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APPENDIX B: DATA

THIS SECTION DISCUSSES the construction of the data.

B.1. Economic Censuses

We use the 1987 through 2007 Census of Manufactures to estimate plant-level elastic-
ities of substitution and demand. We remove all Administrative Record plants because
these plants do not have data on output or capital. We also eliminate a set of outliers
and missing values from the data set. We first remove all plants born in the given Census
year, as well as a small set of plants with missing age data. We then remove plants with
zero, missing, or negative data for the equipment capital stock, structures capital stock,
labor costs, value added, or materials. We also remove plants above the 99.5th percentile
or below the 0.5th percentile of their two-digit SIC industry for these variables to remove
plants with potential data problems. Finally, we drop plants in Alaska and Hawaii as we
do not have amenity instruments for these locations.

For capital costs, we multiply capital stock measures by rental rates of capital. For the
capital stock, we use the Census constructed measure of perpetual inventory capital stock,
which is constructed for structures and equipment capital separately. The Census uses
book values of capital together with investment histories to construct these capital stocks;
thus, they will be primarily based upon book values for plants that exist only in Census
years, while for large plants always sampled in the ASM, they may be based on a long
time span of continuous investment histories.

The Annual Survey of Manufactures tracks about 50,000 plants over five-year panel
rotations that are more heavily weighted toward large plants. We use the ASM to calculate
the heterogeneity indices and materials shares. The ASM has data on plant investment
over time as well as book values of the stock of capital, which are used by the Census to
construct perpetual inventory measures of capital stocks. The ASM plant samples also
have data on the value of non-monetary compensation given to employees, such as health
care or retirement benefits, which we use to better measure payments to labor. We include
non-monetary compensation as part of labor costs when we use the 2002 and 2007 Census
of Manufactures, as these years include non-monetary labor compensation for all plants.
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B.2. Rental Rates

We define the rental rate using the external real rate of return specification of Harper,
Berndt, and Wood (1989). The rental rate for industry # is defined as

R =T, (pisaris+ 6i:Dis),

where r;, is a constant external real rate of return of 3.5 percent, p;, is the price index
for capital in that industry, 8;, is the depreciation rate for that industry, and T;, is the
effective rate of capital taxation. We calculate 7;, following Harper, Berndt, and Wood
(1989) as

1- Uz, — ki,t
Ti,t -

1—u, ’

where z;, is the present value of depreciation deductions for tax purposes on a dollar’s
investment in capital type i over the lifetime of the investment, k;, is the effective rate of
the investment tax credit, and u, is the effective corporate income tax rate. We obtained
z;,, U, and k;, from Dale Jorgenson at the asset year level; we then used a set of capital
flow tables at the asset-industry level to convert these to the industry level.

To calculate depreciation rates 6;,, we take depreciation rates from NIPA at the asset
level and use the capital flow tables to convert them to the industry level. Our primary
source of prices of capital p;, are from NIPA, which calculates separate price indices for
structures and equipment capital.

The capital flow tables and investment price series depend upon the industry definition;
because the United States switches from SIC basis to NAICS basis during this period, we
construct separate rental price series for SIC two-digit industries and NAICS three-digit
industries. Finally, when we examine aggregate factor shares, we have to aggregate all
of the rental price series; we do so by calculating Tornqvist indices between equipment
and structures capital for each industry, and then a Tornqvist index across rental rates for
each industry. The Tornqvist indices allow for the share of equipment capital in industry
capital and for the share of different industries in manufacturing capital to change over
this period.

B.3. Local Wages

We construct measures of the local wage in order to estimate the elasticity of substitu-
tion across plants, using both worker- and establishment-level data to measure the local
area wage. The primary data set that we use is the Census 5 percent samples of Ameri-
cans, together with the American Community Surveys. Both of those data sets have data
on wages and local area geographic location for a large sample of workers.

To obtain the local wage, we first calculate the individual wage for workers with age
between 20 and 65 who are employed in the private sector as workers earning a wage or
salary and who do not live in group quarters. We calculate the wage as an hourly wage,
defined as total yearly wage and salary income divided by total hours worked. We use
the CPI to deflate wage income, which affects the wages matched to the 2007 Census of
Manufactures, as these rely on information on workers over five different years of the
ACS.

We measure total hours worked as weeks worked per year multiplied by hours worked
per week. We remove all individuals with zero or missing income or zero total hours
worked. In 2008 and 2009, only the intervalled number of weeks worked is available.
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We thus impute the number of weeks worked for individuals in 2008 and 2009 based on
averages of the number of weeks worked from 2005 to 2007 from cells of the intervalled
weeks worked, an indicator if the worker is female, an indicator if the worker is black, the
educational attainment of the worker (as constructed below), and age (as a set of dummy
variables for age intervals).

Total wage and salary income in the Population Censuses and American Community
Surveys are topcoded. The topcode threshold is $140,000 in 1990, $175,000 in 2000, and
the 99.5% of the state distribution of income for that year in the ACS years. For all cases,
we impute the total wage and salary income to 1.5 times the topcode if the wage and salary
income is topcoded, in line with Acemoglu and Angrist (2000).

Before calculating local area wages, we adjust measures of local wages for differences
in worker characteristics through regressions with the individual log wage as a dependent
variable. We include education through a set of dummy variables based upon the worker’s
maximum educational attainment, which include four categories: college, some college,
high school degree, and high school dropouts. We define experience as the individual’s
age minus an initial age of working that depends upon their education status, and in-
clude a quartic in experience in the regression. We also have data on the race of workers
and so include three race categories of white, black, and other, as well as an indicator
for Hispanic origin and gender. We include six occupational categories: Managerial and
Professional; Technical, Sales, and Administrative; Service; Farming, Forestry, and Fish-
ing; Precision Production, Craft, and Repairers; and Operatives and Laborers. Finally,
we include thirteen industrial categories: Agriculture, Forestry, and Fisheries; Mining;
Construction; Manufacturing; Transportation, Communications and Other Public Utili-
ties; Wholesale Trade; Retail Trade; Finance, Insurance, and Real Estate; Business and
Retail Services; Personal Services; Entertainment and Recreation Services; Professional
and Related Services; and Public Administration.

