn(B2)). Hence, σn(B1) → 1 in any sequence of Nash equilibria along games
perturbed according to (ξn), and so ω is not extensive-form stable. A symmetric argument
implies that an outcome assigning positive probability to B1 is not extensive-form stable,
so there is no extensive-form stable outcome. Note that, nevertheless, player 1’s payoffs
from playing T1 and B1 are approximately the same, because player 2 chooses T2 and T′

2
with asymptotic probability 1. Thus, it is easy to see that any outcome in which player 2
responds with T2 or T′

2 to player 1’s on-path actions is sequentially stable. It is also easy to
see that an outcome in which player 1 fully mixes is not the limit of extensive-form stable
outcomes of nearby games with slightly perturbed payoffs.

3.3. Relationship to KM-Stable Sets of Equilibria

The definition of a sequentially stable outcome differs from the definition of a KM-
stable set of equilibria in Kohlberg and Mertens (1986) in two important ways.13 The
first difference is that sequential stability requires only εn-optimality (for some εn → 0)
instead of exact optimality (i.e., εn = 0) along the sequence. The second difference is that
Kohlberg and Mertens perturb the set of mixed strategies (i.e., a player’s tremble assigns
a positive probability to all her full contingent plans), while we consider independent
trembles to the actions in each information set. We see these two departures as necessary
to produce a single-valued equilibrium concept that exists in all games, has high selection
power, and possesses desirable properties that permit one to consider incentives related
to actions instead of incentives related to full contingent plans. Let us elaborate.

As we shall see, requiring sequential almost-optimality along the sequence (instead
of exact optimality) is a minimal relaxation that maintains important properties while
increasing tractability and ensuring the existence of sequentially stable outcomes in all
games. It is analogous to the relaxation of the exact optimality of perfect equilibria to
the εn-optimality of sequential equilibria established in Proposition 2.1.14 While this type

13Roughly speaking, a set of equilibria S is KM-stable if it is minimal with respect to the property of being
closed and such that, for any vanishing sequence of normal-form trembles (each assigning minimal probability
to each contingent plan of each player), there is a corresponding sequence of Nash equilibria of the perturbed
games approaching S.

14While the weakening provided by sequential equilibria was not needed for existence (existence of perfect
equilibria had been established in Selten (1975)), it made verifying properties (such as sequential optimality)
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of relaxation preserves significant selection power in extensive-form games, the same ap-
proach does not work for normal-form games. To see why, note that Jackson, Rodriguez-
Barraquer, and Tan (2012) show that the set of Nash equilibria of a normal-form game
coincides with the set of strategy profiles σ such that, for any vanishing tremble (ξn),
there exist two sequences (εn) → 0 and (σn ∈ 
∗

εn
(ξn)) → σ . The implication is that all

Nash outcomes of a normal-form game are sequentially stable (and hence sequential out-
comes).15

Given our requirement of approximate sequential optimality along the sequence, it
is natural to focus on behavioral vanishing trembles. As Corollary 3.1 establishes, the
requirement of robustness with respect to behavioral trembles implies that sequential
stability satisfies sequential rationality, and we will see that it enables the use of sequen-
tial equilibria to characterize sequentially stable outcomes. Similarly, Proposition 3.1 en-
sures that sequentially stable behavior coincides with behavior that is nearly sequentially
optimal for any small enough tremble, giving an additional sense of robustness. In con-
trast, sequential rationality is not guaranteed in KM-stable sets of equilibria. For instance,
Kohlberg and Mertens (1986) show that KM-stable sets do not necessarily satisfy sequen-
tial rationality by providing an example of a game with a KM-stable set of equilibria hav-
ing a common outcome that is not the outcome of the unique sequential equilibrium (see
their Figure 11). Furthermore, van Damme (1991) exhibits a game with a KM-stable set
of equilibria having a common outcome, which is not the outcome of the unique subgame-
perfect Nash equilibrium (see his Example 10.3.4).16 By Corollary 3.1, the unique sequen-
tially stable outcome of the games in these examples is the outcome of their unique se-
quential equilibrium.

4. PROPERTIES OF SEQUENTIALLY STABLE OUTCOMES

In this section, we provide some properties that sequentially stable outcomes satisfy,
and we compare them with the properties of KM-stable sets of equilibria. We also provide
some examples showing how these properties are used.

4.1. Forward Induction and Iterated Strict Equilibrium Dominance

We begin with a property that is useful for proving or ruling out the sequential stabi-
lity of outcomes, and that implies both forward induction and iterated strict equilibrium
dominance.

PROPOSITION 4.1—Never a Weak Best Response (NWBR): Let ω be a sequentially sta-
ble outcome. Assume a ∈ A is not sequentially optimal under any sequential equilibrium with

much easier, as they could be verified directly “in the limit.” The same applies to sequentially stable outcomes;
for example, Dilmé (2024b) characterizes sequential stability directly at the limit.

15Similarly, Fudenberg and Tirole (1991a, Theorems 14.5 and 14.6) show that, in normal-form games, all
outcomes of Nash equilibria are robust to payoff perturbations. By contrast, Takahashi and Tercieux (2020)
show that requiring outcomes to be robust to payoff perturbations has significant selection power in extensive-
form games. However, robust outcomes do not exist for all games.

16Mertens (1989) provides a definition of KM-stable sets different from that in Kohlberg and Mertens (1986)
and shows that it corrects some undesirable properties of the previous definition (in particular, under his
definition, a KM-stable set contains a sequential equilibrium). However, Mertens’s definition is remarkably
involved and difficult to use in practice.



SEQUENTIALLY STABLE OUTCOMES 1109

outcome ω. Then ω is a sequentially stable outcome of the game in which a is removed (as
are all histories following it).17

The intuition behind NWBR is the following. Let Ĝ be the game obtained by elimi-
nating an action a that is not sequentially optimal under any sequential equilibrium with
outcome ω. Fix a vanishing tremble in Ĝ, and extend it to a vanishing tremble in G by
assigning to a a sequence of probabilities that vanish much faster than the probabilities
assigned by the vanishing tremble to any other action. Take a corresponding sequence
of sequential εn-equilibria with outcomes converging to ω (which exists because ω is se-
quentially stable). The proof of Proposition 4.1 shows that the restrictions of sequential
εn-equilibria to Ĝ generate a sequence of sequential εn-equilibria, for some sequence
(ε̂n) → 0. Intuitively, since a is not sequentially optimal under any sequential equilibrium
with outcome ω, each of the sequential εn-equilibria for n high enough assigns to a the
same very low probability as it has in the vanishing tremble. As a result, any history con-
taining a has a vanishing likelihood relative to any history not containing a, ensuring the
asymptotic sequential rationality of the restrictions of the sequential εn-equilibria to Ĝ.

Our definition of NWBR implies the following versions of forward induction and iter-
ated strict equilibrium dominance.

COROLLARY 4.1: Let ω be a sequentially stable outcome. Then the following hold:
1. Forward induction: Assume I ∈ I is on path under ω and a ∈AI is such that

max
σ∈
∗

0 (ω)
u(a|σ) < u(I|ω)� (4.1)

where u(I|ω) is player ι(I)’s payoff under ω conditional on I being reached, and 
∗
0(ω)

is the set of sequential equilibria with outcome ω. Then, if a is removed, ω remains se-
quentially stable.

2. Iterated strict equilibrium dominance: If a strictly equilibrium-dominated action (i.e., an
action that is not sequentially rational under any sequential equilibrium) is removed, ω
remains sequentially stable.

Forward induction and iterated strict equilibrium dominance are intuitive and often
easier to use than NWBR.18 Forward induction arguments can be used to rule out can-
didates for sequentially stable outcomes by proving they are not sequentially stable in
a simpler game. Iterated strict equilibrium dominance is applied to the game, not to a
particular outcome, and hence can be used to simplify the game before assessing the se-
quential stability of a candidate outcome.

17An action a is sequentially optimal if player ι(Ia)’s continuation payoff at Ia from playing a (computed
using the strategy profile and the belief system) is the maximum continuation payoff that player ι(Ia) can
obtain by playing some action in AIa . Note that ω is an outcome of any game that results from eliminating an
action that is off path under ω.

18Note that the conclusion of Corollary 4.1 also holds if the left-hand side of (4.1) is replaced by
maxz∈Za uι(I) (z) (i.e., if the outcome’s payoff at I is higher than the terminal payoff under any terminal his-
tory containing a); this condition is more restrictive but may be easier to verify (since one need not know

∗

0(ω)). Similarly, one can weaken iterated strict equilibrium dominance to iterated strict dominance as fol-
lows: If I ∈ I and a�a′ ∈ AI are such that maxz∈Za uι(I) (z) < minz∈Za′ uι(I) (z), then ω remains sequentially
stable if a is eliminated (recall that Za is the set of terminal histories that contain a).
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FIGURE 3.—Game trees from Example 4.1.

EXAMPLE 4.1: Before, we argued that KM-stability does not imply sequential stability,
as there are games with KM-stable sets of equilibria that do not contain sequential equi-
libria. Figure 3(a), which coincides with Figure 2 in Kohlberg and Mertens (1986), pro-
vides an example showing that sequential stability does not imply KM-stability. Assume
x ∈ (0�1). In this game, the outcome assigning probability one to T1 is not the outcome
of all equilibria in a KM-stable set.19 Still, such an outcome is sequentially stable: For any
vanishing tremble (ξn) and any n, one can define σn(a) := ξn(a) for all a ∈ {B′

1�M1�T2}
(which pins down the full strategy profile), and this supports the outcome. Intuitively,
player 2 interprets the choice of B′

1 as a mistake; hence, she believes that player 1 will play
B1 because this is optimal given the prescribed strategy profile.

EXAMPLE 4.2—Continuation of Example 3.3: Kohlberg and Mertens (1986) argue that
the beer outcome ωb is the unique outcome of a KM-stable set of equilibria of the beer–
quiche game (see Figure 1). They do so by claiming that the set of Nash equilibria has
two connected components, ruling out the KM-stability of one component using forward
induction, and finally claiming that the other component must contain a KM-stable set.
A complete argument would require proving that there are two connected components
of Nash equilibria and that there are no KM-stable sets containing equilibria in both
connected components (note that, as defined by Kohlberg and Mertens, a KM-stable set
need not be connected). To characterize the possible KM-stable sets, one would then need
to impose minimality.

