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APPENDIX A: PROOF OF THEOREM 4

WE BEGIN BY USING ARGUMENTS SIMILAR to that of Abadie and Imbens (2006, Theo-
rem 6) to show that

sw(har) = Su (o) (1+ 0p (1)), (A1)

To simplify the presentation, we suppress various quantities’ dependence on c in this
proof. For example, we write 53, (/) instead of 53, (A (c), ¢), etc. We also define

g (tny) = M

Z wi(hM)Za-]%/I,i
i=1

.....

Y 1 qi(hy) = Op (1) by the same arguments as in the proof of Theorem 2, and the
fact that the variance terms o7, ; are uniformly bounded and bounded away from zero,
respectively.

The proof for the case that Assumption LL1 holds is rather straightforward. As the
kernel has compact support by Assumption 1, and #4,, is bounded as a function of n, the
number of support points at which g;(hy) > 0 is finite. It follows that > . 1{X; = x}
tends to infinity for all support points x with g;(%,,) > 0 if X; = x. Moreover, it holds that

max

|
i:qi(hp)>0

Oni — U]%/[,ii =op #(1).

Since Y7, qi(hy) = Op (1) and g;(hy) is positive, the statement of the theorem then
follows because

iiqi(hM)>0

/\2 n
SM(hM) | ~2 >
-1|= i(h i i
i) | |2 0 G )
< max |6’,%,,,i — 0-/%/1,1" . qu(hM) = Op,]:(l).
i=1
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2 C.NOACK AND C. ROTHE

Now suppose that Assumption LL2 holds. In this case, there are no ties in the data,
and each unit has exactly R; = R nearest neighbors, with probability 1. We thus de-
fine the R x 2 matrix X_; = (X/ "o X ’ ) where ry,...,rg are the indices of the

R nearest neighbors of unit i, and X (1,X), let H; = AN’l-(AN’LiAN’,,»)‘l)N(;, and write
V(X)) = X;(X', X_;)"'X,e; with e; the jth R-dimensional unit-vector. With W; a generic
random variable, we also write W; =W, — >
edly that

> vi(X) =1, > u(X)(X;—X)=0, and Y v(X,)’=H

JER; JER; JER;

jer, Vi(X)W,. In the following, we use repeat-

which follows from basic algebra. Next, note that the variance estimators o7}, ,, i =
1,..., n, are all well-defined with probability 1, as the running variable is continuously dis-
tributed with a bounded density function. Also, recall that M; = Y; — ¢T; and E(M;| X)) =
/J,M(Xi) = [,Ly(X,) — CMT(X,'), put & = M,' — /.LM(X,'), and note that & = &y, —Cér,i =
(Y: — ny (X)) — ¢(T; — ur(X;)). The variance estimators can then be written as

M’ 1 ’
~2 i _ ~
O Ty H T 1+ H, (“M(Xi) e ;RUJ(X")&) '
It then suffices to show the following:
> aqi(hu) (o3, — E[a3 X)) | = 0r.7(1) and (A2)
i=1
() (03 — [0, ])| = 0r. (1), (A3)

We begin by noting that (A.2) follows from the triangle inequality and the fact that
Y1 qi(hw) = Op 7(1) if

max |(7Ml E[Gy X, ]| = op.#(1). (A4)

,,,,,

To show (A.4), note that

E[Gy,|X.] = 1+1H [(ﬁM(Xi) +e&i— Zvj(Xi)aj)z‘Xn}

JER;
1
— o (B + o Sy, )
JER;
1
=%t T (MM(X) +,EZRU(X) —oMl)>

Here, the second equality holds because ¢; and ¢; are independent if i # j, and are zero in
expectation; and the third equality holds because ), . v;(X :)> = H,. As the running vari-
able density is uniformly bounded away from zero, it follows from the proof of Theorem 6
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in Abadie and Imbens (2006) that

Xmax = Max maxlX X, =o0px(1). (AS)

i=1,...,n reR;

Since o7}, ; is uniformly Lipschitz continuous with some constant L, by Assumption 1, we
then have that

1

1
max e (003, ) ) = Ltmamax (vaozf)

JER; b Njer;

< L, Xmax max

= o

To show (A.4), it thus only remains to show that

1

miaX T Hi [:iM(Xl)z = Op’]:(l). (A6)

To do so, note that

max (X0 = (X))

JER;

= (MM (X3)

ze{l

= X 0,00 (X0 4 (XD, = X0+ 0 (X)X, - X7 )

JER;
1 O
=5 max 3 (X (Xi,)(X; = X0)*.

