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S1. SUPPLEMENTAL MATERIAL

THROUGHOUT THIS SUPPLEMENT, Myerson and Reny (2020) is referred to as MR.

S1.1. Omitted Proofs and Corollary to Theorem 6.3

THEOREM 5.2: Suppose that b is a strategy profile with full support. Then, for any δ > 0,
there is a δ-local tremble profile ϕ such that b ∗ ϕ = b and, for every b̂ ∈ B and every C ∈
M(A), if P(C|b̂ ∗ϕ) > 0, then P(C|b) > 0.

PROOF: Let b ∈ B be any strategy profile with full support. For any it ∈ L, and for
any δ > 0, let Vit be any partition of Ait into measurable sets that each have nonempty
interior and are of diameter δ or less.1 For any V ∈ Vit , for any ait ∈ V , for any sit ∈ Sit ,
and for any Borel subset C of Ait , define ϕit(C|ait� sit) = bit(C ∩ V |sit)/bit(V |sit) (the
denominator is positive because V has nonempty interior and bi has full support). Then,
ϕit : Ait × Sit → �(Ait) is a transition probability and, for any Borel subset C of Ait , and
by the definition of bit ∗ϕit given in MR Section 5,

[bit ∗ϕit](C|sit) =
∫

ϕit(C|ait� sit)bit(dait|sit)

=
∑
V ∈V

∫
V

bit(C ∩ V |sit)/bit(V |sit)bit(dait |sit)

=
∑
V ∈V

bit(C ∩ V |sit)

= bit(C|sit)�
and so bit ∗ϕit = bit . Since this holds for every it ∈ L, b ∗ϕ = (bit ∗ϕit)it∈L = (bit)it∈L = b.

Roger B. Myerson: rmyerson@uchicago.edu
Philip J. Reny: preny@uchicago.edu
1For example, take Vit to consist of the nonempty elements of the sequence of disjoint sets C1�C2 \ C1�

C3 \ (C1 ∪C2)� � � � , where C1�C2�C3� � � � is any sequence of open balls of diameter δ that covers the separable
metric space Ait .
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Also, for any it ∈ L, for any sit ∈ Sit , and for any Borel subset C of Ait , if bit(C|sit) = 0,
then, by the definition of ϕit , ϕit(C|ait� sit) = 0 for every ait ∈ Ait . So for any b̂it ∈ Bit , if
bit(C|sit)= 0, then [b̂it ∗ϕit](C|sit)= ∫

ϕit(C|ait� sit)b̂it(dait|sit)= 0. Hence, for any it ∈ L

and for any sit ∈ Sit , [b̂it ∗ϕit](·|sit) is absolutely continuous with respect to bit(·|sit).
Let b̂ be any strategy profile in B. We will show by induction on the dates in the game

that P(·|b̂ ∗ϕ) is absolutely continuous with respect to P(·|b).
By (1) and (2) in MR Section 3.1, P<2(·|b̂ ∗ ϕ) is equal to the product measure

p1(·|∅) × (×i∈I[b̂i1 ∗ ϕi1](·|∅)), and P<2(·|b) is equal to the product measure p1(·|∅) ×
(×i∈Ibi1(·|∅)). Since, for each i ∈ I, [b̂i1 ∗ϕi1](·|∅) is absolutely continuous with respect to
bi1(·|∅), we have that p1(·|∅)× (×i∈I[b̂i1 ∗ϕi1](·|∅)) is absolutely continuous with respect
to p1(·|∅)× (×i∈Ibi1(·|∅)). (This follows, e.g., by applying the Radon–Nikodym theorem
to each of the absolute continuity relations.) Hence, P<2(·|b̂ ∗ϕ) is absolutely continuous
with respect to P<2(·|b).

As an induction hypothesis, suppose that for some date t − 1 < T , it is the case that
P<t(·|b̂ ∗ ϕ) is absolutely continuous with respect to P<t(·|b). (We have just shown that
this statement is true for t − 1 = 1.) To complete the induction, we must show that
P<t+1(·|b̂ ∗ ϕ) is absolutely continuous with respect to P<t+1(·|b). By (1) and (2) in MR,
for every C ∈M(A<t+1),

P<t+1(C|b̂ ∗ϕ) =
∫
C

pt(da0t |a<t)×
(×

i∈I
[b̂it ∗ϕit]

(
dait|σit(a<t)

))
P<t(da<t|b̂ ∗ϕ)� (S1)

and

P<t+1(C|b) =
∫
C

pt(da0t|a<t)×
(×

i∈I
bit

(
dait |σit(a<t)

))
P<t(da<t |b)� (S2)

For each it ∈ L and for each a<t ∈ A<t , [b̂it ∗ ϕit](·|σit(a<t)) is absolutely continuous
with respect to bit(·|σit(a<t)). By the induction hypothesis, P<t(·|b̂ ∗ ϕ) is absolutely con-
tinuous with respect to P<t(·|b). Consequently, the measure defined by the right-hand
side of (S1) is absolutely continuous with respect to the measure defined by the right-
hand side of (S2). (This follows, e.g., by applying the Radon–Nikodym theorem to each
of the absolute continuity relations.) Hence, P<t+1(·|b̂ ∗ ϕ) is absolutely continuous with
respect to P<t+1(·|b). This completes the induction and so we may conclude that P(·|b̂∗ϕ)
(= P<T+1(·|b̂ ∗ ϕ)) is absolutely continuous with respect to P(·|b) (= P<T+1(·|b)), as de-
sired. Q.E.D.

