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Abstract

This paper investigates forecast aggregation via the random subspace regressions

method (RSM) and explores the potential link between RSM and the Shapley value

decomposition (SVD) using the US GDP growth rates. This technique combination

enables handling high-dimensional data and reveals the relative importance of each

individual forecast. First, it is possible to enhance forecasting performance in certain

practical instances by randomly selecting smaller subsets of individual forecasts and

obtaining a new set of predictions based on a regression-based weighting scheme.

The optimal value of selected individual forecasts is also empirically studied. Then,

a connection between RSM and SVD is proposed, enabling the examination of each

individual forecast’s contribution to the final prediction, even when there is a large

number of forecasts. This approach is model-agnostic (can be applied to any set

of predictions) and facilitates understanding of how the aggregated prediction is

obtained based on individual forecasts, which is crucial for decision-makers.
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1 Introduction

Nowcasting and short-term forecasting of current economic activity is crucial for decision-

makers such as firms and governments. Over the last few decades, the amount of data used

for (improving) macroeconomic forecasting has been drastically increasing. This means one

may have hundreds of different forecasts of a given macroeconomic indicator, such as GDP.

These individual predictions may be derived from different methods or data sources. A nat-

ural question arises: how do we combine and/or select numerous forecasts to produce a final

prediction?

Another research aspect has lately focused on unraveling the black box critique of machine

learning (ML) models. Often, it is nearly impossible to study the relationship between the

dependent and independent variables within the ML framework or to explain why certain

estimations are made. In particular, the “interpretability” aspect is crucial for decision-makers

in economics, when some sort of a structure based on economic theory or intuition is desired

for specific reasons.

Not only do economists and policymakers care about precision, but they strive to com-

prehend the driving forces behind a given phenomenon. Forecasting models are supposed to

motivate some economic or public policies instead of producing an intractable yet often precise

estimation (Burgess et al., 2013). Additionally, even the “best” single model can sometimes

produce imprecise estimations. In theory, understanding a model’s mechanics allows for iden-

tifying and explaining its odd behaviors, a task often unfeasible for some ML models.

The noticeable increase in using predictive ML in macroeconomics has driven researchers

to try adding some “interpretability” by introducing a universal method that explains the

relative importance of any given feature. The Shapley value decomposition (SVD) is one of the

most popular tools, allowing for decomposition into individual variable contributions. Despite

its popularity, it has some disadvantages. For example, SVD handles high-dimensional data

poorly and demands considerable computing time. Computational burdens force researchers to

restrict their attention to fewer indicators or shift to specific models for which shortcuts have

been developed.

In this article, a framework is proposed that connects two seemingly independent fields:

forecast combination and model interpretability. First, a forecast combination approach is

introduced based on the random subspace regression method (RSM) proposed by Boot and

Nibbering (2019), which makes it possible to work within a linear framework even if the number

of covariates (in this case, individual forecasts) is huge. This aggregation scheme produces a new
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set of forecasts based on the initial values. RSM helps smooth the distribution of predictions

if there are severe outliers. The forecasting performance of this aggregation method is then

compared to standard benchmarks.

Additionally, a synergy between RSM and SVD is explored. Because SVD is easily computed

in a standard linear framework, one can decompose the prediction obtained by RSM into each

forecast contribution using well-known shortcuts. Furthermore, this union of the methods

allows researchers to handle even high-dimensional data. Thus, with this framework, it is

possible to circumvent the challenges of using many variables while dealing with SVD. The

main SVD advantage – the difference between the final and the historical average predictions

is fairly distributed among the covariates – is fulfilled.

The contribution to the literature is twofold. First, the use of RSM as a forecast combination

method is introduced, unlike previous studies where RSM has been used solely to produce

forecasts. When used for forecast aggregation, RSM proves to be a powerful tool, demonstrating

superior forecasting performance compared to both AR(1) models and the median of a given

set of forecasts. The number of individual forecasts included in one draw plays a critical role.

Second, the proposed connection between RSM and SVD allows for the easy computation

of each individual forecast’s contribution to the final prediction, even when the number of

forecasts is large. This enables real-time analysis of the forecast decomposition, providing

valuable insights into the dynamics of the target variable, which is crucial for policymakers.

Both RSM and SVD are model-agnostic approaches, applicable to any arbitrarily large set of

forecasts.

The paper is organized as follows. Section 2 provides the current state of the forecast

combination research avenues. Section 2.3 describes RSM and how it can be used to combine

forecasts. Section 3 is devoted to a feature selection problem and highlights the Shapley decom-

position of forecasts and its implementation within RSM. Section 4 describes the nowcasting

model used for the study. Section 5 includes an empirical application of all the above-mentioned

concepts by exploiting the FRED-MD database. Finally, Section 6 concludes and provides an

outlook for future research.

2 Forecast Combination

Researchers from various disciplines have analyzed different methods of forecast aggregation.

In many practical cases, multiple forecasts of the same variable have been obtained either by

various methods or by using different sources of information (Timmermann, 2006). It is assumed
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that combining different individual predictions can improve accuracy. The aggregation strategy

enables the incorporation of much more available information, which may be more fruitful than

seeking a “best” model. For a review of the extensive literature on forecast combinations, see

Wang et al. (2023). This section describes methods dealing with point forecast combinations

based on linear combinations. The focus here is on this class of forecast aggregation because, as

shown below, it is possible to merge the latter with RSM. To conclude, a forecast combination

puzzle is discussed.

2.1 Linear Combinations of Individual Forecasts

One of the most straightforward strategies for combining various forecasts is to assign weights to

each individual prediction: the more precise the forecast, the greater the weight. There are nu-

merous different weighting schemes. Thus, it sounds feasible to construct a linear combination

of the individual forecasts and treat the OLS coefficients as weights.

More formally, suppose an N -dimensional vector of h-step ahead forecasts ŷT+h|T is given.