JER;

Here, the first equality follows from a second-order expansion, with X, ; some value be-
tween X; and X, where j € R;; and the second equality follows as ) jer; Vi (X;))=1and
> ier, Vi(Xi)(X; — X;) = 0. We then find that

1 1 1 2
X)) = Xl (X ) (X, — X,
’El}il ”}1+HMM( ) 4161311 n}1+H<j€ZRv( )IJ’ ( I)( ))
R

1 2.0 (v 2 4

8 oy SO
RB%J max

— 4 te%lan}l—FH(Zvj(X))_OP}_(l)

JER;

Here, the first inequality follows from Cauchy-Schwarz as the cardinality of R; is R; and

the second inequality follows as all the terms of the sum are positive, ,u”()O( ;;)? is bounded
by B,, and (X; — X,)* < x;,, for all i and j € R,. The final equality follows because
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Yier, vj(X;))*=H;, and H;/(1+ H;) <1forall i e{1,...,n}, and xpx = 0p #(1). This
completes the proof of the statement (A.2).

To show that (A.3) holds, write g;(hy) = q;(hy)(1 + H;)~'. Note that since |g;(hy)| <
|q:(har)l, it follows from Theorem A.1 that max,—; _, §;(hy) = 0p (1) and Y, Gi(hy) =
Op,»(1). We write this quantity as the sum of five terms:

Z qi(hw) (81%/1,;' - ]E[a/@,ilxn])
i=1

= 3 Gl (6 — o)+ 2 Glh) X — )

JER;

+ ZZ@(hM)gi D v (X +2)  Gi(ha) i (X)e;

jeR; i=1

-2 Z qi(ha) v (X3) Z vi(Xi)e;

JER;
= Gl —I— Gz + 2G3 + 2G4 + 2G5

It is easy to see that these five terms all have mean zero conditional on &,. It thus suffices
to show that their second moments converge uniformly over the function class F to zero.
In the following derivations, we write C for a generic positive constant whose value might
differ between equations.

For the first term, we have that

V(G|X,) = Zﬁi(hM)zE[(sf - 0'1%4)1.)2|Xn] < Cig]ax qi(hy) - szi(hM) =op,r(1),
i=1 ot i=1

where the inequality follows from the bound on the fourth moment of &; and g;(4,,) being
positive, and the last equality follows since max;—;__, §i(hu) Y, Gi(hm) = 0p =(1).
We now turn to the second term, and note that, by independent sampling,

V(G| X,) = Z Z’ciz(hM)?n(hM) Z Z Ui(Xl)Uf(Xi)E[(S? - (’1%4,/) (£1 — o) 1]

i=1 I=1 JER; keR;

= Z Z qi(ha)qi(hw) Z Z v (XD (XDE[ (] — o ;) (e — 0311 %]
i=1 I'R;NR;#% JER; keR,

<33 GG ) Y Y vXDR(X)E[(e] — a3 )1 X].
i=1 'R;NR;#% JER; keR;

Using that &; has bounded fourth moments, that »_, . v2(X,) = H;, and that H,;/(1 +
H;)<1forallie{l,...,n}, we further deduce that

V(G2|Xn)§CZC]i(hM) Z qi(har)-

i=1 IRiNR|#0
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Finally, note that the cardinality of the set {/ : R; N R, # @}, which contains the indices of
those units that share at least one common R-nearest neighbor with unit i, is bounded by
3R + 1 (this can be seen through a simple counting exercise). We thus have that

V(Ga1,) < C Y g R+ 1) max_q;(hy) =or.7(1).
i=1
We now consider the third term, which satisfies
V(Gs|X) =Y ()G () Y Y vi(X)ui(x)Elsie 8081 X,
i=1 k=1 JER; leRy

To proceed, note that E[ ;& &,|X,] = 0 unless the four indices involved in this expression
can be grouped into two pairs that each have the same value. This means that

V(G;|&,) < Ci(Z Gi(h) o (X + Y Eii(hM)%(hM)vi(Xj)v,-(Xi)>

i=1 \jeR; jeRy:ieR;

< C max ql(hM) Zq:(hM) Z v (X))’

’’’’’ JER;

=C max ql(hM)Zqz(hM) = or#(1).

ie{l,...,

For the fourth and fifth terms, we can use arguments similar to those used for the three
previous terms to show that

V(GalX,) < CBy X Y Gi(hu)” = 0p 7(1);

i=1

V(Gle ) < CB2 max . maX (qz(hM) 1 +H ) ;zjz(hM) = OP,]:(l).

This completes the proof of the statement (A.3); and thus (A.1) holds, as claimed.
To complete our proof, we still need to show that

S (har) = 5w () (1 + 05 (1)), (A7)

as this together with (A.1) implies the statement of Theorem 4. Under Assumption LL1,
this follows from arguments similar to those in the proof of Lemma A.1, and under As-
sumption LL2 follows from arguments analogous to those in the proof of Theorem E.1 in
Armstrong and Kolesér (2020). We omit the details for brevity.