We then regress the local wage on all of these characteristics, with separate regressions
by year. For wages matched to the 2007 Census of Manufactures which use multiple ACS
years, we include year effects as well to allow the overall wage distribution to vary over
time.

We then aggregate the residuals from this regression to the commuting zone level. The
Population Census and ACS data only contain information on the Public Use Micro Area
(PUMA) of the individual worker. Thus, we use crosswalks from Autor and Dorn (2013)
in order to aggregate from the PUMA to the Commuting Zone. Since some PUMAs
contain multiple commuting zones, we weight each residual wage by the multiple of the
person weight in the Census or ACS and a weight that indicates the fraction of the PUMA
in the given Commuting Zone. We then construct average residual wages for each com-
muting zone.

Because the Economic Census is conducted in different years from the Population Cen-
suses, we match the 1987 and 1992 Censuses of Manufactures to wages from the 1990
Population Census, the 1997 and 2002 Censuses of Manufactures to wages from the 2000
Population Census, and the 2007 Census of Manufactures to the 2005-2009 American
Community Surveys.

The second data set that we use for our IV and panel data specifications is the Longi-
tudinal Business Database, which contains data on payroll and employment for all U.S.
establishments. We construct the establishment wage as total payroll divided by total em-
ployment. We measure the local wage as the mean log wage at the commuting zone level,
after regressing the log establishment wage on indicator variables for four-digit SIC or
six-digit NAICS industry codes to remove industry effects. We match the Longitudinal
Business Database to its equivalent year in the Census of Manufactures.
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B.4. Instruments

We use three different sets of instruments for the local wage in order to estimate the
elasticity of substitution.

The first set of instruments are local amenities that could affect labor supply developed
by Albouy, Graf, Kellogg, and Wolff (2016). They include measures of the slope, eleva-
tion, relative humidity, average dew point, average precipitation, and average sunlight for
each local area. We also include multiple measures of temperature. The first measures
are the number of heating degree days (HDD) and cooling degree days (CDD). HDD
measures how cold a location is, and is defined as the sum of the difference between 65F
and each day’s mean temperature, for all days colder than 65F. CDD is a measure of how
hot a location is, and is defined as the sum of the difference between each day’s mean
temperature and 65F, for all days warmer than 65F. In addition, we include a set of tem-
perature day bins which bin the average number of days in a year over 30 years that the
average temperature (mean of minimum and maximum temperature) lies within the bin.
We include six bins of 10 degrees Centigrade each.

The amenities in Albouy et al. (2016) were collected at the PUMA level. We aggregate
them to the commuting zone level by taking an average across PUMAs in the same com-
muting zone, weighting PUMASs by their population in the commuting zone. We do not
have amenities for Alaska and Hawaii, and all specifications exclude these states.

The second instrument, from Bartik (1991), is based upon the differential impact of
national-level shocks to industry employment across locations. Positive national shocks
to an industry should increase labor demand and wages more in areas with high concen-
trations of that industry. Formally, the predicted growth rate in employment for a given
location is the sum across industries of the product of the local employment share of
this industry and the 5- or 10-year change in national-level employment for that industry.
We use the Longitudinal Business Database, which contains all U.S. establishments, to
construct these instruments.

The implicit assumption here is that changes in industry shares at the national level are
independent of local manufacturing plant productivity. To help ensure that this assump-
tion holds, we exclude manufacturing industries from the labor demand instrument. We
calculate the instrument defining locations by commuting zones and industries at the SIC
four-digit level, or NAICS six-digit level, depending upon the years. We drop industries
with national employment of less than 100 people as likely data errors.

We also use a second set of labor demand instruments from Beaudry, Green, and Sand
(2012). The first instrument is the interaction of predicted changes in industry employ-
ment shares and industry initial wage premia. The second instrument is the interaction
of national changes in industry wage premia and predicted future industry employment
shares. We also exclude manufacturing industries from these instruments. National wage
premia for an industry are calculated as the mean log payroll to employment ratio across
the entire LBD for a given year.

The main complication with constructing the Bartik and BGS instruments is that in-
dustry definitions change over time: in 1987, when industry definitions switch from 1972
industry definitions to 1987 industry definitions, and in 1997, when industry definitions
switch from the 1987 SIC definitions to NAICS definitions. Thus, we often cannot con-
struct exact 10-year instruments because industry definitions are not consistent over time.
Instead, we use 10-year instruments for 1987, 1997, and 2002, and 5-year instruments and
their lag for 1992 and 2007. For 1987, the instrument used is from 1977 to 1986; for 1997,
from 1987 to 1997; and for 2002, from 1992 to 2001. For 1992, we use the 1982 to 1986 and
1987 to 1992 instruments. For 2007, we use the 1997 to 2001 and 2002 to 2007 instruments.
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APPENDIX C: ELASTICITY ESTIMATES
C.1. Non-CES Production Functions

We examine the possibility of non-constant elasticities empirically by allowing elastici-
ties to vary by quantile. Because we need to control for quantile-invariant industry fixed
effects, we use the two-step approach of Canay (2011) to estimate quantile elasticities. We
estimate the elasticity at the 10th through 90th quantile both among all plants and among
plants within each two-digit industry for each year. The elasticity varies across quantiles in
an inverse U shape, with elasticities close to zero at the bottom quantiles, a peak close to
the median, and then a slight fall for high quantiles. Supplemental Appendix H.2 contains
further details of the differences across quantiles and the estimation approach.

We then obtain o, by assigning each plant the elasticity for its closest conditional quan-
tile. In Table C.I, Column (2) reports estimates of the average &, under the assumption
that elasticities at each quantile are the same across industries, while column (3) allows
these quantile elasticities to vary across industries. The average baseline OLS estimate
across years is 0.39 (column (1)), compared to 0.45 using common quantile elasticities and
0.47 using separate quantile elasticities for each industry. Thus, the conditional quantile
approach for allowing local elasticities increases our estimates of the aggregate elasticity
slightly.

A second approach is to use plants’ capital shares as the dependent variable instead of
the logarithm of the ratio of capital cost to labor cost. Our goal is to estimate an approxi-
mation to 7, = Y it ety )O

i nis
1€In Y ety oy (1= ) Oy

Consider the following regression equation:
Upjic = Yn + ,Bn ln W, + €nic- (Cl)

Here, B, is an estimate of how the average capital share in a location covaries with relative
factor prices in the location, that is,

~ dE[anic]
~dlnw/r’

B (C2)

TABLE C.I
NON-CES ESTIMATES OF AVERAGE PLANT CAPITAL-LABOR SUBSTITUTION ELASTICITY?