We now provide a similar but simpler argument using forward induction and equilib-
rium dominance, which is both straightforward and complete (see Examples 3.1–3.3 for
analogous results using vanishing trembles). We start by showing that the quiche outcome
ωq is not sequentially stable. If it were, then by forward induction it would remain se-
quentially stable upon the elimination of action bw, since the maximum payoff the weak
type can achieve by playing bw is lower than her payoff under ωq. In the game without
action bw, action fb is strictly (equilibrium) dominated, so it can also be eliminated. In the

19To see this, assume for the sake of contradiction that there is a KM-stable set of equilibria of the reduced
normal-form game (where players 1 and 2 have action sets {T1�B′

1M1�B′
1B1} and {T2�B2}, respectively) with

outcome assigning probability one to T1. Because B′
1B1 is an inferior response in all equilibria with outcome

assigning probability one to T1, the KM-stable set contains a KM-stable set of the game obtained by deleting
B′

1B1 (by Proposition 6 in Kohlberg and Mertens (1986)). Action B2 can be eliminated from the resulting game
using a similar argument. Nevertheless, it is easy to see that there is no KM-stable set with outcome assigning
probability one to T1 in the game without B′

1B1 and B2.
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resulting game, the strong type prefers playing bs (which can only be followed by rb) to
playing qs, so there is no sequential equilibrium with the quiche outcome, contradicting
the assumption of its sequential stability.

Next, we show that the beer outcome is the only remaining candidate for a sequential
outcome. To see this, take a sequential equilibrium (σ�μ). It cannot be that σ (bw) ∈
(0�1), since then σ (rb) = σ (rq)+1/2 and the strong type strictly prefers bs to qs, leading to
σ (rb) = 1 and σ (rq) = 0, so that the weak type strictly prefers bw to qw. Similarly, it cannot
be that σ (bs) ∈ (0�1), since then σ (rb) +1/2 = σ (rq) and the weak type strictly prefers qw

to bw, leading to σ (rb) = 1 and so σ (rq) = 3/2. It must then be that σ (bw)�σ (bs) ∈{0�1}.
If σ (bw) �= σ (bs), then the weak type is fought on path while the strong type is not, so the
weak type has an incentive to deviate. Hence, the beer outcome is the only candidate for
a sequentially stable outcome. By Proposition 3.4, it follows that the beer outcome is the
unique sequentially stable outcome.

REMARK 4.1: Note that our definition of NWBR is analogous to that in Kohlberg and
Mertens (1986), but applied to simpler objects. As Fudenberg and Tirole (1991a) explain,
Kohlberg and Mertens establish that “a stable set contains a KM-stable set of any game
obtained by deleting any strategy that is not a weak best response to any of the opponents’
strategy profiles in the set” (p. 445). In contrast, we determine that a sequentially stable
outcome is a sequentially stable outcome of any game obtained by deleting any action that
is not a weak best response any sequential equilibria with that outcome. Our definition of
NWBR is thus applied to a single-valued object (outcomes instead of sets of equilibria)
and requires simpler conditions (on actions instead of full contingent plans).20 Similarly,
our version of forward induction permits us to eliminate actions that are available on path
but are strictly dominated by not deviating (in the sense of (4.1)). We see it as natural to
require the actions eliminated to be on path, given the use of behavioral strategies in our
construction and the common form of forward induction arguments.21 The definition of
forward induction in Kohlberg and Mertens (1986), by contrast, permits one to eliminate
normal-form strategies (i.e., full contingent plans) that “are an inferior response in all the
equilibria of the [stable] set” (p. 1029); this is closer to our NWBR condition.

4.2. Admissibility and Iterated Dominance

It is well known that sequential equilibria fail admissibility; that is, players may play
a weakly dominated strategy on the path of play of a sequential equilibrium. The rea-
son is that sequential optimality is required only at the limit (or equivalently, under the
characterization in Proposition 2.1, only εn-optimality is required along the sequence of
strategy profiles, for some εn → 0). (By contrast, perfect equilibria, where εn = 0 for all
n, satisfy admissibility.) It is not difficult to see that sequentially stable outcomes may fail
admissibility for the same reason. This is unsurprising, since requiring both admissibility
and iterated (strict) dominance leads to the nonexistence of equilibrium concepts that

20Note that Kohlberg and Mertens argue that no single-valued concept satisfies NWBR (when applied to
strategies instead of actions), which they see as an argument in favor of using set-valued concepts.

21Cho (1987) defines a refinement of sequential equilibria, called forward induction equilibria, by requiring
a condition similar to (4.1), that is, imposing restrictions on the off-path beliefs after actions that are avail-
able on path but strictly dominated by the equilibrium actions, under a conveniently defined set of possible
continuation plays.
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FIGURE 4.—Game tree from the discussion on admissibility.

are not set-valued.22 We now describe a sense in which admissibility is fragile to payoff
perturbations, but sequential stability is not.

Consider the game in Figure 4. This game has a unique outcome that is the outcome
of a KM-stable set of equilibria, in which player 1 chooses B1 for sure, as B1 is its only
admissible strategy. Intuitively, any small tremble by player 2 brings player 1’s payoff from
choosing T1 below 1, while choosing B1 ensures a payoff of 1. However, this argument
is fragile to small perturbations on payoffs. Indeed, for any small tremble ξ, there is a
small perturbation in player 1’s payoff that makes playing T1 part of a (unique) Nash
equilibrium of the perturbed game.

By contrast, the proposition below shows that sequential stability is robust in the fol-
lowing sense: given a sequentially stable outcome ω, for any perturbation of the game (in
terms of trembles), there is a game with nearby payoffs that has an equilibrium outcome
close to ω.

PROPOSITION 4.2: Let ω be an outcome. The following assertions are equivalent:
1. The outcome ω is sequentially stable.
2. For all ε�ε′ > 0, there exist δ�δ′ > 0 with the property that, for all trembles ξ with ‖ξ‖ <

δ and u′ with ‖u′ − u‖ < δ′, G(ξ�u′) has a sequential ε-equilibrium outcome ε′-close
to ω.

3. For all ε�ε′ > 0, there exists δ > 0 with the property that, for all trembles ξ with ‖ξ‖ < δ,
there is some u′ with ‖u′ − u‖ < ε such that G(ξ�u′) has a Nash equilibrium outcome
ε′-close to ω.

4.3. Sequential Stability in Subgames

Selten (1965) introduced the concept of subgame-perfect (Nash) equilibria to give plau-
sibility to equilibrium behavior: Even if the players find themselves off path, they should
continue playing mutual best responses. Sequential rationality has since been a crucial
property of some equilibrium concepts (e.g., perfect equilibria) and a requirement in oth-
ers (e.g., sequential equilibria). As well as adding plausibility, subgame perfection facili-
tates the study of games by enabling the use of backward induction. For example, by iter-
atively replacing subgames with their Nash equilibria, one can obtain (subgame-perfect)
Nash equilibria of the original game. Analyzing each simpler subgame separately is often
easier than studying the whole game at once.

The credibility of off-path behavior is a crucial aspect of sequential stability: Since all in-
formation sets are on path for each tremble, requiring robustness to all vanishing trembles

22Kohlberg and Mertens (1986) show that KM-stable sets satisfy admissibility (i.e., only contain equilibria
in which players do not play weakly dominated strategies). Also, in Section 2.7.B, they exhibit a game (called
�) that shows why requiring admissibility and iterated dominance leads to the nonexistence of a single-valued
equilibrium concept. The same example can be used to show that requiring iterated strict dominance together
with admissibility leads to the same nonexistence result.
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provides a strong sense of sequential rationality. As a result, as we have shown, sequen-
tially stable outcomes are sequentially rational; that is, they are outcomes of sequential
equilibria, which are themselves subgame-perfect. Still, subgame perfection cannot be ap-
plied directly to the concept of sequential stability, because sequentially stable outcomes
do not specify off-path behavior. As Example 3.2 shows, the limit off-path behavior for
the sequence of sequential εn-equilibria supporting a sequentially stable outcome may
depend on the particular vanishing tremble used.

The following proposition establishes three results that help us study sequential stability
via subgames. The first says that a subgame with a unique sequential outcome can be re-
placed by that outcome without altering the set of sequentially stable outcomes. This lets
us iteratively reduce the complexity of a game. The second result says that if an outcome
ω is sequentially stable in the game resulting from replacing a subgame with one of its
sequentially stable outcomes, then ω is also a sequentially stable outcome of the original
game. This helps us find sequentially stable outcomes by iteratively replacing subgames
by their sequentially stable outcomes. Finally, the third result says that the conditional
distribution induced by a sequentially stable outcome in an on-path subgame is itself a se-
quentially stable outcome of the subgame. This provides a way to rule out the sequential
stability of a candidate outcome (by arguing that its continuation outcome is not sequen-
tially stable in some on-path subgame) and narrow down the possible on-path behaviors
of sequentially stable outcomes.

PROPOSITION 4.3: 1. Let G′ be a subgame of G with a unique sequential outcome ω′.
Then the game where G′ is replaced by ω′ has the same set of sequentially stable out-
comes as G.23

2. Let G′ be a subgame of G and ω′ a sequentially stable outcome of G′. Let ω be a se-
quentially stable outcome of the game where G′ is replaced by ω′. Then ω is sequentially
stable in G.

3. Let ω be sequentially stable and let G′ be a subgame of G that occurs on the path of ω.
Then the conditional distribution of the terminal histories in G′ is a sequentially stable
outcome of G′.

4.4. Invariance

Our focus on behavioral trembles permits us to state definitions (e.g., those of a sequen-
tial ε-equilibrium or sequentially stable outcome) and properties (e.g., NWBR, iterated
strict equilibrium dominance) in terms of actions instead of normal-form strategies (i.e.,
probability distributions over full contingent plans). In extensive-form games, reasoning
in terms of the players’ incentives to take actions in each information set is often easier
and more natural than reasoning using normal-form strategies, as the latter may be highly
complex. An implication of our approach is that, like other equilibrium concepts based
on behavioral trembles (e.g., perfect and sequential equilibria), sequential stability is not
invariant to changes in the game tree that preserve the reduced normal form of the game.

While there is disagreement on the desirability of invariance as a requirement for
equilibrium concepts, most authors agree that invariance to interchanging simultane-
ous moves is a basic and necessary requirement (which is also satisfied by KM-stable

23By “the game where G′ is replaced by ω′” we mean the game in which, at the node where G′ is initiated,
nature chooses each terminal history z′ in the support of ω′ with probability ω′(z′). Note that Govindan (1996)
proves a result similar to Proposition 4.3(2), but for KM-stable sets of equilibria.
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sets). Indeed, while a modeler of a particular economic activity may identify the sequence
of moves to determine the game tree, she has freedom in how to encode simultaneous
moves. The following proposition states that the set of sequentially stable outcomes does
not depend on the order of the moves.

PROPOSITION 4.4—Invariance to Interchanging Simultaneous Moves: Let ω be a se-
quentially stable outcome. If two information sets I and I ′ are such that I ′ = I × AI (i.e., I
and I ′ are simultaneous), a game where the order of I and I ′ is reversed has a sequentially
stable outcome equivalent to ω.