APPENDIX B: MORE GENERAL BANDWIDTH CHOICES

In the main body of the paper, the local linear regression estimators 7y, (%, ¢) = 7y (h) —
c7r(h) on which our bias-aware AR CSs are based use the same bandwidth on each side
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of the cutoff, and also the same bandwidth for estimating 7y and 7; and the second
derivatives of wy and wr are bounded in absolute value by the same respective constant
on either side of the cutoff. These features can all easily be relaxed. In particular, we can
define a more general Holder-type class of functions as

Fu(By, B_) = {fi(x)1{x = 0} — fo(x)1{x <O} | f7]

|17

define the class F},(B,, B_) similarly, and then seek to obtain bias-aware AR CSs that
are honest uniformly over (uy, ur) € Fy(Byy, By_) x Fy(Bry, Br_), based on the local
linear regression estimator

~ <B-},

_B+7

n

Tu(h, ¢) = Z(wz +(hys) —wi—(hy-))Yi - CZ Wi+ (hry) — wi—(hr- ))

i=1 i=1

where h = (hry, hr_, hy,, hy_) is a vector of side- and function-specific bandwidths, and
the weights w; ,(h) and w; _(h) are as defined in the beginning of Appendix A in the
main body of the paper. With such a setup, the explicit expression for the bound on the
absolute value of the conditional bias of 7y, (h, c) is

— By, -« c|B
by(h,c)= — % Zwi,+(hY+)Xi2 | l — sz +(hr) X}
i=1
By_ < »  lclBr- 2
+ T wi,—(hY—)Xi + —2 ;wi,—(hT—)X

i=1
and the conditional standard deviation of 7y, (h, ¢) is

n

su(h,c) = (Z(wi,+(hy,+) - wi,_(hy_))zgé,i + (wii(hry) — wi,_(hT_))z(r;,.

i=1 i=1
n 1/2
—2¢ Y (wis(hyy) — wi—(hy-)) (wis (hry) — w,-,(hT))aw,,) ,
i=1

with o3, = V(Yi| X)), o7, = V(Ti| X)), and oyr,; = C(Y;, Ti| X;) being conditional variance
and covariance terms. A feasible standard error sy (h, ¢) can be obtained by substitut-
ing nearest-neighbor estimates of the latter terms into the above expression for sy, (h, ¢).
Letting flM(c) be a feasible estimate of hy (c) = argmin, cv,_,(7y (h, ¢)) - si (h, ¢), with
ry(h, ¢) = by (h, ¢) /sy (h, c), a generalization of our proposed bias-aware AR CS for 6 is
then given by

Ce = {c : |?M(IA1M(C), o)l < CVl_a(?M(ﬁM(C), c))?M(lAlM(c), c))}

A theoretical analysis of this CS would follow arguments that are fully analogous to those
in the analysis of the CS in the main body of this paper, which only uses a single bandwidth,
and would yield fully analogous results.
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APPENDIX C: PROPERTIES OF RULE-OF-THUMB SMOOTHNESS BOUNDS

In this appendix, we study the properties of two data-driven rules-of-thumb (ROT) for
selecting the smoothness constants By and By, which are both based on fitting global poly-
nomial specifications on either side of the cutoff. For simplicity, we focus on the case of
By, but the arguments apply analogously to the case of By. To describe the two methods,
let go(x) = (1, x,...,x*, 1{x > 0}, 1{x > O}x, ..., 1{x > 0}x*) T be a vector of polynomi-
als, define the function

Py(x) =ge(x) %, withy, = argminZ(Yi — gk(X,-)Ty)2,
Y i=1

and write X for the range of the realizations of the running variable. Armstrong and
Kolesar (2020) then considered fourth-order polynomials, and proposed the ROT value

EY,ROT] = sup|ﬁ/{,’4(X) | .
xeX

Imbens and Wager (2019) mentioned a ROT in which the maximal curvature implied
by a quadratic fit is multiplied by some moderate factor, say 2, to guard against overly
optimistic values, yielding the rule-of-thumb value

EY,ROTZ = 2sup’ﬁ/,’,,2(X) | .
xex

We refer to these estimators ROT1 and ROT2 in the following. Both Armstrong and
Kolesar (2020) and Imbens and Wager (2019) cautioned that the respective rules cannot
be expected to provide universally adequate smoothness bounds, and should rather serve
as a first guidance that is complemented with other approaches in a sensitivity analysis.
To get a better understanding of the relative properties of these two rules, we conduct
two small Monte Carlo experiments in which the conditional expectation function is either
py (x) = x? or wy(x) = x* — x*. With each function and each o* € {0,0.1,0.2, ..., 1}, we
conduct 10,000 runs in which we simulate » = 1000 realizations of (Y;, X;) according to

)]i:[.Ly(Xi)—“Si, XZNU[—l, 1], SiNN(O, 0'2), X,-Ls,-,

and calculate both ROT values. If uy(x) = x?, the true smallest upper bound on the
absolute second derivative is By = 2, whereas if uy(x) = x*> — x*, we have that By =
10. In both cases, the corresponding values of “population R squared,” defined as R* =
V(wy(X;))/V(Y), are within the range typically encountered in empirical studies.