Additionally, an n-dimensional vector of past observations of the targeted variable yT is ob-

served. Under this framework, regression-based weights can be defined as follows (Granger and

Ramanathan, 1984):

yT+h = wT+h|T,0 +w′
T+h|T ŷT+h|T + ϵT+h, (1)

where ŷT+h|T are past individual forecasts.

Some restrictions may still be imposed on w′
T+h|T . For instance, a constant term can be

omitted, and/or the weights can be adjusted so that their sum is one. In this study, the

unrestricted specification of Equation 1 is chosen, thus the weights correspond to unrestricted

OLS estimations.

The use of regression-based weights for forecast combinations has a long history. Both ad-

vantages and limitations of this approach have already been examined in the last century. One

of the critiques is shown in De Menezes et al. (2000). While exploiting the unrestricted re-

gression, one should address potential multicollinearity and serial correlation in forecast errors.

These challenges are assumed to be mitigated when combining this approach with RSM, as

discussed later.

Upon establishing the unrestricted regression-based weighting method, another concern

arises. What if the total number of ŷT+h|T is exceptionally huge? In this case, a simple

OLS estimation becomes impractical, particularly when the number of forecasts (N) exceeds

the number of observations in the training set (n). It makes sense to use some variable selec-
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tion methods, such as Least Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani,

1996), to end up only with a few individual forecasts.

Typically, when dealing with high-dimensional data (in the form of N > n), LASSO or

other penalized regressions have been extensively used for dimension reduction in many areas,

including economics. However, sometimes, it is necessary to use as much data as possible

without excluding variables by assuming non-sparsity. RSM can manage this level of selection

’strictness’ by utilizing all the available data.

2.2 Forecast Combination Puzzle

Although various forecast combination methods have been proposed over the past few decades,

the simple average (thus assigning equal weights to each forecast) tends to perform similarly

to (or even better than) more sophisticated aggregation approaches. This fact has perplexed

researchers, who have been trying to find a prolific answer to this paradox. Stock and Watson

(2004) studied this phenomenon. In their paper, the term “forecast combination puzzle” was

introduced.

Indeed, one should expect some gains in terms of forecast accuracy when using more rigorous

tools for forecast combination than just averaging. Moreover, theoretical results for some

approaches have been formally derived, proving this initial claim. However, often, a simple mean

overshadows other weighting schemes. Again, Wang et al. (2023) present an excellent summary

of why the “forecast combination puzzle” holds empirically is presented. To summarize, one

possible explanation is that the weights are misspecified or wrongly computed due to, for

instance, structural changes. Alternatively, benefits from using a sophisticated combination

may be relatively small. Thus estimation per se overwhelms the potential gains.

However, if individual forecasts come from different sources or models, the variance can be

high due to some outliers. If the number of outliers is high and they are not equally distributed

around zero, then averaging over this forecasting set may be inefficient. Although taking a

median can arise as a potential method to produce a final prediction, as used in Stock and

Watson (1999), it does not indicate how varied the individual predictions are in the set.

Using RSM for forecast combination allows for relying on the mean even in the presence

of outliers in the initial set. This is achieved by obtaining a new set of forecasts based on the

initial one, which is supposed to be distributed so that taking a mean makes sense and provides

good empirical performance.
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2.3 Random Subspace

Initially, RSMs appeared in the field of ML but had little application in macroeconomic fore-

casting. Ho (1998) introduced this approach to train tree models. Later, Bay (1998) extended

the same logic to the nearest neighbor classifiers. Wichitaksorn et al. (2023) applied RSM to

feature selection in a logistic regression framework. Recently, random or complete1 subspace

methods have become a powerful tool used in macroeconomics (Elliott et al. (2013), Kotchoni

et al. (2019), Pick and Carpay (2022)) and finance (Meligkotsidou et al. (2021)). Some other

examples of papers utilizing subspace methods can be found in Boot and Nibbering (2020).

RSM is a randomized reduction method in which a small number of indicators are (ran-

domly) selected to estimate a lower dimensional problem. This procedure is repeated sufficiently

to produce many approximations to the initial – sometimes infeasible to calculate directly –

model. Finally, the forecasts from each low-dimensional model are combined (averaged). This

allows for reducing forecast variance while utilizing all available information.

More formally, suppose that the data-generating process (DGP) is defined as follows:

yt+1 = x′
tβ + ϵt+1, (2)

for t = 1, · · · , T , x′
t is a vector of predictors in RN , ϵt+1 ∼ iid(0, σ2).

Initially, this model has been proposed to use observed time series to predict the target.

Instead, this approach is used for the forecast combination. To draw a parallel with previous

sections and align the notation, in Equation 2, x′
t corresponds to the N -dimensional set of

individual forecasts. In contrast, the n-dimensional vector yt+1 is the final prediction of the

independent variable.

As discussed previously, when the number of estimated coefficients is large, it is either

impossible to run OLS, or there is a high variance in the latter, which can significantly decrease

the forecast accuracy. To overcome both potential challenges, following Boot and Nibbering

(2019), it is possible to make a projection of the N -dimensional vector xt onto a k-dimensional

subspace using a permutation matrix, denoted Ri ∈ RN×k, such that:

x̃′
t = x′

tRi (3)

A permutation matrix Ri is responsible for randomly selecting (without replacement) a

subset of k predictors of all N covariates. To illustrate this idea, imagine a simple example

1Complete subspace methods imply combining (averaging) a given set of predictors forecasts from all possible

linear regressions
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where there are N = 5 total number of variables and k = 3 of those are drawn. One possible

Ri can look like as follows (Boot and Nibbering, 2020):

Ri =



0 1 0

0 0 0

1 0 0

0 0 1

0 0 0


(4)

Often, a scaling factor of
√

N
k
is premultiplied to satisfy specific desirable statistical prop-

erties (Drineas et al., 2006). However, these properties seem to be redundant in this setting,

so this factor will be omitted from now on2.