) @ ©) @) ®)
Baseline Quantile Sector Level Quantile Industry Level ~Avg Capital Share Unweighted ~Avg Capital Share Weighted

1987 043 0.46 0.47 0.45 0.56

1992 048 0.49 0.54 0.52 0.57

1997 034 0.39 0.45 0.43 0.58

2002 0.34 0.40 0.43 0.41 0.44

2007  0.38 0.52 0.45 0.40 0.38

4The table contains five specifications. All specifications average across separate plant elasticity of substitution for each industry
using the cross-industry weights used for aggregation. In (1), we estimate a separate OLS estimate using our baseline estimation
strategy as in Section 3.3. In (2) and (3), we estimate separate elasticities for the 10th to the 90th quantiles using the two-step estimation
procedure of Canay (2011); (2) assumes a common estimate for all of manufacturing and (3) separate quantile elasticities for each
two-digit SIC or three-digit NAICS industry. In (4) and (5), we estimate (C.1) by having the capital share as the dependent variable;
(4) does not weight the data, while (5) weights plants by their total cost of capital and labor. All regressions include industry fixed
effects, age fixed effects, and a multi-unit status indicator. Wages used are the average log wage for the commuting zone, computed
as wage and salary income over total number of hours worked adjusted for differences in worker characteristics using the Population
Censuses.
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In Supplemental Appendix H.3, we show that, to a first-order approximation, the estima-
tor B, converges to a weighted average of terms a,,;.(1 — a,;c) (T — 1):

BA” _p> Z Z pnicanic(l - anic)(o-nic - 1); (C3)

c i€lye

where [, are the set of plants in industry n in location ¢ and the weights p,;. =

(In w[;—m)2
oSy, Mg sum to 1.

Given our estimate for 8, we compute &, using o — 1 = e Column (4) of Ta-
ble C.I presents these estimates pooling across industries within the manufacturing sec-
tor.! The average elasticity across years is 0.44.2

Compared to our goal of estimating o,,, however, 3, weights observations by p,; instead
of the cost weights 6,;,. There are two differences. First, plants in locations with more
extreme wages are weighted more heavily, as is typical for least squares estimators. We
have verified in Monte Carlo simulations that this weighting does not lead to a significant
bias; see Supplemental Appendix H.3 for details. Second, we do not weight by 0,;. To
address this latter concern, we estimate (C.1) weighting each observation by 6,;. However,
we show analytically and confirm in our Monte Carlo that this weighting also introduces
an upward bias in elasticity estimates: larger plants tend to be more capital intensive which
means that the weights are correlated with the error term. Thus, we view the weighted
estimate as an upper bound on ¢,. Column (5) shows that these estimates average 0.51
across years.

Given the narrow range of estimates in Table C.I, we do not believe that assuming a
constant plant-level elasticity is a first-order issue for our aggregation framework.

C.2. Dynamic Panel Estimates

In this section, we use the panel structure of our data in order to examine how individ-
ual plants respond to changes in factor prices. This adjustment may be slow; the long-run
response to a factor price change should be larger than the short-run adjustment. We
therefore use dynamic panel methods to examine both the unbalanced panel (which still
requires plants that exist in at least three consecutive Census years), as well as the bal-
anced panel of plants that exist in all five Census years.?

'In Supplemental Appendix H.3, we also estimate &, separately for each industry and then take the appro-
priate average. In addition, we pursue an instrumental variables specification using the instruments used in
Section 3.3. Estimates are quantitatively similar across specifications.

2The regression in column (4) of Table C.I differs from (C.1) in that it includes the controls for a vector of
plant characteristics X,,;. (detailed in Table I): a,;c = B, Inw, + ¥ Xyic + €nic. We show in Supplemental Ap-
pendix H.3 that, in this case, the estimator converges in probability to f},, 2 DD 1o PricOnic(1 = @nic) (Onic —

Inw?. (Inwe—Inw)

1), where the weights are p;, = it and Inw},

iy Inw*._(Inwz—Inw nic
e Yy, N0 ()

are the residuals from a regression of In w,

on X,c.

3Because our dynamic panel specification with two lags requires plants to be present for three consecutive
Economic Censuses, there could be differences between the elasticity for these plants compared to the overall
sample. These plants are likely to be different in some ways from the typical manufacturing plant; in partic-
ular, they may be older and larger, or belong to a multi-unit firm. We examine differences by age cohort in
Supplemental Appendix H.1 in the cross-section and do not find a clear gradient of the elasticity with age. In
Supplemental Appendix H.3, we find that weighting by size leads to only slightly larger estimates of the elas-
ticity, and, as discussed in Section 3.3, estimates using multi-unit plants tend to be similar to the full sample.
Thus, we suspect that any sample selection bias is small.



MICRO DATA AND MACRO TECHNOLOGY 7
We estimate the following econometric model for plant i and time period ¢:

itc Kit—Sc Kit—l()c

Litc

log + piolog + Blog(we/r) +Mi + 8, + Yoyt + €ie,  (C4)

= pslog
Lit—Sc it—10c

where 7); is an individual plant fixed effect, ps and p;y measure the degree of persistence
in the capital-labor ratio through the five-year and ten-year lag of the capital-labor ratio,
and B measures the short-run elasticity of substitution. We estimate this relationship in
terms of the capital-labor ratio, and not the ratio of capital cost to labor cost, so that
the long-run capital-labor elasticity is %.4 Because we examine plants over time, we
decompose the bias of plant i’s technology into a plant fixed effect, 7;, a time fixed effect,
d,, a three-digit industry-specific trend, v, ¢, and a residual €.

We then use the Blundell-Bond panel data model to estimate this relationship.” We
estimate two specifications; in the first, the wage-rental ratio is treated as exogenous after
the time controls (i.e., exogenous with respect to €;.), while in the second specification,
we use all of the instruments used earlier in Section 3.3 for the wage-rental ratio. We use
local amenities as an instrument for the local wage level, while we use the Bartik and BGS
shocks as instruments for both wage levels and changes. The wages we use are based on
establishment data in order to match the same year as the Economic Census.