We start by considering the case uy(x) = x?, for which both a second- and a fourth-

order polynomial obviously constitute a correct specification, and thus EY’ROTI 2 By =2

and lA?y,ROTz A 2By =4 as n — oo. While one might therefore expect ROT1 to perform
better than ROT2 in this setup, our results, summarized in the left panel of Figure S1,
show that this is not the case. The distribution of ROT1’s results depends strongly on the
error variance, and tends to produce vast over-estimates of By. For ¢* = 1, for example,
the average across simulation runs is 33.58, which exceeds the true bound by a factor of
almost 17. ROT1’s results are also quite volatile. ROT2, on the other hand, is much less
affected by changes in the error variance: its mean across simulation runs increases from
4.01 for o> = 0.1 to only 4.74 for o> = 1, and its sampling variability is rather small.
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FIGURE S1.—Mean (dots) and interquartile range (bars) of simulated ROT1 (black) and ROT2 (red)
“rule-of-thumb” estimates of bound on absolute second derivative for ¢ € {0,0.1, ..., 1} and py(x) = x?
(left panel) and uy (x) = x2 — x* (right panel).

Now consider the case py (x) = x> — x*. We have that l?y,ROT, £10=By and LA?y’ROTZ £
2.753 # By as n — oo, which means that ROT1 consistently estimates By here, while
the probability limit of ROT2 is about four times smaller than the true smoothness
bound. Our simulation results for this setup are summarized in the right panel of Fig-
ure S1. Again, ROT1 estimates are highly variable, and tend to be much larger than the
true smoothness bound. The discrepancy is not as pronounced as in the previous setup,
though: for o> = 1, for example, the average across simulation runs is 36.86, which is only
3.6 times larger than By. ROT2 is again much less affected by changes in the error vari-
ance: its mean across simulation runs increases from 2.78 for o = 0.1 to only 3.99 for
o? =1, and its sampling variability is rather small. But due to the severe misspecifica-
tion of a second-order polynomial, these values tend to severely under-estimate the true
smoothness bounds.

These results first of all stress the theoretical point that no data-driven method for
choosing smoothness bounds can be expected to work well under all circumstances. Still,
our exercise conveys some insight regarding under which condition one rule might be a
better “first guess” than the other. Roughly speaking, the performance patterns of ROT1
can be explained by the fact that its underlying fourth-order polynomial specification
tends to produce erratic over-fits if the function wy(x) is rather “simple,” and there is
a non-negligible level of noise in the data. This is much less of an issue with a quadratic
model. In practice, we therefore recommend using ROT2 over ROT1 in settings where
one believes that wy is “close” to being a “moderately” convex or concave function. If
this is not the shape one has in mind, there is no obvious ordering of the RO, and both
should be considered within a more extensive sensitivity analysis.

APPENDIX D: EXTENSION TO FUZZY REGRESSION KINK DESIGNS
D.1. Description

Our approach to FRD inference described in the main body of the paper can easily be
extended to the cases in which the parameter of interest is the ratio of jumps in the deriva-
tives (of some order v > 0) of two conditional expectation functions uy (x) = E(Y|X = x)
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and ur(x) =E(T|X = x) at the threshold value zero.! The most prominent example of
such a setup is the Fuzzy Regression Kink Designs (Card, Lee, Pei, and Weber (2015)),
where the goal is to estimate the ratio of jumps in the first derivatives of these functions.
We now sketch our extension using notation analogous to that in Section 3.

For a generic random variable W;, we write u')(x) = ¢"E(W;|X; = x)/(dx)" for the
vth derivative of its conditional expectation given X;; ,ug,;) L= lim, wy (x) and M;;?_ =
lim,4o ,ugﬁ) (x) denote the left and right limits of the derivatives at the threshold; and 7y, =
,ud(ul? i ,u(w’j?_ denotes the corresponding jump in M(v;)- Our parameter of interest is 6, =
Ty./Trv, and the goal is again to construct CSs C* C R with correct asymptotic coverage,

uniformly in (uy, wr) over some function class F:

liminf inf P(6,€C)>1-a (D.1)

n—>00  (uy,ur)eF

for some « > 0. We again define F as a smoothness class. Specifically, let
Frp(B) = {fi(x)l{x = 0} — fo(x){x <0} : | V| <B,w=0,1}

be the Holder-type class of real functions that are potentially discontinuous at zero, (p +
1)-times differentiable almost everywhere on either side of the threshold, and whose (p +
1)th derivative is uniformly bounded by some constant B > 0. We also define the class