EXAMPLE 4.3: Although sequential stability does not satisfy invariance to coalescing
consecutive moves, it relies less on the particular game tree of a given normal-form game
than other equilibrium concepts. Take, for example, games (a) and (b) in Figure 3 with
x ∈ (1�2), which Kohlberg and Mertens (1986) use to exemplify the invariance of KM-
stability (see their Figures 2 and 3). Note that game (b) is obtained by “coalescing” two
moves of player 1 in game (a). Kohlberg and Mertens argue that the outcome ω1 assign-
ing probability one to T1 is both a sequential and a perfect equilibrium outcome in game
(b), but not in game (a)—even though games (a) and (b) have the same reduced normal
form—while ω1 is not KM-stable in either game. By the same logic, one can show that
ω1 is not a sequentially stable outcome of game (a) or game (b) (note that B1 is a strictly
dominated action in both games), so the only sequentially stable outcome assigns proba-
bility one to (M1�T2). On the other hand, when x ∈ (0�1), Example 4.1 explains that ω1

is sequentially stable in (a) but not in (b).

4.5. Approaches to Obtaining Sequentially Stable Outcomes

We now discuss procedures for identifying sequentially stable outcomes in extensive-
form games without explicitly showing sequential stability for all vanishing trembles (as
in Example 3.2). These procedures overcome some of the complications that make using
KM-stable sets difficult in practice, as described in the Introduction.

Through applying necessary conditions: The first procedure consists in eliminating all
candidates for sequentially stable outcomes except one, by applying necessary conditions
such as the properties established in Propositions 4.1 and 4.3 and Corollary 4.1. Recall
that, by Corollary 3.1, only outcomes of sequential equilibria can be sequentially stable.
Since sequential equilibria are sometimes difficult to compute, candidates for sequen-
tially stable outcomes may be drawn from outcomes of a weaker class of equilibria, such
as perfect Bayesian equilibria (Fudenberg and Tirole (1991b)). Example 4.2 illustrates
this technique.

While NWBR and forward induction can be used to rule out the sequential stability
of specific outcomes, iterated strict equilibrium dominance permits the direct elimina-
tion of “implausible” moves, which simplifies the analysis (note that parts 1 and 2 of
Proposition 4.3 also enable one to simplify the game). For instance, the elimination of
a strictly dominated action does not change the set of sequentially stable outcomes (see
footnote 18) but typically reduces the set of candidates (e.g., by reducing the set of out-
comes of sequential equilibria). It is important to note that if the game resulting from the
elimination of a strictly dominated action has a unique sequentially stable outcome, then
it is the unique sequentially stable outcome of the original game.24

24Note that a similar argument is difficult to make when using iterated dominance as in Kohlberg and
Mertens (1986), as the uniqueness of a KM-stable set in the simpler game only implies that this set is part
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Through a vanishing tremble: The second procedure consists in reducing the field of
candidates for sequentially stable outcomes by considering particular vanishing trembles.
If one can find a vanishing tremble such that all corresponding sequences of almost-
optimal behavior have the same limit outcome ω, then by the existence of sequentially
stable outcomes, ω has to be the unique sequentially stable outcome. The advantage of
this approach is that it does not require ruling out the sequential stability of all but one
outcome; rather, it lets one prove immediately that a given outcome is the unique se-
quentially stable outcome. The disadvantage is that it may be difficult to find the right
vanishing tremble and then prove that ω is the unique limit equilibrium outcome along
it.2526 Examples 3.4 and 5.1 illustrate this technique. See also Examples 3.1 and 5.2 for the
use of a vanishing tremble to rule out the sequential stability of a given outcome.

Elimination through a vanishing tremble is particularly convenient in games where the
payoff from taking certain actions depends on (and hence communicates) private infor-
mation, and this payoff satisfies a “single-crossing” condition (e.g., in signaling games or
bargaining games with private information). In these games, even when payoffs are not
generic, there is often a very small set of equilibrium outcomes for perturbed versions of
the game where the highest type (i.e., the type that other types want to mimic) trembles
more than the low types. Hence, in many cases, vanishing trembles where high types trem-
ble asymptotically more than low types have a unique limit equilibrium outcome, which
is then the unique sequentially stable outcome. In signaling games à la Spence (1973),
for example, such an outcome is often—but not necessarily (see Example 5.1)—the least
costly fully separating outcome, called the Riley outcome.

Combining Techniques: Note that the two procedures described above are not mutually
exclusive. On the contrary, they can be combined. For example, iterated strict equilibrium
dominance can be used to simplify the game. Then, for a given candidate outcome, one
can use NWBR, forward induction, or a vanishing tremble to show that the outcome is
not sequentially stable in the simplified game, and hence it is not sequentially stable in
the original game. If there remains only one sequential outcome, then this is the unique
sequentially stable outcome of the original game.

5. SEQUENTIAL STABILITY IN SIGNALING GAMES

Since the introduction of signaling games by Spence (1973), many selection criteria
have been suggested to address their inherent multiplicity of equilibria. Many such se-
lection criteria are specific to signaling games and difficult to generalize to other classes
of games; examples include the Intuitive Criterion, D1, and D2 (Cho and Kreps (1987))
and divinity and universal divinity (Banks and Sobel (1987)). In this section, we relate
selection criteria in signaling games to sequential stability.

of a KM-stable set of the original game (see Proposition 6 in Kohlberg and Mertens (1986), which states, “A
[KM-]stable set contains a [KM-]stable set of any game obtained by deletion of a dominated strategy”).

25In Lemma A.1 in the Appendix, we provide a convenient characterization: An outcome ω ∈ � is sequen-
tially stable if and only if the property in Definition 3.1 holds for some subsequence (ξkn ) of (ξn) (instead of
the whole sequence).

26In a companion paper (Dilmé (2024b)), we define �-numbers as a way to work with limit likelihoods of
actions and histories. The advantage of using �-numbers is that the sequential stability of a given outcome can
be proved without using sequences of strategy profiles; it is only necessary to verify sequential optimality at the
limit.
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5.1. Signaling Games and Sequential Stability

A signaling game Gsig proceeds as follows. First, nature chooses a type θ ∈ � with distri-
bution π ∈ �(�). Having observed θ, the sender chooses a message m ∈Mθ ⊂M . Finally,
having observed the message but not the type, the receiver chooses a response r ∈ Rm ⊂ R.
We assume �, M , and R are finite sets. As usual, we let �m be the set of types who can
send message m.27 Abusing notation, we let uθ(m�r) and ur(θ�m� r) denote the payoffs
of the sender and the receiver, respectively, at (θ�m� r) ∈ Z, and we let uθ(ω) denote
the sender’s payoff under outcome ω conditional on the realized type being θ. We let
BRm(μm) ⊂ �(Rm) be the set of (mixed) best responses of the receiver to message m
when her belief about the sender’s type is μm ∈ �(�m), and BRm := ⋃

μm∈�(�m) BRm(μm).
The following is a characterization of the set of sequentially stable outcomes of Gsig.

PROPOSITION 5.1: The outcome ω is sequentially stable if and only if it is the outcome
of a sequential equilibrium and, for any off-path m ∈ M and μm ∈ �(�m), there are some
α ∈ [0�1], μ′

m ∈ �(�m), and ρ ∈ BRm(αμm + (1 − α)μ′
m) with the following properties:

uθ(m�ρ) ≤ uθ(ω) for all θ ∈ �m, and if α �= 1, then uθ(m�ρ) = uθ(ω) for all θ ∈ �m with
μ′

m(θ) > 0.

Banks and Sobel (1987) and Cho and Kreps (1987) find that, in a signaling game with
generic payoffs, an outcome satisfies the conditions in Proposition 5.1 (or, more precisely,
it satisfies similar but slightly more complicated conditions) if and only if it is KM-stable;
see their Theorem 3 and Proposition 4, respectively.28 Consequently, the following is an
immediate corollary of our Propositions 3.2 and 5.1.

COROLLARY 5.1: Generically in payoffs, the set of KM-stable outcomes and the set of se-
quentially stable outcomes of Gsig coincide.

We end this section with a result that enables one to show that an outcome of Gsig is
KM-stable by proving it is the unique sequentially stable outcome of Gsig, or the other
way around.

PROPOSITION 5.2: If an outcome is the unique sequentially stable outcome of Gsig, then it
is its unique KM-stable outcome.

To prove Proposition 5.2, we first show that in a signaling game, if ω is extensive-form
stable, then it is KM-stable.29 We then show that if ω is KM-stable, then it is sequen-
tially stable. The implication is that if Gsig has a unique sequentially stable outcome, then
(i) such an outcome is extensive-form stable (by Proposition 3.3), and hence KM-stable,
and (ii) there is no other KM-stable outcome, since any KM-stable outcome would be
sequentially stable.

27Note that we abuse notation by letting m denote a message that can be sent by different sender types, given
that our definition of an extensive-form game requires that each action is only played in a unique information
set.

28We say an outcome ω is KM-stable if, for any vanishing tremble of the reduced normal form of the game,
there is a corresponding sequence of Nash equilibrium outcomes converging to ω. KM-stable outcomes exist
in games with generic payoffs (see footnote 3).

29This is nontrivial to prove, because the trembles of the reduced-form game (used to determine KM-
stability) affect all sender types equally and may be correlated across types, while the sizes of the behavioral
trembles (used to determine extensive-form stability) may depend on the type and are uncorrelated across
types.
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5.2. Signaling Refinements

Cho and Kreps (1987) proposed several distinct criteria for selecting equilibria in sig-
naling games. These criteria have shaped the handling of equilibrium multiplicity across
diverse applications. In this section, we argue that sequential stability is stronger than all
of these criteria.

For conciseness, we refer to the IC (Intuitive Criterion), D1, D2, and NWBRCK (i.e.,
Cho and Kreps’s version of NWBR; see below) as the standard selection criteria (for sig-
naling games).30 They are based on the following procedure: First, fix an outcome of a
sequential equilibrium. Then, for each off-path message, prune out all types deemed im-
plausible according to the criterion. Finally, if not all types have been pruned out, check
whether there is a sequential equilibrium in which, if the sender chooses an off-path mes-
sage, the receiver assigns probability zero to the pruned-out types. If one such sequential
equilibrium exists, the outcome passes the criterion; otherwise, it fails it. Cho and Kreps
(1987) provide intuition and motivation for each selection criterion.

The proposition below shows that sequentially stable outcomes pass the standard se-
lection criteria. An implication is that, for each standard selection criterion, there is an
outcome passing it. Additionally, if there is a unique outcome passing one of the standard
selection criteria, such an outcome is the unique sequentially stable (and KM-stable) out-
come of Gsig.

PROPOSITION 5.3: Let ω be a sequentially stable outcome of Gsig and m an off-path mes-
sage. For each type θ ∈�m, define conditions IC, D1, D2, and NWBRCK as follows:

IC : ∀ρ ∈ BRm uθ(m�ρ) < uθ(ω) .
D1 : ∃θ′ ∈ �m\{θ} ∀ρ ∈ BRm uθ(m�ρ) ≥ uθ(ω) ⇒ uθ′ (m�ρ) > uθ′ (ω) .
D2 : ∀ρ ∈ BRm ∃θ′ ∈�m\{θ} uθ(m�ρ) ≥ uθ(ω) ⇒ uθ′ (m�ρ) > uθ′ (ω) .
NWBRCK : ∀ρ ∈ BRm ∃θ′ ∈�m\{θ} uθ(m�ρ) = uθ(ω) ⇒ uθ′ (m�ρ) > uθ′ (ω) .