Table C.II contains the estimates of these dynamic panel models. The first two columns
report estimates for the unbalanced panel, the third and fourth columns for the balanced
panel, and the fifth and sixth columns for the unbalanced panel estimating the coefficients
using second-step GMM. The first three rows report the lag of the capital-labor ratio, the
short-run elasticity, which is the coefficient on the wage-rental rate ratio, and the long-run
elasticity, which is the short-run elasticity divided by 1 minus the sum of the coefficients
on the lags of the capital-labor ratio, across six specifications.

We start by estimating models with only the first lag of the capital-labor ratio, so p;y = 0.
The coefficient on the lag of the capital-labor ratio is precisely estimated and ranges from
0.28 to 0.35, indicating substantial autocorrelation even over a 5-year time horizon. The
estimates of the short-run elasticity are fairly low, ranging from 0.06 to 0.22 across specifi-
cations, indicating long-run elasticities between 0.08 and 0.31. These long-run elasticities
are substantially lower than our cross-sectional estimates.

One of the main testable assumptions of the Blundell-Bond model with one lag is that
there is no correlation between €;, and €;_;. We can test this by examining the corre-
lation between differenced residuals; while the autocorrelation is low (at about 0.045),
we strongly reject the hypothesis that there is no correlation between errors two periods
apart. Thus, we also estimate specifications including a second lag of the capital-labor ra-
tio in the fourth through seventh rows of Table C.II1. The coefficient on the first lag ranges
from 0.31 to 0.34. The coefficient on the second lag is roughly one-fifth to one-fourth the

“We measure the labor input at a plant as the wage bill divided by the local wage.

SBlundell-Bond uses system GMM with two equations. One moment condition is based on differencing
(C.4) and then instrumenting with lagged terms, so E[Z;_s(€e;; — €;,—5)] = 0. The second moment condition
uses (C.4) directly but differences the instruments, so E[(Z;, — Z;,_s)€;] = 0. For example, in the differenced
equation, we would instrument for the change in the capital-labor ratio with lagged values of the capital-
labor ratio, while in the levels equation we would instrument for the lag of the capital-labor ratio with lagged
values of changes in the capital-labor ratio. We also examined estimates using the Arellano-Bond model, which
only uses the differenced equation. Unfortunately, with the Arellano-Bond model we have very little power to
estimate the capital-labor elasticity in specifications where we instrument for wages, although we obtain similar
estimates of the coefficient of the lagged capital-labor ratio.
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TABLE C.II
DYNAMIC PANEL ESTIMATES OF THE PLANT CAPITAL-LABOR SUBSTITUTION ELASTICITY?

(€)) @) (3) Q) Q) (©)

No Inst All Inst No Inst All Inst No Inst All Inst
Lag 0.28 (0.003) 0.31 (0.004) 0.34 (0.004) 0.35 (0.004) 0.28 (0.007) 0.31 (0.006)
SR Elasticity ~ 0.13(0.05)  0.07(0.07)  0.12(0.05)  0.06(0.08)  022(0.12)  0.08 (0.08)
LR Elasticity 0.18 0.10 0.18 0.08 0.31 0.11
Lag 0.31(0.004)  032(0.005) 034 (0.004) 034 (0.005) 031(0.008)  0.33 (0.007)

SecondLag  0.06 (0.005)  0.07 (0.005)  0.08 (0.005)  0.07 (0.006)  0.07 (0.008)  0.07 (0.007)
SR Elasticity ~ 0.18 (0.04)  021(0.09)  0.15(0.04) 036 (0.14)  027(0.09)  0.21(0.08)

LR Elasticity 0.29 0.34 0.26 0.61 0.43 0.35
Balanced No No Yes Yes No No
Two Step No No No No Yes Yes

4The table contains six specifications. In (1) and (2), we examine an unbalanced panel of plants in the Census of Manufactures for at
least three consecutive Censuses between 1987 and 2007, while (3) and (4) examine the balanced panel. The first four specifications use
one-step GMM, while (5) and (6) use two-step GMM on the unbalanced panel. All specifications estimate the Blundell-Bond model,
either assuming that the wage-rental rate ratio is exogenous, or instrumenting for it using amenity, Bartik, and BGS instruments.
Instruments are as defined in the text. All specifications also include year effects and time trends for the three-digit NAICS industry
reported in 1997 as controls for biased technical change. The wage is the average log wage for the commuting zone, computed as
payroll/number of employees at the establishment level using the LBD. The rental rate is the average rental rate between structures
and equipment, weighting each by their respective capital stock. Standard errors, in parentheses, are clustered at the commuting zone
level.

magnitude of the second lag, ranging from 0.06 to 0.08, but remains strongly significant.
Thus, dynamic adjustment does occur beyond a 5-year time horizon. However, the sharp
reduction in the magnitude of the second lag gives us confidence that we do not need to
include additional lags of the capital-labor ratio.

The short-run elasticities in the specifications with two lags of the capital-labor ratio
are considerably higher than those with one lag, with estimates between 0.15 and 0.36.
These short-run elasticities imply long-run elasticities between 0.26 and 0.61.

Apart from the estimate of 0.61, however, these long-run elasticities remain slightly
below most of the estimates of the cross-sectional elasticity.

APPENDIX D: ENTRY AND EXIT

This section studies an economy with entry and exit by introducing entry and overhead
costs. In doing this, we must address several issues. First, we have to specify which expen-
ditures are measured in our data. For example, entry costs incurred before production
are likely not measured in our data. Second, we have to specify the factor content of entry
and overhead costs. In this section, we study several variations of these assumptions. For
each, we derive an upper bound for the aggregate elasticity of substitution and show that
it is equal to or slightly above our baseline estimate, as well as a lower bound using our
dynamic panel estimates.

Entry and Overhead Costs Use Final Output

Consider an economy with a continuum of entrepreneurs. Each entrepreneur can draw
a random technology 7 from an exogenous distribution with CDF T'(7) by paying an entry
cost of f£ units of final output. After observing the draw, she can operate a plant with the
production function F,(K, L, M) if she is willing to pay an overhead cost of f© units of
final output. Each production function F;, is assumed to exhibit constant returns to scale.
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We assume here that the overhead cost is measured as an expenditure on intermediate
inputs in our data, but the entry cost is not.

