
Predictive Enforcement∗

Yeon-Koo Che, Jinwoo Kim, Konrad Mierendorff†

September 13, 2024

Abstract

This paper examines the use of data-informed predictions to guide law enforcement
efforts. Such “predictive” enforcement can lead to data being selectively and dispro-
portionately collected from neighborhoods targeted for enforcement by the prediction.
Predictive enforcement that fails to account for this endogenous “datafication” may lead
to the over-policing of traditionally high-crime neighborhoods and performs poorly–in
particular, in some cases as poorly as if no data were used. By incorporating the impact
of enforcement on criminal incentives, we identify additional benefits of using data effi-
ciently for deterrence.
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1 Introduction

Data-guided prediction algorithms are becoming increasingly prevalent in law enforcement. In
major U.S. cities, predictive tools like Risk Terrain Modeling and Spatio-Temporal Modeling
are now commonplace in police departments, helping to forecast crime “hot spots” and guide
resource allocation (See Pearsall (2010); Perry, McInnis, Price, Smith, and Hollywood (2013);
Brayne (2020)).1 Beyond crime prevention, data analytics is also leveraged by credit card
companies to detect fraud and by municipal governments to enforce regulations. A well-known
anecdote involves New York City’s inspection of “illegal conversions” (i.e., dividing a dwelling
into smaller units for additional rental income), which pose significant fire hazards, among
other problems. By linking various data sources and using them to predict likely violations,
the City’s analytics team achieved a five-fold improvement in inspection effectiveness.2

Despite the successes of predictive enforcement, it has also faced criticism. Concerns have
been raised about the reliability of prediction algorithms and their tendency to dispropor-
tionately target certain communities, particularly those that are non-white and low-income.
Critics argue that these algorithms, trained on historical data, may perpetuate existing biases.
Additionally, a self-reinforcing cycle can emerge: increased police presence in high-crime areas
leads to more arrests, justifying further police focus, and potentially creating a feedback loop
that amplifies disparities.3

This paper develops a theoretical framework to analyze predictive enforcement, focusing
on the inherent connection between enforcement actions and the collection of crime data, a
process we term datafication. Crime data is seldom collected randomly; it is often “selected”
by past enforcement and surveillance efforts. This creates a feedback loop where enforcement
influences the information gathered, which in turn informs future enforcement decisions. This
dynamics is particularly relevant for “victimless crimes” like drug offenses and prostitution,
where detection relies primarily on police efforts.

1Police departments have used in-house algorithms as well as commercially developed algorithms such as
PredPol, Palantir, Hunchlabs and IBM.

2“Before the big-data analysis, inspectors followed up the complaints they deemed most dire, but only in
13 percent of cases did they find conditions severe enough to warrant a vacate order. Now they were issuing
vacate orders on more than 70 percent of the buildings they inspected. By indicating which buildings most
needed their attention, big data improved their efficiency five-fold. ... Flowers and his kids looked like wizards
with a crystal ball that let them see into the future and predict the most risky places. They took massive
quantities of data lying around for years, largely unused after it was collected, and harnessed it in a novel way
to extract real value.” See Mayer-Schönberger and Cukier (2014).

3Lum and Isaac (2016) argue that this sort of feedback loop is a reason behind their finding that simulating
the PredPol algorithm using Oakland’s past drug arrests data leads to the concentration of patrolling in two
traditionally crime-prone areas, even though the estimated drug activities (based on national health and drug
use survey) are much more widely distributed over a large number of areas.
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We utilize a bandit model to capture the interplay between enforcement and data collec-
tion. Time is continuous. At each instant t ≥ 0 the policymaker (PM) allocates yt ∈ [0, 1] of
enforcement resources (e.g., police patrols) to a single “neighborhood” at costs cyt > 0. The
term “neighborhood” broadly represents any observable characteristic the PM might target,
such as location, demographics, or transaction types. The “cost” reflects the opportunity cost
of diverting resources from alternative neighborhoods (or other potential targets). The harm
from crime is mitigated with probability proportional to the allocated enforcement level yt.
Crime attempts themselves depend on an underlying crime condition, modeled as the arrival
of crime opportunities. The arrival rate of these opportunities is uncertain, varying between a
high rate λ > 0 in a “high-crime” state and zero in a “safe” state. The PM’s primary challenge
is to discern this unknown state, aided by crime data generated through past enforcement.

Our model builds upon the framework of Keller, Rady, and Cripps (2005) (henceforth,
KRC) but introduces two key distinctions. First, unlike in KRC, the state is not fixed but
instead transitions dynamically according to a continuous-time Markov chain. This “changing
world” approach reflects the reality of fluctuating crime conditions, influenced by factors like
foot traffic and evolving socioeconomic dynamics. Moreover, it serves a crucial analytical
purpose: in a fixed-state model, the value of learning vanishes as the true state is eventually
revealed. In contrast, our changing world model ensures the ongoing need for learning, allow-
ing us to examine the long-term value of information acquisition, a crucial aspect of predictive
enforcement.

Second, our model also endogenizes crime behavior based on criminals’ expectations about
enforcement. This makes the value of the “bandit arm” (enforcement activity) endogenous, as
the intensity of enforcement (pulling a bandit arm) influences crime behavior, thus changing
the PM’s reward from enforcement itself. The bandit problem then becomes part of strategic
interactions between policymakers and criminals. From an analytic standpoint, endogenizing
crime behavior enables us to study the role of predictive enforcement in crime deterrence, a
fundamental goal of law enforcement.

We analyze the optimal predictive (OP) policy and compare it with two benchmarks:
the non-predictive (NP) policy, which disregards past crime data, and the greedy predic-
tive (GP) policy, which uses predictions but ignores their impact on future data collection.
These benchmarks represent traditional and current practices in predictive enforcement, with
GP reflecting the common approach of using predictions for immediate goals without consid-
ering their long-term impact on data collection.

Our findings are as follows. First, we examine exogenous crime, where the probability
of committing a crime upon receiving an opportunity is fixed at x ∈ [0, 1]. Under NP, the
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PM chooses enforcement without using crime data, opting for full enforcement if the long-run
crime rate exceeds the cost, or equivalently if the stationary probability π0 of the high-crime
state exceeds the myopic cutoff, p̂M := c/(λx), and no enforcement otherwise.

In both the GP and OP policies, the PM updates her belief p about the likelihood of a
high-crime state based on crime data, particularly the timing of the last detected crime. She
then adjusts enforcement levels accordingly. Under GP, the PM uses a cutoff policy, enforcing
fully if the belief exceeds the myopic cutoff p̂M and not enforcing otherwise. The OP policy
also employs a cutoff structure, but its cutoff p̂ may differ from the myopic one, depending on
the crime rate λx relative to the cost c. If the crime rate is sufficiently low or sufficiently high,
the OP policy eventually converges to either no enforcement or full enforcement, respectively,
mirroring the outcomes of the NP and GP policies. This equivalence occurs because either
very high or very low crime rate leaves little ambiguity about what the optimal policy should
be, thus rendering prediction irrelevant.

When the crime rate is intermediate, prediction becomes valuable, depending on how
it is used for enforcement. In this scenario, the optimal cutoff p̂ is set below the myopic
cutoff p̂M to encourage more exploration, which GP, focused solely on exploitation, neglects.
Consequently, GP tends to under-enforce compared to OP, particularly when the opportunity
cost c is relatively high, namely when alternative neighborhoods have stably high crime rates.
This observation aligns with criticisms of predictive enforcement disproportionately targeting
such neighborhoods, even without inherent bias in the prediction algorithm. The issue stems
from GP’s insufficient exploration.

The success of predictive enforcement hinges on how predictions inform enforcement
choices. If learning stems solely from enforcement actions, the GP policy, despite utiliz-
ing predictions, fails to outperform the NP policy in the long run. The inherent feedback
loop between enforcement and exploration contributes to the suboptimality of the myopic GP
approach. If the PM can also learn passively, such as through community crime reporting,
GP can outperform NP. However, its performance approaches that of NP as passive learning
diminishes.

In Section 4, we endogenize the crime probability x ∈ [0, 1] by considering the potential
criminals’ incentives. The goal here is to study the deterrence effects of alternative enforcement
policies. We assume there exists a “deterring” enforcement level y ∈ (0, 1) such that criminals
commit crimes with certainty if they anticipate enforcement below this level, and refrain
from committing crimes if they anticipate enforcement above it. At y, criminals may choose
any crime probability. We assume that potential criminals lack access to crime data and
base their decisions solely on their prior expectations of enforcement. We then investigate a
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Markov perfect equilibrium where the PM’s strategy depends solely on her belief p about the
likelihood of a high-crime state.

Under the NP regime, neither the criminal’s strategy nor the PM’s strategy utilizes pre-
dictions based on crime data. This results in a classic inspection game scenario: if the cost of
enforcement c is not too high, both the PM and criminals adopt mixed strategies. The PM se-
lects y = y that leaves criminals indifferent, while criminals randomize with crime probability
x = c/(λπ0) that makes the PM indifferent across all enforcement levels, including y.

Under both GP and OP, given any crime probability, the PM’s optimal response is a
cutoff policy, as established in the exogenous crime analysis. Criminals, in turn, form their
expectations about the enforcement level based on the stationary distribution of the PM’s
belief updates and the associated enforcement actions, and they choose their optimal crime
probability accordingly. The equilibrium involves the joint determination of the enforcement
cutoff p̂ and the crime probability x. We demonstrate that the equilibrium crime probability
is lower under OP compared to GP, implying that OP outperforms GP, which, in turn, is
payoff-equivalent to NP. The intuition is that the PM, under OP, has additional incentives for
enforcement due to the information-gathering motive. This enhanced enforcement credibility
leads to greater deterrence and, consequently, a lower crime rate in equilibrium.

Finally, we examine the scenario where criminals also have access to crime data and
possess the same predictive capabilities as the PM. In this case, both the GP and OP regimes
lead to the inspection game equilibrium for each prediction about the state, resulting in
equivalent outcomes across all three regimes (NP, GP, and OP). This highlights that the
value of predictive enforcement for the PM relies on having an informational advantage over
potential criminals, which may diminish as criminals become more adept at utilizing data.

Related Literature. This paper contributes to the literature on enforcement, initiated
by Becker (1968),4 and inspection games, which study the interactions between enforcers and
those subject to enforcement.5 Our model offers a dynamic perspective on these models. While
several recent papers explore dynamic inspection models, focusing on the optimal frequency of
inspections (Dilmé and Garrett (2019), Varas, Marinovic, and Skrzypacz (2020); Wagner and
Knoepfle (2021); Ball and Knoepfle (2023)), our work distinguishes itself by emphasizing the
endogenous datafication process within a bandit framework. Specifically, we generalize the
planner’s problem in Keller, Rady, and Cripps (2005) by introducing a changing world and
an endogenously-valued arm. The concept of endogenous datafication has also been explored
in different contexts by Che and Hörner (2018) and Che, Kim, and Zhong (2020).

4See Polinsky and Shavell (2000) for survey.
5See Avenhaus, Von Stengel, and Zamir (2002) for a survey.
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Ichihashi (2023) explores predictive policing from an information design perspective, demon-
strating that withholding information about criminal types can enhance enforcement and de-
terrence. However, his model does not incorporate the dynamic feedback between enforcement
and information acquisition, which is central to our analysis. Lum and Isaac (2016) and En-
sign, Friedler, Neville, Scheidegger, and Venkatasubramanian (2018) examine this feedback
loop, highlighting potential errors in inference and prediction of actual crime activities. In
contrast, our model assumes a fully Bayesian policymaker who avoids such errors. Mohler,
Short, Malinowski, Johnson, Tita, Bertozzi, and Brantingham (2015) study the performance
of PredPol, a prominent predictive policing algorithm. Notably, our predictive policies (OP
and GP) share a qualitative feature with PredPol’s “earthquake model,” which predicts an
exponential decay in crime rates without new incidents. While PredPol directly assumes this
through a self-exciting process, our model derives it endogenously from Bayesian updating
about the changing state.

Our research also connects with the literature on racial profiling and algorithmic fairness.6

While we do not explicitly incorporate fairness into the PM’s objective, we draw implications
for fairness from the failure to consider endogenous datafication.

2 Preliminaries

2.1 Setup

A policymaker (PM) performs law enforcement in a “neighborhood” with a unit mass of
potential “criminals.” Time is continuous, and at each instant t ∈ [0,∞), a crime opportunity
arises to a single individual in that neighborhood at an uncertain Poisson rate λ̃ that depends
on the underlying state ωt, which is either “high” (H), indicating a crime-prone environment,
or “low” (L), signifying a safe environment. In the low state, λ̃ = 0, while in the high state,
λ̃ = λ > 0.

