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APPENDIX: EXTENSIONS, VARIATIONS, AND ROBUSTNESS

IN THIS APPENDIX, we explore variations on our baseline model and associated identifi-
cation conditions. We show that identification is robust in the sense that a relaxation of
one condition assumed in the text can often be accommodated by strengthening another.
An understanding of such trade-offs can be helpful to both producers and consumers
of research relying on demand estimates. Although a full exploration of these trade-offs
describes an entire research agenda, we illustrate some possibilities that relax key restric-
tions of our model, allow demand systems outside discrete choice settings, enlarge the set
of potential instruments, reduce the number of required instruments, eliminate the need
for continuous consumer-level observables, or reduce the required dimension of those ob-
servables. For simplicity, we focus here on the traditional case in which Xt is exogenous,
recalling that in this case we have h(Xt��t) =�t .

APPENDIX S.1: PRICES IN THE INDEX

In the text, we excluded prices from the index vector γ(Zit�Xt��t). That did not rule
out interactions between prices and individual-specific measures (e.g., income), but re-
quired that such measures be “extra” consumer-level observables beyond those in the
J-vector Zit . That requirement can be relaxed. A full investigation of identification in
models allowing interactions between Zit and Pt is beyond the scope of this project. How-
ever, here we discuss one class of fully nonparametric models permitting such interac-
tions, demonstrating one direction in which our results can be extended.

S.1.1. Model and Normalizations

Suppose demand takes the form

σ
(
γ(Zit�Pt�Xt��t)�Pt�Xt

)
� (S.1)

where, for each j = 1� � � � � J,

γj(Zit�Pt�Xt��t) = gj(Zit�Pjt�Xt) +�jt�

gj(Zit�Pjt�Xt) = ḡj(Zit�Xt) + g̃j(Z̃it� Pjt�Xt)�
(S.2)
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and

Z̃it ≡ (Zi2t � � � � �ZiJt)�

This specification imposes two restrictions on an otherwise fully-flexible index function
γ(Zit�Pt�Xt��t).1 First, the price of good j affects only the index γj(Zit�Pt�Xt��t) as-
sociated with good j. This is a natural restriction implied by standard specifications (see,
e.g., Section 3). Second, at least one element of Zit is excluded from interacting with
prices. This is an important restriction but also standard in practice. The key implication,
exploited below, is that ∂g(z�p)

∂z1
does not vary with p.

Given the conditions in the text, identification in this model can be obtained under
additional verifiable conditions. Here, we sketch the argument. With exogenous Xt , we
can condition on Xt and drop it from the notation.2

This model requires a slightly different set of normalizations from those used in the
text. Let z0 denote an arbitrary point in Z for which ∂st (z0)/∂z is nonsingular, and let
z̃0 = (z0

2� � � � � z
0
J). Without loss of generality, for each j = 1� � � � � j we set

E[�jt] = 0� (S.3)

g̃j

(
z̃0�pjt

) = 0 ∀pjt� (S.4)

ḡj

(
z0

) = 0� (S.5)

∂ḡj

(
z0

)
∂z1

= 1� (S.6)

Equation (S.3) normalizes the location of �t , as in the text. The need for (S.4) reflects
the fact that each price Pjt already appears in unrestricted form in the function σ . The
role of prices in the index vector is to allow variation in price responses across consumers
with different values of Z̃it . Equation (S.4) defines z̃0 as the (arbitrary) baseline value of
Z̃it around which such variation is defined.3 Given (S.3) and (S.4), (S.5) normalizes the
location of each index γj , while (S.6) normalizes its scale (see the related discussion in the
text).

S.1.2. Identification: Sketch

Following the arguments in Lemmas 1–3 in the text, one can show that for every price
p and any z′ ∈Z the value of

V
(
z′� z0�p

) ≡
(
∂g

(
z0�p

)
∂z

)−1(∂g
(
z′�p

)
∂z

)
(S.7)

1With no restriction on γ(Zit�Pt�Xt��t), (S.1) would impose no restriction on demand as function of
(Zit�Pt�Xt��t), and there would be no role for the function σ in (S.1).