For a plant with technology 7, let ¢? be the unit cost associated with the production
function F,. Entrepreneurs follow a cutoff rule and operate the plant if variable profit
outweighs the fixed operating cost. Free entry implies that cost of a productivity draw
equals the expected profit, Pf* = [ max{(p, — ¢’)y, — Pf?,0}dT(7), where p, and y, are
the optimal choices of price and quantity.

Let E, be an indicator of whether plant 7 chooses to operate. Should the plant enter,
we denote its capital share by «, and its expenditure on capital and labor as a fraction

of the average expenditure by 0, = W Thus, the aggregate capital share can

be expressed as a = [ «,0,E,dT (7). We show in Supplemental Appendix M.1 that the
aggregate capital labor elasticity is given by

1 da 1 dE
¥ _1= ~9.E.dT i ,—a)0,.dT
7 a(l —a) / dinw/r (m)+ a(l—a) dlnw/r(a @) (™)
+ XY =D+x(1-5") (e -1, (D.1)
where y = %ﬂi‘m”, sM is the share of observed expenditures (including both the

operating cost and variable costs) spent on intermediate materials, and {, captures substi-

dln -2
. . . . . . 1—sM
tution between intermediate and primary inputs, defined to satisfy (o —a,)({: —1) = i
M _ [lar—a)(ar—a)o:s) dT(r) % _ [(ar—a)(@r—aM)o,s} (AT (1) M _ dinP/w
U= [(az—a)(ar—aM)0.dT(r) {= [(az—a)(az—aM)g,sM dT(r) ° and o™ = dinr/w *

The first term captures within-plant substitution between capital and labor. The second
term captures the change in the aggregate capital share due to entry and exit; an increase
in the wage induces labor-intensive plants to exit and capital-intensive plants to enter.
The third term captures substitution between primary and intermediate inputs. The final
term captures changes in plants’ scales; an increase in the wage causes capital-intensive
plants to expand relative to labor-intensive plants.

With this formula in hand, we now show that our baseline estimate of the aggregate
elasticity of substitution is larger than the true aggregate elasticity. First, our estimated
micro elasticity of substitution—in particular the estimate of o derived using «, as the
dependent variable in (C.1)—incorporates the first two terms of (D.1), capturing both
within-plant substitution and changes due to entry and exit. At root, our cross-sectional
estimates capture how the average capital share varies with the local wage, and changes
in this average reflect both the intensive and extensive margins. In Supplemental Ap-
pendix M.2, we provide more detail, discuss how selection causes an upward bias similar
to the weighted regressions in column 5 of Table C.I, and confirm these findings using
Monte Carlo simulations in Supplemental Appendix M.4.

Second the estimated micro elasticity of substitution between intermediate and primary
inputs, ¢, reported in Table 111, is larger than . { captures only the intensive margin—
substitution within plants—while  uses cross-sectional variation and incorporates both
the intensive and extensive margins.

Finally, our baseline strategy overstates how a plant’s scale responds to a change in its
marginal cost because part of this cost—the overhead cost—is fixed. Formally, we had
estimated this response from plants’ ratios of revenue to cost (in our baseline model, this
was a function of the elasticity of demand, ﬁ). Here, cost includes both variable and

3 S CPr

overhead components: ;2= = To070

< 5,0re<eé,.
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Together, these imply that our baseline estimate is an upper bound for the true aggre-
gate elasticity. Using the restrictions that £ > 1 and ¢ > 0, the intensive margin effect
(the first term in (D.1)) provides a conservative lower bound on the aggregate elasticity.
We use our dynamic panel estimates to compute this lower bound. The implied range
averages [0.35, 0.65] across years.

We also explore alternative assumptions about the factor content of overhead costs.
If overhead costs used a plant’s own output, then the upper bound for the aggregate
elasticity is the same and the lower bound is slightly lower, and can be found by set-
ting ¢ = 0. This averages 0.30 across years. If overhead costs used labor, the aggregate
elasticity would include an extra term which captures the contribution of changes in the
composition of expenditures between variable and overhead costs. However, this term is
negative and quantitatively negligible, so the upper bound is the same as when the over-
head cost uses final output, and the lower bound is slightly lower.

Foregone Labor

We now instead assume that both entry costs and overhead costs require the en-
trepreneur’s labor, but these costs—the opportunity cost of the entrepreneur’s time—do
not appear on the plant’s wage bill. In such a world, the measured capital share &, based
on measured expenditures on labor and capital, differs from «, the true capital share in-
corporating unmeasured labor. Entry and overhead costs in unmeasured labor mean that
the measured capital share is above the true capital share, so & > a.

o e A din & .
We then define two aggregate elasticities: 0*¢ — 1 = 5—=* captures changes in mea-
nw/r
. din & . N .
sured factor usage, while o — 1 = dln}‘j/‘; captures changes in true factor usage. 6% is

relevant for questions about changes in national accounts, whereas o is relevant for
questions such as the welfare cost of capital taxation. In practice, we show that the two
elasticities are fairly close. The measured share elasticity 6% corresponds to our base-
line estimate, while the resource-based elasticity o2 is slightly higher than our baseline
estimate.

To see the connection between the two, we define the following objects: V' = [ ¢y, x
E.dT(r)and O = [wf°E.dT(7) be average expenditure on variable inputs and average
payment of the operating cost among those that pay the entry cost. In addition, let ¥ be
the aggregate share of measured expenditures spent on intermediate inputs. Per entrant,
the average expenditure on capital can be expressed as a(1 — §”)V/, while the average
expenditure on labor is wff + O + (1 — &) (1 — §¥)V. The underlying capital share is thus

B a(l1-s"yv
CuFror -y

Free entry requires that wf* = ﬁV — O. Together, these yield

a= (1-57) a. (D.2)

1 .
8_1+(1—SM)

The lower bound uses an intensive margin micro elasticity of substitution of 0.34 from column (2) of Ta-
ble C.II. To derive the upper bound, we compute the aggregate elasticity in each year using our baseline formula
but using the estimated cross-sectional elasticity from column (4) of Table C.I.
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In Supplemental Appendix M.3, we show that 6% corresponds to our baseline esti-
mate. We also show that differentiating (D.2) and rearranging yields

din(1 — §")
ot s dlnw/r ‘
1+ -a(1-5")e—1)

+a(l— o)

We then estimate that ¢ — -2 averages 0.072 across all industries in all years.” A small
positive gap between o*¢ and ¢*¢ is in line with our Monte Carlo analysis described in
Supplemental Appendix M.4.