FirpB)={f € Fu,(B): |f" = f| > 5},

and assume that (ur, uy) € Fy,,(Br) x Fu p(By) = F. Our CSs for the ratio of jumps in
vth-order derivatives are based on pth-order local polynomial regression, where v < p.
Following standard results on the bias properties of local polynomial regression (Fan and
Gijbels (1996)), it is generally recommended to use p = v + 1. For a generic dependent
variable W, the local pth-order polynomial estimator 7y ,,(h) of Ty, is the (p +v+2)th
component of

argmin > K(X;/ hY (Wi — BT (1, X;, X2/2, ..., XL /(PY), Zi, ZiXo, ..., ZX! /(D))

BeR?P i

where K(-) is a kernel function with support Continuous and %~ > 0 is a bandwidth. It
follows from standard least squares algebra that this estimator can be written as

a:W,vp(h) = Z va,i(h)VVi’
i=1

Wap,i(h) = Wyp i+ (h) — Wy, - (h),
Wpie (h) = e, 0,1 X, K (Xi/ h)I{X, > 0},

Q]),+ = ZK(XZ/ h)j}p,ij?;il{Xi > 0}7
i=1

'We could in principle allow the two derivatives to be of different order, but as we are not aware of a setup
that requires this, we only consider identical orders here to keep the notation simple.
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Wyp,i,—(h) = evTHQ;,]fXYP,iK(X"/ MI{X; <0},
Q,-= ZK(Xi/ h))?p,iijg,il{Xi <03,
i=1

with X,; = (1, X;, X7/2,..., X/ /(p!))T. We then obtain a bias-aware AR CS for 6, by
collecting those values of ¢ for which an auxiliary bias-aware CI for 7y;,(¢) = Ty, — ¢T1.,
contains zero. To describe the construction, denote the conditional bias and standard
deviation of 7y ,,(h, c) =Y i wy,(K)M:(c) given X, = (X4, ..., X,) by by ,,(h,c) =
E(Tu,p(h, ©)|X,) — Tawp(c) and sy (B, €) = V(T (B, )| X,) Y2, respectively. These
quantities can be written more explicitly as

baap(hy €)= D Wy i(W)par (Xi, €) — (ir (€) — iy (),

i=1

. 12
Sup(h, €) = (Z va,i(h)zgf/[,i(c)) )
i—1

with a3, ;(c) = V(M;(c)|X;) the conditional variance of M;(c) given X;. The bias depends

on (uy, ur) through the transformation M;Z) = ,u,gf) —c- ;L(T”) only, and ;ﬁy") - c;u(T") €
Fi1,0p(By + |c|Br). Our main contribution is to show that one can bound by ., (%, ¢) in

absolute value over the functions contained in F by

Sup |bM,vp(ha C)| = EM,vp(h, c)

(ky,mT)eF

B Br ¢
p-oBy +1¢IBr 3w () X! sign(X,)™,  (D.2)

=0T 2

assuming only that % is such that positive kernel weights are assigned to at least (p +
1) data points on either side of the threshold. An infeasible bias-aware AR CS for our
parameter of interest 0, is then given by

Co =1 [Farop (ar.up(€), €)| < Vica(ratap (Patop(€), €))Sat.up (harap (), €) ),

where Ay ,,(c) = argmin, cvi_ (a0, (A, €)) S,y (A, €) is again the efficiency-maximizing
bandwidth and 7y, (%, ¢) = by (h, €)/Sa.0p(h, €) the “worst-case” bias to standard de-
viation ratio. We can then establish the following result.

THEOREM D.1: Suppose that Assumptions 1 and either LL1 or LL2 hold. Then C;, is
honest with respect to F in the sense of (D.1).

It is also straightforward to obtain an analogous result for a feasible version of C;, that
uses a valid standard error and an estimate of the optimal bandwidth, under appropriate
regularity conditions.

D.2. Proof of Theorem D.1

The result follows from the same type of arguments as those used in the proof of The-
orem 1 for the FRD case. The only step that requires particular attention is establishing
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the validity of the general bias bound in (D.2), as Armstrong and Kolesar (2020, Theorem
B.3) gave an explicit expression for the special case p = 1 and v = 0 only. We first establish
a preliminary lemma. Let x = {xo, X1, ..., x;}, with0 <xy <x; <--- <xy <hand k > p,
be a generic set of at least p + 1 constants from the interval [0, /), write x_; = x \ {x;} for
the subset of y that excludes its ith element, and define

k
Bup(t, x) = Z Wop.i (B, X)X > 13 (x; — 1),
i=0
where w,, ;. (h, x) are local polynomial regression weights analogous to those defined

above, but with y taking the role of the data X,,.> Put differently, the term ﬁv,,(t, X) is
the (v + 1)th coefficient in a weighted least squares regression of 1{x; > t}(x; — #)? on
(1, x;, x2, ..., x7)". This term is well-defined as long as y contains at least p + 1 distinct
elements.