Notably, there are different methods to generate Ri. Instead of selecting a subset of co-

variates, weighted averages can be used to construct a different set of predictions. Weights

are chosen randomly from a normal distribution. Moreover, the proposed specification of RSM

implies that the selection is carried out using a uniform distribution (the probability that a

given variable is selected is equal across the covariate set). It is also feasible to use importance

sampling probabilities or leverage scores (Mahoney et al., 2011)3.

Assigning an equal probability to each covariate can be partially explained by the following

logic. Suppose there is a concern that, for a given model, randomly selected covariates might

be less relevant than the rest of the pool. At the same time, most (if not all) of the time series

used for macroeconomic predictions are correlated. This fact hints at two possible conclusions.

First, a “less” relevant covariate is likely correlated with one that has more predictive power.

Moreover, repeating this procedure – drawing variables randomly and averaging results over

each iteration – makes the model less prone to “uninformative” variable selection.

Conditional on a drawn Ri, a k-dimensional vector of OLS coefficients β̂i can be obtained

as well as a single aggregated forecast value of ŷt+1. Both statistics are of interest. First, by

averaging different ŷt+1, RSM could benefit forecast aggregation by providing better predic-

tions compared to more standard metrics. Later, the forecast performance of this method is

demonstrated and compared to benchmarks. Second, to set up the connection between RSM

and SVD, a subspace estimation of an OLS coefficient for a given variable xj is required. To

achieve this, the mean of the OLS coefficients for a variable xj across all iterations was used

2For instance, a similar approach has been used in ?.
3It is worth mentioning that leverage scores are commonly used when randomly selecting rows rather than

columns.
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when xj was selected. That is, suppose that xj was chosen nxj
times. Thus, the following

estimation can be obtained:

β̂xj
=

1

nxj

nxj∑
r=1

β̂r
xj
, (5)

where β̂r
xj

corresponds to the OLS coefficient for a r-th iteration, when xj is selected.

3 Feature Importance

One common assumption is that ML can improve various research tasks, including forecast-

ing while handling high-dimensional data. However, often, the results obtained are somewhat

difficult to explain. Even though extensive literature suggests that ML is superior to more tra-

ditional approaches, the inability to explain final estimations (the so-called black box critique)

has been a significant obstacle to adopting ML (Molnar, 2020).

Consequently, various approaches have been developed to interpret different ML estimations.

Generally, the latter can be split into several subcategories:

• Model-specific/ Model-agnostic

• Local / Global

The first item refers to model selection. A valuable feature of model-agnostic interpre-

tation approaches is that they can be applied to any ML model, unlike their counterpart

(model-specific). Thus, model-agnostic methods are significantly more flexible. In Ribeiro

et al. (2016a), the advantages of using model-agnostic models are summarized below:

• Model flexibility: The interpretation method is used with any ML model regardless of

complexity.

• Explanation flexibility: One can choose a specific form of explanation, depending on the

nature of the problem.

• Representation flexibility: The explanation system should be capable of using various

feature representations.

Interpretability models can also be either local or global. Local interpretation methods

tend to explain individual features or predictions. However, global ones are exploited when

describing the average behavior of an ML model, which is why they are particularly useful
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when a modeler wants to understand the general mechanisms in the data (Molnar, 2020).

However, as mentioned in Buckmann et al. (2022), ML models are (highly) nonlinear, meaning

a global measure can lead to inconclusive results when evaluated across differing domains of

the input space.

Thus, nearly every interpretation method falls into the intersection of the two previously

mentioned subcategories (model-agnostic/model-specific and local/global). For example, the

partial dependence plot illustrates the marginal effect of one or two features on the predicted

outcome (Friedman, 2001). This approach is model-agnostic and global. However, neural

network layer visualization, as used in Zintgraf et al. (2017), on the other hand, is model-

specific (can be applied only to deep neural networks) and global.

In this paper, the main focus is on the interpretation metrics, which are both model-agnostic

and local. This intersection allows one to obtain the contribution of each individual prediction

to the final forecast while maintaining the advantage of not being restricted to a specific model

type. Two potential candidates are Local surrogate models (LIME) (Ribeiro et al., 2016b)

and Shapley values. The latter is chosen because, as described later, Shapley values guarantee

that the difference between the final prediction and the historical average prediction is fairly

distributed among the covariates, which is not always true for LIME. This property is vital when

using Shapley values for macroeconomic forecasting. Moreover, Shapley values are associated

only with the regression coefficients in linear frameworks. Consequently, it is straightforward

to connect Shapley values to RSM.

3.1 Shapley Value Decomposition

Upon applying the concept of feature importance to a macroeconomic forecasting setting, one

may explicitly ask how important a given variable is to producing a predicted value of a target

series. Interestingly, one possible answer to this question comes from a different field of study:

game theory.

Shapley et al. (1953) introduced a solution to the problem of fairly dividing a joint pay-

off across all individual players in a cooperative game. For almost six decades, this concept

has had nothing to do with forecasting literature. This connection remained unexplored until

Strumbelj and Kononenko (2010) established a connection between players and variables used

for forecasting, as well as the pay-off and a final prediction.

Following Buckmann et al. (2022), it is possible to define a contribution of variable k in
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observation xi and model f :

ϕS
k (xi; f) =

∑
x′⊆C(x)\{k}

|x′|!(|N | − |x′| − 1)!

|N |!
[f(xi|x′ ∪ {k})− f(xi|x′)], (6)

where C(x) \ {k} corresponds to the set of all possible combinations of variables excluding k,

and |x′| is the number of variables included in the combination.

Like initial idea, SVD represents a weighted sum of marginal contributions of a given variable

(player) to all possible combinations excluding this variable. In this study, SVD is used for

forecast combinations. It means that a given variable, in this case, is an individual forecast.

Therefore, the contribution of an individual forecast to the final prediction can be obtained.