For each X ∈ {IC�D1�D2�NWBRCK}, let �̂X be the set of all θ ∈ �m satisfying condi-
tion X . Then, if �̂X �= �m, there is a sequential equilibrium (σ�μ) with outcome ω where
μm(�̂X) = 0.

5.3. Examples

In this section, we provide two examples. Example 5.1 illustrates how sequential stabi-
lity helps select outcomes in a standard signaling game where a single-crossing condition
applies and shows that the selected outcome may fail to be the Riley outcome. Exam-
ple 5.2 illustrates how sequential stability can be used in a signaling game not satisfying
single crossing, where other selection criteria cannot be used. Note also that since the
beer–quiche game studied in Examples 2.1, 3.1–3.3, and 4.2 is a signaling game, we can
use the results of Section 5 to analyze it further; see Dilmé (2024b) for more examples.

EXAMPLE 5.1—Signaling With Single Crossing: In this example, we consider a ver-
sion of the model of Spence (1973). First, nature decides the type of the sender,
θ ∈ {θ0 = 0� θ1 = 1}, with π(θ1) := 1/4. Then the sender chooses the message (effort)

30We omit the criteria of divinity and universal divinity proposed by Banks and Sobel (1987), since they
are based on a different methodology. In Dilmé (2024a), we show that sequentially stable outcomes also pass
iterated applications of the criteria of Cho and Kreps (1987).
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m ∈ M := {0���2��    � ��−1��}, for some small � > 0. Finally, after observing the ef-
fort, the receiver chooses a response r ∈{0�1}. The payoffs are

uθ(m�r) := r − cθm and ur(θ�m� r) := r(2θ− 1)� (5.1)

with 1 < cθ1 < cθ0 < 1/�. Note that the receiver prefers to choose r = 0 when θ = θ0 and
r = 1 when θ = θ1, while both sender types prefer a low message and want the receiver to
choose r = 1. Let m be the smallest message bigger than 1/cθ0 . We consider the following
vanishing tremble (ξn): Sender types θ0 and θ1 tremble to all messages with likelihoods
n−2 and n−1, respectively (i.e., ξn(m|θ0) = n−2 and ξn(m|θ1) = n−1 for all m), while the
receiver trembles to all responses with probability n−1 (we initialize n so that all trembles
are smaller than 1).

Let ω be a sequentially stable outcome. Let (εn) → 0 and (σn ∈ 
∗
εn

(ξn)) be such that
ωσn → ω. Let (kn) be a sequence such that (σkn) supports some assessment (σ�μ) (which
by Proposition 2.1 is a sequential equilibrium). Let m+ < 1 be the highest effort that
is optimal for type θ0 under σ , so σkn (m|θ0) = ξkn (m|θ0) for all m > m+ and n large
enough. Since type θ1 trembles with asymptotically larger probability than θ0, we have
σ (r = 1|m) = 1 for all m > m+. Also, because choosing message 0 strictly dominates
choosing any message m ≥ m for type θ0, we have that m+ <m. Since θ0 strictly prefers
m+ to m+ +�, we have

σ (r = 1|m+) − cθ0m+ > 1 − cθ0 (m+ +�) ⇒
σ (r = 1|m+) > 1 − cθ0�

(5.2)

Because m+ is optimal for type θ0 under σ , the usual single-crossing property implies that
messages m < m+ are suboptimal for type θ1 if n is large enough; hence, σ (m|θ1) = 0
for all m < m+.31 Since 1 − cθ0� > 0, by expression (5.2) we have that μm+ (θ1) ≥ 1/2,
and so σ (m+|θ0) < 1 (note that if σ (m|θ0) = 1 for some m, then μm(θ1) ≤ π(θ1) = 1/4).
There must then be some message m̂ < m+ such that σ (m̂|θ0) > 0, which implies that
μm̂(θ1) = 0, σ (r = 1|m̂) = 0, and uθ0 (m̂|σ) = −cθ0m̂. Because uθ0 (0|σ) ≥ 0, it must be that
m̂ = 0. Hence, both 0 and m+ are optimal choices for type θ0 under σ and she chooses
all other messages with probability 0. It follows that 0 = σ (r = 1|m+) − cθ0m+, that is,
σ (r = 1|m+) = cθ0m+. Finally, using expression (5.2) and that cθ0m+ ≤ 1, we obtain m+ =
�(cθ0�)−1�� ∈ M .

Generically in cθ1 , there are then two cases.32 In the first case, that is, when cθ0m+ <
1−cθ1�, type θ1 strictly prefers m++� to m+. This implies that σ (m+|θ0) = σ (m+|θ1) = 0,
and so

ω = 3
4

◦ (θ0�0�0) + 1
4

◦ (θ1�m+ +��1)

This is the Riley outcome, in which type θ0 chooses the least costly message, while type θ1

chooses the cheapest message that allows full separation. Hence, ω is both the unique se-
quentially stable outcome and the unique KM-stable outcome. In the second case, when

31Here, the single-crossing property says that if θ0 (weakly) prefers m+ to m < m+, then type θ1 strictly
prefers m+ to m (this holds because cθ1 < cθ0 ). So, for all m < m+, uθ1 (m+|σ) − uθ1 (m|σ) > 0; hence
σkn (m|θ1) = ξkn (m|θ1) if n is large.

32We require that �(cθ0�)−1�cθ0� /∈ {1 − cθ1��1}, since otherwise there is a spurious multiplicity of limit
equilibrium outcomes. Note that, while our specification is standard, it is also highly nongeneric, because of
both the structure of the message space and the payoffs (5.1). So, KM-stable outcomes cannot be assumed to
exist.
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cθ0m+ ∈ (1 − cθ1��1), type θ1 strictly prefers m+ to m+ +�. Thus, σ (r = 1|m+) = cθ0m+ ∈
(0�1), which implies μm+ (θ1) = 1/2. In this case,

ω = 1
2

◦ (θ0�0�0) + 1
4

(1 − cθ0m+) ◦ (θ0�m+�0) + 1
4
cθ0m+ ◦ (θ0�m+�1)

+ 1
4

(1 − cθ0m+) ◦ (θ1�m+�0) + 1
4
cθ0m+ ◦ (θ1�m+�1)

There is again a unique candidate for a sequentially stable outcome, but it does not co-
incide with the Riley outcome. In this outcome, type θ0 randomizes between the lowest
message and a separating message, while type θ1 chooses the separating message with
probability one. Again, this outcome is both the unique sequentially stable outcome and
the unique KM-stable outcome.

EXAMPLE 5.2—Signaling Without Single Crossing: We now present an example of
a signaling game where no single-crossing condition holds. Consider two types, � :=
{θ0 = 0� θ1 = 1}, two messages, M := {m0 = 0�m1 = 1}, and actions in a grid, R :=
{0�1/r�    �1 − 1/r�1}, for some large even number r/2 ∈ N (so 1/2 ∈R). Nature chooses
θ = θ1 with probability 1/2. The receiver’s payoff is −(r − θ)2; that is, he “tries to match”
the belief about type θ1. We also assume that message m1 is costly, that type θ0 prefers
high actions, and that type θ1 prefers intermediate actions:

uθ0 (m�r) := 1[1/3�1](r) −mcθ0 and uθ1 (m�r) := 1[1/4�3/4](r) −mcθ1�

where cθ0� cθ1 ∈ (0�1). Consider an outcome in which both types choose m1 and the re-
ceiver chooses r = 1/2. Such an outcome passes all standard selection criteria (IC, D1,
D2, and NWBRCK), because the sets of receiver actions that make deviating profitable
for each type are not ordered by inclusion. To prove that the outcome is not sequentially
stable, consider a tremble in which type θ1 trembles to m0 with a higher likelihood than
type θ0, say ξn(m0|θ1) := (n + 1)−1 and ξn(m0|θ0) := (n + 1)−2. Assume there are two
sequences (εn) and (σn) with the properties in Definition 3.1. Note that type θ0’s pay-
off from choosing m0 has to be asymptotically the same as her payoff from choosing m1,
since otherwise, the receiver would assign an increasingly high posterior to type θ1 after
m0, leading her to choose r = 1 and making type θ0 strictly willing to deviate. As a result,
the probability with which the receiver plays an action in [1/3�1] after m0 must tend to
1 − cθ0 as n → ∞. Note that, for n large enough, the receiver chooses an action r with
positive probability after m0 only if |μm(θ1) − r|< 1/r. Hence, letting k ∈ N be such that
k/r ≤ 1/3 < (k+ 1)/r, we have that the receiver puts an increasingly high probability on
{k/r� (k + 1)/r} after m0 as n increases. Hence, type θ1’s payoff gain from choosing m0

instead of m1 remains positive and bounded away from 0 as n increases, since by doing
so, she obtains approximately 1 instead of approximately 1 − cθ1 . This is a contradiction.
It is not difficult to see that the game has a unique sequentially stable outcome in which
both types choose m0 for sure. By Proposition 5.2, such an outcome is KM-stable as well.

6. CONCLUSIONS

We have investigated the limits of near-optimal behavior along sequences of perturbed
games. When convergence is required along some vanishing tremble, sequential outcomes
are obtained. When instead convergence is required along all vanishing trembles, sequen-
tially stable outcomes are obtained. As sequential equilibria have been extensively stud-
ied, our analysis has focused on characterizing sequentially stable outcomes.
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We have shown that sequential stability shares many desirable properties with KM-
stability. First, it gives robust predictions: Any perturbation of a game has almost-optimal
behavior close to a sequentially stable outcome. Second, a sequentially stable outcome
satisfies various plausibility requirements: It is the outcome of a sequential equilibrium,
and it remains sequentially stable after the elimination of equilibrium strictly dominated
actions or the interchange of simultaneous moves. Finally, sequentially stable outcomes
exist in all games and pass most selection criteria; hence, they can be used to select and
compare equilibria across games.

The existence of sequentially stable outcomes for all games facilitates their use in prac-
tice. Sequentially stable outcomes can be identified by ruling out the alternatives through
some vanishing tremble, using properties such as NWBR or forward induction, or using a
combination of these techniques. When there is a unique sequentially stable outcome, it
is the limit of Nash outcomes along all vanishing trembles. Our results on signaling games
illustrate the strength of sequential stability. Sequentially stable outcomes pass most of
the commonly used selection criteria, and they coincide with KM-stable outcomes when
they are unique or when payoffs are generic.

Several questions not addressed in our analysis may constitute avenues for future re-
search. First, an axiomatic characterization of sequential stability would be desirable.33

Second, it may be interesting to investigate which classes of games beyond signaling games
feature generic equivalence between KM-stability and sequential stability. Finally, it may
be possible to strengthen sequential stability to a criterion that retains the existence prop-
erties of sequential stability, yet selects unique outcomes.