H L

ρH

ρL

The state transitions according to a continuous-time Markov chain, switching from low
to high at rate ρL > 0 and from high to low at rate ρH > 0. The stationary probability

6See Knowles, Persico, and Todd (2001); Bjerk (2007); Persico (2002, 2009); Curry and Klumpp (2009);
Eeckhout, Persico, and Todd (2010) for the former, and Rambachan, Kleinberg, Ludwig, and Mullainathan
(2020); Kleinberg, Ludwig, Mullainathan, and Sunstein (2018); Angwin, Larson, Mattu, and Kirchner (2022);
Dressel and Farid (2021); Liang, Lu, and Mu (2022).
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of the high state is π0 := ρL
ρH+ρL

, representing the long-run average proportion of time the
neighborhood is crime-prone.

Upon receiving a crime opportunity, an individual commits a crime with probability x > 0,
referred to as the crime level. We analyze two scenarios: exogenous crime, where the crime
level is fixed, and endogenous crime, where it depends on the individual’s incentive, influenced
by the anticipated enforcement level.

At each time t, the PM chooses an enforcement level yt ∈ [0, 1] at a cost c > 0 per
unit. This cost can represent direct expenses like hiring personnel or the opportunity cost of
diverting resources from other areas under the PM’s jurisdiction.

Two neighborhood model. To illustrate the nature of opportunity cost, consider a two-
neighborhood model where neighborhood A has an uncertain crime condition, and neigh-
borhood B has a known crime rate λB. If λB is high, B can be considered a traditionally
high-crime area. The PM allocates a unit budget of resource allocation at “zero” cost between
the two neighborhoods. A higher λB means a higher opportunity cost from pulling resources
away from B, corresponding to a higher c in our model. Under-enforcing A relative to the
optimal policy in our baseline model means excessive substitution of enforcement efforts from
A to B in this two-neighborhood model, implying over-enforcement of B.

The PM cannot directly observe the state ωt, instead forming a belief pt about the proba-
bility of the high-crime state at time t. Enforcement serves two purposes: first, it intervenes in
crime attempts with probability yt, mitigating harm. Second, successful intervention reveals
the high-crime state, aiding future predictions.

We assume unmitigated harm costs $1 to society.7 Both enforcement functions align with
common practices: addressing violations and gathering information for future predictions.

PM’s payoff. The PM’s payoff is the negative of her total discounted loss over an infinite
horizon, arising from unmitigated harm and enforcement costs. Given belief pt, enforcement
level yt, and crime probability x at time t, the PM’s flow loss is ptλx(1− yt) + cyt. The total
discounted loss, with discount rate r > 0 and initial belief p, is

L(p) := E
[∫ ∞

0

(ptλx(1− yt) + cyt)e
−rtdt

∣∣∣∣p0 = p

]
. (1)

We assume λx > c to avoid the trivial solution of no enforcement.
7Mitigation of harm may take the form of foiling a crime ex-ante or fulfilling justice ex-post by apprehending

an offender after the commission of a crime.
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Prediction. Predictive enforcement leverages predictions of future crime based on past
crime data. In our model, this translates to forming a posterior belief p about the high-crime
state using detected crime incidents. The belief updating process is formalized as follows:
upon crime detection, the posterior jumps to 1, as crimes only occur in the high state. If no
crime is detected, the posterior is updated using Bayes’ rule, weighing the possibilities of a
low state or a high state with undetected crime. Bayes rule suggests that p follows an ODE:8

ṗ = ρL(1− p)− ρHp︸ ︷︷ ︸
natural rate

− p(1− p)λxy︸ ︷︷ ︸
updating from “no detection”

=: f(p, y). (2)

The first term, ρL(1 − p) − ρHp, represents the “natural rate” of belief change due to
the underlying Markov chain governing the state transitions. If the PM chooses yt = 0 (no
enforcement), learning is impossible, and the belief simply follows this natural rate, drifting
towards the stationary probability π0 over time.

If the PM chooses a positive enforcement level (yt > 0), she may detect a crime, confirming
the high state. However, not detecting a crime (despite enforcement) pushes her belief towards
the low state. This downward pressure on the belief, captured by the second (underbraced)
term in (2), is strongest when yt = 1 (full enforcement). Let π1 be the belief where f(π1, 1) = 0.
If the PM always chooses full enforcement, her belief drifts down if it’s above π1 and drifts
up if it’s below π1, as long as no crime is detected. Naturally, π1 is lower than the stationary
probability π0.

0

f(p, y) > 0

π1

f(p, y) ⋚ 0

depends on y π0

f(p, y) < 0

1

Figure 1: PM’s belief updating given no detection.

Figure 1 illustrates the belief dynamics. Without crime detection, the belief drifts up if
pt < π1 and down if pt > π0. The belief’s evolution within the interval (π1, π0) depends on
the enforcement level y. Higher enforcement generally leads the belief to settle closer to π1,
absent any crime detection.

8The ODE can be derived as follows. For any short duration dt > 0

pt+dt =
pt(1− ρHdt)(1− λxydt) + (1− pt)ρLdt(1− λxydt)

pt(1− ρHdt)(1− λxydt) + (1− pt)(1− ρLdt) + (1− pt)ρLdt(1− λxydt) + ptρHdt
+ o(dt)

=
pt(1− ρHdt− λxydt) + (1− pt)ρLdt

1− ptλxydt
+ o(dt).

Subtracting pt from this, dividing by dt, and letting dt → 0, we obtain (2).
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Remark 1 (Fixed State Model). In contrast to our model with a changing state, the KRC
bandit model assumes a fixed state. Consequently, the natural rate is absent, and the belief
always drifts downwards towards 0 in the absence of crime detection. In our model, the
long-run belief remains bounded between π1 and π0.

Remark 2 (Predictive Enforcement in Practice). Our prediction rule, derived from the
underlying uncertainty, shares a key feature with the PredPol algorithm’s “earthquake model”:
the exponential decay of predicted crime risk with prolonged periods of no crime. While Pred-
Pol directly assumes this through a self-exciting process, our model derives it endogenously.
Exploring the extent to which our model offers a Bayesian micro-foundation for such processes
could be an interesting avenue for future research.

Admissibility. We focus on Markovian strategies where the PM’s action depends solely on
her current belief p. This is without loss of generality for exogenous crime and natural for
endogenous crime, allowing us to suppress time dependence. However, the belief dynamics
in equation (1) must be well-defined, imposing an admissibility restriction on the strategy.
Essentially, if a belief p attracts drifts from both above and below, it must be a stationary
point, implying y(p) = z(p), where z(p) satisfies f(p, z(p)) = 0. This ensures the belief process
doesn’t oscillate arbitrarily frequently around p. While admissibility may seem technical, it
captures a substantive property: in a discrete-time approximation, z(p) represents the fraction
of time the PM chooses full enforcement (as opposed to no enforcement) in the “neighborhood”
of p. The interior solution z(p̂) in the continuous-time model corresponds to this relative
fraction of time in the limit as the time length approaches zero.

2.2 Alternative enforcement regimes

We consider three scenarios regarding the PM’s use of data for enforcement decisions, which
serve as benchmarks to understand the value and implications of data-driven enforcement.

Non-predictive enforcement (NP): The PM doesn’t update her belief based on crime
data, resulting in a constant enforcement policy dependent solely on her prior. We assume
this prior follows the ground truth, namely, the long-run crime rate π0λx, potentially formed
from long-term memory or aggregate past records.9

The optimal non-predictive policy is to enforce fully if and only if the expected long-
run harm from crime (π0λx) exceeds the enforcement cost (c). Formally, the non-predictive

9For instance, the PM may initially run a full enforcement campaign, choosing y = 1 at each instant, for
a duration T of time. Letting N(T ) denote the number of crimes, the empirical crime rate N(T )

T converges to
E[1{crime at t}] = π0λx almost surely, by Ergodic Theorem for (irreducible) Markov chains.
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enforcement policy is defined as:

yNP(p) =

{
1 for π0 > p̂M

0 for π0 < p̂M ,
(3)

where p̂M := c/(λx) is the myopic cutoff. The policy is constant, taking either 0 (no enforce-
ment) or 1 (full enforcement).

Greedy predictive enforcement (GP): In this benchmark, the PM updates her pos-
terior belief p accurately based on crime history but acts myopically, disregarding the infor-
mational value of enforcement. The PM chooses the myopically optimal enforcement level:

yGP(p) =

{
1 for p > p̂M

0 for p < p̂M ,
(4)

where p is updated according to (2). While GP utilizes the full predictive power of crime
data, it neglects the informational impact of enforcement decisions. The greedy nature of
GP aligns with current enforcement practices, which typically do not consider the long-term
informational value of enforcement actions.

Optimal predictive enforcement (OP): In this ideal scenario, the PM makes dynam-
ically optimal enforcement choices. Like in GP, the PM forms her posterior belief accurately
from crime data, but now she incorporates the informational value of enforcement into her
decision-making, aiming for long-term optimality.

In the following analysis, NP and GP serve as benchmarks for comparison with OP. The
goal is not to prove OP’s superiority, which is inherent by design, but to understand the role
of the “turned-off” elements in shaping the optimal policy and their contribution to its value.

3 Exogenous Crime

This section examines the scenario of exogenous crime, where the crime probability x is fixed
within the interval (0, 1]. We begin by analyzing OP and then compare its outcomes with
those of NP and GP.

3.1 Optimal Predictive Enforcement

This section focuses on the Optimal Predictive Enforcement (OP) scenario, where the PM
dynamically optimizes enforcement decisions, considering both current crime predictions and
the long-term informational value of enforcement. The problem is formulated as a Markov
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Decision Problem (MDP) with the belief p as the state variable. The optimal policy, denoted
by p → y(p), is time-independent due to the Markovian nature of the problem.

The analysis employs dynamic programming, focusing on the value function that maxi-
mizes the net present value of mitigated crimes minus enforcement costs.10 The value function
satisfies the Hamilton-Jacobi-Bellman (HJB) equation:

rV (p) =max
y

(pλx− c) y + pλxy[V (1)− V (p)] + f(p, y)V ′(p). (5)

The HJB equation balances the cost of discounting future value (LHS) with the immediate
benefits of enforcement (pλx − c)y and the value appreciation from Bayesian belief updates.
The condition resembles that in KRC, with key differences arising from the changing state
of the world. First, the law of motion governing belief evolution differs from that in KRC.
Second, the changing state implies that learning remains essential even in the long run. In
particular, the value function is not pinned down even for p = 0 or p = 1, since reaching
these extreme states does not mean a permanent resolution of uncertainty. Instead, the value
function at any belief depends on the PM’s actions at other beliefs, leading to a fixed-point
characterization.

The optimal policy, derived from the HJB equation, involves a cutoff structure: for some
p̂ ∈ [0, 1]

y(p) =

{
1, for p > p̂

0, for p < p̂.
(6)

The following characterizes OP.

Theorem 1. For each c > 0, there exist λ > c
π0

> λ > c such that the optimal enforcement
policy denoted y∗(p) is of the form in (6) where the cutoff is

Case 1: π0 ≤ p̂ < p̂M if λx ≤ λ (“low” crime rate);

Case 2: p̂ = p̂M ≤ π1 if λx ≥ λ (“high” crime rate);

Case 3: p̂ ∈ (π1, π0) and p̂ < p̂M if λx ∈ (λ, λ) (“intermediate” crime rate).

The policy at the cutoff belief, y∗(p̂), is arbitrary in Case 1 and Case 2, but in Case 3, y∗(p̂) =
z(p̂), where z(p) satisfies f(p, z(p)) = 0. Moreover, λ and λ are increasing in c. Finally, p̂ is
continuously decreasing in λx and increasing in c.

Proof. See Appendix A.
10The equivalence between this value maximization and minimization of the loss function (1) is established

in Lemma 13 in Appendix C.1 of Online Appendix.
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As stated in Theorem 1, there are three cases, depending on where the optimal cutoff p̂

lies relative to π1 and π0, depicted in Figure 1.

Case 1: low crime rates. In this scenario, the crime rate λx is so low that the optimal
cutoff p̂ exceeds π0. If the initial belief is above p̂, the PM initiates full enforcement until
the belief drops below p̂ due to a lack of crime detection. The belief eventually converges
to the stationary probability π0, and enforcement ceases permanently (see Figure 2). The
loss of learning that occurs when the belief falls past p̂ requires the optimal policy to lower
the cutoff p̂ below the myopic level p̂M , to maintain optimal tradeoff between exploitation
and exploration. The long-run dynamics here contrast with the fixed-state bandit model,
where full enforcement might persist indefinitely. The changing world necessitates eventual
enforcement cessation as the belief stabilizes at π0.

0

1 y(p)

y

p
π1 π0 p̂Mp̂ 1

Figure 2: Low Crime Rates Case

Case 2: high crime rates. Here, the crime rate λx is high enough that the optimal cutoff
p̂ falls below π1, the lowest possible stationary belief. The policymaker enforces fully even
when the belief is below π1. The belief eventually cycles within the region [π1, 1], jumping
to 1 upon crime detection and drifting down to π1 otherwise (see Figure 3). Enforcement is
always full and never lets up, eliminating the need to trade off exploitation for exploration,
resulting in p̂ = p̂M . This differs from the fixed-state model, where irreversible abandonment
of exploration might occur. The changing world ensures persistent vigilance, maintaining
enforcement even with prolonged crime absence.