2Conditioning on Xt treats it fully flexibly, as the argument presented can be applied at each value of Xt .
3More formally, for any demand system σ (γ(Zit�Pt��t)�Pt) and any functions κj (Pjt) for each j, one

can can define an equivalent representation of this demand as σ̂ (γ̂(Zit�Pt��t)�Pt), where γ̂j (Zit�Pjt ��jt) ≡
γj (Zit�Pjt ��jt) − κj (Pjt) and σ̂ (γ̂�Pt) ≡ σ (γ̂ + κ(Pt)�Pt). We select the representation with κj (Pjt) =
g̃j (z̃0

it � Pjt) for all j.
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is identified, although the two matrices on the RHS are unknown. Thus, (S.7) provides a
system of J2 equations in the 2J2 elements of these matrices. Rewrite this system as

∂g
(
z0�p

)
∂z

V
(
z′� z0�p

) = ∂g
(
z′�p

)
∂z

� (S.8)

These J2 equations break naturally into J groups, each with form

∂gj

(
z0�p

)
∂z︸ ︷︷ ︸
1×J

V
(
z′� z0�p

)
︸ ︷︷ ︸

J×J

= ∂gj

(
z′�p

)
∂z︸ ︷︷ ︸
1×J

� (S.9)

Take any j ∈ {1� � � � � J}. A key observation is that one obtains a new system of J equa-
tions of the form (S.9) at every new price vector. By choosing prices carefully, this can
provide new equations without new unknowns. Starting from an arbitrary price vector p
and (S.9), any price vector pj �= p for which p

j
j = pj yields

∂gj

(
z0�pj

)
∂z

V
(
z′� z0�pj

) = ∂gj

(
z′�pj

)
∂z

� (S.10)

Because gj depends on the price vector only through pj , we have ∂gj (z0�pj)
∂z

= ∂gj (z0�p)
∂z

and
∂gj (z′�pj )

∂z
= ∂gj (z′�p)

∂z
. So, we may rewrite (S.10) as

∂gj

(
z0�p

)
∂z

V
(
z′� z0�pj

) = ∂gj

(
z′�p

)
∂z

� (S.11)

Subtracting (S.11) from (S.9), we obtain

∂gj

(
z0�p

)
∂z

	
(
z′� z0�p�pj

) = 0� (S.12)

where

	
(
z′� z0�p�pj

) ≡ V
(
z′� z0�p

) − V
(
z′� z0�pj

)
� (S.13)

Equation (S.12) is a homogeneous system of J linear equations in the J components of
∂gj (z0�p)

∂z
. One of these elements is already known: by (S.2) and (S.6), ∂gj (z0�p)

∂z1
= 1. One can

solve (S.12) for the remaining elements under the following condition on 	(z′� z0�p�pj).

CONDITION 1: For some k ∈ {1� � � � � J}, the submatrix of 	(z′� z0�p�pj) obtained by
dropping row j and column k is full rank.

EXAMPLE 1: Consider the case of J = 2 and j = 1. Letting djk = ∂gj(z0�p)/∂zk, (S.12)
takes the form (recalling the normalization d11 = 1)

[
1 d12

][
	11 	12

	21 	22

]
= 0�
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which we may rewrite as

	11 + d12	21 = 0�

	12 + d12	22 = 0�

Either of these equations could be used to solve for the unknown d12, although this re-
quires that at least one of 	12 and 	22 be nonzero (Condition 1). If 	22 �= 0, for example,
then d12 = −	12

	22
.