THEOREM 6.3: If {(bα�pα)} is admissible for (b�p), then there is a negligible set of out-
comes N ⊆ A such that, for every a ∈A \N , there is an index ᾱ such that P({a}|bα;pα) > 0
for every α≥ ᾱ.

PROOF: Let {(bα�pα)} be admissible for (b�p). By the admissibility of {pα} for p, for
any date t, there is Ct ∈ M(A0t × A<t) such that, for every a<t ∈ A<t , pt(C

t
a<t

|a<t) = 1
and, for every a0t ∈ Ct

a<t
(recall that Ct

a<t
= {a′

0t ∈ A0t : (a′
0t � a<t) ∈ Ct}), there is an index

ᾱ such that pα
t ({a0t}|a<t) > 0 for every α ≥ ᾱ. Let N be the union of N1� � � � �NT , where

Nt = {a ∈ A : (a0t � a<t) /∈ Ct}. Then N is measurable since each Nt is measurable. Let us
show that N is negligible.
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Let b be any strategy profile in B. To show that N is negligible, it suffices to show
that P(Nt |b) = 0 for each t ≤ T . So consider any t ≤ T . Since by the definitions in
MR Section 3.1, the marginal of P(·|b) on A<t+1 is P<t+1(·|b), it suffices to show that
P<t+1(N

t
<t+1|b) = 0. Since Nt

<t+1 = {a ∈ A<t+1 : a0t /∈ Ct
a<t

}, the definitions (specifically,
equations (1) and (2)) in MR Section 3.1 yield

P<t+1

(
Nt

<t+1|b
) =

∫
pt

(
A0t \Ct

a<t
|a<t

)∏
i∈I

bit

(
Ait|σit(a<t)

)
P<t(da<t|b)

= 0�

where the second equality follows because pt(A0t \ Ct
a<t

|a<t) = 0 for every a<t ∈ A<t .
Hence, N is negligible.

Next, let ã be any element of A \ N . It remains only to show that there is an index ᾱ
such that P({ã}|bα;pα) > 0 for every α ≥ ᾱ. We proceed by induction on the dates in the
game.

First, for t = 1, P1({(ãi1)i∈I∗}|bα;pα) = pα
1({ã01}|∅)∏

i∈I b
α
it({ãi1}|∅), and so, by the ad-

missibility of {(bα�pα)} for (b�p) and because ã01 ∈ C1
a<1

(= C1
∅), there is α1 such that

P1({(ãi1)i∈I∗ }|bα;pα) > 0 for every α≥ α1.
As an induction hypothesis, suppose that for some date t − 1 < T , there is an index αt−1

such that P<t({ã<t}|bα;pα) > 0 for every α≥ αt−1. (We have just shown that this statement
is true for t − 1 = 1.) By the definition of P<t+1(·|bα;pα),

P<t+1

({ã<t+1}|bα;pα
) = pα

t

({ã0t}|a<t

)∏
i∈I

bα
it

({ãit}|σit(ã<t)
)
P<t

({ã<t}|bα;pα
)
�

By the induction hypothesis, there is αt−1 such that P<t({ã<t}|bα;pα) > 0 for every
α ≥ αt−1, and, by admissibility and because ã0t ∈ Ct

ã<t
, there is an index α′ such that

pα
t ({ã0t}|a<t) > 0 and bα

it({ãit}|σit(ã<t)) > 0 for every α ≥ α′ and for every i ∈ I. So let-
ting αt = max(α′�αt−1), we have P<t+1({ã<t+1}|bα;pα) > 0 for every α ≥ αt . This com-
pletes the induction step and so we may conclude that there is an index ᾱ such that
P({ã}|bα;pα)= P<T+1({ã}|bα;pα) > 0 for every α≥ ᾱ. Q.E.D.

COROLLARY TO THEOREM 6.3: Let b be any strategy profile in B and suppose that
{(bα�pα)} is admissible for (b�p). Then, for any it ∈ L and for any observable Z ∈ M(Sit),
there is ᾱ such that Pit(Z|bα;pα) > 0 for every α≥ ᾱ.

PROOF: By Theorem 6.3, there is a negligible set N ∈ M(A) such that, for any a ∈
A \ N , there is ᾱ such that P({a}|bα;pα) > 0 for every α ≥ ᾱ. Since Z is observable,
there is b̃ ∈ B such that Pit(Z|b̃) > 0. By the definition of Pit(·|b̃), Pit(Z|b̃) = P({a ∈
A : σit(a<t) ∈ Z}|b̃). Consequently, P({a ∈ A : σit(a<t) ∈ Z}|b̃) > 0 and so {a ∈ A :
σit(a<t) ∈ Z} is not contained in the negligible set N (since P(N|b′) = 0 for every b′ ∈ B

and so, in particular, P(N|b̃)= 0). Pick any ā ∈ {a ∈A : σit(a<t) ∈ Z} \N . Then ā ∈ A\N
and so there is ᾱ such that P({ā}|bα;pα) > 0 for every α ≥ ᾱ. Hence, Pit(Z|bα;pα) ≥
Pit({σit(ā<t)}|bα;pα)≥ P({ā}|bα;pα) > 0 for every α≥ ᾱ. Q.E.D.