APPENDIX: PROOFS OF THE RESULTS

A.1. A Useful Result

Before proceeding to the proofs of the results in the main text, we state and prove a
result that will be useful for proving that an outcome is sequentially stable. It establishes
that sequential stability can be equivalently defined in an apparently weaker form than
our Definition 3.1.

LEMMA A.1: An outcome ω ∈� is sequentially stable if and only if for any vanishing trem-
ble (ξn) there exist a strictly increasing sequence of indexes (kn) and two sequences (εn) → 0
and (σn ∈ 
∗

εn
(ξkn)) such that (ωσn) converges to ω.

PROOF: The “if” direction is obvious: if ω is sequentially stable, the result holds by
setting kn := n for all n ∈ N. Assume then that ω is such that, for any vanishing trem-
ble (ξn), there is a strictly increasing sequence (kn) and two sequences (εn) → 0 and
(σn ∈ 
∗

εn
(ξkn)) such that (ωσn) converges to ω. Fix some vanishing tremble (ξn), and

assume for the sake of contradiction that there is no pair of sequences (εn) → 0 and
(σn ∈ 
∗

εn
(ξn)) such that (ωσn) converges to ω. Then there must be some ε�ε′ > 0 and a

strictly increasing sequence (kn) such that d(ω��∗
ε(ξkn)) ≥ ε′ for all n, where �∗

ε(ξkn) is
the set of sequential ε-equilibria of G(ξkn) and

d
(
ω��∗

ε(ξkn)
) := inf

ω′∈�∗
ε(ξkn )

d
(
ω�ω′)

33This kind of characterization has proven to be elusive for KM-stable sets. See Govindan and Wilson (2012)
for a characterization of stable equilibria (as defined in Mertens (1989)) in two-player games with generic
payoffs.
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(Recall that, as explained in footnote 8, we use the sup distance between outcomes; that is,
for any pair of outcomes ω and ω′, d(ω�ω′) := maxz∈Z|ω(z) − ω′(z)|). This contradicts
our original assumed property of ω, since the vanishing tremble (ξkn) does not have a
subsequence and corresponding sequences of epsilons and sequential epsilon-equilibria
with outcomes converging to ω. Q.E.D.

A.2. Proofs of the Results in Section 2

Proof of Proposition 2.1

PROOF: “Only if” part: Assume (σ�μ) is a sequential equilibrium supported by a fully-
mixed sequence of strategy profiles (σn). Let A∗ :={a ∈A|σ (a) > 0}, and define

ξn(a) :=
{
σn(a) if a /∈ A∗,
1/n otherwise.

(We initialize the index n so that the conditions in Definition 2.1 are satisfied for all n.) It
is clear that ξn(a) → 0 for all a ∈ A. We define

εn := 1/n+ max
a∈A∗

max
a′∈AIa

(
u
(
a′|σn

) − u(a|σn)
)

︸ ︷︷ ︸
(∗)



Note that the term (∗) is nonnegative because a ∈ AIa . Note also that, given our definition
of εn, we have that u(a|σn) ≥ u(a′|σn) − εn for all a ∈A∗, a′ ∈ AIa , and n ∈ N, hence σn ∈

∗

εn
(ξn). Also, for all a ∈ A∗, we have that (∗) tends to 0 as n→ +∞, because u(a′|σn) →

u(a′|σ�μ) for all a′ ∈ A and also because u(a|σ�μ) = maxa′∈AIa u(a′|σ�μ) by sequential
rationality. It is then clear that εn → 0.

“If” part: We now fix some ω and assume that there exists a vanishing tremble (ξn),
a sequence (εn) → 0, and a sequence (σn ∈ 
∗

εn
(ξn)) such that ωσn → ω. Let (kn) be

strictly increasing and satisfy that (σkn) converges to some σ and has a corresponding
sequence of belief systems converging to some μ. Then take a ∈ A such that σ (a) >
0 and some a′ ∈ AIa . We then have that, since u(a|σn) ≥ u(a′|σn) − εn for all n high
enough (because σn ∈ 
∗

εn
(ξn)), we have u(a|σ�μ) ≥ u(a′|σ�μ). It is then clear that σ is

sequentially rational under (σ�μ), which is supported by (σkn), so (σ�μ) is a sequential
equilibrium with outcome ω. Q.E.D.

A.3. Proofs of the Results in Section 3

Proof of Proposition 3.1

PROOF: “Only if” part: Assume ω is sequentially stable. Fix some ε�ε′ > 0 and assume,
for the sake of contradiction, that there is no δε�ε′ > 0 such that G(ξ) has a sequential ε-
equilibrium with outcome ε′-close to ω for all ‖ξ‖ < δε�ε′ . Then there exists a vanishing
tremble (ξn) such that there is no (σn ∈ 
∗

ε(ξn)) such that ωσn is closer to ω than ε′. This
contradicts that ω is sequentially stable.

“If” part: Assume that for all ε�ε′ > 0 there is some δε�ε′ > 0 such that, if ‖ξ‖ < δε�ε′ ,
then G(ξ) has a sequential ε-equilibrium with outcome at a distance lower than ε′ from
ω. Take a vanishing tremble (ξn). Let u := maxi∈N (maxz∈Z ui(z) − minz∈Z ui(z)). Fix some
sequence (ε̂n) strictly decreasing towards 0 with ε̂0 = u, and recursively define each εn as
follows:
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1. We define n0 := 0 and ε0 := ε̂0.
2. For all k≥ 1 we let nk := min{n > nk−1|‖ξn′ ‖< δε̂k�ε̂k for all n′ > n}. We let εn := ε̂k−1

for all n= nk−1 + 1�    � nk.
It is clear that (εn) → 0. Note that, for each k, ‖ξn‖ < δε̂k−1�ε̂k−1 for all n ∈ {nk−1 +
1�    � nk}. Hence, there exists a sequence (σn) where, for each k and n ∈ {nk−1 +
1�    � nk}, σn is a sequential ε̂k−1-equilibrium of G(ξn) with outcome ε̂k−1-close to ω.
Hence, since ε̂k−1 = εn for all n ∈ {nk−1 + 1�    � nk}, we have that ωσn → ω. Since the
argument holds for any vanishing tremble (ξn), ω is sequentially stable. Q.E.D.

Proof of Corollary 3.1

PROOF: The proof is immediate from the arguments preceding the result. Q.E.D.

Proof of Proposition 3.2

PROOF: The proof is immediate from the arguments in the main text. Q.E.D.

Proof of Proposition 3.4

PROOF: It is convenient to first prove Proposition 3.4 and then Proposition 3.3. Let Ĝ
be the agent-extensive form of G. Let N̂ and û denote the set of players and their payoff
functions in Ĝ, respectively. Note that Ĝ has the same set of sequentially stable outcomes
as G. For each given payoff function ũ ≡ (ũi : Z → R)i∈N̂ , we let Ĝ(ũ) be the agent ex-
tensive form of G with payoff function given by ũ instead of û. Let (ûk) be a sequence
of payoff functions converging to û such that, for each k, Ĝ(ûk) has an extensive-form
stable outcome denoted ωk, which by Proposition 3.2 is also sequentially stable.34 Note
that, since an extensive-form stable outcome exists for generic payoff functions (recall
footnote 3), a sequence (ûk) with the previous properties exists.35 We can assume without
loss of generality for our argument that (ωk) converges to some outcome ω. Then the
following lemma shows that ω is sequentially stable.

LEMMA A.2: Let (uk) be a sequence of payoff functions converging to u. Let (ωk) → ω
be such that each ωk is sequentially stable in G(uk). Then ω is a sequentially stable outcome
of G.

PROOF: Let (uk) be a sequence of payoff functions converging to u. Let (ωk) → ω be
such that each ωk is sequentially stable in G(uk). Fix a vanishing tremble (ξn). For each
k ∈ N, let (εk�n) → 0 and (σk�n ∈ 
∗

εk�n
(ξn�uk)) be such that ωσk�n → ωk as n → ∞, which

exist by the assumption that ωk is sequentially stable in G(uk). Note that for each a ∈ A
and k�n ∈ N with σk�n(a) > ξn(a), we have

uk(a|σk�n) ≥ uk

(
a′|σk�n

) − εk�n for all a′ ∈ AIa .

34Recall that, as explained in footnote 8, we use the sup-distance between payoff functions; that is, for any
pair of payoff functions u and u′, d(u�u′) := maxi∈N maxz∈Z|ui(z) − u′

i(z)|.
35Because Ĝ coincides with its agent extensive form, Kohlberg and Mertens (1986)’s definition of KM-

stability is based on perturbing the game as follows. Fix a vector (δi)i∈N ∈ (0�1)N and a completely mixed
strategy profile σ̂ ∈ 
. Then, when players use a strategy profile σ in the perturbed game, the corresponding
outcome and payoffs are computed by replacing each strategy σi by (1 −δi)σi +δiσ̂i in the unperturbed game.
Defining ξi := δiσ̂i , their formulation becomes equivalent to the tremble-based formulation we use, where
agents choose strategies σi satisfying σi ≥ ξi .
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Hence,

u(a|σk�n) ≥ u
(
a′|σk�n

) − 2d(u�uk) − εk�n for all a′ ∈AIa .

Let (nk) be a sequence of indexes such that εk�nk → 0 and ωσk�nk → ω as k → ∞, which
exists by a standard diagonal argument.36 Then, defining εk := 2d(u�uk) + εk�nk , we have
that each σk := σk�nk is a sequential εk-equilibrium of G(ξnk). Then, since εk → 0 as
k→ ∞, and since the argument holds for any vanishing tremble (ξn), Lemma A.1 implies
that ω is sequentially stable. Q.E.D.

Q.E.D.

Proof of Proposition 3.3

PROOF: We assume that ω is the unique sequentially stable outcome of G and, for the
sake of contradiction, assume that it is not extensive-form stable. Note that there is no
extensive-form stable outcome of G different from ω, since otherwise, such an outcome
would also be sequentially stable (by Proposition 3.2), contradicting the assumption that
ω is the unique sequentially stable outcome. Hence, it must be that ω is not extensive-
form stable.

Let Ĝ be the agent extensive form of G and let û be its corresponding payoff func-
tion. The previous assumptions imply that ω is the unique sequentially stable outcome
of Ĝ and that Ĝ has no extensive-form stable outcome. Let (ξ̂n) be a tremble such that
there is no sequence of indexes (kn) such that there is some sequence (σ̂n ∈ 
∗

0(ξ̂kn))
with outcomes converging to ω (where (ξ̂n) exists since ω is not extensive-form stable).
By Proposition 3.4, each Ĝ(ξ̂n̂) has at least one sequentially stable outcome ωn̂. We let
(kn) be a sequence of indexes such that ωkn converges to some ω′. Since, for each n,
ωσ̂n = ωkn for some σ̂n ∈ 
∗

0(ξ̂kn), the previous assumption on (ξ̂n) implies that ω′ �= ω.
We then reach a contradiction by proving that ω′ is sequentially stable. This follows from
the following result, which is analogous to Lemma A.2 below.