APPENDIX E: SHIFTS IN THE TECHNOLOGICAL FRONTIER

Shifts in factor prices may induce changes in the technological frontier, as outlined by
Acemoglu (2002). Holding the technological frontier fixed, an increase in the wage would
change the economy’s capital-labor ratio. This would change the size of the market for
innovations that complement each factor, and the subsequent adjustment of the techno-
logical frontier could amplify or dampen the initial wage increase.

We characterize the technological frontier as a set of intermediate input varieties that
complement capital and a set that complement labor. The two sets can be respectively ag-
gregated into two bundles, Mg = (fONK MK(j)QDT1 dj)ﬁ and M, = (fONL ML(j)% dj)ﬁ,
so that the state of technology can be summarized by the measure of varieties of each
type, Ng and Nj.

Plant i produces its output using capital, labor, intermediate inputs that complement
capital and labor, as well as a third intermediate input that does not complement either
factor. It is convenient to describe i’s production function using a nested structure:

Yi = Fi(YKi’ YLi> Mﬂi)a

with Yy, = K/M,;" and Y,; = L' M, ".
Each variety of intermediate input is produced by a monopolist by using o units of the
final good aggregate, so no capital or labor is used. Monopolists compete monopolistically

and thus set a price of _*; 0P. The unit cost of the input bundle that complements factor

1
x € {K, L}is thus g, = (J," (5 0P)"* dj) e = “£.0PN.

Aggregate factor shares depend on relative factor prices and the technological frontier,
Nk and N;. We now distinguish between the short-run aggregate elasticity which holds
the technological frontier fixed and the long-run elasticity which includes shifts in the
frontier. These two elasticities are related by

din—2— g2 gln —< gln —<

l—a: l—-« dlnNK+ l—-«a dlnNL+ l—-«a (E.1)
dlnw/r dInNg dlnw/r  dInN, dlnw/r  Jdlnw/r ’
[ —; [ —
oagg, LR _1 g8, SR _1

din(1-5¥)
dlnw/r

is closely related to the expression for ¢V in Proposition 2. In most years, it is slightly negative and is always
close to zero.

’Since the overhead cost is unmeasured, we have & = &. We compute

directly after showing that it
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We show in Supplemental Appendix O that the effect of changes in the technological
frontier on factor shares is characterized by

dln ——

1l—«a 11_‘1[/ g2, SR
= — R | E2
JIn Ny ¢¢—1@ ), (E-2)
dln ——
1—0( 11_(?[1 gg,SR
e TV (gresR ), E.
JInN, ¢¢—ﬂ“ ) (E-3)

For intuition, suppose that capital and labor are complements in the short run. The cre-
ation of varieties that complement capital reduces the relative cost of the capital aggre-
gate Yy, leading plants to reduce their relative expenditures on capital because Yy and
Y, are complements.

To study shifts in the technological frontier, we specify its determinants in greater detail.
A fixed mass Y of scientists invent new varieties and license their inventions to monopo-
lists. Scientists can direct their research toward one of the two types of intermediate vari-
eties. If a scientist devotes effort to finding new varieties that complement x € {K, L}, then
new varieties arrive at Poisson rate yN7, with 7 < 1.% Existing varieties become useless at
rate 8. At an interior steady state, scientists must be indifferent about devoting effort to
each type of innovation. We show in Supplemental Appendix O that the long-run tech-
nological frontier is characterized by Ny ™ = a% and N, 7" =(1— a)%. Differentiating
with respect to relative factor prices gives

dln Ng 1 .

— 1_ agg,LR_l
dlnw/r 1—7'( (o ),
din N, 1

— agg,LR __
dlnw/r 1—7a(o- 1)'

Plugging these equations and (E.2) and (E.3) into (E.1) and rearranging gives

1
e ek 1), (E4)
11— lp 1 _ O_agg,SR) ( )

S g

Because i%ﬁ > 0, if 0%5R < 1, then o®&R is between o?¢SR and 1. If oSk < 1,

an increase in wages initially raises the relative expenditure on labor. This induces the
creation of varieties that complement labor, reducing the relative cost of the aggregate

87 < 0 implies that as more varieties are discovered, new varieties are harder to find. 7 > 0 would capture
positive spillovers from past research. 7 =1 would deliver endogenous growth in the number of varieties. We
abstract from growth because it would require a number of additional assumptions about how plant-level tech-
nologies and the distribution of plants evolve over time. In Supplemental Appendix O, we study an alternative
specification with spillovers across types of varieties, so that the arrival rate of new varieties that complement
capital and that complement labor are yNg N;? and yN;' N per unit of research, respectively. We impose
71 + 72 < 1 to avoid perpetual growth. We show that the relationship between the long-run and short-run
elasticities of substitution described in (E.4) is identical with the exception that 7 is replaced by 71 + 75.
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Y;,. Since Y;; and Yy, are complements, plants shift expenditures away from Y;; and
hence away from labor, dampening the initial shift in factor shares.’

APPENDIX F: ADJUSTMENT FRICTIONS AND DISTORTIONS

Section 2 showed that the relative importance of within-plant substitution and reallo-
cation depends upon the variation in cost shares of capital. In that environment, this vari-
ation came from non-neutral differences in technology. On the other hand, as the recent
misallocation literature emphasizes, some of this heterogeneity may be due to adjustment
costs or other distortions. What are the implications for the aggregate elasticity of substi-
tution if differences in capital shares came from distortions? To answer this question, we
first characterize the aggregate elasticity in terms of how plants change their input expen-
ditures in response to permanent changes in factor prices, without taking a stand on how
those choices are made.