THEOREM 6.4: In any standard finite multi-stage game, the following conditions are equiv-
alent:

(a) b ∈ B is a sequential equilibrium strategy profile,
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(b) b ∈ B is a perfect conditional ε-equilibrium for every ε > 0, and
(c) b ∈ B is the limit as ε → 0of a sequence of perfect conditional ε-equilibria.

PROOF: We begin by showing that (a) ⇒ (b). Fix any ε > 0. If b is a sequential equi-
librium strategy profile, then there is a sequence of completely mixed strategies bn → b
(e.g., any sequence that generates the system of beliefs μ associated with b in the sequen-
tial equilibrium (b�μ) of which b is a part) such that, for all n large enough, bn is an ε-best
reply for its owner conditional on any information set in the game 
(p). Since nature’s
probability function p in a standard finite game always gives every state positive prob-
ability, the sequence {(bn�p)} is admissible for (b�p). Hence, b is a perfect conditional
ε-equilibrium.

The implication (b) ⇒ (c) is trivial since, if (b) holds, then the constant sequence
b�b� � � � shows that b is the limit as ε → 0 of a sequence of perfect conditional ε-equilibria.

It remains only to show that (c) ⇒ (a). Let {bε} be a sequence of perfect conditional
ε-equilibria that converges to b as ε → 0. Consequently, for every ε, there is an ε-test net
{(bε�α�pε�α)} for (bε�p). In particular, bε�α is a conditional ε-equilibrium of 
(pε�α) for
every ε and α. For any ε, because nature’s finitely many states all have positive probability
under p, there is, for every η > 0, an index αη such that bε�α is strictly mixed, is within η
of b (i.e., ‖bε�α − b‖ < η), and is a conditional (ε + η)-equilibrium in the original game

(p). Consequently, for every ε′ > 0, if we choose ε and η so that ε + η < ε′, then b′ =
bε�αη is strictly mixed, is within η of b, and is a conditional ε′-equilibrium of 
(p). Letting
μ′ be the system of beliefs induced by the conditionals of b′, and letting μ be the limit
(along a subsequence if necessary) of μ′ as ε′ → 0, we conclude that (b�μ) is a sequential
equilibrium of 
(p). Q.E.D.

THEOREM 6.7: If, for each ε > 0, there is at least one perfect conditional ε-equilibrium,
then a perfect conditional equilibrium distribution exists.

PROOF: By hypothesis, we may choose for each ε > 0 a perfect conditional ε-
equilibrium bε. For any ε > 0, P(C|bε) is defined for every C ∈ M(A). Consequently,
{P(·|bε)} is a net in [0�1]M(A), with smaller positive numbers ε being further out in the
(directed) index set. By Tychonoff’s theorem, [0�1]M(A) is compact in the product topol-
ogy and so there exists μ ∈ [0�1]M(A) and a subnet {P(·|bεα)} that converges (in the prod-
uct topology) to μ, meaning precisely that (4) in MR holds for the subnet and so μ is a
perfect conditional equilibrium distribution. Q.E.D.

THEOREM 6.9: Every perfect conditional ε-equilibrium is a conditional ε-equilibrium and
therefore, a fortiori, an ε-Nash equilibrium.

PROOF: Suppose that b is a perfect conditional ε-equilibrium. Then there is an ε-test
net {(bα�pα)} for (b�p).

Consider any it ∈ L and any Z ∈ M(Sit) such that Pit(Z|b;p) > 0. Because
limα ‖bα − b‖ = limα ‖pα − p‖ = 0, there is an index ᾱ such that Pit(Z|bα;pα) > 0 for
every α≥ ᾱ. Since bα is a conditional ε-equilibrium of 
(pα),

Ui

(
ci� b

α
−i|Z;pα

) ≤Ui

(
bα|Z;pα

) + ε

for every date-t continuation ci of bα
i and for every α≥ ᾱ.
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Since any date-t continuation ci of bα
i can be written as (bα

i�<t� ci�≥t), we have that for
every α≥ ᾱ, and for every ci�≥t ∈ Bi�≥t ,

Ui

((
bα
i�<t� ci�≥t

)
� bα

−i|Z;pα
) ≤Ui

(
bα|Z;pα

) + ε� (S3)

Because limα ‖bα − b‖ = limα ‖pα − p‖ = 0, we have limα Pit(Z|bα;pα) = Pit(Z|b;p),
and we have, for every C ∈M(A), limα P(C|bα;pα)= P(C|b;p). Consequently, because
Pit(Z|b;p) > 0, the definition of conditional probabilities in Section 3.2 in MR implies
that, for every C ∈M(A),

lim
α

P
(
C|Z�bα;pα

) = lim
α

P
({a ∈ C : σit(a<t) ∈ Z|bα

)
Pit

(
Z|bα;pα

)

= P
({a ∈ C : σit(a<t) ∈ Z|b)

Pit(Z|b;p)
= P(C|Z�b;p)�

Therefore, from the definition of conditional expected payoffs in Section 3.2 in MR,