Buckmann et al. (2022) described obstacles when estimating Equation 6. There are two

major issues. As stated earlier, the number of possible combinations with l variables is 2l.

Thus, it grows exponentially. With sufficiently large l, evaluation of all possible combinations

seems infeasible. Additionally, estimating the term f(xi|x′) is typically challenging (unless a

feature independence is assumed). These problems, in principle, can be avoided if tree-based

(see Lundberg et al. (2020)) or linear frameworks are used. In the following subsection, SVD

in a linear setting is described and a connection is established between SVD and RSM.

3.2 SVD and RSM

In this subsection, the connection between RSM and SVD is introduced. In a linear framework:

f̂(x) = β0 + βx1x1 + · · ·+ βxN
xN (7)

The contribution ϕj of a j-th feature xj on the total prediction f̂(x) is the difference between

the feature effect minus the average effect. More formally, one could express it as follows:

ϕj(f̂) = βxj
xj − E(βxj

Xj) = βj[xj − E(Xj)] (8)

Let us combine this decomposition with RSM. Notably, to obtain ϕj, one only misses the

OLS coefficient βxj
. However, directly obtaining βxj

may be complicated in a high-dimensional

case. RSM can assist in addressing this issue.

To illustrate this idea, suppose a variable xj was selected 50 times within RSM. This implies

that one has 50 different estimations of βxj
, each based on different subsamples. However, the

term [xj − E(Xj)] remains the same across all the iterations. Thus, it is possible to obtain

an averaged contribution of ϕj by averaging across different realizations of estimated βxj
, as

depicted below:

ϕ̄j = β̂xj
[xj − E(Xj)], (9)
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where β̂xj
is the average OLS coefficient corresponding to different draws, defined in Equation

5.

Recall that under a standard linear framework, SVD possesses a valuable characteristic

– the difference between the final prediction and the historical average predictions is fairly

distributed among the covariates (individual forecasts). Maintaining this property is crucial

when combining SVD with RSM, as it is not inherently fulfilled by default.

The explanation is based on the following observation: β̂xj
and the final prediction f̂(x)

are averaged across different numbers. That is, β̂xj
is divided by the nxj

, the number of times

a variable has been selected. Meanwhile, f̂(x) is divided by M , where M is the number of

iterations. To satisfy the property, one should calculate the following value:

ϕRSM
j =

nxj

M
ϕ̄j (10)

It is possible to interpret ϕRSM
j as an (average) Shapley value corresponding to the variable

xj in the RSM aggregation framework. It is worth observing that if a variable xj is not selected

in the r iteration using the approach, this implies that the corresponding coefficient βr
xj

= 0.

This means that for any xj, there are nxj
non-zero βr

xj
and M − nxj

amount of coefficients,

which equal to zero.

4 Data and Methods

For the empirical application, the monthly dataset FRED-MD provided by McCracken and Ng

(2016) to nowcast the quarterly US GDP growth rate was used.4 In total, this resulted in 117

monthly indicators, which are used in the study. The evaluation period is Q4 1988–Q1 2023

(138 quarters). Finally, an out-of-sample forecast is performed.

One of the main advantages of the proposed methodology is that it is model-agnostic. This

indicates that the nature of the set of predictions is not critical. However, a relatively large

number of forecasts must be generated. For example, the Survey of Professional Forecasters

(SPF) does not fulfill the desired property as the participants may change from one wave to

another. As a result, a history of predictions for a given forecaster could often be too short.

Following Andreou et al. (2013), it is possible to consider only one indicator at a time to

predict a target variable. Under these settings, by exploiting bivariate methods, one can obtain

4All three months within a quarter of each time series are assumed to be known. It means, in this paper, the

ragged edge problem, which appears with differences in publication lags among the variables is not considered.

This assumption seems less restrictive for the US case than for other countries.
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as many forecasts as there are independent variables. In principle, any model can be used to

generate bivariate predictions. For this purpose, a nowcasting model based on a generalized

regression neural network (GRNN) is applied, as described in Mart́ınez et al. (2022).

There are several reasons for selecting this method. First, GRNN is non-parametric, easy to

compute, and generally more flexible than usual parametric approaches. Moreover, the initial

distribution of forecasts, as shown in Section 5.2, is characterized by having outliers. The

presence of outliers may cause issues while combing forecasts by assigning equal weights (i.e.,

by taking a mean). Even if outliers are discarded, the prevalence of indicators from the same

group can result in a skewed distribution. RSM can be particularly effective in coping with

these scenarios. Finally, It is shown that a median of the set generated by GRNN can produce a

reliable GDP nowcast for Germany (Holtemöller and Kozyrev, 2024). However, no such results

are available for the US data.

First, the initial model is estimated to study the forecasting performance of the GRNN

approach. Later, a slightly modified variable selection method is exploited, as described in

Medeiros et al. (2021), to study the effect of reducing a set of forecasts on forecast quality. Then,

RSM was applied to carry out forecast aggregation. Finally, based on the RSM estimations,

SVD and its dynamics over time were analyzed.

GRNN is a variation of a radial basis neural network proposed by Specht et al. (1991). It

relies on the idea that a prediction for a given data point xi can be computed as a weighted

average of all previous values based on their proximity to xi. This model shares some similarities

with the Nadaraya-Watson Gaussian Kernel Regression estimator. To obtain a prediction, only

two parameters need to be defined: the number of lags (d) and a smoothing parameter (σ).

Suppose a training set consisting of n training patterns {x1, x2,. . . , xn} and corresponding

targets {y1, y2,. . . ,yn} are given. A corresponding weight wi could be expressed as follows:

wi =
exp(− ||x−xi||2

2σ2 )∑n
l=1 exp(−

||x−xl||2
2σ2 )

, (11)

where || · || is the Euclidian distance.