To examine how each plant’s input use would change with factor prices, we identify each
plant with a history of shocks, /4, which include shocks to demand and productivity. Let
H (h) be the distribution of histories, so the aggregate capital share is & = [ @6, dH (h).
We define o}, and ¢, as the local response of plant 4’s relative factor expenditures to a

.YM
dl 10‘/1 dIn n l;M
. . _ — —ay, M __ _ _ —h
change in factor prices, so o, — 1 = oo and (« a)) (& —1) = TR We make

no assumption about how these objects are related to 4’s production function; ¢}, and ¢,
simply reflect how /’s choices would change with different factor prices.

As in our baseline, we characterize o by differentiating each side of a = [ a; x
0,dH (h). In Section 2, we used Shephard’s lemma to characterize plants’ changes in
scale. Here, we do not presume that K,, L,, and M, minimize the plant’s static cost,
so we cannot make use of the envelope theorem. Instead, as we show in Supplemental
Appendix N.1, differentiating yields

o =(1-x)o+ x5"¢

(ah — a)0h|: K danh L dlnLh M dlth

+ a(l—a) Shdlnw/r shdlnw/r S dlnw/r

]dH(h), (F1)

where &, {, x, and sV are defined as before, and s¥, sk, and s¥ are plant h’s respective
cost shares of capital, labor, and materials.

Exogenous Wedges. We first study an environment motivated by Hsieh and Klenow
(2009) and Restuccia and Rogerson (2008) in which plants behave as if there are plant-
specific taxes on each input. While plant i’s cost of capital, labor, and intermediate inputs
are r, w, and g, respectively, it behaves as if these costs were (1 + 7¢;)r, (1 + 7.;)w, and
(1 4 73;)g. We assume that the distortions themselves do not change with relative factor
prices.

We use a perturbation approach to characterize how misallocation affects the aggre-
gate elasticity. The perturbation parameter v refers to an economy in which the wedges
are 1 + vrg;, 1 +v71y;, and 1 + vyy,. Thus, a frictionless economy corresponds to v = 0,

? Acemoglu (2003) studied a model with 7 = 1 and shows that long-run factor shares are fixed. While we
have imposed the restriction 7 < 1 to abstract from growth, we can recover Acemoglu’s (2003) result in the
limit of 7 7 1.
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while the economy with misallocation corresponds to » = 1. Taking a first-order approxi-
mation around v = 0, the difference between the true underlying aggregate elasticity for
the manufacturing sector and our baseline estimate is

g8t — s

Z a - a 0* aj‘(l — a*.‘)(TK,- — TL,-)(a - 0'*)
1 - a + [a;‘ﬂg + (1 —a )TLZ — TM,]SM*(l slM*)(a -« )(8 - é’l*) ’
where variables with stars are the values in the undistorted economy with v = 0.

If all dispersion in factor shares were due to wedges rather than to changes in technol-
ogy so that o = a*, to a first-order approximation, our baseline estimate would recover
the true aggregate elasticity. In order to proceed beyond this special case, we must model
specific mechanisms through which endogenous wedges would covary with plants’ tech-
nologies and with factor prices. We therefore turn to explicit models of adjustment costs.

Adjustment Costs. In this section, we study a class of capital adjustment frictions that
nests time-dependent frictions such as Calvo (1983) and Taylor (1980) as well as time-
to-build adjustment frictions. Formally, we parameterize capital adjustment frictions by
{F,} . If a plant is able to choose capital freely in period ¢, T'; is the probability that
that choice determines capital in period ¢ + j."° The fraction of plants in the cross-section

1".
P
A plant with technology 7 can produce with the production function F(-; 7). We assume
that 7 follows a Markov process with a stationary distribution 7'(7), and that initial con-
ditions are such that each plant’s time since last adjustment, j, is independent of its tech-
nology, 7

We make two simplifying assumptions: First, plants do not discount the future, which
we believe is a reasonable approximation given the horizon of adjustment frictions. Sec-
ond, a plant with technology 7 produces with the CES production function F(K, L; 7) =
[(4.K)"7

Plants may choose capltal only occasionally, so a decision today may determine future
input usage. Without adjustment frictions, a plant would tailor its inputs to match its
technology and demand period by period. With adjustment frictions, a plant can only
match its capital to its shocks in expectation. This difference will affect how plants’ scales
change with a change in relative factor prices. Thus, a plant’s choice of capital satisfies
E,[Z;’ie I';(MRPK, .; — r)], where MRPK,,; is i’s marginal revenue product of capital,
whereas its choice of labor is a static decision that satisfies MRPL,,,; = w. To find how
plants’ input usage changes with relative factor prices, we can simply differentiate these
equations with respect to relative factor prices.

Compared to our baseline model, the model with adjustment costs makes different
inferences about how plants’ scales change when factor prices change, given the same
data. In the baseline model, Shephard’s lemma implies that the change in a plant’s scale
when the cost of capital falls is proportional to its actual capital share. Thus, variation in

whose usage of capital was determined by a choice made j periods ago is I'; =

0For Calvo-style adjustment frictions for which v is the probability that a plant is able to adjust each period,
l_",- = (1—wv)/. For Taylor-style adjustment frictions in which capital can be adjusted every j* periods, T =1{j <
J*}. For time-to-build adjustment frictions in which capital chosen today will not be operational j* periods
later, I'; = 1{j = j*}.
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capital shares in the cross section reflects scope for reallocation across plants in response
to changes in factor prices.

With adjustment costs, the variation in capital shares in the cross-section can be decom-
posed into variation within non-adjustment spells and variation across non-adjustment
spells. Like in the baseline model, the variation across spells measures the scope for re-
allocation: a permanent increase in the relative cost of labor causes plants that expect to
be more capital intensive to choose capital at the beginning of the spell and to choose
labor during the spell so that they expand more, on average, than plants that expect to
be labor intensive. In contrast, a plant is limited in how it can reallocate resources from
capital-intensive states to labor-intensive states within a spell.

If shocks tend to be Hicks-neutral, we can show analytically that % < g%, That is,
given the same data, the model with adjustment frictions infers less scope than the base-
line model for reallocation between capital-intensive and labor-intensive plants/states. If
shocks are non-neutral, this may not hold."! We cannot measure the bias of technology
shocks. Therefore, to assess the sign of the overall bias, we examine four scenarios: shocks
are purely Hicks-neutral; shocks are purely labor-augmenting; shocks are purely capital-
augmenting; shocks to A and B are perfectly negatively correlated. For each we take a
second-order approximation around a fixed-technology benchmark, and approximate the
distribution of @(7) using the empirical distribution of capital shares. As we detail in Sup-
plemental Appendix N.2, the actual aggregate elasticity would be lower than our baseline
estimate in all four cases.