Repeating the argument above for each j identifies the matrix ∂g(z0�p)
∂z

. Plugging this into
(S.8) (and recalling that V (z′� z0�p) is known) then allows identification of ∂g(z′�p)

∂z
at every

z′. Since the normalizations (S.4) and (S.5) imply the boundary condition g(z0�p) = 0,
we can integrate ∂g(z�p)

∂z
from this point to identify g(z�p) at all z. Repeating the entire

argument at each p then identifies the function g. With g known, the arguments in the
text (starting from Corollary 1) can be applied directly to show identification of demand.

Thus, our identification results extend when, in addition to the conditions in the text,
for every price vector p and each j = 1� � � � � J, there exists a pair (z′�pj) with p

j
j = pj

and for which Condition 1 is satisfied. Because Pt is observed and Condition 1 is a prop-
erty of identified objects, this requirement is verifiable.4 Condition 1 requires that the
price vector alter the derivative matrix ∂g(z�p)

∂z
, and differentially so at different prices p.

This requires nonlinearity: it will fail, for example, if g is everywhere linear in z at each p.
However, one can confirm numerically that that Condition 1 holds in nonlinear examples,
including specifications following Berry, Levinsohn, and Pakes (1995, 2004). An interest-
ing question is whether there are useful sufficient conditions for Condition 1. That is a
topic we leave to future work.

APPENDIX S.2: STRENGTHENING THE INDEX STRUCTURE

The model used by Berry and Haile (2014) to study identification with market-level
data restricted the way some elements of Xt enter. Partitioning Xt as (X (1)

t �X
(2)
t ), where

X
(1)
t = (X (1)

1t � � � � �X
(1)
Jt ) ∈ R

J , they assumed that each X
(1)
jt affects demand only through

the jth element of the index vector. This structure is common in specifications used in
practice, and adding it here can allow the use of BLP instruments for prices.5

To illustrate, suppose demand takes the form

𝓈(Zit�Pt�Xt��t) = σ
(
γ(Zit�Xt��t)�Pt�X

(2)
t

)
� (S.14)

where for each j = 1� � � � � J,

γj(Zit�Xt��t) = gj

(
Zijt�X

(2)
t

) +ηj

(
X

(1)
jt �X

(2)
t

) +�jt� (S.15)

with ∂gj(z�x(2))/∂zj > 0 for all (z�x(2)). Compared to the model in the text, this intro-
duces the exclusivity restriction on each X

(1)
jt , associates each Zijt exclusively with the jth

element of the index as well, and imposes separability between Zijt and X
(1)
jt within the

4See Berry and Haile (2018) for a formal definition of verifiability.
5As suggested in Section 5.3, the key issue is proper excludability of these instruments, not their relevance.
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index.6 Many specifications in the literature satisfy these requirements, typically with ad-
ditional restrictions such as linear substitution between Zijt and X

(1)
jt .

For the remainder of this section, we condition on X
(2)
t (treating it fully flexibly), sup-

press it from the notation, and let Xt represent X (1)
t . For each p ∈ suppPt , define

S(p) =
⋃

x∈suppXt|{Pt=p}

S(p�x)�

S(p) =
⋂

x∈suppXt|{Pt=p}

S(p�x)�

Z =
⋂
x∈X

Z(x)�

We assume that Z is nonempty, as is S(p) for all p ∈ suppPt . Nonempty S(p) requires
that there exist s(p) ∈ S(p) such that at each x ∈ suppXt |{Pt = p} there is a combination
of Zit and �t in their support conditional on {Pt = p�Xt = x} that will map to the choice
probability s(p). Nonempty Z requires that there exist at least one value of Zit that is
present in all markets.