The forecast is a weighted sum of training target outputs:

ŷ =
n∑

i=1

wiyi, (12)

where yi is the target output for training data xi.

Some adjustments are proposed to apply a univariate GRNN approach to mixed-frequency

and multivariate settings. First, GRNN cannot predict an observation that is out of range of
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previous observations. Thus, the additive and exponential data transformations are introduced,

see Mart́ınez et al. (2022). Then, actual (level) values of monthly time series from the FRED-

MD yt,n, n = 1, . . . , N are aggregated to match the quarterly frequency of GDP. The aggregated

time series is denoted as yQt,n, and a set of the aggregated time series Syt = {yQt,1, y
Q
t,2, ..., y

Q
t,N}.

Additionally, ỹQt,n is defined as follows:

ỹQt,n =
yQt,n

GDPt

∀yQt,n ∈ Syt (13)

Each element ỹQt,n ∈ Sỹ is separately predicted by a univariate GRNN model.5 The obtained

nowcast and a set of all ”bivariate” nowcasts are denoted as ˆ̃yQt,n and Sˆ̃y = {ˆ̃yQt,1, ˆ̃y
Q
t,2....ˆ̃y

Q
t,N},

respectively. Lastly, it is possible to retrieve GDP nowcasts by using the following relation:

ĜDP t,n =
yQt,n
ˆ̃yQt,n

(14)

Thus, one ends up with N different ”bivariate” GDP nowcasts for a given quarter t. All

the nowcasts are collected in a set SGDP = {ĜDP t,1, ĜDP t,2...ĜDP t,N}.

To summarize, the following algorithm is proposed:

• Obtain any set of individual forecasts (in this case, by applying a univariate GRNN

model);

• Apply RSM with different k and fixed M .

• Estimate ϕRSM
j to analyze the contribution of each individual forecast to the final predic-

tion.

5 Empirical Results

5.1 GRNN Nowcasting and Variable Selection

First, it is investigated whether nowcasting the GDP using GRNN could improve forecast

precision compared to an AR(1) benchmark. The forecasting performance of the models is

evaluated by using two measures, i.e., Relative Mean Absolute Forecast Error (rMAFE) and

Relative Root Mean Squared Forecast Error (rRMSFE). Both metrics are defined as follows6:

5The selection of d, σ, and how to deal with non-stationary data is described in Mart́ınez et al. (2022).
6Note, when nowcasting h = 0
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rMAFEh =

∑N
i=1 |yi,t+h − ŷGRNN

i,t+h|t |∑N
i=1 |yi,t+h − ŷ

AR(1)
i,t+h|t|

=
MAFEGRNN

h

MAFE
AR(1)
h

rRMSFEh =

√∑N
i=1(yi,t+h − ŷGRNN

i,t+h|t )
2√∑N

i=1(yi,t+h − ŷ
AR(1)
i,t+h|t)

2

=
RMSFEGRNN

h

RMSFE
AR(1)
h

,

(15)

The second and the third columns in Table 1 depict the forecasting performance relative

to AR(1) of the GRNN approach. As shown, both rMAFE and rRMSFE are below one,

indicating that GRNN outperforms AR(1) regarding forecast accuracy. The notable difference

between rMAFE and rRMSFE means that the AR(1) is more sensitive to outliers or that

there are significant deviations from standard behavior. Intuitively, this could be explained by

the relatively large evaluation period, which includes a few periods when GDP dynamics were

far from being “normal” (to name some, the financial crisis of 2008, the COVID recession, and

the recovery afterward).

Model Amount rMAFE rRMSFE

Multiplicative Full 0.710 0.429

Additive Full 0.696 0.428

Multiplicative Reduced 0.699 0.426

Additive Reduced 0.700 0.455

Table 1: The Best RSM Aggregated Models (ranked by rMAFE)

Even though the introduced approach can handle sufficiently large datasets, it may seem

particularly instrumental in eliminating some of the most irrelevant (redundant) forecasts. For

instance, a similar idea is described in Ding et al. (2023), where a superior subgroup of forecasts

was to be discovered. However, this path is not followed in this study because the relationships

between variables may not hold over time. It is impossible to know in advance what kind of

data would be useful to predict the GDP growth rate within a quarter. This means that relying

on the historical accuracy of the individual forecast does not guarantee its relevance, especially

during different shocks. Therefore, only irrelevant forecasts for a given quarter are eliminated.

The variable selection method used in this study is similar to that employed in Bai and Ng

(2008) for target predictors and in Medeiros et al. (2021) for complete subset regressions. Given

the close relationship between complete subset regressions and RSM, using similar variable

selection methods is reasonable. The variable selection could be described as follows:

13



1. Run bivariate regressions of each individual forecast (without any additional lags or an-

other covariate) on the observed values.

2. Store the t-statistics of each variable and rank them by absolute value.

3. Select only those variables that are significant at the 1% level.

The last step is modified compared to Medeiros et al. (2021). When using complete subset

regressions, having a small number of indicators is crucial. Which is why, initially, only ñ

variables with the highest t-statistics were chosen. However, since RSM overcomes the problem

of high-dimensional data, it is possible to be less strict and select every statistically significant

forecast. This procedure is applied for each period in the evaluation set. That means that the

number of forecasts used under the variable selection procedure differs occasionally.

The third and the fourth columns in Table 1 show the forecasting performance of the GRNN

approach relative to AR(1) based on the reduced dataset. The forecasting performance is almost

unchanged. That is why, it is possible to alter the amount of forecasts while preserving or even

improving the forecasting performance.