Case 3: intermediate crime rates. In this case, the enforcement cutoff lies between π1

and π0. For beliefs above p̂, the PM enforces fully. If no crime is detected, the belief drifts
down, potentially reaching p̂. At p̂, partial enforcement at level y = z(p̂) is employed, keeping
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λ ≥ λ

p0

1 y(p)

y

p̂ = p̂M π1 π0 1

Figure 3: High crime rates case

the belief at p̂ until crime detection triggers a jump to 1. See Figure 4. The system spends
significant time at p̂, and enforcement alternates between full and partial levels. This pattern
deviates from the standard bandit model, where enforcement eventually becomes either full
or nonexistent. The changing world leads to this “hedging” behavior, balancing the increasing
likelihood of the “safe” state with the knowledge that the environment can become crime-prone
again. λ < λ < λ

p0

1 y(p)

y(p̂)

π1 p̂ π0 1

Figure 4: Intermediate crime rates case

Remark 3 (The role of admissibility). The admissibility condition ensures the uniqueness
of the optimal policy, even when the policymaker is indifferent at the cutoff belief p̂. It
pins down the interior enforcement level at p̂, making the optimal policy well-defined and
preventing any ambiguity in the model’s predictions.

Remark 4 (Long-run distribution). One can characterize the stationary distribution of
the PM’s belief and the enforcement under OP and GP. If the cutoff lies within (π1, π0), the
enforcement has a two-point distribution with support {z(p̂), 1} under either policy. The long-
run proportion of time the enforcement takes each level can be computed precisely; we do this
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in Section 4.2. Comparison of the long-run distribution between states H and L reveals the
potential benefit of predictive enforcement. Under NP, the PM chooses the same enforcement
level in both states, but under either GP or OP, the PM chooses, on average, a strictly higher
enforcement level in ω = H than in ω = L, when the cutoff lies within (π1, π0).

3.2 Comparison with Benchmarks

This section compares the optimal predictive (OP) policy with the non-predictive (NP) and
greedy predictive (GP) benchmarks, focusing on scenarios where OP may strictly outperform
them. The analysis centers on the long-run behavior of these policies, specifically within
the irreducible set of beliefs that allow for transitions between any two beliefs in finite time.
Specifically, when considering the optimal policy, we focus on the prior p = π0 in Case 1,
p ∈ [p̂, 1] in Case 2, and p ∈ [π1, 1] in Case 3. We simply call such a prior a long-run prior.

The initial focus is on cases where predictive enforcement, even when optimized, offers no
long-run advantage.

Proposition 1. In Case 1 and Case 2, y∗(p) = yNP(p) = yGP(p) at any long-run prior p.

The first proposition establishes that in scenarios with low or high crime rates (Figure 2
and Figure 3), the OP, NP, and GP converge to the same actions in the long run. This
convergence occurs because the prediction problem is relatively simple in these cases, and
past data doesn’t significantly improve decision-making. The more interesting scenario is
Case 3, where prediction is expected to be valuable, and the optimal policy might diverge
from the benchmarks. There are two possibilities.

In Case 3-(a), p̂M ≥ π0. Under GP, the belief eventually converges to π0, resulting in the
eventual cessation of enforcement and exploration, mirroring the outcome under NP. Conse-
quently, both NP and GP under-enforces relative to OP, which prescribes positive enforcement
even in the long run.

In Case 3-(b), p̂M < π0. In this case, NP prescribes full enforcement, whereas GP alternates
between full enforcement (when p > p̂M) and partial enforcement (when p = p̂M). The
comparison with the optimal policy reveals that GP tends to under-enforce relative to OP,
as the optimal cutoff p̂ is set below p̂M to encourage more exploration (see Figure 5).11 In
contrast, NP results in over-enforcement compared to OP.

11One can show, and it is intuitive, that z(p̂) > z(p̂M ), and that the belief stays longer at z(p̂M ) under GP
than at z(p̂) under OP.
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Figure 5: Enforcement Policy under GP: Case 3-(b)

Proposition 2. In Case 3-(a), both NP and GP lead to no enforcement, which is too little
compared with OP. In Case 3-(b), NP leads to full, and thus excessive, enforcement, whereas
GP leads to insufficient enforcement, compared with OP.

In summary, the NP policy might either under- or over-enforce relative to OP, while GP
consistently under-enforces compared to OP. Notably, a shift from NP (representing the pre-
AI regime) to GP (the current AI regime) always leads to reduced enforcement in Case 3. The
interpretation in the context of the two-neighborhood model suggests that data-driven predic-
tion, as currently practiced, tends to over-enforce in traditionally high-crime neighborhoods.
This observation aligns with criticisms of predictive enforcement disproportionately targeting
such neighborhoods, even in the absence of systemic bias in the prediction algorithm itself.
The issue stems from insufficient exploration under the GP policy.

Two-neighborhood model interpretation: The findings from Proposition 2 have impli-
cations for the two-neighborhood model. Under-enforcement in the reference neighborhood
in our model translates into substituting enforcement efforts away from A to B—and thus
over-enforcement of the latter neighborhood—in the two neighborhoods model. This occurs
when prediction is valuable (Case 3), and the alternative neighborhood has a relatively high
crime rate. Thus, current data-driven prediction practices can lead to over-policing tradition-
ally high-crime neighborhoods, even without inherent bias in the prediction algorithm. The
shift from NP to GP further exacerbates this by increasing enforcement in the alternative
neighborhood.

Payoff comparison. An interesting question is how GP compares with NP in total expected
loss. In particular, to what extent does data-driven prediction improve the efficiency of
enforcement? Can the myopic use of data still be valuable, or equivalently, does all its value
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reside with the ability to harness the informational value of enforcement? While NP and GP
lead to the same long-run outcome in Case 1, Case 2, and Case 3-(a), they don’t in Case 3-(b).
In the latter case, GP prescribes distinct enforcement levels based on the prediction, while
NP obviously can’t. Surprisingly, however, they entail the same losses in the long run:

Proposition 3 (Payoff comparison). The expected loss from GP is always identical to that
from NP in the long run. The expected loss is strictly lower under OP in Case 3.

Proof. It suffices to show the equivalence for Case 3-(b), in which π1 < p̂ < p̂M < π0. Recall
from Proposition 2 that NP prescribes full enforcement in this case, so the intertemporal loss
from NP is c/r. Meanwhile, GP implements enforcement that varies with pt. To prove the
equivalence between NP and GP, it suffices to show that that the intertemporal loss from GP
is c

r
at any long-run prior p0 in [p̂M , 1] (the long-run support of p under GP). The equivalence

follows since the total loss under GP is:

E
[∫ ∞

0

(ptλx(1− yt) + cyt)e
−rtdt

∣∣∣∣ p0 ∈ [p̂M , 1]

]
=

∫ ∞

0

E
[
(ptλx(1− yt) + cyt)

∣∣∣p0 ∈ [p̂M , 1]
]
e−rtdt

=

∫ ∞

0

E
[
1{pt>p̂M} · c+ 1{pt=p̂M} · (p̂Mλx(1− z(p̂M)) + cz(p̂M))

∣∣∣p0 ∈ [p̂M , 1]
]
e−rtdt

=

∫ ∞

0

ce−rtdt = c/r,

where we used the fact that yGP(pt) = 1{pt>p̂M} + 1{pt=p̂M} · z(p̂M) and that p̂M = c
λx

. To
compare the losses under GP and OP, observe first that given any common prior p0 ∈ [p̂M , 1],
the total loss is weakly lower under OP than under GP by definition. The payoff comparison
is strict since yOP differs from yGP.

The intuition is explained as follows. Again consider Case 3-(b), the only case GP diverges
from NP in the long run. In that case, GP differs from NP only when p = p̂M , where the
GP prescribes partial enforcement z(p̂M) < 1, whereas NP always prescribes full enforcement.
However, at p = p̂M , the PM is indifferent, so the enforcement is payoff-irrelevant! Hence,
payoff-wise it is as if the PM is fully enforcing just as in NP.

The implication is rather striking. The equivalence suggests that prediction, and thus data,
has no value if it is used in the myopically optimal manner. To see this at a deeper level,
recall Case 3-(b). GP prescribes no enforcement when p < p̂M , whereas NP always prescribes
full enforcement; and in this case, no enforcement is strictly better than full enforcement.
Why doesn’t GP then strictly outperform NP? The answer is: no such p < p̂M is part of
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the support of the PM’s beliefs. That is, prediction arises only when there is enforcement,
but enforcement never occurs when it is undesirable under GP! This makes the prediction
obtained under GP redundant.

Community Reporting. Equivalence between GP and NP rests crucially on the assump-
tion that crime is detected only through enforcement. Although this assumption is valid for
so-called victimless crimes, for other crimes, detection may also arise from community re-
porting of crimes. Appendix D extends our model to allow for such a possibility; we assume
that the PM detects a crime with probability w ∈ (0, 1) even when its enforcement fails to
detect one. Proposition 13 demonstrates that the GP benefits from passive learning, while
the NP does not. This suggests that GP outperforms NP when passive learning is present.
The simple explanation is that passive learning enables the PM’s belief to drop below the
myopic cutoff p̂M , where GP recommends no enforcement—a strategy that’s strictly opti-
mal. Put simply, prediction occurs even when not enforcing the law is the best choice from
a myopic perspective. However, as w → 0, the GP’s superiority over NP vanishes.12 In this
sense, the above equivalence should be viewed as a conceptual point highlighting the extent
to which endogeneity of learning limits the value of predictive enforcement. It also suggests
the importance of community reporting in rationalizing predictive enforcement.

4 Endogenous Crime and Deterrence

By assuming exogenous crime behavior, the previous section has focused on law enforcement’s
surveillance and remedial roles. However, an equally important goal of law enforcement
is deterring crimes. To study the deterrence implications of alternative policies, we must
endogenize the crime behavior.

We adopt a simple model in which a criminal commits a crime only if he anticipates the
enforcement rate to be less than some “deterrence” threshold ȳ ∈ (0, 1). More precisely, a
criminal commits a crime with probability x = 0 if the expected enforcement level is y > ȳ,
with probability x = 1 if y < ȳ, and with any probability x ∈ [0, 1] if y = ȳ. This behavior
could be micro-founded. Suppose a criminal benefits b > 0 from a crime but pays the penalty
γ ≥ b when apprehended; the assumed behavior emerges with a threshold ȳ := b/γ.13 To

12Insufficient crime reporting by victims and community is a real concern. The willingness by individuals
to notify policy of crimes is in decline and at an all-time low in 2020 since 1993, in part due to mistrust of the
police: in 2020, less than 43% of non-lethal crimes and less than 32% of property crimes were reported to the
police (Xie, Ortiz Solis, and Chauhan (2024)).

13Note that criminals are myopic here. This is because there is a continuum of individuals who may receive
a crime opportunity; any effect of a crime decision by an individual on future enforcement will be irrelevant
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the extent that the PM can choose the criminal penalty, one can view the threshold ȳ as a
policy variable as well; in particular, a decrease in ȳ captures the effect of raising the criminal
penalty γ.

With the endogenous crime model, the PM’s ability to commit to her enforcement policy
becomes important. If the PM can commit to her enforcement policy, she may choose the
enforcement level slightly above ȳ to deter crime completely. More precisely, a simple full-
commitment policy is either to deter crime fully by enforcing arbitrarily above ȳ or to
never enforce, whichever is cheaper, which leads to the expected loss of min{cȳ, π0λ}/r.14

This commitment policy virtually eliminates loss if the PM could lower ȳ to an arbitrarily
small number by raising the criminal penalty γ, as suggested by Becker (1968). Hence, with
commitment, the expected loss min{π0λ, cȳ}/r would vanish in the limit as ȳ → 0.

In practice, however, such a policy requires a strong commitment power, which policy-
makers typically do not possess. Accordingly, henceforth, we assume the PM can’t commit
to a future enforcement level y, meaning she can only choose the policy in response to the
likely crime rate. Effectively, this feature transforms the bandit problem into a dynamic game
in which crime and enforcement have a mutual feedback relationship. As before, we consider
three different regimes, NP, GP, and OP, regarding the PM’s access to and use of crime data.

Unlike the PM, criminals do not access past crime data, meaning, as in the previous
section, the crime level x is a constant (rather than a function of p), except now that it is
determined endogenously by the criminals’ equilibrium incentive. (Later, we will discuss the
implications of criminals gaining access to the same data as PM.)