LEMMA A.3: Let (ξn) be a vanishing tremble. Let (ωn) → ω be such that each ωn is
sequentially stable in G(ξn). Then ω is a sequentially stable outcome of G.

PROOF: The proof is similar to that of Lemma A.2 below and left to the reader. Q.E.D.

Q.E.D.

A.4. Proofs of the Results in Section 4

Proof of Proposition 4.1

PROOF: Let ω be a sequentially stable outcome. Let â ∈ AI be an action that is not
sequentially optimal in any sequential equilibrium with outcome ω (hence â is not played

36Indeed, the diagonal argument sets n0 := 1 and, for all k> 0, nk := min{n > nk−1|max{εk�n� d(ωσk�n �ω)}<
1/k}.
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under ω, either because Iâ is off-path or because Iâ is on path but â is chosen with prob-
ability zero). Let G′ denote the game where â (and all consecutive histories) is elimi-
nated, and A′ ⊂ A\{â} be its set of actions. Let (ξ′

n) be a vanishing tremble in G′, and let
ξ′
n
:= min{ξ′

n(a′)|a′ ∈A′}. Define the vanishing tremble (ξn) as follows:

ξn(a) :=
{
ξ′
n(a) if a ∈ A′,(
ξ′
n

)|A|
otherwise,

for all a ∈ A, and note that (ξn) is a vanishing tremble in G. Note also that, under the
vanishing tremble (ξn), any history in H not belonging to H ′ (i.e., with some a /∈ A′)
has a vanishing relative likelihood with respect to any history in H ′. Let (εn) → 0 and
(σn ∈ 
∗

εn
(ξn)) be such that ωσn → ω as n → +∞ (which exists since ω is sequentially

stable). Taking a subsequence if necessary, assume that (σn) supports some assessment
(σ�μ), which by Proposition 2.1 is a sequential equilibrium. Note that (σ�μ) has outcome
ω.37 Note also that, if n is large enough, it must be that σn(â) = ξn(â), since by assumption
â is not sequentially optimal under (σ�μ), hence there is some â′ ∈ AIa such that

lim
n→∞

u
(
â′|σn

) = u
(
â′|σ�μ

)
> u(â|σ�μ) = lim

n→∞
u(â|σn)

Let â′ ∈AIâ be an action played with positive probability under σ . Define, for all a′ ∈A′,

σ ′
n

(
a′) :=

{
σn

(
a′) + σn(â) if a′ = â′,

σn

(
a′) if a′ �= â′.

Note that σ ′
n ∈ 
′(ξ′

n) (i.e., σ ′
n belongs to the set of strategy profiles of G′ satisfying σ ′

n ≥
ξ′
n). We claim that there is some sequence (ε′

n) → 0 such that (σ ′
n ∈ 
′∗

ε′
n
(ξ′

n)). This follows
from the fact that all information sets of G that contain both histories in H ′ and not in H ′,
the relative weight of histories not in H ′ shrinks to 0 as n increases because all of them
have â as one of its elements. It then follows that, as n increases, all actions a′ ∈ A′ with
σ (a′) > 0 are asymptotically sequentially optimal as n → ∞.38 Q.E.D.

Proof of Corollary 4.1

PROOF: Forward Induction: Let ω be sequentially stable, and I and a satisfy the con-
ditions in the statement. It is then clear that a is not sequentially optimal under any se-
quential equilibrium with outcome ω. Hence, the result holds from applying NWBR.

Iterated Strict Equilibrium Dominance: Let ω be sequentially stable and a satisfy the
conditions in the statement. Since a is not sequentially optimal under any sequential equi-
librium, it is not sequentially optimal under any sequential equilibrium with outcome ω.
Hence, the result holds from applying NWBR. Q.E.D.

Proof of Proposition 4.2

PROOF: We prove the equivalence between parts 1 and 3. Proving that parts 1 and 2
are equivalent is easy using Proposition 3.1.

37Recall that, by Lemma A.1, it is enough to prove that the property in Definition 3.1 holds for a subsequence
of (ξn).

38Even though we proved that a subsequence of (ξ′
n) is such that there are (ε′

n) → 0 and (σ ′
n ∈ 
∗

ε′
n
(ξ′

n|G
′))

with ωσn →ω, Lemma A.1 ensures that this is enough to prove the sequential stability of ω in G′.
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Proof that 3 ⇒ 1: Assume that for all ε�ε′ > 0 there is some δ > 0 with the property
that, if ‖ξ‖ < δ, then there is some u′ with ‖u′ − u‖ < ε such that G(ξ�u′) has a Nash
equilibrium with outcome ε′-close to ω. Fix some ε�ε′ > 0, and let δ satisfy the aforemen-
tioned property. We then have that, if ‖ξ‖ < δ, then G(ξ) has a sequential ε-equilibrium
with outcome ε′-close to ω. Applying Proposition 3.1, we then have that ω is sequentially
stable.

Proof that 1 ⇒ 3: Let ω be a sequentially stable outcome. Fix some ε�ε′ > 0. By Propo-
sition 3.1, we have that there is some δ > 0 such that, if ‖ξ‖ < δ, then G(ξ) has a se-
quential ε-equilibrium with outcome ε′-close to ω. We fix some ξ with ‖ξ‖ < δ and let
σ ∈ 
∗

ε(ξ) be a sequential ε-equilibrium with outcome ε′-close to ω. We want to show
that there is some u′ with ‖u′ − u‖<|I|ε such that σ is a Nash equilibrium of G(ξ�u′).

We propose an algorithm that will change the payoff function from u to some u′ with
the desired property. It will do so by changing the payoffs of the terminal histories so
that ε-optimal actions under u will become exactly optimal under u′. To do so, recall that
Za ⊂ Z is the set of terminal histories containing a ∈ A. We denote the information sets
I := {I1�    � I|I|}. We define ûj recursively from j = 1 to |I|, and we initialize û0 := u.
As we shall see, in each step j, the expected continuation payoff difference between two
actions played at any information set different from Ij remains unchanged. For each j =
1�    �|I|, we proceed as follows:

1. Define u
j

ι(Ij ) := max
a∈AIj û

j−1(a|σ). Let A
Ij
∗ be the set of actions a ∈ AIj such that

ûj−1(a|σ) ≥ uι(Ij ) − ε. Note that a ∈AIj is such that σ (a) > ξ(a) only if a ∈ A
Ij
∗ .

2. We define ûj as a payoff function assigning to each i ∈ N and z ∈ Z the value û
j−1
i (z),

except for the value assigned to player ι(Ij) at terminal histories z ∈ Za for some
a ∈ A

Ij
∗ , where

û
j

ι(Ij ) (z) := û
j−1
ι(Ij ) (z) + u

j

ι(Ij ) − ûj−1(a|σ)︸ ︷︷ ︸
≥0

−K(Ij)� (A.1)

where K(Ij) is chosen such that

E
[
û
j

ι(Ij ) (z)|σ� Ij
] = E

[
û
j−1
ι(Ij ) (z)|σ� Ij

]
 (A.2)

Note that K(Ij) ∈ [0� ε). Note also that, under ûj , player ι(Ij)’s continuation payoff
is the same for all a ∈ A

Ij
∗ , (and equal to ûj(a|σ) = u

j

ι(Ij ) − K(Ij)), which is weakly
higher than ûj(a′|σ) for all a′ ∈ AIj . This guarantees that player ι(Ij) plays a best
response to σ at Ij under ûj .

3. Note that, for each a ∈ AIj , we have that

û
j

ι(Ij ) (z) − û
j

ι(Ij )

(
z′) = û

j−1
ι(Ij ) (z) − û

j−1
ι(Ij )

(
z′)

for all z� z′ ∈Za, hence payoff difference from choosing an action instead of another
at an information set of player ι(Ij) that follows Ij remains the same. Condition
(A.2) guarantees that the continuation payoff player ι(Ij) obtains at information set
Ij is the same under ûj−1 and under ûj ; hence, her incentives in one of her informa-
tion sets that precedes Ij remains the same. Note finally that ‖ûj − ûj−1‖ < ε.
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Using the triangle inequality, we have that

∥∥u− û|I|∥∥ ≤
|I|∑
j=1

∥∥ûj − ûj−1
∥∥ < |I|ε

Since, as we argued, each player plays a best response to σ in each information set under
û|I|, we have that the desired u′ is û|I|. Q.E.D.

Proof of Proposition 4.3

PROOF: Proof of part 1: Let G′ be a subgame of G originated at an information set
denoted I ′. Assume that G′ has a unique sequential outcome ω′, hence ω′ is a sequen-
tially stable outcome of G′ (by Corollary 3.1 and Proposition 3.4). Let Ĝ be the game
obtained by replacing G′ by ω′ (recall footnote 23). Let A′ be the set of actions of G′, Z′

ω′

be the support of ω′, and Â be A\A′. We want to prove that G and Ĝ have the same set
of sequentially stable outcomes. We divide the proof into two subparts.

1. Let ω be a sequentially stable outcome of G. Take some vanishing tremble (ξ̂n) in
Ĝ and some vanishing tremble (ξ′

n) in G′. Let (ξn) be defined as

ξn(a) :=
{
ξ′
n(a) if a ∈ A′,

ξ̂n(a) if a ∈ Â,

for all a ∈ A. Let (εn) → 0 and (σn ∈ 
∗
εn

(ξn)) be such that ωσn → ω (which exist
because ω is sequentially stable in G). By Proposition 2.1 and the fact that ω′ is the
unique sequential outcome in G′, we have that the conditional distribution of ωσn on
Z′ converges to ω′ as n → ∞. Let σ̂n be defined as σ̂n(a) := σn(a) for all a ∈ A and
σ̂n(z′) := ω′(z′) for all terminal histories z′ ∈ Z′

ω′ (note that, in G′, A′I′ = Z′
ω′ , and

so nature plays each z′ ∈ A′I′ with probability ω′(z′) > 0). It is clear that ωσ̂n → ω.
Also, it is easy to see that there exists some (ε̂n) → 0 such that σ̂n ∈ 
̂∗

ε̂n
(ξ̂n) for all n.

Hence, ω is sequentially stable in Ĝ.
2. Let ω̂ be a sequentially stable outcome of Ĝ. Take some vanishing tremble (ξn) in

G and let (ξ′
n) be its restriction to G′. Let (ξ̂n) be a vanishing tremble in Ĝ satisfying

that ξ̂n(a) := ξn(a) for all a ∈ Â and ξ̂n(z′) ≤ ω′(z′) for all z′ ∈ Z′
ω′ . Let (ε̂n) → 0

and (σ̂n ∈ 
̂∗
ε′
n
(ξ̂n)) be such that ωσ̂n → ω̂ (which exist because ω̂ is sequentially sta-

ble in Ĝ). Let (ε′
n) → 0 and (σ ′

n ∈ 
′∗
ε′
n
(ξ′

n)) be such that ωσ ′
n → ω′ (which exist by

Proposition 2.1 and the fact that ω′ is the unique sequential outcome in G′). Let σn

be defined as σn(a) := σ̂n(a) for all a ∈ Â and σn(a) := σ ′
n(a) for all a ∈ A′. It is

then clear that ωσn → ω̂. Again, it is easy to see that there exists (εn) → 0 such that
σn ∈ 
∗

εn
(ξn) for all n. Hence, ω̂ is sequentially stable in G.