5.2 RSM Aggregation Performance

As shown previously, taking a median of the individual forecasts is useful when nowcasting using

GRNN. However, can better estimations be achieved using a less “naive” approach? Figure 1

presents a histogram of GRNN predictions (for Q1 2023) to illustrate the intuition and why it

may be the case.
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Figure 1: Histogram of GRNN predictions

Histogram of RSM predictions
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Figure 2: Histogram of RSM predictions

Figure 1 shows that even though the majority of the individual forecasts lie within the

“usual” GDP growth rate bounds (e.g., between -2 and 2), there are some outliers. Due to

14



these outliers, taking a mean of the set becomes uninformative. Although the median works

empirically better than the selected benchmark, as described in the previous section, there

appears to be room to improve the forecasts. To further clarify, Figure 2 depicts the distribution

of the forecasts using RSM for the same set of individual forecasts.

The distribution mentioned in Figure 2 looks similar to a normal one with almost no severe

outliers. Thus, the RSM approach can serve to smooth the initial forecasts’ distribution (if

necessary, as in this case). That is why one should not be concerned with taking a mean of

these forecasts as they are all centered around it. Undoubtedly, decision-makers would likely

prefer working with normally distributed forecasts rather than seeking various methods to

exclude potential outliers.

To study RSM for forecast aggregation, 50 different models are run, varying across dif-

ferent characteristics. More specifically, different combinations of the following features were

estimated:

• Model specification: GRNN Additive or GRNN Multiplicative

• Type of data: Level or growth rates. Since nowcasting using GRNN aims to predict the

level value of a target variable, it is possible to convert level data to the corresponding

growth rates. Intuitively, it is more useful to decompose the difference between the final

and the historical average predictions using growth rates since many indicators (including

GDP) depict a linear or exponential trend.

• Amount of data: Full or reduced according to a variable selection procedure, as de-

scribed in Section 5.1.

• The number of indicators k: 5, 10, 20, 30, 40.

Table 2 presents the best RSM aggregated models across various model specifications, data

selections, and values of k in terms of rMAFE and rRMSFE. Notably, the RSM aggregation

method manages to achieve lower values for rMAFE and rRMSFE for selected specifications.
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Model Type Amount Selected k rMAFE rRMSFE

Additive Growth rates Reduced 10 0.556 0.299

Multiplicative Growth rates Reduced 10 0.557 0.302

Additive Growth rates Full 10 0.561 0.321

Additive Level Reduced 10 0.568 0.3

Additive Growth rates Reduced 5 0.570 0.334

Multiplicative Growth rates Reduced 5 0.572 0.34

Additive Growth rates Reduced 20 0.581 0.332

Multiplicative Level Reduced 10 0.583 0.306

Additive Level Reduced 20 0.584 0.306

Table 2: The Best RSM Aggregated Models (ranked by rMAFE)

Based on Table 2, the results can be summarized as follows:

• Model: Both additive and multiplicative specifications perform relatively well. However,

additive specifications seem to be slightly superior. The best model is GRNN Additive.

When growth rates are used as input data, data is reduced, and k = 10 are taken for each

iteration. However, GRNN Multiplicative with the same choices selected is the second

best model with a slight decrease in both forecasting error statistics.

• Type of data: Forecasting the GDP growth rate based on growth data is a more ap-

pealing strategy rather than using level values. Correspondingly, this makes it possible

to use growth rates because SVD is more tractable while explaining the discrepancy, as

mentioned above.

• Amount of data: The forecasting performance based on a reduced dataset outperforms

the same model trained by using the entire dataset. This potentially indicates that

redundant forecasts exist, and the introduced variable selection scheme can detect and

eliminate those for any quarter.

• Selected k: The results suggest that taking fewer individual forecasts for RSM aggrega-

tion may increase the forecasting performance. These findings contradict those mentioned

in Boot and Nibbering (2019). They suggest that the dimension of the subspace should

be chosen relatively large. This discrepancy between the results can be explained by two

observations. First, RSM aggregation is performed on an evaluation set, which is rather
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small for effectively estimating OLS using a relatively large k. The second reason may be

related to the type of data used. Initially, RSM is constructed using actual observations

rather than derived forecasts based on these observations. That is, on average, most of

the forecasts are assumed to be close to the observed values of the independent variable.

Thus, a lower amount of covariates is required to undercover the dynamics of the target

variable.

5.3 OLS Coefficients

Before analyzing SVD, some points should be mentioned regarding the distribution of OLS

coefficients for a given variable under RSM aggregation. To my knowledge, the statistical

properties of β̂xj
, as defined in Equation 5, have not been well-studied. Buckland et al. (1997)

derived an expression for the variance of the estimator under a couple of strong assumptions.

However, no studies were conducted regarding the distribution or the bias of β̂xj
. In this

subsection, the distributions of β̂xj
, based on different subsamples, are described empirically.

For this purpose, using the best-performing model, the most and the least volatile distri-

butions, that arise from predictions of the Q1 2023 US GDP growth rate (the last period in

the evaluation sample) are selected. Some other distributions can be seen in Appendix A.

Figure 3 depicts the distribution of OLS coefficients of the Total Nonfarm Payroll, denoted

as PAYEMS. This is a measure of the number of U.S. workers in the economy that excludes

proprietors, private household employees, unpaid volunteers, farm employees, and the unincor-

porated self-employed7. Figure 4 illustrates the same distribution for Reserves of Depository

Institutions8, denoted as TOTRESNS.

7https://fred.stlouisfed.org/series/PAYEMS
8https://fred.stlouisfed.org/series/TOTRESNS
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The distribution of PAYEMS OLS coefficients
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Figure 3: PAYEMS OLS coefficients

The distribution of TOTRESNS OLS coefficients
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Figure 4: TOTRESNS OLS coefficients

Figure 3 shows that in some cases β̂xj
may indeed be volatile. The variance of β̂xPAY EMS

across different iterations is 0.649. However, this volatility is seemingly caused by some outliers,

whose proportion to the total number of estimations is relatively small. Most of β̂xPAY EMS
,

as observed, are between zero and one. However, in seven out of 137 cases, β̂xPAY EMS
was

estimated to be greater than two. This may occur when randomly selected variables, apart

from PAYEMS, are less informative. In this case, PAYEMS has a greater weight than all

other covariates. However, this occurs not often because, on average, all chosen variables are

supposed to be more or less relevant for predicting the independent variable. Eventually, some

other employment-related variables possess huge volatility regarding OLS coefficients. Thus,

All Employees, Manufacturing9, denoted MANEMP, and All Employees, Durable Goods10,

denoted DMANEMP, provide the third and the fourth most volatile OLS estimations (0.467

and 0.185, respectively).