LEMMA D.1: Suppose that either (i) x has (p+1) elements, all of which are distinct; or (ii)

X has at least (p + 2) distinct elements, and ﬁvp(t, X-i) satisfies (D.3) forall i=1, ..., |x|.
Then it holds for all t € R that

ﬁvp(t, x)<0 ifp—vodd and ,@vp(t, x) >0 if p—veven. (D.3)

To then establish the bias bound (D.2), note that the bias can be written as

Bun 0.0 = ( 2 aps (WX ©) — . 0

i X;>0

(Z Wi (M)ar (Xi, €)= 1y, (c)) =T, +T.

i:X;<0

Since Y g Wp,ir (A)XP =1and }_, W,y (W) X! =0for j#vand j < p bystandard
least squares algebra, it follows that

1 [ .
Zva,+(h)<2 —X/u ‘”(o,c)+? / M(”“)(Xi,c)(Xi—t)’dt) us?. ()
iX;>0 P J0
1

1 ~
H o /"’“5\/11)Jr )(t7 C)va(ta X:);

where X' = {X; € X, : 0 < X; < h}. This expression is clearly maximized in absolute
value by any function um(t, ¢) whose (p + 1)th derivative is given by ,u(p +1)(t, c) =
By mgn(ﬁvp(t X)) fort>0.

We now construct a collection A, of subsets of X", with k = p+1,...,n, as fol-
lows. Let X" ., be an arbitrary subset of p + 1 distinct elements of Xf (such a subset
exists by assumption), and let X/, for kK > p + 1, be the union of X, *k , and an arbi-

trary element of X"\ A, _|. Then Lemma D.1 implies that Bup(t, X[, satisfies (D.3)

2A similar argument applies for the case that —h < x; <--- < x; <0.
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forany k = p+1,...,n. Since X,/ = X', this means that sign(,@vp(t, X)) = (-1
for all ¢. The term 7; is thus maximized in absolute value for any function u,, such that
wy(t, ¢) = (=1)P"Byt?*'sign(t)/((p + 1)!) for £ > 0. A similar reasoning implies that 7,
is maximized for any function w,, such that wy (¢, ¢c) = (—1)7 "By t" ' sign(¢)/((p + 1)!)
for ¢t < 0. Together, these statements prove (D.2).

D.3. Proof of Lemma D.1

To prove part (i), we denote the unique polynomial of order p that interpolates the
points {(x, 1{x > t}(x — £)?)}«c, by P(x, xx). Our proof comes down to determining the
sign of its coefficients. To do so, let S(k) = k + |[{x € x : x < t}| be the sum of k and the
number of elements of y whose value does not exceed ¢, and consider subsets of y of the
form y, ={x; € x : x; <t} U{x; € x : S(1) <i < S(k)} that contain those elements of x
whose value does not exceed ¢, and the k next largest ones. That is, yo ={x; € y : x; <1},
and y; is the union of y, and the smallest element of y that is larger than ¢, etc. We
also note that if y is such that S(0) = 0, then B,,(¢, x) = (—=1)77(?)¢" clearly satisfies
(D.3). It therefore suffices to restrict attention to sets y such that S(0) > 0. It is also
easy to see that ﬁvs(o)(t, Xo0) = 0, and hence satisfies (D.3). It thus remains to show that
if [§us(k)(t, xx) satisfies (D.3), so does [§v3(k+1)(t, Xk+1)- The statement of the lemma then
follows by induction.

To show the last step, assume that l§v5(k) (¢, xx) satisfies (D.3), and write the polynomial
that interpolates the points {x, I{x > r}(x — r)S**V}, ., as

P(x, xk+1)X" = (x — )P(x, xx) + tp1 1_[ (x — x;), where

XI1€Xk

vern = (Xsgrry — D ((Xsgany — 1)5® — P(X5(k41)s Xk)) 1_[

XI€Xk

. (D.4)

Xs(k+1) — X1

We can then express the Bvs(k+1)(t, Xk+1) in terms of the EvS(k)(t’ Xx) by comparing the
appropriate terms on both sides of equation (D.4). This yields that

Busei+1) (£ Xk41)
ES(k)S(k)(f, X))+ Uir ifv=S(k +1),
—1Bosqo (5 xx) + (=1)5E Vg, 1‘[ x; ifv=0,

0<j<S(k)
Bw-1ysw) (5 Xx) — tBus (£, Xk)

+ (=1)SED=g Z Hx,,,s else,

MeMg(ji1)—y mseM

where M, is the set of all subsets M = {m, ..., m,} of {1, ..., S(k + 1)} that contain ex-

actly v elements. Careful inspection of the last display shows that 8,su1)(#, xx+1) satisfies
(D.3) if tx1 > 0. We prove this claim by a simple argument about the number of zeros of
polynomials. Let x,., = x«\Xo. We note that v, > 0 if

P(x, xx) < P(x, xxoUx) forall x> xg. (D.5)
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To show (D.5), we fix some arbitrary x; > xgx), and consider the two different polynomials
P(x, xx) and P(x, xo U x;). As these polynomials are of degree S(k) and they intersect
S(k) times at all x € x,, they do not intersect for any x ¢ xo-