Proof of part 2: The proof is similar to that of the second case in part 1, and hence
omitted.

Proof of part 3: Let G′ be a subgame of G played with positive probability under ω, and
let Z′ be the set of terminal histories of G′.39 Assume, for contradiction, that the restric-
tion of ω to G′, ω′ := ω|Z′ , is not a sequentially stable outcome of G′, and let (ξ′

n) be a

39We use the standard definition of subgame (e.g., from Osborne and Rubinstein (1994)).
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tremble sequence of G′ destroying it (i.e., such that there are no corresponding sequences
(ε′

n) and (σ ′
n) with the properties in Definition 3.1). Then it is clear that any perturbation

ξn that coincides with ξ′
n when restricted to G′ destroys ω, contradicting that ω is a se-

quentially stable outcome of G. Q.E.D.

Proof of Proposition 4.4

PROOF: Let I� I ′ ∈ I be such that I ′ = I ×AI . For each terminal history (a1�    � aJ) ∈
Z, define

T (a1�    � aJ) :=
{

(a1�    � aj+1� aj�    � aJ) if aj ∈ AI for some j,
(a1�    � aJ) otherwise.

Let G′ be a game obtained from G by replacing Z by T (Z), and also replacing H, I , and
ι accordingly (note that the set of actions does not change). Let u′ := u ◦ T be the payoff
function in G′.

We now fix some sequentially stable outcome ω of G, and we will show that the outcome
analogous to ω in G′, denoted ω′ := ω ◦ T −1, is also sequentially stable. To see this, fix
some vanishing tremble (ξn), and let (εn) and (σn) satisfy the conditions in Definition 3.1,
with ωσn → ω (which exist since ω is sequentially stable). We argue that (ξn), (εn), and
(σn) also satisfy the conditions in Definition 3.1 in G′ and the limit of (ωσn) is ω′.40 To see
this, note that for a given a ∈A, player ι(Ia)’s payoff from playing a in G under σn is

u(a|σn) =

∑
z∈Za

Prσn (z)uι(Ia) (z)

Prσn
(
Ia

)
σn(a)

=

∑
z∈Za

Prσn
(
T (z)

)
u′
ι(Ia)

(
T (z)

)
Prσn

(
T

(
Ia

))
σn(a)

= u′(a|σn)�

where the second equality follows because of Prσn (T (z)) = Prσn (z) (since z and T (z)
contain the same actions), u′

ι(Ia) (T (z)) = uι(Ia) (z) (by definition of u′) and Prσn (T (Ia)) =
Prσn (Ia) (because T applied to all terminal histories that follow Ia in G equals the set of
all terminal histories that follow T (Ia) in G′). It is then clear that (ξn), (εn), and (σn) also
satisfy the conditions in Definition 3.1 in G′, hence ω′ is a sequentially stable outcome of
G′. Q.E.D.

A.5. Proofs of the Results in Section 5

Proof of Proposition 5.1

PROOF: In this proof, we will use the following notation. For a given strategy profile
σ ∈ 
sig, we will use σ (m|θ) and σ (r|m) to indicate the probability with which the sender
chooses m after θ and the probability with which the receiver chooses r after m, respec-
tively.

“Only if” direction. Assume ω is a sequentially stable outcome. Let m be a message
unsent under ω. Take a probability distribution μm over �m and a vanishing tremble (ξn)

40Note that since G′ has the same set of actions as G and since, for each a ∈ A, the set of available actions
at the information set where a is available is the same in both G and G′, we have that (ξn) is also a vanishing
tremble of G′, and σn is a sequential εn-equilibrium of G′(ξn) for each n.
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such that

lim
n→∞

π(θ)ξn(m|θ)∑
θ′∈�m

π
(
θ′)ξn

(
m|θ′) = μm(θ)

and such that ξn(m|θ′)/ξn(m|θ) = μm(θ′)/μm(θ) for all θ�θ′ ∈ �m with θ ∈ supp(μm).41

Let (εn) and (σn) be two sequences satisfying that εn → 0, σn ∈ 
∗
εn

(ξn) for all n, and
ωσn → ω (they exist because ω is a sequentially stable outcome). Taking a subsequence if
necessary, assume that (σn) supports some sequential equilibrium (σ�μ′′) (with outcome
ω). Note that uθ(m|σ) ≤ uθ(ω) for all θ ∈ �m. There are two cases:

1. Assume first that uθ(m|σ) = uθ(ω) for all θ with μ′′(θ|m) > 0. Then the result holds
for α := 0, μ′

m(·) := μ′′(·|m), and ρ := σ (·|m).
2. Assume now that uθ(m|σ) < uθ(ω) for some θ with μ′′(θ|m) > 0. Then there is

some n such that σn(m|θ) = ξn(m|θ) for all n > n. Note further that it must be that
θ ∈ supp(μm), since by the definition of (ξn), we have that ξn(m|θ′)/ξn(m|θ′′) = 0
whenever θ′ /∈ supp(μm) and θ′′ ∈ supp(μm). There are then two cases:
(a) If μm(θ) = μ′′(θ|m), then it must be that μm(θ′) = μ′′(θ′|m) for all θ′ ∈ �m.42

Hence, the result holds for α := 1, μ′
m(·) := μ′′(·|m), and ρ := σ (·|m).

(b) If μm(θ) �= μ′′(θ|m), then it must be that μm(θ) <μ′′(θ|m), since

μ′′(θ|m) = lim
n→∞

π(θ)ξn(m|θ)∑
θ′∈�m

π
(
θ′)σn

(
m|θ′)

≤ lim
n→∞

π(θ)ξn(m|θ)∑
θ′∈�m

π
(
θ′)ξn

(
m|θ′) = μm(θ)

Define α := 1 −μm(θ)/μ′′(θ|m) ∈ (0�1], so μ′′(θ|m) = (1 −α)μm(θ). Note that,
for any other θ′ such that uθ′ (m|σ) < uθ′ (ω) it must be that μ′′(θ′|m) = (1 −
α)μm(θ′), since σn(θ′) = ξn(θ′) for n large enough in this case. We then have
that the result holds for the obtained value of α, for μ′

m(θ) := (μ′′(θ|m) − (1 −
α)μm(θ))/α, and for ρ := σ (·|m).

“If” direction. Assume ω satisfies the condition in the statement of Proposition 5.1.
We fix a vanishing tremble (ξn). We will construct a strictly increasing sequence (kn) and
a sequence (σkn) such that σkn ∈ 
∗

εkn
(ξn) for all n for some sequence (εkn) → 0 and

ωσkn →ω as n → ∞; hence, the sequential stability of ω will follow from Lemma A.1.
We denote the messages which are off path of ω as M0 := {m1�    �m|M0|} (we assume

that |M0|≥ 1 since the result is trivial otherwise). We first construct σn(m|θ) and σn(r|m)
for all m ∈ M0, θ ∈ �m, and r ∈ Rm. We do it by first proceeding recursively over the
set of messages that are off-path under ω, and then we will define the values for on-
path messages. We begin with k = 1 and (j0

n) := (n). Then, for each k = 1�    �|M0|, we
proceed as follows:

41For example, ξn(m|θ) := π(θ)−1μ(θ)n−1 for all θ ∈ supp(μ) and ξn(m|θ) := n−2 for all θ /∈ supp(μ).
42Indeed, because σn(m|θ) = ξn(m|θ) for large n, μm(θ) = μ′′(θ|m) only if limn→∞ σn(m|θ′)/ξn(m|θ′) = 1

for all θ′ ∈ supp(μ′′) and limn→∞ σn(m|θ′)/ξn(m|θ) = 0 for all θ′ /∈ supp(μ′′).
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1. We let (jkn ) be a strictly increasing subsequence of (jk−1
n ) such that

μmk (θ) := lim
n→∞

π(θ)ξjkn

(
mk|θ

)∑
θ′∈�

mk

π
(
θ′)ξjkn

(
mk|θ′)

is well-defined for all θ ∈ �mk .
2. Let μ′

mk , α, and ρ be the ones determined by the statement for μmk and mk.
3. There are two cases:

(a) If α= 1, then we set σn(mk|θ) := ξn(mk|θ) for all θ ∈ �mk and (jkn ) := (ĵkn ).
(b) If α �= 1, then let Kn := ∑

θ∈�
mk

μmk (θ)ξn(mk|θ). We then define, for each θ ∈
�mk ,

σn

(
mk|θ

) := ξn

(
mk|θ

) + α

1 − α
Knμ

′
mk (θ)

Note that, for all θ ∈ �mk , we have

lim
n→∞

π(θ)σn

(
mk|θ

)∑
θ′∈�(mk)

π
(
θ′)σn

(
mk|θ′) = lim

n→∞

π(θ)
(
ξn

(
mk|θ

) + α

1 − α
Knμ

′
mk (θ)

)
Kn + α

1 − α
Kn

= (1 − α)μmk (θ) + αμ′
mk (θ)

4. We finally define σn(r|mk) as

σn

(
r|mk

) :=

⎧⎪⎨
⎪⎩
ξn

(
r|mk

)
if ρ(r) = 0,

ρ(r)
(

1 −
∑

r′ /∈supp(ρ)

ξn

(
r ′∣∣mk

))
if ρ(r) > 0. (A.3)

Note that, as n → ∞, we have that σn(mk|θ) → ρ.
For all messages m that occur on path under ω (i.e., m /∈M0), we define

σn(m|θ) :=

⎧⎪⎨
⎪⎩
ξn(m|θ) if ω(m|θ) = 0,

ω(m|θ)
(

1 −
∑

θ′|ω(m|θ′)=0

ξn

(
m|θ′)) if ω(m|θ) > 0,

where ω(m|θ) is the probability that type θ sends m under ω, and also

σn(r|m) :=

⎧⎪⎨
⎪⎩
ξn(r|m) if ω(r|m) = 0,

ω(r|m)
(

1 −
∑

r′|ω(r′|m)=0

ξn

(
r ′|m

))
if ω(r|m) > 0,

where ω(r|m) is the probability that the receiver chooses r after m under ω (where m is an
on-path message). It is not difficult to see that our construction (together with the prop-
erties of μ′

m, α, and ρ) guarantees that σn ∈ 
(ξn), that ωσjn → ω, and that there is some
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sequence (εn) ↘ 0 such that σjn ∈ 
∗
εjn

(ξjn) for all n (note that, by Lemma A.1, showing
the convergence for a subsequence is enough to show sequential stability). Q.E.D.

Proof of Corollary 5.1

PROOF: As indicated in the main text, the proof is immediate from our Proposition 5.1
and Theorem 3 and Proposition 4 in Banks and Sobel (1987) and Cho and Kreps (1987),
respectively. Q.E.D.