Ui

(
bα|Z;pα

) =
∫

ui(a)P
(
da|Z�bα;pα

)

→α

∫
ui(a)P(da|Z�b;p)

= Ui(b|Z;p)�
Similarly, for any ci�≥t ∈ Bi�≥t , because limα ‖((bα

i�<t� ci�≥t)� b
α
−i) − ((bi�<t� ci�≥t)� b−i)‖ =

0, we have limα Ui((b
α
i�<t� ci�≥t)� b

α
−i|Z;pα) = Ui((bi�<t� ci�≥t)� b−i|Z;p). Consequently, by

(S3), we may conclude that, for every ci�≥t ∈ Bi�≥t ,

Ui

(
(bi�<t� ci�≥t)� b−i|Z;p) ≤Ui(b|Z;p)+ ε�

Since Z is an arbitrary signal event that has positive probability under b in 
(p), we may
conclude that b is a conditional ε-equilibrium.

That b is also an ε-Nash equilibrium follows from the fact that the null signal, ∅, which
all players observe at date 1, always has positive probability. Thus, by the property of a
conditional ε-equilibrium, no player, given the others’ strategies under b, can improve his
payoff by more than ε conditional on the null history. Q.E.D.

THEOREM 6.10: Every perfect conditional ε-equilibrium is a subgame perfect ε-
equilibrium.

PROOF: Suppose that b ∈ B is a perfect conditional ε-equilibrium and that {(bα�pα)} is
an ε-test net for (b�p). Then, {(bα�pα)} is admissible for (b�p) and so, by Theorem 6.3,
there is a negligible set of outcomes N ⊆ A such that, for every a ∈ A \ N , there is an
index ᾱ such that P({a}|bα;pα) > 0 for every α≥ ᾱ.

By the definition of a subgame perfect ε-equilibrium, it suffices to show that for any
a ∈ A \N and for any date t, if a<t ∈A<t is a subgame, then

sup
ci∈Bi

Ui(ci� b−i|a<t)≤Ui(b|a<t)+ ε for every player i ∈ I� (S4)
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So suppose that a is in A \N and that a<t ∈ A<t is a date-t subgame.
By the properties of the set A \ N , there is an index ᾱ such that P({a}|bα;pα) > 0 for

every α≥ ᾱ. In particular, for every player i ∈ I, Pit({σit(a<t)}|bα;pα) > 0 for every α≥ ᾱ.
Because σ−1

it (σit(a<t)) = {a<t} and because each bα is a conditional ε-equilibrium of

(pα), we may conclude that, for every α ≥ ᾱ, for every i ∈ I, and for every ci ∈ Bi (the
specification of ci on dates before t is irrelevant because a<t is given),

Ui

(
ci� b

α
−i|a<t;pα

) ≤Ui

(
bα|a<t;pα

) + ε�

Taking the limit of this inequality with respect to α gives (S4) because limα ‖bα − b‖ =
limα ‖pα −p‖ = 0 imply

lim
α

Ui

(
ci� b

α
−i|a<t;pα

) = Ui(ci� b−i|a<t;p)�

and

lim
α

Ui

(
bα|a<t;pα

) =Ui(b|a<t;p)� Q.E.D.

THEOREM 6.15: If b ∈ B is a perfect conditional ε-equilibrium, then there is a belief system
β such that (b�β) is finitely consistent and sequentially ε-rational.

PROOF: Suppose that b ∈ B is a perfect conditional ε-equilibrium and that {(bα�pα)}
is an ε-test net for (b�p). Then, {(P<t(C|Z�bα;pα))it∈L�observable Z∈M(Sit )�C∈M(A<t)}α is a net
taking values in a space that is an infinite product of the compact set [0�1]. (The Corollary
to Theorem 6.3 above implies that each P<t(C|Z�bα;pα) in this net is well-defined for all
large enough indices α.) By Tychonoff’s theorem, this space is compact and so we may
assume, without loss of generality, that the net {(P<t(C|Z�bα;pα))it∈L�Z∈M(Sit )�C∈M(A<t)}α
converges. Therefore, we may define beliefs β as in MR equation (6.4). That is, for every
it ∈ L, for every observable Z ∈M(Sit), and for every C ∈M(A<t), we may define

βit(C|Z) = lim
α

P<t

(
C|Z�bα;pα

)
� (S5)

Consequently, β is finitely consistent for b. It remains only to show that (b�β) is sequen-
tially ε-rational.

Fix any it ∈L, any observable Z ∈M(Sit), and any ci ∈ Bi. We must show that

∫
Ui(ci� b−i|a<t)βit(da<t|Z)≤

∫
Ui(b|a<t)βit(da<t|Z)+ ε� (S6)

For each index α, define cαi = (bα
i�<t� ci�≥t). Then cαi is a date-t continuation of bα

i . There-
fore, because each bα is a conditional ε-equilibrium of 
(pα), and because, by the corol-
lary to Theorem 6.3, there is ᾱ such that Pit(Z|bα;pα) > 0 for every α≥ ᾱ, we have that

Ui

(
cαi � b

α
−i|Z;pα

) ≤Ui

(
bα|Z;pα

) + ε� (S7)
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By the definitions in Sections 3.1 and 3.2 in MR,2