With this more restrictive model, we must revisit the necessary normalizations. First,
because adding a constant κj to gj and subtracting the same constant from ηj would leave
the demand function unchanged, we take an arbitrary x0 ∈ suppXt and set

ηj

(
x0
j

) = 0 ∀j (S.16)

without loss. Even with (S.16) (and our maintained E[�t] = 0), it remains true that linear
transformations of each index function γj could be offset by an appropriate adjustment
to the function σ , yielding multiple representations of the same demand system (recall
the related observation in Section 2.5). Thus, without loss, we normalize the location and

scale of each index by taking an arbitrary z0 ∈ Z and setting gj(z0
j ) = 0 and

∂gj (z0
j )

∂zj
= 1 for

all j.
The arguments in Lemmas 1–3 will now demonstrate identification of each function

gj . Likewise, for each price vector p and arbitrary s0 and s1 in S(p), the arguments in
Corollary 1 imply identification of

�
(
s1� s0�p

) ≡ σ−1
(
s1;p) − σ−1

(
s0;p)

�

Taking an arbitrary z̃it ∈ Z(xt) for each market t, the inverted demand system (cf. equa-
tion (19)) in each market takes the form

gj(z̃ijt) +ηj(xjt) + ξjt = σ−1
j

(
st (z̃it);pt

)
� j = 1� � � � � J�

Taking an arbitrary s0(p) ∈ S(p) at each price vector p, we can rewrite the jth equation
as

gj(z̃ijt) −�
(
st (z̃it)� s0(pt)�pt

) = −ηj(xjt) + σ−1
j

(
s0(pt);pt

) − ξjt � (S.17)

6Exclusivity of X (1)
jt to the index γj is essential to the point we illustrate here, and this is most natural when

exclusivity of each Zijt differentiates the elements of the index vector. The assumed separability simplifies the
analysis.
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Because the LHS is known, this takes the form of a nonparametric regression equation
with RHS variables xjt and pt . In this equation x−jt is excluded, offering J−1 potential in-
struments for the endogenous prices pt . Thus, one additional instrument—for example, a
scalar market-level cost shifter or Waldfogel instrument—could yield enough instruments
to obtain identification of the unknown RHS functions and the “residuals” ξjt . Once these
demand shocks are identified, identification of demand follows immediately.

Many variations on this structure are possible. For example, as in many empirical spec-
ifications, one might assume that pjt enters demand only through the jth index. Strength-
ening the assumption of nonempty S(p) to require nonempty

⋂
(p�x)∈PX S(p�x), this can

lead to a regression equation (the analog of (S.17)) of the form

gj(z̃ijt) −�
(
st (z̃it)� s0

) = −ηj(xjt�pjt) + σ−1
j

(
s0

) − ξjt�

where s0 is an arbitrary point in
⋂

(p�x)∈PX S(p�x) and the LHS is known. Now only one
instrument for price is necessary. For example, the BLP instruments can overidentify de-
mand.

APPENDIX S.3: A NONPARAMETRIC SPECIAL REGRESSOR

A different approach is to assume that the demand system of interest is generated by a
random utility model with conditional indirect utilities of the form

Uijt = gj(Zijt) +�jt +μijt� (S.18)

where μijt is a scalar random variable whose nonparametric distribution depends on Xjt

and Pjt (equation (16) gives a parametric example). In this case, our Lemma 3 demon-
strates identification of each function gj(·) up to a normalization of utilities. Under the
assumptions of Theorems 1 and 2, conditional demand and demand are identified as the
main body of the text.

In the special case of equation (S.18), there is an alternate route to identification.
Adding the assumption of independence between the vector μit and (�t�Zit) then turns
each gj(Zijt) into a known special regressor. Under a further (and typically very strong)
large support assumption on g(Zit), standard arguments lead to identification of the
marginal distribution of (ξjt +μijt)|(Xt�Pt) for each j in each market t. One can then use
these marginal distributions to define a cross-market nonparametric IV regression equa-
tion for each choice j, where the LHS is a conditional mean and �jt appears on the RHS
as an additive structural error.7 In each of these equations, the prices and characteristics
of goods k �= j are excluded. Identification of the regression functions identifies all de-
mand shocks, and identification of demand then follows as in Theorem 2 Thus, here one
needs only one instrument for price, and exogenous characteristics of competing goods
(BLP IVs) would be available as instruments.