The magnitude of the bias is increasing in the within-spell variation in technology. To
gauge the magnitude, we posit that the cross-sectional distribution of technology was gen-
erated by an autoregressive process. As an upper bound, we study a case in which tech-
nology has no persistence—the IID case—which maximizes within-spell variation in tech-
nology. In that case, the difference between our baseline estimate and the true aggregate
elasticity is 0.026.

Plant-Specific Prices. Last, we consider an environment in which plants pay idiosyn-
cratic prices for their inputs. Formally, plant i pays factor prices r; = (1 + 7x;)r, w; =
(14 7.)w, and q; = (1 + ) q, where the plant-specific input-price premium might re-
flect compensating differentials or supplier markups. For example, our identification of
the plant-level elasticity of substitution relies on plants in different locations facing differ-
ent wages. We define the aggregate elasticity of substitution as how factor shares respond
to relative factor prices:!?

a
dln
o _ 1= ﬁ,
dlnw/r
where a = % and the derivative is taken holding fixed the input price premia,

{Tkis TLi> Tmi}
In this context, the aggregate elasticity of substitution is exactly the same as our baseline
expression in Proposition 1, provided that we define the shares in terms of factor payments

UFor example, if shocks tend to be purely capital augmenting, plants that expect to be extremely labor
intensive (a(7) < 0.15) will make choices of labor that are sufficiently different across states that the model
with adjustment costs infers more scope for reallocation than the baseline model.

21n this environment, changes in the capital-labor ratio do not map directly into changes in factor compen-

. dinK/L din 725
sation, SO dnw/r 1+# dinw/r *
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that include plant-specific prices. Thus, as long as expenditures are measured correctly,
no modifications are necessary.

APPENDIX G: LOCAL VERSUS NATIONAL ELASTICITIES

In this section, we examine several reasons why the response of plants’ capital-labor
ratios to local factor prices might differ from the response to a national change.'* Our
identification strategy has focused on studying how plant capital-labor ratios respond to
local factor prices. There are a few reasons why this may differ from plants’ response to a
nationwide change in the wage. It is, of course, the latter which is relevant for an aggregate
elasticity at the national level. While these issues are seldom discussed in the literature,
they are relevant for any estimate of an elasticity of substitution at a level of aggregation
smaller than the entire world.

Sorting.  Our estimates do not account for the possibility that plants select locations in
response to factor prices. To see why this might matter, consider the following extreme
example: Suppose plants cannot adjust their factor usage but can move freely. Then we
would expect to find more labor-intensive plants in locations with lower wages. A na-
tional increase in the wage would not, however, change any plant’s factor usage. Thus, to
the extent that this channel is important, our estimated elasticity will overstate the true
elasticity.

Plants’ ability to sort across locations likely varies by industry. We would expect indus-
tries in which plants are more mobile to be more clustered in particular areas. This could
depend, for example, on how easily goods can be shipped to other locations. Raval (2019)
addressed this by looking at a set of ten large four-digit industries located in almost all
MSAs and states. These are industries for which we would expect sorting across locations
to be least important. The leading example of this is ready-mixed concrete; because con-
crete cannot be shipped very far, concrete plants exist in every locality. Elasticities for
these industries are similar to the estimates for all industries in our baseline, with average
elasticities of 0.40 for 1987, 0.51 for 1992, and 0.38 for 1997.

Within-Firm Coordination. In our baseline model, we assumed that each plant inde-
pendently selects its factor intensity in response to local factor prices. It is possible, how-
ever, that a firm that operates plants in many locations might derive some scale economy
by operating all of its plants at similar capital-labor ratios. If this is the case, then a change
in factor prices in one location would, by altering the choices of these multi-unit firms, af-
fect factor intensities in other locations. A potential problem for our approach is that, in
such an environment, comparing factor intensities across locations would not reveal the
full extent of substitution in response to factor prices.'* Thus our estimate would under-
state the true elasticity. One can gauge the importance of this channel by estimating an
elasticity of substitution among the subset of plants that belong to multi-unit firms. If this
channel is important, one would expect that plants in multi-unit firms would respond less
to their local wages than standalone plants. However, column 4 of Table II indicates that
the estimated elasticity among this subset is higher than our OLS estimates, suggesting
that this channel is not of first-order importance.

BThe distinction has been emphasized recently in the debate about the size of government spending multi-
pliers; see Beraja, Hurst, and Ospina (2019).

14 As an extreme example, suppose the economy consisted of a single firm that operated in two locations and
chose a common capital-labor ratio for its two plants. Our methodology would never uncover differences in
capital-labor ratios across locations no matter how much the firm adjusted this common ratio.
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The Technological Frontier. A similar issue may arise when we consider changes in
the technological frontier. A change in factor prices in one location might induce the
creation of intermediates that favor particular technologies. The interpretation of our
estimate depends on whether those intermediates are available nationwide (as assumed
in Section 4.3), or only locally.

Assessment. One way to gauge the importance of these mechanisms is to ask how fac-
tor shares in a location respond to the wage in nearby locations. For example, plants that
move are more likely to move to nearby locations. To the extent that moving across lo-
cations is important, a decrease in the wage in a nearby location would induce the most
labor-intensive plant to move to that nearby location, raising the average local capital
share. Similarly, a decline in the wage in a nearby location may induce the creation of in-
termediate inputs that favor capital. To the extent that the intermediates are also available
locally, these would also favor capital locally, and lower the average local capital share.

A regression of local factor shares on local wages and the average wages of all other
locations in the state can reveal the impact of these mechanisms. Note that it can only
reveal the net impact of all of them; we cannot distinguish whether neither mechanism
matters or that they both matter but offset each other. Fortunately, it is the net effect that
is relevant for informing us about the gap between the cross-sectional differences and
national changes. When we run this regression, we cannot reject that the net impact of
both mechanisms is zero. See Supplemental Appendix H.4 for these results.”
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