Ui

(
cαi � b

α
−i|Z;pα

) =
∫

Ui

(
cαi � b

α
−i|a<t

)
P<t

(
da<t|Z�bα;pα

)

and

Ui

(
bα|Z;pα

) =
∫

Ui

(
bα|a<t

)
P<t

(
da<t|Z�bα;pα

)
�

Consequently, (S7) implies that for every α≥ ᾱ,
∫

Ui

(
cαi � b

α
−i|a<t

)
P<t

(
da<t |Z�bα;pα

) ≤
∫

Ui

(
bα|a<t

)
P<t

(
da<t|Z�bα;pα

) + ε�

Moreover, since Ui(c
α
i � b

α
−i|a<t) does not depend on the players’ strategies on dates before

t (since a<t is given), we may replace cαi = (bα
i�<t� ci�≥t) with ci without changing the value

of Ui(c
α
i � b

α
−i|a<t). That is, Ui(c

α
i � b

α
−i|a<t) = Ui(ci� b

α
−i|a<t) for every α. Hence, for every

α≥ ᾱ,
∫

Ui

(
ci� b

α
−i|a<t

)
P<t

(
da<t |Z�bα;pα

) ≤
∫

Ui

(
bα|a<t

)
P<t

(
da<t |Z�bα;pα

) + ε� (S8)

Let us consider the limit of the term on the left-hand side of (S8):

lim
α

∫
Ui

(
ci� b

α
−i|a<t

)
P<t

(
da<t|Z�bα;pα

)

= lim
α

∫ [
Ui

(
ci� b

α
−i|a<t

) −Ui(ci� b−i|a<t)

+Ui(ci� b−i|a<t)
]
P<t

(
da<t |Z�bα;pα

)

= lim
α

∫ (
Ui

(
ci� b

α
−i|a<t

) −Ui(ci� b−i|a<t)
)
P<t

(
da<t|Z�bα;pα

)

+ lim
α

∫
Ui(ci� b−i|a<t)P<t

(
da<t |Z�bα;pα

)

= 0 +
∫

Ui(ci� b−i|a<t)βit(da<t|Z)� (S9)

where the final equality follows because (first term) limα ‖bα − b‖ = 0 and (second term)
by (S5), and therefore the second equality follows because the two separate limits exist.

Similarly, limα

∫
Ui(b

α|a<t)P<t(da<t|Z�bα;pα) = ∫
Ui(b|a<t)βit(da<t|Z). Combined

with (S5) and (S8), we obtain (S6), as desired. Q.E.D.

2We are using the fact that, for any it ∈L and for any b̃ ∈ B,
∫

ui(a)P(da|b̃)=
∫
A<t

(∫
A≥t

ui(a<t� a≥t )P≥t (da≥t |a<t� b̃)

)
P<t(da<t |b̃)�

which, from the definitions in MR Section 3.1, can be established for each date t by induction, starting from
date t = 1. We leave this induction proof to the reader.
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THEOREM 8.1: If {pn�F} is a canonical net of nature-perturbations, then {pn�F} is admissi-
ble for p.

PROOF: By the canonical net construction in MR Section 8.1, for any date t and for
any history before date t, each coordinate j ∈ J of the provisional state that is chosen on
that date by p is independently left unperturbed by φn�F

tj with probability at least 1 − 1
n
.

Hence, the provisional state chosen by p on any date and after any history is left entirely
unperturbed with probability at least (1 − 1

n
)#J . Consequently, for each index (n�F) ∈ Ω,

‖pn�F −p‖ ≤ 1 − (1 − 1
n
)#J and so lim(n�F) ‖pn�F −p‖ = 0 because lim(n�F) n = +∞.

Let Q0t = {×j∈Jqj : qj ∈ Q0tj�∀j ∈ J}, where each Q0tj is the countable (i.e., finite or
countably infinite) partition of A0tj that is specified in MR Section 8.1. Then Q0t is a
countable partition of A0t into measurable (product) sets.

Fix any date t ≤ T for the remainder of the proof. Since each A0tj is a separable metric
space, so too is A0t with the coordinate-wise maximum distance. So A0t has a countable
basis U of open sets. Let Dt be the union of all sets of the form (U ∩ q) × {a<t ∈ A<t :
pt(U ∩ q|a<t) = 0}, where U can be any element of the countable basis U and q can be
any element of the countable partition Q0t . Then Dt ⊆ A0t × A<t is measurable because
it is the countable union of measurable sets (since pt is a transition probability). Let
Ct = (A0t ×A<t)\Dt . Then Ct ⊆ A0t ×A<t is measurable and Ct = {(a0t � a<t) : a0t is in the
support of pt(·∩Q0t(a0t)|a<t)}, where Q0t(a0t) is the element of×j∈JQ0tj that contains a0t .
Hence, letting Ct

a<t
= {a0t ∈A0t : (a0t � a<t) ∈Ct}, Ct

a<t
is measurable and pt(C

t
a<t

|a<t)= 1.
Fix any a<t ∈ A<t and any a0t ∈ Ct

a<t
for the remainder of the proof. The proof will be

complete if we can show that there is an index (n̄� F̄) ∈Ω such that pn�F
t ({a0t}|a<t) > 0 for

every (n�F) ∈Ω such that n ≥ n̄ and F ⊇ F̄ .
Choose an index (n̄� F̄) such that a0t ∈ F̄ , and let (n�F) be any index such that n ≥ n̄

and F ⊇ F̄ (and so a0t ∈ F). We must show that pn�F
t ({a0t}|a<t) > 0, where we recall from