APPENDIX S.4: SEMIPARAMETRIC MODELS

The previous example considered Zit with large support. One can instead move in the
opposite direction to consider Zit with more limited dimension and support than required
in the text. We do so here by considering semiparametric specifications of inverse demand

7See our early working paper, Berry and Haile (2010).
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that generalize parametric models commonly used in practice. We focus on the case of a
one-dimensional binary Zit , taking values 0 and 1.

Consider a semiparametric nested logit model where the inverted demand system in
each market takes the form

gj(zit) + ξjt = ln
(
sjt (zit)/s0t (zit)

) − θ ln
(
sj/n�t (zit)

) + αpjt� j = 1� � � � � J� (S.19)

Here, we have conditioned on Xt (treating it fully flexibly) and suppressed it from the
notation. On the RHS, sjt (zit) denotes good j’s (observable) choice probability in market
t conditional on zit , with sj/n�t (zit) denoting the within-nest conditional choice probability.
The scalar θ denotes the usual “nesting parameter.”

The nested logit model embeds normalizations of the indices and demand function
analogous to our choices of A(x) and B(x) in Section 2.5. However, we must still normal-
ize the location of either �jt or gj for each j to pose the identification question. Here, we
set gj(0) = 0 for all j, breaking with our prior convention by leaving each E[�jt] free.

Here, (S.19) implies the two equations

gj(1) + ξjt = ln
(
sjt (1)/s0t(1)

) − θ ln
(
sj/n�t (1)

) + αpjt� (S.20)

gj(0) + ξjt = ln
(
sjt (0)/s0t(0)

) − θ ln
(
sj/n�t (0)

) + αpjt (S.21)

for every product j and market t. Differencing these equations in one market, we obtain

gj(1) = ln
(
sjt (1)
s0t (1)

)
− ln

(
sjt (0)
s0t (0)

)
− θ

[
ln

(
sj/n�t (1)

) − ln
(
sj/n�t (0)

)]
(S.22)

for j = 1� � � � � J. This is J equations in J + 1 unknowns: θ and g1(1)� � � � � gJ(1).
Move now to a different market t ′, where the observed choice probabilities are different

(perhaps because ξt �= ξt′). For this market, (S.22) takes the form

gj(1) = ln
(
sjt′ (1)
s0t′ (1)

)
− ln

(
sjt′ (0)
s0t′ (0)

)
− θ

[
ln

(
sj/n�t′ (1)

) − ln
(
sj/n�t′ (0)

)]
(S.23)

for j = 1� � � � � J. This provides J new equations with no new unknowns. Given minimal
variation in choice probabilities across markets, ensuring that

ln
(
sj/n�t (1)

) − ln
(
sj/n�t (0)

) �= ln
(
sj/n�t′ (1)

) − ln
(
sj/n�t′ (0)

)
(S.24)

for at least one good j, one can then solve for θ and g1(1)� � � � � gJ(1). Identification of the
remaining parameter α can then be obtained from the “regression” equation (obtained
from (S.19))

ln
(
sjt (zit)/s0t (zit)

) − gj(zit) − θ ln(sj/n�t (zit) = −αpjt − ξjt (S.25)

using a single excluded instrument for price—for example, an excluded exogenous
market-level cost shifter or markup shifter that affects all prices. This compares to the
usual requirement of two instruments in the fully parametric nested logit when one has
only market-level data (see Berry (1994)). Thus, as in the fully nonparametric case, mi-
cro data cuts the number of required instruments by half. The intercept in this regression
equation picks up the mean of the unobservable �jt .

Observe that here the argument proceeds in two steps, mirroring those in the main text.
We first use a combination of within- and cross-market variation to uncover the function
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g and consumer substitution patterns (determined here by the parameter θ). We then use
cross-market instrumental variables restrictions to separate the roles of prices (and other
market-level factors) from the effects of the demand shocks.