Proof of Proposition 5.2

PROOF: Part 0: Notation. To formally define a KM-stable outcome, we need some no-
tation regarding the normal form of the extensive-form game G defined in Section 2
(which is naturally extended to Gsig). For each player i, we let �Ai := ∏

I∈ι−1(i) A
I denote

her set of her (normal-form) pure strategies and �a ≡ (�ai)i∈N be a generic pure strategy.
We use a ∈ �ai to denote that a ∈ A is one of the components of �ai ∈ �Ai. We also let

̂i := �( �Ai) be player i’s set of (normal form) mixed strategies and let σ̂ ≡ (σ̂ i)i∈N be a
generic mixed strategy, for each i ∈ N ∪ {0} (where nature plays according to the corre-
sponding mixed strategy consistent with π). A normal-form vanishing tremble is a sequence
(ξ̂n) ≡ ((ξ̂i

n)i∈N), where ξ̂i
n : �Ai → (0�1] is such that ξ̂i

n(�ai) → 0 as n → ∞ for all �ai ∈ �Ai.
Then, ω is stable if, for any normal-form vanishing tremble (ξ̂n), there is a sequence (σ̂n)
such that (i) σ̂ i

n(�ai) ≥ ξ̂i
n(�ai) for all �ai and n, (ii) σ̂ i

n(�ai) > �ξi
n(�ai) only if �ai is optimal, for

all �ai and n, and (iii) ωσ̂n →ω as n → ∞.
Part 1: Proof that if ω is extensive-form stable in Gsig, then it is KM-stable. Let ω be

an extensive-form stable in Gsig. Let (ξ̂n) be a normal-form vanishing tremble. Define the
following extensive-form vanishing tremble for all a and n:

ξn(a) :=
∑
�a�a

ξ̂i
n

(�ai
)


We define ξ
i := ∑

�ai∈ �Ai ξ̂i
n(�ai). Note that, for any information set I with i = ι(I), we have

∑
a∈AI

ξn(a) =
∑
a∈AI

∑
�ai�a

ξ̂i
n

(�ai
) =

∑
�ai∈ �Ai

ξ̂i
n

(�ai
) = ξ

i


Since ω is extensive-form stable, there is a sequence of Nash equilibria (σn ∈ 
∗
0(ξn)) with

outcomes converging to ω. Taking a subsequence if necessary, assume (σn) supports an
assessment (σ�μ). We let �Ai

∗ be the set of action vectors �ai such that a is sequentially
optimal under (σ�μ) for all a ∈ �ai. We now define

σ̂ i
n

(�ai
) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ξ̂i
n

(�ai
)

if σn(a) = ξn(a) for some a ∈ �ai,∏
a∈�ai

(
σn(a) − ξn(a)

)
(
1 − ξ

i

n

)|Ii|−1
+ ξ̂i

n

(�ai
)

otherwise.
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Note that

∑
�ai�a

σ̂ i
n

(�ai
) =

∑
�ai�a|�ai∈ �Ai∗

∏
a′∈�ai

(
σn

(
a′) − ξn

(
a′))

(
1 − ξ

i

n

)|Ii|−1
+

∑
�ai�a|�ai∈ �Ai∗

ξ̂i
n

(�ai
) +

∑
�ai�a|�ai /∈ �Ai∗

ξ̂i
n

(�ai
)

=
∑

�ai�a|�ai∈ �Ai

∏
a∈�ai

(
σn

(
a′) − ξn

(
a′))

(
1 − ξ

i

n

)|Ii|−1
+ ξn(a)

= σn(a) − ξn(a)(
1 − ξ

i

n

)|Ii|−1

(
1 − ξ

i

n

)|Ii|−1 + ξn(a)

= σn(a)

Then, since each player plays once on the path of play in Gsig, it is clear that (1) σ̂ i
n(�ai) ≥

ξ̂i
n(�ai) for all �ai ∈ �Ai, and that (2) σ̂ i

n(�ai) > ξ̂i
n(�ai) only if �ai is optimal for i. Hence, σ̂n ∈


̂∗
0(ξ̂n) (i.e., is a Nash equilibrium of the normal-form of Gsig perturbed wih ξ̂n). Since σ̂n

generates the same outcome as σn, we have that ω is KM-stable.
Part 2: Proof that if ω is KM-stable in Gsig, then it is sequentially stable. In this part of

the proof, we adapt the notation further to Gsig, as different arguments are made for the
sender and the receiver. Now, �m ≡ ( �mθ ∈ Mθ)θ∈� and �r ≡ (�rm ∈ Rm)m∈M denote normal-
form pure strategies of the sender and the receiver, respectively. Let {Iθ|θ ∈ �} ⊂ I and
{Im|m ∈ M} ⊂ I be the set of the information sets of the sender and the receiver, re-
spectively. Consider a vanishing tremble (ξn). Let ξn(I) := ∑

a∈AI ξn(a) be the sum of the
trembles of information set I. We define ξn := maxθ(ξn(Iθ)). Note that ξn → 0.

Fix a KM-stable outcome ω. Abusing notation, we let ω(m|θ) be the probability with
which type θ sends message m under ω, and let M∗

θ := {m ∈ Mθ|ω(m|θ) > 0}. For each θ
and message m ∈ Mθ, we define

ξ′
n(m|θ) :=

⎧⎪⎨
⎪⎩
ξ

1/|�|−1

n ξn(m|θ) if m ∈Mθ\M∗
θ ,

ξ
1/|�|−1

n ω(m|θ)
(
ξn −

∑
m′∈Mθ\M∗

θ

ξn

(
m′)) if mθ ∈ M∗

θ .

Note that ξ′
n(m|θ) ↘ 0 as n → ∞ for all m and that ξ′

n(Iθ) = ξ
1/|�|

n for all θ ∈ �. Then we
define

ξ̂s
n( �m) :=

∏
θ∈�

ξ′
n( �mθ|θ) and ξ̂r

n(�r) :=
∏
m∈M

ξn(�rm|m)

Since ω is KM-stable, there is a sequence (σ̂n) with the properties described above. Taking
a subsequence if necessary (which, by Lemma A.1, is without loss for our argument), we
assume that

σ (r|m) := lim
n→∞

∑
�r|�rm=r

σ̂n(�r) (A.4)
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is well-defined for all m and r ∈ Rm (note that
∑

r∈Rm
σ (r|m) = 1 for all m). Let R∗

m :=
{r ∈ Rm|σ (r|m) > 0}. For each n, define a behavior strategy profile σn ∈ 
 as follows, for
all θ ∈ �, m ∈ Mθ, and r ∈Rm:

σn(θ) := π(θ)� σn(m|θ) :=
∑

�m|�mθ=m

σ̂i
n( �m)� and

σn(r|m) :=
{
ξn(r|m) if r ∈ Rm\R∗

m,
Kn(m)σ (r|m) if r ∈ R∗

m,

where Kn(m) is chosen to be such that
∑

r∈Rm
σn(r|m) = 1 for all m ∈ M . Note that

σn(m|θ) ≥
∑

�m|�mθ=m

ξ̂s
n( �m) =

∑
�m|�mθ=m

∏
θ′∈�m

ξ′
n

( �mθ′
∣∣θ′) =

( ∏
θ′∈�m\{θ}

ξ′
n(Iθ′)

)
ξ′
n(m|θ)

= (
ξ

1/|�|
n

)|�|−1
ξ

1/|�|−1

n ξn(m|θ) = ξn(m|θ)�

where we used that ξ′
n(Iθ) = ξ

1/|�|

n by construction. Hence, since σn(r|m) ≥ ξn(r|m), we
have that σn ∈ 
(ξn). Standard continuity arguments imply that, since σ̂n is a Nash equi-
librium of the normal-form game perturbed with ξ̂n, σn is asymptotically sequentially op-
timal for all types θ.43 Then ω is sequentially stable. Q.E.D.

Proof of Proposition 5.3

PROOF: We prove the result for NWBRCK, as it is the strongest statement. The other
cases can be proven similarly. Take then a sequentially stable outcome ω and an off-path
message m. We let (σ̌� μ̌) be a sequential equilibrium with outcome ω (which exists by
Corollary 3.1). We let �̂ ⊂ �m be the set of types θ ∈ �m satisfying (NWBRCK), that is,
θ ∈ �̂ if and only if, for all ρ ∈ BRm such that uθ(m�ρ) = uθ(ω), there is some θ′ ∈ �m

such that uθ′ (m�ρ) > uθ′ (ω). We assume �̂ �= �m.
Fix some μm ∈ �(�m\�̂). Since ω is sequentially stable, Proposition 5.1 establishes that

there are some α ∈ [0�1], μ′
m ∈ �(�m), and ρ ∈ BRm(αμm + (1 − α)μ′

m), satisfying that
uθ(m�ρ) ≤ uθ(ω) for all θ ∈ �m and, if α �= 1, then uθ(m�ρ) = uθ(ω) for all θ ∈ �m with
μ′

m(θ) > 0. If α = 1, define α̂ := 1, μ̂′
m := μm, and ρ̂ := ρ. If α �= 1, then we argue that

μ′
m(θ) = 0 for all θ ∈ �̂. Indeed, assume for the sake of contradiction that μ′

m(θ̂) > 0
for some θ̂ ∈ �̂. In this case, by definition of �̂ and since ρ ∈ BRm, there is some type
θ′ ∈ �m such that uθ′ (m�ρ) > uθ′ (ω), but this contradicts that uθ′′ (m�ρ) ≤ uθ′′ (ω) for all
θ′′ ∈ �m. Define then, for the case α �= 1, α̂ := α, μ̂′

m := μ′
m, and ρ̂ := ρ, and note that

we have shown that μ̂′
m ∈ �(�m\�̂). It then follows that, for all μm ∈ �(�m\�̂), there are

α̂ ∈ [0�1], μ̂′
m ∈ �(�m\�̂), and ρ̂ ∈ BRm(αμm + (1 − α)μ̂′

m) such that the properties in
Proposition 5.1 hold. Define (σ̌ ′� μ̌′) as

(
σ̌ ′(m̃|θ)� σ̌ ′(r|m̃)� μ̌′

m̃(θ)
) :=

{(
σ̌ (m̃|θ)� σ̌ (r|m̃)� μ̌m̃(θ)

)
if m̃ �= m,(

σ̌ (m̃|θ)� ρ̂(r|m̃)�αμm̃(θ) + (1 − α)μ̂′
m̃(θ)

)
if m̃= m,

43This is because the receiver’s response to message m tends to σ (·|m) ∈ �(R) defined in (A.4) under
both sequences (σn) and (σ̂n), and since the belief of the receiver after each message m coincide under both
sequences (σn) and (σ̂n).
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for all θ ∈ �, m̃ ∈Mθ, and r ∈Rm̃. It is then not difficult to see that (σ̌ ′� μ̌′) is a sequential
equilibrium with outcome ω satisfying that μ̌′

m(�̂) = 0. Q.E.D.
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