MR Section 8.1 that

pn�F
t

({a0t}|a<t

) =
∫ ∏

j∈J
φn�F

tj

({a0tj}|a′
0tj

)
pt

(
da′

0t |a<t

)
� (S10)

Let V be an open set in U that contains a0t such that for every a′
0t ∈ V and for

every j ∈ J, a′
0tj is within distance 1/n of a0tj . Therefore, since a0t ∈ F ∩ Q0t(a0t), if

a′
0t ∈ V ∩ Q0t(a0t), then for every j ∈ J, a0tj is within distance 1/n of a′

0tj and both points
are in the same element, Q0tj(a0tj), of the partition Q0tj . So by the definition of the φn�F

tj

mappings in MR Section 8.1,
∏

j∈J φ
n�F
tj ({a0tj}|a′

0tj) > 0 for every a′
0t ∈ V ∩ Q0t(a0t). Also,

pt(V ∩ Q0t(a0t)|a<t) > 0 because the open set V contains a0t and a0t is in the support
of pt(· ∩Q0t(a0t)|a<t) (because a0t ∈ Ct

a<t
). Hence, for this a0t , the nonnegative function,∏

j∈J φ
n�F
tj ({a0tj}|a′

0tj) of a′
0t , is strictly positive for every a′

0t in V ∩Q0t(a0t). Therefore, since
pt(V ∩Q0t(a0t)|a<t) > 0, (S10) implies that pn�F

t ({a0t}|a<t) > 0. Q.E.D.

S1.2. Examples

Our first example fulfills a promise in MR Section 6.4 to provide an example of a strat-
egy profile b and belief system β that is finitely consistent and sequentially ε-rational
even though b is not a perfect conditional ε-equilibrium. The example shows that, even
with finitely consistent beliefs, sequentially ε-rational behavior can be unintuitive because
beliefs are only finitely additive.
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EXAMPLE S1: Problems with sequential rationality and finite consistency.
• On date 1, nature chooses θ uniformly from the open interval (0�1), where neither

θ = 0 nor θ = 1 is a possible state of nature.
• On date 2, player 1 observes θ and then chooses x ∈ {0�1}.
• On date 3, player 2 observes x and then chooses y ∈ [0�1).
• Payoffs are as follows:
If x = 0 (“out”), then u1 = u2 = 0.
If x = 1 (“in”) and y = 0 (“out”), then u1 = −1 and u2 = 0.
In any perfect conditional ε-equilibrium of this game with ε < 1, player 1 must choose

x = 1 with probability at least 1 − ε/(1 − ε), and player 2’s strategy, conditional on the
signal x = 1, must give the event {y ≥ θ} probability at least 1 − ε/2. This is because, in
any perturbation that gives the signal x = 1 positive probability (even if that perturbation
involves nature), player 2 can obtain a conditional expected payoff arbitrarily close to 1 by
choosing y sufficiently close to 1 (this latter fact is a consequence of the countable additiv-
ity of the conditional probability measures defined by the perturbations). Consequently,
by choosing x = 1, player 1 can obtain a payoff close to 1 when ε > 0 is close to zero.

However, consider the strategy profile b in which player 1 chooses x = 0 and player
2 chooses y = 0 no matter what signal he observes. In addition, consider the beliefs β23

for player 2 such that β23(·|x = 0) is uniform on (0�1) and β23((1 − δ�1)|x = 1) = 1 for
every δ > 0. Then β23(·|x = 1) is only finitely additive. The strategy profile b gives both
players a payoff of zero, contrary to every perfect conditional ε-equilibrium when ε > 0
is small. Nevertheless, (b�β) is finitely consistent and sequentially 0-rational.3 To see that
this (b�β) is sequentially 0-rational, note first that, given 2’s behavior, it is optimal for
player 1 to choose x = 0 no matter what θ he observes, and note second that, because
for any δ > 0 player 2’s beliefs after observing x = 1 put probability 1 on the event that
nature’s θ is greater than 1 − δ, player 2’s expected payoff from choosing any y > 0 is
−1. Hence, player 2’s unique optimal choice is y = 0 after x = 1. And any choice of y is
optimal for player 2 after x = 0.

The next two examples are taken from MR. In each of them, the index set for the nets
that are constructed is the set of all pairs (n�F) such that n is any positive integer and F
is any nonempty finite subset of [0�1]. Larger positive integers n and more inclusive finite
subsets F of [0�1] correspond to larger indices.