Consistent with the exogenous crime case, we will focus on a Markov perfect equilibrium in
which the PM’s policy depends only on her posterior, the payoff-relevant state. Since criminals
choose a constant probability x ∈ [0, 1], the PM’s best response follows the characterization of
the previous section. The only difference is that criminals’ equilibrium choice of x will depend
on the PM’s enforcement policy, thereby on the enforcement regimes. Given the endogeneity
of x and the lack of commitment power by the PM, the OP is not guaranteed to be optimal
or even to outperform the other two regimes.

We begin our analysis with the NP regime.

4.1 Non-predictive enforcement

In this regime, neither the criminals nor the PM updates the belief based on past history.
Hence, the crime probability x and the enforcement level y are constant, determined solely

since the probability of receiving a crime opportunity in the future is zero.
14No enforcement results in x = 1, which entails the long-term loss of π0λ/r.
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based on the long-run prior π0. The outcome then depends on whether λ is large relative to
c for enforcement to be worthwhile for the PM.

Suppose first λπ0 ≤ c. Then, the crime opportunity arrives so rarely that even if the
criminals choose x = 1, the PM does not find it optimal to allocate any positive y. So
(x, y) = (1, 0) is the only equilibrium. In the equilibrium, the PM’s long-run loss equals
λπ0/r.

Suppose next λπ0 > c. In this case, a classic inspection game ensues. It is well known that
there is no pure strategy equilibrium. If criminals choose x = 1, then PM will choose y = 1.
But then criminals would deviate to x = 0. The PM will, in turn, deviate to y = 0. Hence,
the only equilibrium is in mixed strategies. In equilibrium, a criminal chooses x so that

π0λx = c, (7)

which keeps the PM indifferent in her enforcement. In turn, the PM chooses y = ȳ, incentiviz-
ing criminals to randomize. The structure of this equilibrium is explained by the PM’s lack
of commitment power. Unable to commit to a deterring enforcement level, the PM requires
crimes to occur on the path to exert an enforcement effort. The lack of commitment power
also explains why the Beckerian prescription of lowering ȳ (via raising the criminal penalty)
does not work: as ȳ falls, the enforcement falls, but the crime rate π0λx remains unchanged,
as shown in (7). Indeed, the PM’s expected loss equals c/r regardless of ȳ since the PM is
indifferent to full enforcement.

We summarize the results.

Proposition 4. NP admits a unique equilibrium in which:

• if λ ≤ c
π0

, then (xNP, yNP) = (1, 0);

• if λ > c
π0

, then (xNP, yNP) = ( c
π0λ

, ȳ).

Under NP, the expected loss for the PM is min{π0λ, c}/r and does not depend on ȳ.

4.2 Criminals’ belief formation under predictive policies

We next turn to GP and OP. Given an equilibrium crime level x, our analysis from Section 3
shows that the PM’s best response is a cutoff policy in these two regimes. Fix such a policy
with any cutoff p̂: yp̂(p) := 1{p>p̂} + z(p̂) · 1{p=p̂}.

To understand criminals’ incentives under such a policy, we must first study their beliefs
about the enforcement level Ep[yp̂(p)|ω = H, x]. The expectation is conditional on state ω = H
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(which the criminals know upon receiving the crime opportunity) and the “equilibrium” crime
level x (which influences the belief about the PM’s posterior and, henceforth, the enforcement
level). Since the enforcement level depends on the PM’s belief p, the criminal must, in turn,
form a belief about the relative likelihoods of alternative p’s the PM may have. In the long run,
the belief is given by the stationary distribution of the PM’s belief.15 We thus digress briefly
on how the distribution is characterized. While the characterization is of independent interest,
the reader interested in the belief formation may skip the segment and go to Section 4.2.2

4.2.1 Stationary distribution of the PM’s belief.

To begin, fix a cutoff policy with cutoff p̂ ∈ (π1, π0) and an equilibrium crime level x; the
expected enforcement is rather trivial when p̂ lies outside that interval. Let Φ : [p̂, 1] → [0, 1]

denote the stationary distribution of the PM’s belief p under that policy.16 The distribution
admits density ϕ(p) for each p ∈ (p̂, 1) and atom m(p̂) at p̂, which is intuitive since the belief
spends “real” time at p̂. In Appendix E, we show that ϕ and m respectively satisfy

ϕ(p) = ϕ(p̂) exp

(∫ p

p̂

r(s)ds

)
,

where r(s) := − sλx+f ′(s,1)
f(s,1)

, and

m(p̂)z(p̂)p̂λx = −ϕ(p̂)f(p̂, 1).

The stationary distribution is derived from the “balance condition:” for each p ∈ (p̂, 1), the
flow from [p̂, p] into (p, 1] (namely, the flows corresponding to the jumps to 1) must balance
the flow in the opposite direction (namely, the drift of belief across p from above).

Figure 6(a) depicts the Φ under two cutoffs p̂ and p̂′ > p̂.
The policy with a lower cutoff involves more exploration. Hence, the stationary distribu-

tion corresponding to p̂ is a mean-preserving spread of the one corresponding to p̂′.17

15The formal justification can be given by the logic of “a Poisson arrival sees time average” (PASTA); see
Wolff (1982). Intuitively, for a Poisson-arriving agent, his belief that p falls into some interval (p′, p′′) ⊂ [p̂, 1]
equals the fraction of time p lies in that interval, once proper conditioning is made on the fact that state
ω = H.

16The stationary distribution exists and is unique. Note first that the stochastic process of the PM’s belief
is a Markov process: once any p (within the support) is reached, the future process is identical and depends
only on p (regardless of the prior history). It is also positive-recurrent, with the process returning to the same
belief in finite expected time. The regenerative nature of the process means that it admits a unique limit
distribution forming a unique stationary distribution (see Asmussen (2003), p. 170, Theorem 1.2).

17This observation is proved in Lemma 15 in Appendix E.

20



p 0.4 p' 0.5 0.6 0.7 0.8 0.9 1
p

0.2

0.4

0.6

0.8

1
Φ (p)

(a) CDF Φ’s under two cutoffs p̂ and p̂′ > p̂

p 0.4 0.5 0.6 0.7 0.8 0.9 1
p

0.2

0.4

0.6

0.8

1

Υ(p)

Φ (p)

Ψ (p)

(b) CDF’s Φ, Υ, Ψ

Figure 6: Invariant distributions of posterior beliefs

Using the (unconditional) stationary distribution Φ, we can derive the long-run distribu-
tion of the beliefs in each state. The distributions of p conditional on states H and L are
respectively

Ψ(p) :=
p̂m(p̂) +

∫ p

p̂
p̃ϕ(p̃)dp̃

π0

and Υ(p) :=
(1− p̂)m(p̂) +

∫ p

p̂
(1− p̃)ϕ(p̃)dp̃

1− π0

if p ≥ p̂, and zero otherwise. Naturally, Ψ first-order stochastically dominates Φ, which in
turn first-order stochastically dominates Υ.18 Figure 6(b) depicts Φ,Ψ, and Υ, for a given
cutoff policy. Observe that Ψ puts strictly lower mass at p̂ than does Υ. To the extent that a
cutoff policy enforces strictly less at p̂ than at p > p̂, the policy enforces more in state H than
in L, revealing the sense of how the predictive policy can make enforcement effective (both in
GP and OP).

The relevant belief the criminals use to evaluate the enforcement level is Ψ(p), as they
know that the state is H when making their crime decisions. We now turn to that decision.

4.2.2 Criminals’ belief formation.

We now characterize criminals’ beliefs about the enforcement level, under a predictive policy
with cutoff p̂. The answer is trivial if the cutoff lies outside the interval (π1, π0): as seen before,
if p̂ ≥ π0, the long-run enforcement level is zero, and if p̂ ≤ π1, the PM chooses y(p) = 1 for

18This can be easily verified using the fact that p̂ < π0.
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all p ≥ p̂.
Hence, we assume p̂ ∈ (π1, π0). In this case, the enforcement is binary: y(p) = 1 for p > p̂

and y(p) = z(p) ∈ (0, 1) for p = p̂. The preceding analysis suggests that criminals form the
expectation of the enforcement using Ψ as the distribution. Let µ(p̂) := Ψ(p̂) denotes the
mass assigned to p̂. Then, the conditional enforcement level that the criminals face is given
by:

Ep∼Ψ[yp̂(p)] = µ(p̂)z(p̂) + (1− µ(p̂)) · 1. (8)

In Appendix E, we establish that µ(p̂) and z(p̂) are respectively increasing and decreasing
in p̂. It then follows from (8) that the perceived enforcement level Ep∼Ψ[yp̂(p)] is decreasing
in p̂. This is intuitive: a lower cutoff policy involves a higher expected enforcement level. We
now show that for any x, there exists a unique cutoff p̂ = p(λx) such that the associated cutoff
policy leads to the deterring level of enforcement y.

Lemma 1. Given any x ∈ (0, 1], there exists a cutoff p(λx) ∈ (π1, π0) such that the associated
cutoff policy yp̂ with p̂ = p(λx) gives rise to a conditional enforcement level of y; i.e.,

Ep∼Ψ[yp̂(p)] = y. (9)

Also, the “deterring” cutoff p(λx) is continuous in x and increases in y, with limy→0 p(λx) = π0

and limy→1 p(λx) = π1 for all x.

Proof. See Appendix E.

This characterization is useful for our equilibrium analysis for GP and OP. Suppose, for
instance, that the equilibrium has an interior crime level x ∈ (0, 1) in either the GP or OP
regime. Then, criminals must be indifferent, meaning they anticipate the enforcement level of
y upon receiving a crime opportunity. Lemma 1 then means that, for such an equilibrium to
sustain, the PM must find it optimal to choose a cutoff p(λx). This, in turn, pins down the
equilibrium crime level x.

4.3 Greedy predictive enforcement

We are now ready to study the PM’s behavior under GP. To this end, it is convenient to
define λM ∈ ( c

π0
, c
π1
) to be the smallest λ that satisfies

p̂M(λ) =
c

λ
= p(λ). (10)
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If λ = λM , then given x = 1, the GP policy (with its myopic cutoff p̂M(λ)) satisfies (9) and
implements the deterring enforcement level y. Such a λM is well-defined.19

Suppose first λ ≤ λM . Then, p̂M(λx) = c
λx

> p(λx) for all x < 1. In other words, the GP
policy does not generate sufficient enforcement to deter crime. Hence, in equilibrium, criminals
choose xGP = 1, and the PM responds with the corresponding myopic cutoff p̂M(λ) = c

λ
.

Suppose next λ > λM . In this case, we have a mixed strategy equilibrium in which
criminals commit crimes with probability x ∈ (0, 1). For them to randomize, the conditional
expected enforcement level must be y. This, in turn, requires the PM to find it optimal to
choose p(λx). Under GP, this requires that

p̂M(λx) =
c

λx
= p(λx), (11)

which determines the equilibrium crime level x.
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Figure 7: Equilibria under OP and GP with λ = 4, c = 3
2
, r = 2, and ρL = ρH = 1.

Figure 7 illustrates how the crime level is determined in equilibria for alternative deterrence
levels y. Fix a y. The upper black curve depicts the deterring cutoffs p(λx) over all possible
x.20 Meanwhile, the myopic cutoff p̂M(λx) = c

λx
is depicted by the red curve. The equilibrium

condition (11) is satisfied at the intersection of the two curves.
19To see the existence of such λM , let us fix x = 1 and consider a cutoff policy with p̂ = p̂M (λ) = c

λ .
With λ = c

π0
, we have p̂M (λ) = π0 so Ep∼Ψ[yp̂(p)] = 0 < ȳ, implying p̄(λ) < p̂M (λ). With λ = c

π1
, we

have p̂M (λ) = π1 so Ep∼Ψ[yp̂(p)] = 1 > ȳ, implying p̂M (λ) > p̄(λ). Thus, there exists λ ∈ ( c
π0
, c
π1
) such that

p̂M (λ) = p(λ), by the continuity of p̂M (·) and p̄(·), which further guarantees the existence of a smallest such
λ.

20 The curve p(·) is negatively sloped for all numerical analyses we performed, and this is intuitive. Suppose
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Note from (10) that x = λM/λ solves (11). We thus have the following result:

Proposition 5. GP admits an equilibrium in which:

• if λ ≤ λM , then xGP = 1 ≥ min{1, c
π0λ

} = xNP, and yGP(·) is a cutoff with p̂ = c
λ
;

• if λ > λM , then xGP = λM

λ
∈ (0, 1) and yGP(·) is a cutoff with p̂ = c

λM .

Under GP, the expected loss for the PM is min{π0λ, c}/r and does not depend on y.

The payoff consequence (the last statement) follows from a simple observation. When
π0λ ≤ c, the PM chooses zero enforcement in the long run, so the total loss is simply the loss
from crime, π0λ/r. If λ ≥ c/π0, the PM adopts a nontrivial cutoff policy, with a myopic cutoff
given xGP = min{λM

λ
, 1}. Since the PM is indifferent at the myopic cutoff, her payoff is the

same as if she always enforces fully, so her total loss is c/r in this case. Note that the payoff
of the PM does not depend on the deterring enforcement level y.21 While surprising at first
glance, this irrelevance again follows from the PM’s lack of commitment power.