On the other hand, one may notice that the distribution depicted in Figure 4 appears

similar to Normal distribution with low variance (5.746× 107). For most individual forecasts,

the distribution of OLS coefficients behaves similarly. The average variance of OLS estimations

across all variables is 0.04. This fact, along with the bell-curved distribution, suggests that, on

average, almost all β̂r
xj

and β̂q
xj

for r ̸= q (OLS coefficients associated with different iterations)

are strongly correlated, as expected.

In conclusion, based on the empirical evidence, β̂xj
is assumed to behave in a plausible way

to use them for SVD.

9https://fred.stlouisfed.org/series/MANEMP
10https://fred.stlouisfed.org/series/DMANEMP
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5.4 SVD

In the previous sections, RSM aggregation is shown to improve forecasting performance per

se. However, this forecast combination method also allows analysis of each individual forecast

contribution to the final prediction. This may be particularly interesting for various decision-

makers since SVD can determine the relative importance of a given forecast. Importantly, the

more covariates are used for predictions, the less the corresponding contribution will be. Even

though the proposed mechanism allows for the use of arbitrarily large numbers of individual

forecasts, in many practical cases, this amount can be limited to a much smaller number (for

instance, by prior knowledge).

In this study, all available forecasts (upon variable selection) are used to be more flexible.

As previously mentioned, it is impossible to know in advance which indicator will be most

beneficial for nowcasting GDP in a given quarter. That is why, it is expected that ϕRSM
j is

typically close to zero.

Below, ϕRSM
j over the entire evaluation sample is presented for two different individual

forecasts, based on industrial production: Total Index11, denoted INDPRO, and Average Weeks

Unemployed12, denoted UEMPMEAN, to study the potential differences in the underlying

dynamics. These values were obtained by the best-performing model (GRNN Additive, reduced

data set of growth rates, k = 10). Similar plots for some other variables can be found in

Appendix B.
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Figure 5: Average Shapley Value of INDPRO
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Figure 6: Average Shapley Value of UEMPMEAN

In Figure 5, ϕRSM
INDPRO is presented. Industrial production is a crucial variable for assessing

current economic activity see, for instance, Eraslan and Götz (2021). That is why, it is unsur-

11https://fred.stlouisfed.org/series/INDPRO
12https://fred.stlouisfed.org/series/UEMPMEAN
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prising that the forecasts based on this specific variable have been chosen for each quarter over

the evaluation set. Recall that Shapley values, defined in Equations 9 and 10, depend on the

feature effect minus the average effect. Thus, the contribution of the individual forecast is high

when this difference is high (given that OLS coefficients are relatively small, which is usually

the case).

A couple of extreme values become clear from the graph: they took place during 2008-2009

and the first quarters of 2020. These ϕRSM
INDPRO align with what was occurring during these

periods. In 2009, there was a recession after the financial crisis, and in the first quarter of 2020,

the COVID pandemic caused a significant decrease in production. Thus, the contribution of

industrial production was negative during that time. Moreover, the negative ϕRSM
INDPRO observed

for 2001 can be attributed to a recession that occurred in that year (Brown, 2009). Meanwhile,

a rebound in economic activity was observed in the second quarter of 2020, reflected in the

industrial production forecast. Overall, it is possible to notice that, on average, industrial

production contributes quite significantly.

Meanwhile, Figure 6 shows ϕRSM
UEMPMEAN . Compared to the previous case, the first difference

is that UEMPMEAN was not selected until 2009. It may hint at the fact that previously this

variable did not provide reliable forecasts. Furthermore, as shown on the y-axis, the contribution

of the forecast based on UEMPMEAN is almost negligible. This indicates that UEMPMEAN

typically reflects an average GDP growth rate for any given quarter, thus failing to capture

various fluctuations of GDP over time.

Additionally, one can examine the ϕRSM
j across different covariates for some of the most

challenging quarters, that is Q1 2009 and Q2 2020 to study the relative variable importance.

In Figure 9, SVD for Q1 2009 is presented. The most negative contribution came from the

forecasts, derived by production-related variables (IPDMAT13 (Industrial Production: Durable

Goods Materials), INDPRO, IPMAT14 (Industrial Production: Materials), IPMANSICS15 (In-

dustrial Production: Manufacturing).

13https://fred.stlouisfed.org/series/IPDMAT
14https://fred.stlouisfed.org/series/IPMAT
15https://fred.stlouisfed.org/series/IPMANSICS
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Figure 8: SVD for Q2 2020

Figure 10 presents the same decomposition for Q2 2020. Some industrial production vari-

ables are depicted here in a way that is similar to the 2009 recession. However, more labor-

related forecasts negatively contributed to (PAYEMS, SRVPRD16 (All Employees, Service-

Providing), UEMP5TO1417 (Number Unemployed for 5-14 Weeks), UEMPLT518 (Number Un-

employed for Less Than 5 Weeks). Some other extreme values of ϕRSM
j over the evaluation set

are presented in Appendix C.

6 Conclusion

In this study, an opportunity to use a forecast aggregation method based on RSM is explored,

and the connection between RSM and SVD is provided. First, a potential implementation of

RSM for forecast combination is analyzed. When the number of individual forecasts is relatively

large, it is possible to randomly and uniformly draw much smaller subsets of them to estimate

lower dimensional problems. This method circumvents high dimensionality and enables working

with non-sparse data. Forecasting performance can be improved using RSM rather than taking

a median of the initial set. Moreover, the introduced method allows for an average of the newly

produced forecasts to be taken. Alternatively, it is possible to transform a set of individual

predictions in a way that makes taking an average sensible, even if initially it does not produce

a reliable estimation. Thus, this contributes to the “forecast combination puzzle” literature.