MR EXAMPLE 2.1: Problems of spurious signaling in naïve finite approximations.
For this example, let us first show that player 1’s expected payoff must converge to

zero as ε → 0 in any sequence of perfect conditional ε-equilibria. So consider any such
sequence. For each state θ = 1�2, define qθ to be the limiting probability that player 2
chooses y = 1 conditional on state θ (extract a convergent subsequence if necessary).
Since player 1’s payoff in this game is nonzero if and only if player 2 chooses y = 1, we
must show that q1 = q2 = 0. Player 2 can obtain an expected payoff of 3/4 by always
choosing y = 2, and so 2’s limit equilibrium payoff, (1/4)(q1)1 + (3/4)(1 − q2)1, must be
at least 3/4,4 which means that q1 ≥ 3q2. Player 1’s limit equilibrium payoff, (1/4)(q1)1 +
(3/4)(q2)1, cannot be less than the limit of the payoffs that he would achieve if, along the

3Finite consistency can be verified by taking the limit as δ → 0 of joint perturbations that, for nature, put
positive probability on θ = 1 − δ and, for player 1, put positive probability on x= 1 after observing θ = 1 − δ.

4Otherwise, for some ε > 0 small enough along the sequence, player 2 would not be ε-optimizing conditional
on the null state at date 1.
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sequence, he always deviated to the square root of the action that his equilibrium strategy
dictated. Since such deviations along the sequence would yield player 1 a limit payoff of
at least (3/4)q1,5 we must have (1/4)(q1)1 + (3/4)(q2)1 ≥ (3/4)q1, which is equivalent to
3q2 ≥ 2q1. But because q1 ≥ 3q2, this means that q1 = q2 = 0, as desired.

Next, we define a strategy profile, b∗, that is a perfect conditional ε-equilibrium for
every ε > 0. Let player 1’s strategy, b∗

1, choose action x = 0 with probability 1, and let
player 2’s strategy, b∗

2, choose action y = 2 regardless of the signal that she observes. Con-
struct an ε-test net {(bn�F�pn�F)} for (b∗�p) as follows. For any nonempty finite subset F of
[0�1], let F ′ be the smallest set containing F that is closed under the taking of square roots
(i.e., F ′ = ⋃

x∈F{x�
√
x�

√√
x� � � �}). For any positive integer n and for any finite subset F of

[0�1], define bn�F
1 ∈ B1 so that bn�F

1 ({0})= 1−1/n, bn�F
1 (F ′)= 1/n, and bn�F

1 (x)= 3bn�F
1 (

√
x)

for every x ∈ F ′. Define bn�F
2 ∈ B2 so that for every s ∈ [0�1], bn�F

2 ({2}|s) = 1 − 1/n and
bn�F

2 ({1}|s)= 1/n. Finally, define pn�F = p. Then, limn�F ‖bn�F −b∗‖ = limn�F ‖pn�F −p‖ = 0,
and every outcome in the game is, eventually in the net {(bn�F�pn�F)}, given positive prob-
ability. Hence, {(bn�F�pn�F)} is admissible for (b∗�p). In the perturbed game 
(pn�F) (= 

since pn�F = p), bn�F gives probability 1 to the set of player 2 signals F ′ ∪ {0}. Since, condi-
tional on any positive signal in F ′ that is less than 1, the states θ = 1 and θ = 2 are equally
likely under bn�F in 
(pn�F), it is conditionally optimal for player 2 to choose any y ∈ {1�2}
after observing any such signal. And since the signals s = 0 and s = 1 are uninformative
about nature’s state, it is conditionally optimal for player 2 to choose y = 2 after observing
s = 0 or 1. So bn�F

2 is a 1/n-best reply for player 2 conditional on every positive probability
signal event. Since player 1’s payoff in 
(pn�F) under bn�F is 1/n no matter what action
he chooses, player 1 is fully optimizing. Hence, bn�F is a conditional 1/n-equilibrium of

(pn�F), and so, for every ε > 0, b∗ is a perfect conditional ε-equilibrium of 
.6

MR EXAMPLE 6.1: Why nature must be perturbed to test rational behavior with positive
probability in all events.

In this example, it is obvious that player 1 must put probability at least 1 − ε on
his strictly dominant strategy x = −1 in any perfect conditional ε-equilibrium. What
we wish to show here is that perfect conditional ε-equilibrium solves the existence
problem that was presented in the text by allowing perturbations of nature’s prob-
ability function in addition to perturbations of the players’ strategies. For this, it is
enough to define a strategy profile, b∗, and to show that it is a perfect conditional ε-
equilibrium for every ε > 0. Define b∗ ∈ B so that b∗

1({−1}) = 1 and b∗
2({−1}|s) = 1 for

every s ∈ [0�1]. Define an ε-test net {(bα�pα)} for (b∗�p) as follows. For every posi-
tive integer n and for every nonempty finite subset F of [0�1], define bn�F

1 ∈ B1 so that
bn�F

1 ({−1}) = 1 − (1/n)2 and bn�F
1 ({x}) = 1/(n2(#F)) for every x ∈ F ; define bn�F

2 ∈ B2 so
that bn�F

2 ({−1}) = 1 − 1/n and bn�F
2 ({1}) = 1/n; and define pn�F so that for any interval

[c�d] ⊆ [0�1], pn�F([c�d] \ F) = (1 − 1/n)(d − c) and pn�F({x}) = 1/(n(#F)) for every
x ∈ F . Then, limn�F ‖bn�F − b∗‖ = limn�F ‖pn�F − p‖ = 0, and every outcome in the game
is, eventually in the net {(bn�F�pn�F)}, given positive probability. Hence, {(bn�F�pn�F)} is
admissible for (b∗�p). For any ε > 0, when n is sufficiently large and the players use bn�F

in the game 
(pn�F), player 1 is clearly ε-optimizing and, conditional on any signal s that

5Because, under player 1’s square root deviation, when the state is θ = 2 player 2 chooses y = 1 with limiting
probability q1, and when the state is θ = 1 player 1’s payoff is nonnegative no matter what action player 2
chooses.