Similar to the exogenous crime case, the equilibrium enforcement differs between NP and
GP. If π0λ > c, then the PM chooses y under NP; under GP, she alternates between full and
partial enforcement which is on average less than y.22 At the same time, the crime level is
generally higher under GP than under NP. This is because GP has a lower cutoff than π0,
which requires a higher crime rate to incentivize the PM to enforce under GP than under
NP. As it turns out, however, these two opposing effects exactly cancel. A comparison with
Proposition 4 establishes payoff equivalence:

Corollary 1 (Payoff equivalence between NP and GP). The expected loss for the PM is the
same between NP and GP.

x goes up. Then, the belief drifts faster to p̂ (as −f(p, 1) increases), whereas the jump rate at p̂ remains
constant, since z(p̂) falls such that xz(p̂) remains constant. This means that m(p̂)/ϕ(p̂) must rise. As long
as ϕ(p̂) does not fall drastically, then the overall enforcement must fall. For the conditional enforcement to
remain at y, the cutoff must be lowered to maintain the enforcement at y. However, the behavior of ϕ(p̂)
as x rises is ambiguous, so we are not able to prove that p(·) is always negatively-sloped. Nevertheless, the
equilibrium and welfare characterization below does not depend on this ambiguity.

21This is true even though as the deterring enforcement level y falls, presumably because the criminal
penalty has increased, the equilibrium crime goes down, as illustrated in Figure 7. The reason is that the
cutoff increases to such an extent that at the cutoff belief, the overall crime rate p̂M (λxGP)λxGP remains the
same, namely at c.

22This can be seen as follows. If p̂M (λ) < p(λ), the expected enforcement conditional on ω = H is strictly
less than y. Since the expected enforcement is even less conditional on ω = L, the unconditional expectation
is even less than y. If p̂M (λ) ≥ p(λ), the expected enforcement conditional on ω = H equals y, but it is
strictly less than y conditional on ω = L, so the unconditional expectation is even less than y.
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The intuition for this equivalence is the same as before: the information is obtained only
when enforcement is myopically optimal and hence is redundant. To be specific, suppose
π0λ > c, or else the long-run enforcement decision is identical between the two regimes. In
that case, the PM chooses full enforcement under NP, but posterior-dependent enforcement
under GP, enforcing fully if p > p̂M(λxGP) and partially at z(p̂M) < 1 if p = p̂M(λxGP).
Yet, whenever the enforcement is partial, the PM is indifferent, so she experiences the same
expected loss.

4.4 “Optimal” predictive enforcement

We now study the Markov perfect equilibrium under OP.23 From our analysis in Section 3, for
any crime level x, the PM’s optimal response is a cutoff policy, and the resulting (long-run)
outcome depends on the optimal cutoff p̂(λx). (Note we now make the dependence of p̂ on
λx explicit.)

To characterize the equilibrium, define λ∗ ∈ (λ, λM) to be the smallest λ that satisfies

p̂(λ) = p(λ). (12)

That is, if λ = λ∗, then, given x = 1, an optimal cutoff p̂ yields a deterring enforcement y.
Such a λ∗ is well defined.24

Suppose first λ ≤ λ∗. Then, we have p̂(λx) > p(λx) for all x < 1, meaning the enforcement
will be insufficient to deter crimes. Hence, in equilibrium, criminals choose x = 1, and the
PM optimally responds with a cutoff p̂(λ).

Suppose next λ > λ∗. Then, criminals must randomize in equilibrium. This requires that
the associated enforcement level equals y, which, in turn, requires that

p̂(λx) = p(λx), (13)

which pins down the equilibrium crime level xOP. Figure 7 depicts xOP as an intersection of the
optimal cutoff facing x (the blue curve) and the deterring-cutoff level p(x) (the black curve).
It follows from (12) that x = λ∗/λ solves this equation. Hence, in equilibrium, criminals
choose xOP = λ∗/λ and the PM chooses a cutoff p̂(λ∗) = p(λ∗), which yields the marginally

23As mentioned earlier, the moniker “optimal” only refers to the optimality of the PM’s response to the
anticipated crime level x.

24To see the existence of such λ∗, let us fix x = 1 and consider a cutoff policy with p̂ = p̂(λ). If λ = λM ,
then we have p̂(λM ) < c

λM , which implies by the definition of λM that Ep∼Ψ[yp̂(p)] > ȳ. If λ = λ, then
p̂(λ) = π0 so Ep∼Ψ[yp̂(p)] = 0 < ȳ. Then, there exists λ such that p̂(λ) = p(λ), by the continuity of p̂(·) and
p(·), which further guarantees the existence of a smallest such λ.
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deterring enforcement y in expectation, thus justifying criminals’ randomization. The OP
equilibrium is characterized as follows:

Proposition 6. The OP regime admits an equilibrium in which:

• if λ ≤ λ∗, then xOP = xGP = 1, and yOP(·) is a cutoff with p̂ = p̂(λ) which is less than
the GP cutoff p̂M(λ) = c

λ
;

• if λ > λ∗, then xOP = λ∗

λ
< min{λM

λ
, 1} = xGP, and yOP(p) is a cutoff with p̂ = p(λ∗).

The PM incurs a weakly (resp. strictly) lower expected loss under OP than under GP or NP
(if λ > λ).

It is instructive to compare the equilibrium outcomes of OP and GP. Figure 7 illustrates
the comparison in a typical scenario. To begin, recall from Section 3 that, facing the same
crime level x, OP prescribes higher enforcement (i.e., a lower cutoff) than GP. This is seen in
Figure 7 by the fact that p̂(λx) lies strictly below p̂M(λx) for each x. At the same time, the
deterring cutoff p(λx) is typically negatively sloped (recall Footnote 20). Consequently, OP
leads to a higher cutoff and a lower crime level than GP.

Why does the crime level fall under OP? The answer is traced to the informational motive
OP harnesses, which makes the PM more aggressive under OP than under GP, all else equal.
In response, criminals adjust their crime level below what they would choose under GP.
In short, the informational motive of the PM acts as a commitment to deter crime, at least
partially. This explains why the expected loss is smaller under OP than the other two regimes.
Specifically, if λ ≤ λ, all three regimes lead to no enforcement resulting in the (same) expected
loss of π0λ/r. If λ > λ, the OP entails an expected loss strictly smaller than c/r.

The harnessing of the (partial) commitment also means that the Beckerian prescription is
valuable under OP, unlike under NP or GP. To see this, assume λ > λ∗, and suppose the PM
lowers y by raising the criminal penalty. Then, as depicted in Figure 7, the deterring cutoff
shifts up. Since p̂(·) is decreasing (recall Theorem 1), λ∗ must fall. Consequently, the crime
probability xOP falls; intuitively, as the deterring enforcement level falls, it takes a lower crime
rate to motivate the PM to enforce. Given a decreased xOP, the PM’s expected loss would
fall if her enforcement policy were fixed; since she optimally adjusts her enforcement policy
against the lowered xOP, she must be even better off when y decreases.

Now let y → 0. As noted in Lemma 1, p(λx) → π0 for all x. Consequently, λ∗ → λ, so the
crime level converges to λ/λ. Further, as p(λx) → π0, for all x, z(p(x)) → 0, and once the
posterior reaches the cutoff p̂∗, it stays there arbitrarily long. Consequently, Ψ converges to
a degenerate distribution at π0. Since the PM does virtually no enforcement at p(xOP) ≈ π0
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in the limit, her expected loss converges to π0λ(λ/λ)/r = π0λ/r. By contrast, as y → 1,
p(x) → π1, so the OP involves full enforcement in the limit, with expected loss tending to
c/r, the same as NP and GP.

Corollary 2. As y falls, the PM’s expected loss under OP decreases. As y → 1, the loss
converges to min{π0λ, c}/r, the same as that under NP and GP. As y → 0, the loss tends to
min{π0λ, π0λ}/r.

While the expected loss falls as y decreases, it does not vanish in the limit. This is because
the commitment power enabled by OP is not complete. Even though the informational motive
by the PM makes her enforcement more credible under OP than under NP or GP, as y

decreases, a positive crime level is still required to make the enforcement credible even in
the limit as y → 0. This contrasts with the simple full-commitment policy under which the
expected loss of the PM vanishes as y → 0.

4.5 Predictive criminals

So far, we have assumed that criminals cannot act predictively in the way the PM can. This
assumption is realistic in many regulatory contexts where enforcement agencies collect crime
data privately and have an option not to publicly disclose that data. But in some other
contexts, for instance, in the case of common crimes (e.g., street robbery, and drug-related
offenses), the crime data may be widely available and updated reasonably frequently, and news
media could also make the information more widely available. Even in other cases, potential
offenders may become as savvy as enforcement agencies in making use of data.

In this subsection, we assume that criminals, not just the PM, access past crime data, which
allows them to infer the PM’s posterior belief p and respond accordingly to her decision at each
p. Independently of the plausibility of this scenario, considering it will help us understand
the role of the informational advantage PM has over potential criminals.

In the case of NP, since PM has no information other than π0, criminals access no more
information, so the analysis remains unchanged. However, unlike the case of non-predictive
crimes, GP and OP are equivalent irrespective of λ. To see it, let (y(p), x(p)) denote the
enforcement and crime levels in equilibrium for any posterior p in the support. In both
regimes, it is a Markov perfect equilibrium for the PM to enforce at y(p) = ȳ if and only if
p ≥ p̂ = c

λ
. In response, potential criminals choose

x(p) =
c

pλ
,
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which keeps the PM indifferent, for each p ≥ p̂. Essentially, criminals and the PM play the
“inspection game” equilibrium for each p ≥ p̂. Consequently, the expected total loss is the
same across all three regimes.

Proposition 7. If potential criminals base their decision on the posterior that PM accesses,
all three regimes result in the same total expected loss.

Proof. See Appendix B.

This result, together with Corollary 1 and Proposition 6, suggests that the PM’s informa-
tional advantage is important for her to realize the value of predictive enforcement.

5 Conclusion

The paper presents a model of predictive enforcement that highlights the dynamic relationship
between enforcement actions and data collection. Our analysis demonstrates the potential of
predictive methods to enhance enforcement decisions and deter crime. However, it also under-
scores the importance of how predictions are used to guide enforcement. A myopic approach
that focuses solely on immediate enforcement objectives without considering the long-term
informational implications can lead to suboptimal outcomes, potentially performing as poorly
as if no data or predictions were used at all. This is particularly true in cases where prediction
relies heavily on active surveillance or enforcement, as with victimless crimes. Furthermore,
such a myopic approach can result in the over-policing of traditionally high-crime neighbor-
hoods. Our findings thus offer a theoretical explanation for the concerns about discriminatory
outcomes in predictive policing, even in the absence of inherent bias in the prediction algo-
rithms. The paper also reveals that the enforcement agency’s pursuit of information can
bolster the credibility of enforcement efforts and contribute to increased deterrence.

Our model is intentionally simplified to highlight the fundamental dynamics at play and
the key insights they generate. However, there are several promising avenues for future re-
search. The model could be extended to encompass multiple neighborhoods, each with its
own uncertain crime conditions. In the context of exogenous crime, the current one-armed
bandit analysis might potentially be generalized using techniques similar to Gittens indices.
However, such a generalization may prove more challenging for the endogenous crime case.
Another worthwhile extension would involve incorporating nonlinear, such as convex, enforce-
ment costs. This would likely lead to a gradual decrease in enforcement after each crime de-
tection and could also result in GP outperforming NP, similar to the scenario with community
reporting. The feedback loop between enforcement and learning would still adversely affect
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GP, but its effects might be more nuanced. Another exciting direction for future research
lies in bridging the gap between theory and practice in predictive enforcement. Empirical
research in this area is still nascent, and our model could provide valuable theoretical per-
spectives to inform empirical investigations. In particular, it would be interesting to examine
how the specific approach to balancing exploration and exploitation impacts data selection
and enforcement outcomes, both in terms of efficiency and fairness.

While our analysis has focused primarily on efficiency as the sole objective, it’s important
to acknowledge that the use of predictive algorithms in law enforcement raises significant
concerns about fairness and potential bias. Future research could explore modifications to
enforcement strategies, such as GP, that explicitly incorporate fairness constraints across dif-
ferent target groups or neighborhoods. Our findings suggest that such an approach might not
only promote equitable outcomes but could also yield unintended efficiency benefits. However,
the specific outcomes would depend on the precise algorithmic implementation of fairness con-
siderations. The exploration of fairness, along with the other extensions discussed previously,
represents a fertile ground for future research, promising to deepen our understanding of the
complex interplay between prediction, enforcement, deterrence and societal well-being.
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A Proof of Theorem 1

A.1 Preliminary Results for the Analysis of HJB Equation

This section provides the analysis of HJB equation (5) via a couple of lemmas. The proofs
for all the results in this section, except for Proposition 8 and Proposition 9, are contained in
the Online Appendix.