Of course, in the first step (S.24) may typically hold for all j, implying overidentifica-
tion and suggesting the potential to introduce a more flexible specification of the inverse
demand mapping. For example, one might add nests or BLP-style random coefficients.
Furthermore, there is no reason to limit attention to just two markets in the first step:
each additional market adds new equations but no new unknowns.8 Although this dis-
cussion is informal, it suggests the potential to obtain identification of semiparametric
demand models with flexible substitution patterns, using (along with instrument(s) for
prices) consumer-level characteristics with substantially more limited dimension and sup-
port than we required for the fully nonparametric model in the text.

APPENDIX S.5: BEYOND DISCRETE CHOICE

Although the text emphasizes the case in which the consumer-level quantities Qijt take
the particular form implied by a discrete choice model, nothing in our proofs requires
this. In other settings, the demand function 𝓈 defined in (1) may simply be reinterpreted
as the expected vector of quantities demanded conditional on (Zit�Pt�Xt��t).9 Applying
our results to continuous demand is therefore just a matter of verifying the suitability of
our assumptions.10

As one possibility, consider a “mixed CES” model of continuous choice, similar to the
model in Adao, Costinot, and Donaldson (2017), with J + 1 products. Here, we introduce
the notation Yit for the observed income of consumer i in market t, measured in units
of the numeraire good 0. For this example, we treat Yit as an additional consumer-level
observable, beyond the J-dimensional Zit assumed to obey our index restrictions. We
again focus on the case in which Xt is exogenous.

Each consumer i in market t has utility over consumption vectors q ∈ R
J+1
+ given by

u(q;zit�pt� xt� ξt) =
(

J∑
j=0

φijtq
ρ
j

)1/ρ

�

where ρ ∈ (0�1) is a parameter and each φijt represents idiosyncratic preferences of con-
sumer i. Normalizing φi0t = 1, let

φijt = exp
[
(1 − ρ)

(
gj(zit� xt) + ξjt + xjtβit

)]
� j = 1� � � � � J�

where βit is a random vector (with distribution Fβ) representing consumer-level prefer-
ences for product characteristics. With p0t = 1, familiar CES algebra shows that Marshal-

8It is easy to see how the example here generalizes if we allow Zit to have more than two points of support.
With KZ points of support, differencing the analogs of (S.20) and (S.21) for one market yields (KZ − 1) × J
equations in 1 + (KZ − 1) × J unknowns. Each new market adds (KZ − 1) × J equations and no new unknowns
in the first step of the argument.

9Note that the demand faced by firms in market t is the expectation (over the distribution of consumer-level
observables in the market) of this expected demand.

10Berry, Gandhi, and Haile (2013) describe a broad class of continuous choice models that can satisfy the key
injectivity property of Assumption 2. These can include mixed continuous/discrete settings, where individual
consumers may purchase zero or any positive quantity of each good.



NONPARAMETRIC IDENTIFICATION OF DIFFERENTIATED PRODUCTS DEMAND 9

lian demands are

qijt = yit exp
(
gj(zit� xt) + ξjt + xjtβit − α ln(pjt)

)
1 +

[
J∑

k=1

exp
(
gk(zit� xt) + ξkt + xktβit − αρ ln(pkt)

)] � (S.26)

where α = 1/(1 − ρ). It is easy to show that our Assumptions 1–3 are satisfied for the
expected demand functions

σt

(
g(zit� xt) + ξt� yit� xt�pt

) = E[Qit |zit� yit�pt� xt� ξt]�

where the jth component of E[Qit|zit� yit� xt�pt� ξt] is∫
yit exp

(
gj(zit� xt) + ξjt + xjtβit − α ln(pjt)

)
1 +

[
J∑

k=1

exp
(
gk(zit� xt) + ξkt + xktβit − αρ ln(pkt)

)] dFβ(βit)�
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