6There are many perfect conditional ε-equilibria of this game (e.g., player 1 chooses x uniformly from [0�1]
and player 2 always chooses y = 2 regardless of the signal that she observes).
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has positive probability (i.e., any signal s ∈ F), player 2 is also ε-optimizing because the
event {x = −1 and θ = s} is n − 1 times as likely as the event {x = s}. Also, conditional
on any positive probability signal event in [0�1] \ F , there is probability 1 that player 1
chose x = −1 and so player 2 is again ε-optimizing (for n sufficiently large). Hence, for
any ε > 0, there is a large enough n̄ such that bn�F is a conditional ε-equilibrium of 
(pn�F)
for all (n�F) with n≥ n̄. Thus, b∗ is a perfect conditional ε-equilibrium.

S1.3. Beyond Multi-Stage Games

The class of multi-stage games encompasses the vast majority of games considered by
economists. Nevertheless, we show here that the definitions of conditional ε-equilibrium,
full conditional ε-equilibrium, and perfect conditional ε-equilibrium, all easily extend to
extensive-form games with perfect recall outside of this class.

Let 
 be any finite-player extensive-form game with perfect recall. We list below only
a subset of all of the items needed to fully specify such a game 
. The subset that we
specify is just enough so that our equilibrium concepts can be defined. A full specification
of 
 would have to list even more items (e.g., signal maps would have to be specified,
conditions ruling out cycles in the game tree would have to be specified, etc.) So assume
that 
 satisfies at least the following conditions:

1. I is the finite set of players, 0 /∈ I. Let I∗ = I ∪ {0}, where 0 denotes nature.
2. For i ∈ I and for any integer t ≥ 1, Sit is the set of all possible signals that player i

can observe in the game after having already observed precisely t − 1 previous signals in
the game;7 Ait is a nonempty action set for player i; for each sit ∈ Sit , �it(sit) ⊆ Ait is the
set of feasible actions for player i after observing the signal sit ; and A0t is a nonempty set
of states of nature.

3. A is the set of all possible outcomes (paths of play) in the game. Each a ∈ A is an
infinite sequence, a = (a1� a2� � � �),8 where, for each point ar in the sequence, there is a
nonempty subset J ⊆ I∗ such that ar ∈×i∈J(

⋃r

t=1 Ait) indicating that all of the players in
J, and also nature if 0 ∈ J, moved simultaneously.9 For any a = (a1� a2� � � �) ∈ A, and for
any integer t > 1, a<t is the subsequence (ar)r<t ; let A<t = {a<t : a ∈A}. (A<1 = ∅.)

4. All of the sets Ait , Sit , A<t , and A are equipped with sigma-algebras of measurable
subsets.

5. For any player i ∈ I, for any integer t ≥ 1, and for any measurable subset Z of Sit ,
the set of paths of play in A along which player i observes a signal in Z is a measurable
subset of A and is denoted by [Z] ⊆A.

6. For any integer t ≥ 1, pt :A<t → �(A0t) is a transition probability specifying nature’s
distribution over states in A0t after histories in A<t .10 Let p = (pt)t≥1 denote nature’s
probability function.

7. ui :A → R is player i’s bounded and measurable payoff function.

7So Si1 is the set of all possible first signals that player i can ever observe, Si2 is the set of all possible second
signals that player i can ever observe, etc. If the game has finite length, then there is T such that Sit = ∅ for
every t > T . Perfect recall ensures that each player’s set of signals can be serially partitioned in this way.

8Paths of play that are finite in length can always be represented by infinite sequences that are eventually
constant.

9We include simultaneous moves in this way so as to include the class of multi-stage games as defined in
MR, where all players and nature move simultaneously at each one of T dates of play.

10As in MR, for any measurable space, X , �(X) is the set of countably additive probability measures on the
measurable subsets of X .
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A strategy bi = (bit)t≥1 for player i specifies, for each t ≥ 1, a transition probability bit :
Sit → �(Ait) such that bit(�it(sit)|sit)= 1 for every sit ∈ Sit .

Given nature’s probability function p = (pt)t≥1, we assume that any strategy profile
b = (bi)i∈I induces a unique distribution over the set, A, of outcomes of the game, and
we denote this outcome distribution by P(·|b;p) ∈ �(A). In fact, we assume such a distri-
bution over A is well-defined for any strategy profile and for any probability function for
nature that satisfies condition 6.

For any strategy profile b, for any player i, for any integer t ≥ 1, and for any mea-
surable subset Z of Sit , define Pit(Z|b;p) = P([Z]|b;p), and, if Pit(Z|b;p) > 0, define
Ui(b|Z;p)= ∫

[Z] ui(a)P(da|b;p)/Pit(Z|b;p).
We can now define conditional ε-equilibrium precisely as in Definition 4.1 of MR. Then

we can define full conditional ε-equilibrium precisely as in Section 5 of MR,11 and we can
define perfect conditional ε-equilibrium precisely as in Definition 6.2 of MR.
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