Given the function f(p, y) that governs the evolution of PM’s belief, let

g(p) := f(p, 1) = ρL(1− p)− ρHp− p(1− p)λx and h(p) := f(p, 0) = ρL(1− p)− ρHp.

Observe that h(π0) = 0 and that h(p) is strictly decreasing so h(p) > (<)0 for p < (>)π0.
Meanwhile, π1 is a unique root of g(p) in the interval [0, 1] such that g(p) > (<)0 for p < (>)π1.

Lemma 2. π1 < π0 while π1 decreases from π0 to 0 as λx increases from 0 to ∞.
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Given the cutoff policy and the definitions of g(p) and h(p), (5) becomes

rV (p) =

{
h(p)V ′(p) for p < p̂ (14)

pλx− c+ pλx [V (1)− V (p)] + g(p)V ′(p) for p ≥ p̂. (15)

Let us parametrize the ODE in (15) as follows:

D[K] rV (p) = pλx− c+ pλx [K − V (p)] + g(p)V ′(p) with V (1) = K. (16)

The following result provides a set of useful properties for a (unique) solution to D[K]:

Lemma 3. For any given ε > 0, D[K] admits a unique solution over [π1 + ε, 1], denoted
V (p;K), which satisfies the following properties:

(i) V (p;K) and V ′(p;K) are continuous in λ, x, and c as well as p and K;

(ii) With K = K := (λx−c)(r+ρL)−cρH
r(r+ρL+ρH)

, V (p;K) is linear with the slope equal to λx
r+ρL+ρH

;

(iii) V ′(p;K) is strictly decreasing in K while V (p;K) is strictly increasing in K;

(iv) V ′′(p;K) is strictly increasing in K while V ′′(p;K) ⪌ 0 if K ⪌ K;

A.2 Conditions for the Solution to HJB Equation

This section provides a set of conditions for the solution to HJB equation (5) via a series of
lemmas. Let W (p, y) denote the maximand of (5) and define

∆(p) :=
1

x

∂W (p, y)

∂y
= pλ− c

x
+ pλ [V (1)− V (p)− (1− p)V ′(p)] . (17)

First of all, we require the value matching and smooth pasting: that is, V (p̂−) = V (p̂+)

and V ′(p̂−) = V ′(p̂+). These conditions are related to the function ∆ as follows:

Lemma 4. (i) If the value matching holds, then the smooth pasting is equivalent to ∆(p̂+) =

0 unless p̂ = π0;

(ii) If the smooth pasting holds, then the value matching is equivalent to ∆(p̂+) = 0.

The optimality of cutoff policy y(p) = 1{p≥p̂} also requires that ∂W (p,y)
∂y

be ‘single-crossing’
at p = p̂: that is, ∂W (p,y)

∂y
≤ (≥)0 if p ≤ (≥)p̂. Given that ∆(p) = 1

x
∂W (p,y)

∂y
= 0 at p = p̂ (as

shown in Lemma 4), this requires ∆′(p̂−) ≥ 0 and ∆′(p̂+) ≥ 0, which leads to:

32



Lemma 5. Letting

σ(p) :=
h(p)c

p2(1− p)λx(r + ρL + ρH)
,

we must have

∆′(p̂−) =
p̂(1− p̂)λ(r + ρL + ρH)

h(p̂)
[σ(p̂)− V ′(p̂)] ≥ 0 for p̂ ̸= π0 (18)

and

∆′(p̂+) =
p̂(1− p̂)λ(r + ρL + ρH)

g(p̂)
[σ(p̂)− V ′(p̂)] ≥ 0 for p̂ ̸= π1. (19)

As it turns out, the constraints in (18) and (19) are binding in the case p̂ ∈ (π1, π0) (that
is, Case 3). To see it, observe that if p̂ ∈ (π1, π0), then we have g(p̂) < 0 < h(p̂). Thus, the
inequalities in (18) and (19) can hold simultaneously only if V ′(p̂) = σ(p̂):

Lemma 6. If p̂ ∈ (π1, π0), then ∆′(p̂) = 0 or equivalently

V ′(p̂) = σ(p̂) =
h(p̂)c

p̂2(1− p̂)λx(r + ρL + ρH)
. (20)

Let

λ :=


c(ρL+ρH−c)

(ρL−c)
if ρL − c > 0

∞ otherwise.
(21)

Lemma 7. (i) There exists a unique p < π0 such that

σ(p) =
λx

r + ρL + ρH
. (22)

(ii) The following inequalities are equivalent: (a) λx ≥ λ; (b) π1 ≥ p̂M ; (c) π1 ≥ p; (d)
p ≥ p̂M .

The next two lemmas provide some conditions for Case 1 and Case 2:

Lemma 8. V (p) = V ′(p) = 0 for all p ∈ [0, p̂] if and only if p̂ ≥ π0.

Lemma 9. V (p) is linear on [p̂, 1] with p̂ = p̂M and V taking the form in Lemma 3-(ii) if
and only if p̂ ≤ π1. This case arises if and only if λx ≥ λ.

In all the cases not covered in Lemma 8 and Lemma 9, V is strictly convex:
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Lemma 10. V ′′(p) > 0 if p ≤ p̂ < π0 or p ≥ p̂ > π1.

A.3 Analysis of HJB Equation for p ≥ p̂

Solving for the HJB equation requires finding the value function that solves (14) and (15)
and makes the policy function y(p) = 1{p≥p̂} optimal. To this end, we look for a couple (p̂, K̂)

such that the solution to D[K̂] in (16) satisfies ∆(p̂+) = 0 as well as the necessary conditions
on V ′(p̂+) identified in Lemma 6, Lemma 8, or Lemma 9 depending on (λ, x, c).

A.3.1 Case 2: λx ≥ λ

Proposition 8. For λx ≥ λ, there exists a unique pair (p̂, K̂) with p̂ = p̂M ≤ π1 and K̂ = K

such that the solution to D[K̂] takes the form in Lemma 3-(ii) and satisfies ∆(p̂+) = 0, where
p̂ = p̂M = π1 if and only if λx = λ.

Proof. The result follows from Lemma 10. That ∆(p̂+) = 0 follows from (17), using the
fact that p̂ = p̂M and V is linear on [p̂, 1]. The last part of the statement follows from
Lemma 7-(ii).

A.3.2 Case 3: λx ∈ (λ, λ)

In this section, we identify λ < λ such that Case 3 arises if and only if λx ∈ (λ, λ. To do so, we
show that if λx ∈ (λ, λ), then there is a solution to D[K̂] with some pair K̂ and p̂ ∈ (π1, π0)

that satisfies (20) and ∆(p̂+) = 0.
First, we establish a couple of lemmas, whose proofs are in the Online Appendix.

Lemma 11. With K = K, D[K] has a solution over the interval [p, 1] that satisfies V ′(p;K) =
λx

r+ρL+ρH
= σ(p),∀p ∈ [p, 1].25 Also, for any (λ, x, c) satisfying λx < λ, we have p ∈

(π1,min{p̂M , π0}) that is decreasing in λx and increasing in c.

Lemma 12. Consider any (λ1, x1, c1) and (λ2, x2, c2) with λixi < λi for i = 1, 2 such that
λ1x1 ≤ λ2x2 and c1 ≥ c2 with at least one inequality being strict.26 Let p

i
, Ki, and Vi(·;K)

denote p, K, and the solution to D[K], respectively, corresponding to (λi, xi, ci). For any
K ≥ K1 and p ≥ p

1
, we have V ′

1(p;K) < V ′
2(p;K) and V1(p;K) > V2(p;K).

25Recall the definitions of p and K from (22) and Lemma 3-(ii), respectively.
26Here, λi is the value of λ corresponding to (λi, xi, ci).
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Proposition 9. There is some λ ∈ (c, c
π0
) such that for λx ∈ (λ, λ), there exists a unique

pair K̂ > K and p̂ ∈ (π1, π0) such that D[K̂] has a solution over [p̂, 1] satisfying

V ′(p̂; K̂) = σ(p̂) and ∆(p̂; K̂) = 0. (23)

Also, p̂ continuously increases in c and decreases in λx from π0 to π1 as λx increases from λ

to λ.

Proof. To begin, let us plug p = 1 into (16) to obtain

rK = λx− c− ρHV
′(1;K) or V ′(1;K) =

λx− c− rK

ρH
. (24)

Define K to be such that V ′(1;K) = 0 in (24), that is,

K :=
λx− c

r
>

(λx− c)(r + ρL)− cρH
r(r + ρL + ρH)

= K.27 (25)

Step 1: For any (λ, x, c) satisfying λx < λ, there exists K0 ∈ (K,K) such that for any
K ∈ [K,K0], there is a unique p(K) ∈ [p, π0] that satisfies V ′(p(K);K) = σ(p(K)) and is
continuously increasing in K. Also, p(K0) = π0 and hence V ′(π0;K0) = σ(π0) = 0 while
p(K) = p and V ′(p;K) = σ(p).

First, V ′(1;K) = 0 implies V ′(p;K) < 0 for all p < 1 since V ′(·;K) is increasing by
Lemma 3-(iv). Thus, V ′(π0;K) < σ(π0) = 0. Observe next that we have

V ′(π0;K) = V ′(p;K) = σ(p) > σ(π0),

where the equalities hold due to Lemma 11 and the inequality due to the fact that π0 > p

and σ is decreasing. Since V ′(π0;K) > σ(π0) > V ′(π0;K) and since V ′ is continuously and
strictly decreasing in K, there exists a unique K0 ∈ (K,K) such that V ′(π0;K0) = σ(π0) = 0,
meaning p(K0) = π0.

For any K ∈ (K,K0), we have

σ(p) = V ′(p;K) > V ′(p;K) and σ(π0) = V ′(π0;K0) < V ′(π0;K), (26)

where the first equality follows from Lemma 11 while the inequalities holds due to Lemma 3-
(iii). These two inequalities, together with the monotonicity of σ and V ′ with respect to p,

27Recall the definition of K from Lemma 3-(ii).
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imply that there must be a unique p(K) ∈ (p, π0) such that V ′(p(K);K) = σ(p(K)). Note
that (26) also implies p(K) = p and p(K0) = π0.

That p(K) is continuously increasing in K is straightforward from the fact that V ′ con-
tinuously increases in p and decreases in K while σ continuously decreases in p.

Step 2: ∆(p(K);K) < 0 for any K ≤ K.

By Lemma 3-(ii), Lemma 3-(iii), and Step 1, we have for any K ≤ K and p > p(K) = p,

V ′(p;K) ≥ V ′(p;K) = V ′(p;K) = σ(p) > σ(p),

which implies that p(K) ≤ p since V ′(p(K);K) = σ(p(K)). Thus, p̂ ≤ p < c
λx

. Then,

∆(p(K);K) = p(K)λ− c
x
+ p(K)λ [V (1;K)− V (p(K);K)− (1− p(K))V ′(p(K);K)]

< λp(K) [V (1;K)− V (p(K);K)− (1− p(K))V ′(p(K);K)] ≤ 0,

where the second inequality follows from Lemma 3-(iv).

Step 3: ∆(p(K);K) is strictly increasing in K ≥ K.

Note first that using g(p) = h(p)− λxp(1− p), we can rewrite (15) as

rV (p) = h(p)V ′(p) + x∆(p) for p ≥ p̂. (27)

By (27) and the definition of p(K) from Step 3, we have

x∆(p(K);K) = rV (p(K);K)− h(p(K))V ′(p(K);K)

= rV (p(K);K)− h(p(K))σ(p(K)). (28)

To prove the desired result, consider any K2 > K1 ≥ K so that p(K2) > p(K1). Observe
that h(p(K1))σ(p(K1)) > h(p(K2))σ(p(K2)) since both h and σ are decreasing. Observe also
that, by Lemma 3-(iv), V ′(p;K1) ≥ V ′(p(K1);K1) = σ(p(K1)) ≥ 0,∀p ∈ [p(K1), p(K2)],
which implies that V (p(K2);K1) ≥ V (p(K1);K1). By these observations and (28),

x∆(p(K1);K1) = rV (p(K1);K1)− h(p(K1))σ(p(K1))

< rV (p(K2);K1)− h(p(K2))σ(p(K2))

< rV (p(K2);K2)− h(p(K2))σ(p(K2)) = x∆(p(K2);K2),

where the second inequality follows from Lemma 3-(iii).
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Step 4: Any λx ∈ [ c
π0
, λ) admits a unique pair (p̂, K̂) with K̂ > K and p̂ ∈ (π1, π0) satisfying

(23)

Observe first that p(K0) = π0 ≥ c
λx

or λp(K0) ≥ c
x
, so

∆(p(K0);K0) ≥ p(K0)λ [V (1;K0)− V (π0;K0)− (1− π0)V
′(π0;K0)] > 0,

where the inequality is due to the strict convexity of V as shown in Lemma 3-(iv) with
K0 > K. By this inequality and Step 2, we have ∆(p(K);K) < 0 < ∆(p(K0);K0). Given
this, the continuity and strict monotonicity of ∆(p(K), K) with respect to K imply that
there exists a unique K̂ ∈ (K,K0) such that ∆(p(K̂), K̂) = 0 and p(K̂) ∈ (p, π0). Note also
that V ′(p(K̂)) = σ(p(K̂)) by definition of p(K). Given Step 2, the strict monotonicity of
∆(p(K);K) for K ≥ K implies that a pair (p̂, K̂) satisfying (23) is unique. That p̂ > π1

follows from the fact that p̂ = p(K̂) > p and p > π1 if λx < λ by Lemma 7-(ii).