As the set y, was arbitrarily chosen, we note that, by the induction argument, the inter-
cept of both polynomials has the same sign such that

sign(P(0, x)) = sign(P(0, xio U x1)). (D.6)

Using (D.6) together with standard arguments of polynomials and their sign as x — o0,
(D.5) is satisfied if |P(0, xx)| < |P(0, xxo U x;)|. Polynomials of order S(k), that are
different from (x — #)®, can have at most (S(k) + 1) intersections with the func-
tion g(x) =1{x > t}(x — 1)5® for ¢ > 0. This reasoning implies that the polynomial
P(x, xro Y x;) does not have any intersections with the function g(x) for x < x,, and
in particular it does not have any root for x < x,, so that it has the same sign for all
0 < x < xo. As P(x0, xx) =0, we can conclude that |P(x, xi)| < |P(x, xxo U x;)| for any
x < xo. This completes our proof of part (i).
To prove part (ii) of the lemma, note that it follows from textbook arguments that

Bup(ts X) = Bup(ts x—0) + (1 = 1) "wy 1 (h, x)&s

where €; = Kx; > B —r =", Evp(t, x)x! is the ith regression residual and /; =
> rowipi(x)x; is the leverage of the ith observation. We first consider the case that
Evp(t, X—i:) <0 for all i, which implies that Evp(t, xX) < (@ = L)'wy,; . (h, x)€;. Since

l,’; '1 Wy 1 (K, x)€;=0and 0 <; < 1 for all i by basic least squares algebra, we know that

(1=1)""w,, 4 (h, x)€: <0, for at least some #, which in turn means that ﬁvp(t, x) <0.The
same kind of argument applies to the case that B,,(¢, x_;) > 0 for all i.

APPENDIX E: ADDITIONAL SIMULATION RESULTS

In Table S1, we report the coverage rates of the various CSs under consideration for all
nine combinations of outcome and treatment CEFs, as described in the main body of the
paper. In addition, Table S1 shows the average bandwidth across simulation runs chosen
by the various methods for reference. Specifically, for DM CSs it shows the average of the
data-driven bandwidths used to cgmpute the FRD estimator, and for AR CSs it shows

the averages of the bandwidths £,,(0) corresponding the the auxiliary CS at the true
parameter value.

APPENDIX F: NUMERICAL RESULTS WITH OPTIMIZED RDD APPROACH

In this section, we report the results of our empirical application and simulation study
for variants of the considered CSs in which local linear regression is replaced with the
optimized regression discontinuity design estimator of Imbens and Wager (2019), which
computes the minimax linear estimator of an SRD parameter under second-derivative
bounds via numerical convex optimization methods. As Imbens and Wager (2019) did
not propose a specific method for inference in FRD designs, we consider the natural
adaptations of delta method (DM) and our Anderson—Rubin type (AR) CSs to their ap-
proach.

As outlined in Section 5, to construct a DM CI, we first obtain preliminary estimates
of the two SRD parameters 77 and 7y via two separate optimized SRD estimators with
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TABLE S3
RESULTS FOR EMPIRICAL APPLICATION WITH OPTIMIZED RDD.

Smoothness Bound Method Confidence Set
ROT1 (By = 0.004, By = 0.008) Optimized AR CS —0.269 +0.359
Optimized DM CS —0.1734+0.330
ROT?2 (By =0.002, By = 0.002) Optimized AR CS —0.166 4 0.262
Optimized DM CS —0.131+£0.227

Note: Results based on 30,006 data points. All confidence sets have nominal level 95%.

weights that minimize the respective worst-case MSE. We then compute an optimized

SRD CI with a feasible analogue lA],» of the variable U, as the outcome. To construct an
AR CS, we follow the arguments outlined in Section 3 and compute an optimized SRD CI
for the auxiliary parameter 7y — c¢77 using M;(c) = Y; — c¢T; as outcome and By + |c|Br as
the smoothness bound. The AR CS is then the set of all ¢ € R for which the corresponding
auxiliary CI contains zero.

FE1. Empirical Application

We repeat the empirical exercise described in Section 7.1 with the CSs that replace lin-
ear regression with the optimized RD estimator described above, using the same smooth-
ness bounds. Table S3 shows that doing so has no major impact on the results in this case.