A potential connection between RSM and SVD is addressed. It is possible to implement

SVD into the framework of RSM aggregation to study the relative importance of individual

16https://fred.stlouisfed.org/series/SRVPRD
17https://fred.stlouisfed.org/series/UEMP5TO14
18https://fred.stlouisfed.org/series/UEMPLT5
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forecasts, thus adding some interpretability to the final estimation. By decomposing the final

prediction, one can analyze each forecast contribution, which makes this method appealing to

governments and institutions. Specifically, SVD for the recession, which took place in 2009,

as well as the COVID-19 recession, are studied. The results indicate that both industrial

production variables and different employment covariates contribute the most.

There are some additional research questions not covered in this paper. Seemingly, there is

evidence that some indicators are more important than others. Thus, it may sound intuitive

to assign greater probabilities to those covariates that possess more forecasting power. Then,

if one can first select a smaller subset of forecasts to start with the corresponding SVD values

– the relative importance – may be increased in absolute terms. Finally, more research can be

conducted on the distribution of OLS coefficients within the RS method.
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Oliver Holtemöller and Boris Kozyrev. Forecasting economic activity using a neural network in

uncertain times: Monte Carlo evidence and application to the German GDP. IWH Discussion

Papers 6/2024, Halle Institute for Economic Research (IWH), 2024.

Rachidi Kotchoni, Maxime Leroux, and Dalibor Stevanovic. Macroeconomic forecast accuracy

in a data-rich environment. Journal of Applied Econometrics, 34(7):1050–1072, 2019.

Scott M Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M Prutkin, Bala Nair,

Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. From local explanations to

global understanding with explainable ai for trees. Nature machine intelligence, 2(1):56–67,

2020.

Michael W Mahoney et al. Randomized algorithms for matrices and data. Foundations and

Trends® in Machine Learning, 3(2):123–224, 2011.
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Appendices

A Different Distributions of OLS estimations

The distributions of OLS estimations based on different subsamples are further explored.The

focus is on the most and least volatile distributions. Figure 9 illustrates the OLS estimations

of New Privately-Owned Housing Units Started: Total Units in the Midwest Census Region19

(HOUSTMW). Meanwhile, Figure 10 represents the same statistics for CLAIMSx. Both dis-

tributions are among the least volatile ones.
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Figure 9: HOUSTMW OLS coefficients

The distribution of CLAIMSx OLS coefficients
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Figure 10: CLAIMSx OLS coefficients

The distribution of DMANEMP OLS coefficients
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Figure 11: DMANEMP OLS coefficients

The distribution of NDMANEMP OLS coefficients
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Figure 12: NDMANEMP OLS coefficients

19https://fred.stlouisfed.org/series/HOUSTMW
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Both of these distributions belong to the least volative ones (their respective variances are

1.53 ×106 and 3.25 ×106). As argued earlier, most covariates have a similar distribution with

almost no outliers, which may potentially affect the mean estimation.

Conversely, Figure 11 and Figure 12 display the distributions with the highest variance

(DMANEMP and All Employees, Nondurable Goods20 (NDMANEMP), respectively). As men-

tioned in the text, the most volatile distributions correspond to employment-related variables

for a given period. As shown, the number of outliers is lower compared to the PAYEMS case,

indicating that the role of such outliers is indeed negligible when dividing by the number of

iterations.

20https://fred.stlouisfed.org/series/NDMANEMP
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B Different ϕRSM
j over Time

Additional ϕRSM
j values are depicted to analyze the potential differences across different vari-

ables. Figure 13 presents SVD for Retail and Food Services21 (RETAILx). Forecasts, based

on this indicator, seem to be essential for nowcasting the US GDP growth rate. Consequently,

this covariate has a long history of being selected in the SVD analysis. The same conclusion

holds for All Employees, Retail Trade22 (USTRADE), as shown in Figure 14.
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Figure 13: ϕRSM
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Figure 14: ϕRSM
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Figure 15: ϕRSM
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Figure 16: ϕRSM
USGOV T

Recall, that the variable selection method proceeds to choose a different set of covariates for

a given quarter. Therefore, a given indicator may or may not be selected. This implies that if

ϕRSM
j values are plotted over time, there might be gaps when this variable was not selected for

nowcasting the US GDP growth rate These irregularities are depicted in Figure 15 for the SVD

21https://fred.stlouisfed.org/series/RSAFS
22https://fred.stlouisfed.org/series/USTRADE/1000
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values of FEDFUNDS and in Figure 16, which presents the contributions of All Employees,

Government23 (USGOVT) are presented. It is particularly noteworthy that FEDFUNDS rarely

reflects the dynamics of the US GDP growth rate according to the variable selection procedure.

It was selected only for seven quarters out of 138. However, it was notably selected during the

period leading up to the infamous 2011 United States debt-ceiling crisis. During that period,

the contribution of FEDFUNDS seems to be significant.

23https://fred.stlouisfed.org/series/USGOVT
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C Lowest and Highest ϕRSM
j over Time

Lowest ϕRSM
j Highest ϕRSM

j

Variable Value Period Variable Value Period

PAYEMS -1.97 Q2 2020 DPCERA3M086SBEA 0.47 Q3 2020

FEDFUNDS -0.58 Q4 2010 MANEMP 0.13 Q1 1991

CLAIMSx -0.35 Q1 2020 INDPRO 0.13 Q4 1994

IPDMAT -0.32 Q1 2009 USGOOD 0.13 Q1 1993

CP3Mx -0.24 Q2 2010 RETAILx 0.13 Q2 2022

Table 3: Some of the lowest and highest ϕRSM
j
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