Step 5: Consider any (λi, xi, ci), i = 1, 2, with λixi < λi such that λ1x1 ≤ λ2x2 and c1 ≥ c2

with at least one inequality being strict. If (λ1, x1, c1) admits a pair (p̂1, K̂1) with p̂1 ∈ (π1, π0)

satisfying (23), so does (λ2, x2, c2) with p̂2 < p̂1.28

Let us use the subscript i to denote functions or variables associated with (λi, xi, ci).
Consider a pair (p̂1, K̂1) solving (23) under (λi, xi, ci). Observe first that by Lemma 12,

V ′
2(p̂1; K̂1) > V ′

1(p̂1; K̂1) = σ1(p̂1) > σ2(p̂1) (where the second inequality holds since σ is
decreasing in λx and increasing in c). Also, V ′

2(p̂1;K2) < 0 (recall the argument from Step
1). Thus, one can find K ∈ (K̂1, K2) such that V ′

2(p̂1;K) = σ2(p̂1), which means p̂1 =

p2(K). Note that p̂1 > p
1
> p

2
, which implies K̂2 > K2 since p2(K2) = p

2
and p2(·) is

increasing. Next, we show that ∆2(p2(K);K) = ∆2(p̂1;K) > 0. Consider first the case in
which V2(p̂1;K) > V1(p̂1; K̂1). Using (28) and the fact that σ1(p̂1) > σ2(p̂1), we obtain

0 = x1∆1(p̂1; K̂1) = rV1(p̂1; K̂1)− h(p̂1)σ1(p̂1) < rV2(p̂1;K)− h(p̂1)σ2(p̂1) = x2∆2(p̂1;K).

Consider next the case in which V2(p̂1;K) ≤ V1(p̂1; K̂1). Using (17), we again obtain

0 = x1∆1(p̂1; K̂1) = p̂1λ1x1 − c1 + p̂1λ1x1

[
V1(1; K̂1)− V1(p̂1; K̂1)− (1− p̂1)V

′
1(p̂1; K̂1)

]
< p̂1λ2x2 − c2 + p̂1λ1x1 [V2(1;K)− V2(p̂1;K)− (1− p̂1)V

′
2(p̂1;K)]

< p̂1λ2x2 − c2 + p̂1λ2x2 [V2(1;K)− V2(p̂1;K)− (1− p̂1)V
′
2(p̂1;K)] = x2∆2(p̂1;K),

where the first inequality holds due to the fact that V1(1; K̂1) = K̂1 < K = V2(1;K) and
28Note that the dependence of π1 on (λi, xi, ci) is suppressed here for simplicity.
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V ′
1(p̂1; K̂1) = σ1(p̂1) > σ2(p̂1) = V ′

2(p̂1;K). The second inequality holds since the expression
in the square brackets is positive due to the convexity of V2(·;K). Recalling p̂1 = p2(K),
we have thus proven ∆2(p̂1;K) = ∆2(p2(K);K) > 0 > ∆2(p2(K2);K2), which implies by
Step 3 that there exists a unique K̂2 ∈ (K2, K) such that ∆(p2(K̂2); K̂2) = 0. Moreover,
p̂2 = p2(K̂2) < p2(K) = p̂1 by the monotonicity of p2(·).

Step 6: With λx = c, there exists no pair (p̂, K̂) satisfying (23).

Given Step 2 and Step 3, it suffices to show that with λx = c, ∆(p(K0);K0) < 0, since it
will imply ∆(p(K);K) < 0,∀K ∈ [K,K0]. Recall that p(K0) = π0. Then, we have σ(p(K0)) =

0 = V ′(p(K0);K0). Using this and (16), we also have V (p(K0);K0) =
π0λx(1+K0)−c
r+p(K0)λx

. Plugging
these into the definition of ∆ and rearranging, we obtain

∆(p(K0);K0) =
r (π0λx(1 +K0)− c)

x (r + π0λx)
<

r
(
λx

(
1 + λx−c

r

)
− c

)
x (r + π0λx)

=
(λx− c)(r + λx)

x (r + π0λx)
= 0,

where the first inequality holds since π0 < 1 and K0 < K = λx−c
r

.

Step 7: There is λ ∈ (c, c
π0
) such that any λx ∈ (λ, λ) admits a unique pair (p̂, K̂) with

p̂ ∈ (π0, π1) satisfying (23).

This statement follows immediately from combining Step 2 to Step 6.

The proofs for the next two steps are in the Online Appendix.

Step 8: With λx = λ, (p̂, K̂) satisfies (23) if and only if (p̂, K̂) = (π0, K0). Also, p̂ increases
to π0 as λx decreases to λ.

Step 9: p̂ decreases to π1 as λx increases to λ.

A.3.3 Case 1: λx ∈ (c, λ]

Proposition 10. For any (λ, x, c) with λx ∈ (c, λ], there exists a unique pair K̂ > K and
p̂ ∈ [π0, 1) such that D[K̂] has a solution over [p̂, 1] satisfying

V ′(p̂+; K̂) = 0 = ∆(p̂+; K̂). (29)

Also, p̂ continuously decreases in λx and increases in c.

A.4 Comparative Statics for p̂ and Verification

Proposition 11. Consider λ, λ, and p̂ identified in Proposition 8 to Proposition 10.
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(i) p̂ ≤ p̂M = c
λx

, where the inequality is strict if and only if p̂ > π1.

(ii) λ and λ are increasing in c;

(iii) p̂ is continuously decreasing in λx and continuously increasing in c.

With the solution to D[K̂] obtained in Appendix A.3 for the range [p̂, 1], we can extend it
to the interval [0, p̂] by solving (14) with the boundary condition V (p̂−) = V (p̂+). Given the
value function thus obtained, the policy function y(p) = 1{p≥p̂} is optimal:

Proposition 12. Given the value function V obtained so far, the policy function y(p) = 1{p≥p̂}

maximizes W (p, y) (which is the maximand in (5)).

B Proof of Proposition 7

First of all, the PM’s equilibrium payoff under NP is equal to min{c,π0λ}
r

.
Let us analyze the case of OP to construct an equilibrium that yields the same payoff for

PM as under NP. Given the criminal’s response x(p), the PM’s problem is to solve

rL(p) = min
y

{
pλx(p)(1− y) + cy + pλx(p)y [L(1)− L(p)]

+
(
ρL(1− p)− ρHp− p(1− p)λx(p)y

)
L′(p)

}
. (30)

By extending Lemma 13 to the current case, solving (30) is equivalent to solving

rV (p) = max
y

{
(pλx(p)− c) y + pλx(p)y [V (1)− V (p)]

+
(
ρL(1− p)− ρHp− p(1− p)λx(p)y

)
V ′(p)

}
. (31)

We look for an equilibrium in which PM employs the following “cutoff” policy: y(p) is positive
if and only if p ≥ p̂ for some p̂. Given the criminals’ behavior, neither y(p) ∈ (0, ȳ) nor
y(p) > ȳ can be optimal for any belief p ≥ p̂. Thus, it must be that y(p) = ȳ1{p≥p̂}. The
criminals’ response x(p) should be given such that PM finds it optimal to choose y = 0 if
p < p̂ and choose any y ∈ [0, 1] if p ≥ p̂. Thus, by differentiating the maximand in (31) with
y, we must have

(pλx(p)− c) + pλx(p) [V (1)− V (p)− (1− p)V ′(p)] ≤ (=)0 (if p ≥ p̂). (32)
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Consider the following strategy for PM and criminals: with p̂ = c
λ
, y(p) = ȳ1{p≥p̂} while

x(p) = 1 if p < p̂ and x(p) = c
pλ

if p ≥ p̂. Plugging this into (31), it is straightforward to verify
that V (p) = 0, ∀p ∈ [0, 1]. Given V (p) and x(p), the LHS of (32) is zero if p ≥ p̂ and negative
otherwise, as desired. Clearly, the criminals’ response to the PM’s policy is also optimal at
each p ∈ [0, 1].

To evaluate the PM’s total loss in the long run, consider first the case with p̂ = c
λ
≥ π0. In

this case, the long-run belief absorbs into π0 for sure. Since π0 ≤ p̂, x(π0) = 1 and y(π0) = 0.
Thus, at p = π0, (30) becomes

rL(π0) = π0λ+
(
ρL(1− π0)− ρHπ0

)
L′(π0) = π0λ

or L(π0) =
π0λ
r
.

Consider next the case with p̂ = c
λ
< π0. In this case, the belief cycles within the interval

[max{p̂, π1}, 1]. Recall that for p ≥ p̂, any y ∈ [0, 1] is optimal for PM while x(p) = c
pλ

. Thus,
for any p ≥ p̂, we can plug x(p) = c

pλ
and y = 0 into (30) to obtain

rL(p) = c+
(
ρL(1− p)− ρHp

)
L′(p).

It is straightforward to see that this ODE has a (unique) solution, L(p) = c
r

for all p ≥ p̂. In
sum, we have proven that PM’s (expected) total loss is equal to min{c,π0λ}

r
.

Note that the PM’s policy under OP is also her myopic best response. Thus, the equi-
librium we just described for OP constitutes an equilibrium for GP as well, completing the
proof.
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Online Appendix for:
Predictive Enforcement

C Analysis for Section 3

C.1 Omitted Proofs for Lemmas

Lemma 13. Any policy y(·) solves (5) if and only if it minimizes the loss function in (1).

Proof. Let Ly(p) denote the total discounted loss of PM with belief pt = p who chooses any
enforcement policy y : [0, 1] → [0, 1]. For a short duration dt > 0, we can write

Ly(p) =
[
pλx(1− y(p)) + cy(p)

]
dt+ pλxy(p)dt(1− rdt)Ly(1)

+ (1− rdt)(1− pλxy(p)dt)Ly(pt+dt) + o(dt).

By taking a limit as dt → 0 and applying (2), we obtain:

rLy(p) = pλx(1− y(p)) + cy(p) + pλxy(p)(Ly(1)− Ly(p)) + L′
y(p)f(p, y(p)).

Hence, we obtain the following HJB equation:

rL(p) = min
y∈[0,1]

pλx(1− y) + cy + pλxy(L(1)− L(p)) + L′(p)f(p, y). (SA.1)

Let us next derive an ODE for the total (expected) discounted sum of both deterred and
undeterred crimes, denoted C(p), when the probability of ω = H at t is p. Since whether a
crime occurs is independent of the PM’s policy, we have for any y ∈ [0, 1],

C(p) =pλxdt+ pλxydt(1− rdt)C(1) + (1− rdt)(1− pλxydt)C(pt+dt)

=pλxdt+ pλxydt(1− rdt)C(1) + (1− rdt)(1− pλxydt) (C(p) + f(p, y)C ′(p)dt)

=⇒ rC(p) =pλx+ pλxy (C(1)− C(p)) + f(p, y)C ′(p).

Thus,
pλxy (C(1)− C(p)) + f(p, y)C ′(p) = f(p, 0)C ′(p). (SA.2)

Given any policy y : [0, 1] → [0, 1], let us define Vy analogously to Ly: that is, Vy is the
total discounted value of deterred crimes minus enforcement costs associated with y. Note
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that for any policy y, we have Vy(p) + Ly(p) = C(p) at each p ∈ [0, 1] since the terms of
enforcement cost in Vy and Ly cancel out, so Vy(·) and Ly(·) add up to the total discounted
sum of deterred and undeterred crimes.