E2. Simulations

We also repeat the simulations in Section 7.2 with the alternative CSs based on opti-
mized RD. We again consider the same smoothness bounds. Table S4 shows the simulated
coverage rates. Comparison with the results from the main body of the paper shows that
the coverage rates of the AR CS based on optimized RD and local linear regression are
generally similar when using the same smoothness bounds. However, the coverage rates
of CSs based on the optimized RD are slightly larger than those based on local linear
regressions. A similar reasoning applies to the coverage rates of DM CSs.
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TABLE S4
SIMULATED CS COVERAGE (%) FOR OPTIMIZED RDD.
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Anderson—Rubin Delta Method
Support TC TCx05 TCx2 ROT1I ROT2 TC TCx05 TCx2 ROT1 ROT2
Low curvature of treatment CEF
Low curvature of outcome CEF
Baseline 96.8 91.6 98.6 98.1 92.8 100 100 100 100 100
Continuous 96.9 93.5 98.4 98.1 94.7 100 100 100 100 100
{£1,44,...} 975 94.8 99.4 99.0 95.9 100 100 100 100 100
{£1,£7,...} 989 94.8 100 99.8 97.5 100 100 100 100 100
Moderate curvature of outcome CEF
Baseline 98.1 93.0 99.5 97.3 79.0  99.7 55.8 100 88.6 1.3
Continuous 96.8 93.8 97.9 96.3 84.7 734 7.6 99.9 55.0 0.1
{£1,44,...} 995 95.5 100 98.6 88.8  83.9 1.4 100 51.7 0.0
{£1,+7,...} 100 96.6 100 99.8 85.7  86.1 0.0 100 523 0.0
High curvature of outcome CEF
Baseline 98.8 92.7 99.5 95.3 9.3 8.3 0.0 68.0 2.2 0.0
Continuous 97.3 93.3 98.9 95.9 43.4 0.7 0.0 16.3 0.4 0.0
{£1,44,...} 100 95.2 100 98.6 49.6 0.0 0.0 30.5 0.0 0.0
{£1,+7,...} 100 69.9 100 98.1 0.5 0.0 0.0 100 0.0 0.0
Moderate curvature of treatment CEF
Low curvature of outcome CEF
Baseline 97.0 91.5 98.8 97.9 90.7 100 100 99.2 100 100
Continuous 97.0 93.3 98.4 97.8 93.4 100 100 100 100 100
{£1,+4,...} 977 94.6 99.6 98.9 95.1 100 100 100 100 100
{£1,£7,...} 993 94.4 100 99.7 96.6 100 100 100 100 100
Moderate curvature of outcome CEF
Baseline 98.4 91.5 99.5 94.3 455 899 43.2 98.4 61.6 0.0
Continuous 95.1 92.3 97.8 93.6 653 573 17.6 92.1 37.2 0.0
{£1,+4,...} 999 95.5 100 97.5 742 719 6.3 100 32.7 0.0
{£1,+7,...} 100 94.2 100 97.8 45.8  49.0 0.0 100 24.5 0.0
High curvature of outcome CEF
Baseline 98.3 92.6 99.6 89.6 1.3 313 2.6 63.9 2.6 0.0
Continuous 96.2 89.2 98.3 90.1 19.0 114 0.6 44.7 1.7 0.0
{£1,+4,...} 100 94.8 100 93.4 18.3 0.5 0.0 88.5 0.0 0.0
{£1,+7,...} 100 53.0 100 529 0.0 0.0 0.0 100 0.0 0.0
High curvature of treatment CEF
Low curvature of outcome CEF
Baseline 97.9 89.9 99.6 95.2 46.8  88.5 94.3 86.8 96.3 82.9
Continuous 97.0 92.9 98.5 96.3 69.5 91.6 94.6 87.5 96.4 98.5
{£1,44,...} 99.7 95.2 100 98.8 79.3 100 99.8 99.9 100 99.6
{£1,£7,...} 100 89.3 100 99.2 574 921 28.9 100 99.1 34.0
Moderate curvature of outcome CEF
Baseline 97.1 92.2 99.5 88.7 0.6 309 22.4 414 21.2 0.0
Continuous 92.9 81.1 96.7 83.5 14.8 257 15.7 31.0 18.6 0.2
{£1,44,...} 100 96.2 100 95.8 17.9 245 6.6 67.2 9.1 0.4
{£1,£7,...} 100 64.1 100 72.6 0.0 0.0 0.0 7.3 0.0 0.0

(Continues)
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TABLE S4
Continued.
Anderson—Rubin Delta Method

Support TC TCx0.5 TCx2 ROT1I ROT2 TC TCx05 TCx2 ROT1 ROT2
High curvature of outcome CEF
{£1,+4,...} 974 92.4 99.7 87.0 0.1 12.8 10.7 15.9 8.5 0.0
Cont.8 93.8 83.9 97.0 84.8 9.4 10.0 8.4 9.1 8.7 0.1
{£1,+4,...} 100 95.2 100 93.1 11.1 4.1 14 11.3 1.6 0.1
{+1,£7,...} 100 50.4 100 447 0.0 0.0 0.0 0.0 0.0 0.0

Note: Results based on 50,000 Monte Carlo draws for a nominal confidence level of 95%. Columns show results for bias-aware
approach with true constants (TC), two times true constants (TC x2), half true constants (TC x0.5), and with rule-of-thumb estimates
(ROT1) and (ROT2).
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