Let y∗ be the optimal policy that solves (5). Fix any p ∈ [0, 1] and let z∗ = y∗(p). Then,
we obtain for any policy y : [0, 1] → [0, 1]

rLy∗(p) = pλx(1− z∗) + cz∗ + pλxz∗ [Ly∗(1)− Ly∗(p)] + f(p, z∗)L′
y∗(p)

= pλx(1− z∗) + cz∗ + pλxz∗ [C(1)− Vy∗(1)− (C(p)− Vy∗(p))] + f(p, z∗)(C ′(p)− V ′
y∗(p))

= pλx+ f(p, 0)C ′(p)−
[
pλxz∗ − cz∗ + pλxz∗(Vy∗(1)− Vy∗(p)) + f(p, z∗)V ′

y∗(p)
]

≤ pλx+ f(p, 0)C ′(p)−
[
pλxy(p)− cy(p) + pλxy(p)(Vy(1)− Vy(p)) + f(p, y(p))V ′

y(p)
]

= rLy(p),

where the third equality follows from (SA.2) while the inequality from the optimality of y∗ for
(5). The last equality holds for the same reason that the first three equalities hold. Hence, y∗

solves (SA.1).
The proof that any optimal policy y∗ solving (SA.1) solves (5) as well is analogous and

hence omitted.

Proof of Lemma 3. The differential equation D[K] can be rewritten as

V ′(p) =
r + pλx

g(p)
V (p) +

c− pλx(1 +K)

g(p)
,

which clearly has a unique solution for p ∈ [π1 + ε, 1] that satisfies the desired continuity,
proving Part (i).

Part (ii) is established by finding a linear solution to D[K] constructively. To do so, let
V (p) = K + a(p− 1) for p ∈ [p̂, 1]. Then, the RHS of (16) becomes

pλx− c+ pλxa(1− p) + [ρL(1− p)− ρHp− p(1− p)λx]a

=− c+ ρLa+ [λx− (ρL + ρH)a]p,

which must equal the LHS of (16), rV (p) = r(K + a(p− 1)) = r(K − a) + rap. We must thus
have ρLa− c = r(K− a) and λx− (ρL+ ρH)a = ra, which can be solved to yield a = λx

r+ρL+ρH

and K = (λx−c)(r+ρL)−cρH
r(r+ρL+ρH)

, as desired.
To prove Part (iii), let us consider any K2 > K1. For simplicity, let Vi(·) denote V (·;Ki) for

i = 1, 2. To begin, observe that we have V ′
1(1) > V ′

2(1) by (24). Suppose now for contradiction

SA.2



that there is some p < 1 such that V ′
1(p) ≤ V ′

2(p). One can then find some p′ < 1 such that
V ′
1(p

′) = V ′
2(p

′) and V ′
1(p) > V ′

2(p),∀p > p′. Note first that

V1(p
′) = V1(1)−

∫ 1

p′
V ′
1(p)dp < V2(1)−

∫ 1

p′
V ′
2(p)dp = V2(p

′) (SA.3)

since V1(1) = K1 < K2 = V2(1) and V ′
1(p) < V ′

2(p),∀p ∈ [p′, 1]. We then rewrite (16) with
p = p′, V = Vi, and K = Vi(1) as

g(p′)V ′
i (p

′) + p′λx− c = rVi(p
′)− p′λx[Vi(1)− Vi(p

′)].

With V ′
1(p

′) = V ′
2(p

′), we have the LHS, and thus RHS, of this equation unchanged across
i = 1, 2. However,

rV1(p
′)− p′λx[V1(1)− V1(p

′)] = rV1(p
′)− p′λx

∫ 1

p′
V ′
1(p)dp

< rV2(p
′)− p′λx

∫ 1

p′
V ′
2(p)dp

= rV2(p
′)− p′λx[V2(1)− V2(p

′)],

where the inequality holds since V2(p
′) > V1(p

′) from (SA.3) and V ′
2(p) < V ′

1(p),∀p > p′. We
have thus obtained a contradiction. That V (p;K) is strictly increasing in K can be established
by an analogous argument, so its proof is omitted.

For Part (iv), let us differentiate both sides of (16) with p to obtain

rV ′(p;K) = λx(1 +K)− λxV (p;K) + (g′(p)− pλx)V ′(p;K) + g(p)V ′′(p;K),

which can be combined with (16) to remove V (p) and obtain

V ′′(p;K) =
[r2 + r(λx+ ρL + ρH) + λxρL]V

′(p;K)− λx(c+ r + rK)

(r + λpx)g(p)
. (SA.4)

Since the numerator is strictly decreasing in K and the denominator is negative (recall g(p) < 0

for p > π1), V ′′(p;K) is strictly increasing in K. Combining this with Part (ii) proves the rest
of Part (iv).

Proof of Lemma 4. To prove Part (i), suppose that the value matching holds. Then, by (14)
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and (27),

h(p̂)V ′(p̂+) + x∆(p̂+) = rV (p̂+) = rV (p̂−) = h(p̂)V ′(p̂−)

or

h(p̂)V ′(p̂+) + x∆(p̂+) = h(p̂)V ′(p̂−).

Thus, ∆(p̂+) = 0 is equivalent to V ′(p̂+) = V ′(p̂−) unless p̂ = π0. The proof of Part (ii) is
analogous and hence omitted.

Proof of Lemma 5. Let us first differentiate both sides of (14) with p to obtain rV ′(p) =

h′(p)V ′(p) + h(p)V ′′(p) or V ′′(p) = (r+ρL+ρH)V ′(p)
h(p)

for p ̸= p0. Substituting this into the
differentiation of ∆(p) in (17), we obtain for p ≤ p̂ with p ̸= π0,

∆′(p) =
∆(p)

p
+

c

px
− p(1− p)λV ′′(p)

=
∆(p)

p
+

c

px
− p(1− p)λ(r + ρL + ρH)

h(p)
V ′(p),

=
∆(p)

p
+

p(1− p)λ(r + ρL + ρH)

h(p)
[σ(p)− V ′(p)] , (SA.5)

which yields (18) since ∆(p̂−) = 0

Let us next differentiate both sides of (15) to obtain

rV ′(p) = λx+ λx[V (1)− V (p)]− pλxV ′(p) + g′(p)V ′(p) + g(p)V ′′(p),

which can be rewritten as

g(p)V ′′(p) = (r − g′(p) + pλx)V ′(p) + λx[V (p)− (1 + V (1))]

= (r + ρL + ρH)V
′(p) + (1− p)λxV ′(p) + λx[V (p)− (1 + V (1))]

= (r + ρL + ρH)V
′(p)− c

p
− ∆(p)x

p
. (SA.6)

Substituting this into the differentiation of ∆(p), we obtain for p ≥ p̂ with p ̸= π1,

∆′(p) =
∆(p)

p
+

c

px
− p(1− p)λV ′′(p)
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=
∆(p)

p
+

c

px
− p(1− p)λ

(r + ρL + ρH)V
′(p)− c

p
− ∆(p)x

p

g(p)

=

(
1 +

p(1− p)λx

g(p)

)(
∆(p)

p
+

c

px

)
− p(1− p)λ(r + ρL + ρH)

g(p)
V ′(p)

=
h(p)

g(p)

(
∆(p)

p
+

c

px

)
− p(1− p)λ(r + ρL + ρH)

g(p)
V ′(p)

=
h(p)

g(p)

(
∆(p)

p

)
+

p(1− p)λ(r + ρL + ρH)

g(p)
[σ(p)− V ′(p)] , (SA.7)

which yields (19) since ∆(p̂+) = 0.

Proof of Lemma 7 . Part (i) follows from the continuity of σ and this claim:

Claim 1. σ(p) strictly decreases from ∞ to 0 as p increases from 0 to π0.

Proof. Note first that h(p)
p2(1−p)

is strictly decreasing on [0, π0]:

d

dp

(
h(p)

p2(1− p)

)
=

−2p2(ρH + ρL) + p(ρH + 4ρL)− 2ρL
(1− p)2p3

=
−2(ρH + ρL)(p− π0)

2 + 2(ρL)
2

ρH+ρL
+ pρH − 2ρL

(1− p)2p3
< 0,

since the numerator is maximized at p = π0 within the range [0, π0] and the maximized value is
equal to −ρLρH

ρH+ρL
< 0. Thus, σ(p) is strictly decreasing. Then, the result follows from observing

that σ(0) = ∞ and σ(π0) = 0 since h(0) > 0 = h(π0).

For Part (ii), let us first prove the following claim:

Claim 2. λx ≥ λ is equivalent to

λx(ρL − c) + c(c− ρL − ρH) ≥ 0. (SA.8)

Proof. Notice that if ρL − c > 0, then (SA.8) is just a rearrangement of λx ≥ λ. It thus
suffices to show that (SA.8) implies ρL > c. Otherwise, we would have

LHS of (SA.8) ≤ c(ρL − c) + c(c− ρL − ρH) = −cρH < 0,

where the first inequality holds since λx > c.

Thanks to Claim 2, the equivalence between (a) and (b) will follow from showing that
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g(p̂M) ≥ 0 is equivalent to (SA.8):

g(p̂M) = ρL − (ρL + ρH + λx)p̂M + λx(p̂M)2 ≥ 0

⇔ρL − (ρL + ρH) ·
c

λx
− c+

c2

λx
≥ 0

⇔λx(ρL − c) + c(c− ρL − ρH) ≥ 0.

To prove the equivalence between (b) and (c), observe that since 0 = g(π1) = h(π1) −
π1(1− π1)λx, we have

σ(p)− σ(π1) =
λx

r + ρL + ρH
− σ(π1) =

λx

r + ρL + ρH
− h(π1)c

π2
1(1− π1)λx(r + ρL + ρH)

=
c

r + ρL + ρH

(
λx

c
− 1

π1

)
≥ 0. (SA.9)

Since σ is decreasing, we have π1 ≥ p if and only if π1 ≥ p̂M .
For the equivalence between (d) and (a), observe

σ(p̂M)− σ(p) =
λx[λx(ρL − c) + c(c− ρL − ρH)]

c(λx− c) (r + ρL + ρH)
.

Thus, given that σ is decreasing, p ≥ p̂M is equivalent to λx(ρL − c) + c(c − ρL − ρH) ≥ 0,
which is equivalent to (a) due to Claim 2.

Proof of Lemma 8. To prove the if direction, observe first that by (14), V (p) = 0 implies
V ′(p) = 0 for p ∈ [0, p̂]. By the same equation, h(π0) = 0 implies V (π0) = 0. Suppose
for contradiction that there is some p < π0 such that V (p) < 0. Then, we must have some
p̌ ∈ (p, π0) such that V (p̌) < 0 and V ′(p̌) > 0. Since h(p̌) > 0 and thus h(p̌)V ′(p̌) > 0, (14)
implies V (p̌) > 0, a contradiction. Suppose next that there is p < π0 such that V (p) > 0.
Then, we must have some p̌ ∈ (p, π0) such that V (p̌) > 0 and V ′(p̌) < 0. Since h(p̌) > 0 and
thus h(p̌)V ′(p̌) < 0, (14) implies V (p̌) < 0, a contradiction. The argument so far establishes
V (p) = 0 for all p ≤ π0. An analogous argument can be used to establish the same result for
the range [π0, p̂].

To prove the only if direction, suppose that V (p) = 0 for all p ∈ [0, p̂]. Then, V ′(p̂+) =

V ′(p̂−) = 0, which by (19) requires that h(p̂)
g(p̂)

≥ 0. This cannot hold if p̂ ∈ (π1, π0) since then
h(p̂) > 0 > g(p̂). If p̂ ≤ π1, then V ′(p+) =

λx
r+ρL+ρH

> 0 (as will be shown in Lemma 9), a
contradiction. The remaining possibility is p̂ ≥ π0, as desired.

Proof Lemma 9. To prove the if direction of the first statement, let us differentiate both sides
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of (15) to obtain

rV ′(p) = g′(p)V ′(p) + g(p)V ′′(p)− λxV (p)− pλxV ′(p) + λx(1 + V (1)).

We can combine this equation and (15) to remove V (p) and obtain

V ′(p) =
λx(c+ r + rV (1)) + (r + pλx)g(p)V ′′(p)

r2 + r(λx+ ρL + ρH) + λxρL
. (SA.10)

Let us denote a = λx(c+r+rV (1))
r2+r(λx+ρL+ρH)+λxρL

. We show that V ′(p) = a,∀p ≥ p̂. Note first that this is
true for p = π1 since g(π1) = 0 and (SA.10) imply V ′(π1) = a. To first prove the linearity of V
over (π1, 1], suppose not, i.e., V ′(p) ̸= a for some p ∈ (π1, 1]. Consider first the case V ′(p) > a.
We must then have some p̌ ∈ (π1, p) such that V ′′(p̌) > 0 and V ′(p̌) > a. Since g(p̌) < 0

and thus g(p̌)V ′′(p̌) < 0, the equation (SA.10) implies V ′(p̌) < λx(c+r+rV (1))
r2+r(λx+ρL+ρH)+λxρL

= a, a
contradiction. Consider next the case V ′(p) < a. Then, we must have some p̌ ∈ (π1, p) such
that V ′′(p̌) < 0 and V ′(p̌) < a. Since g(p̌) < 0 and thus g(p̌)V ′′(p̌) > 0, the equation (SA.10)
implies V ′(p̌) > λx(c+r+rV (1))

r2+r(λx+ρL+ρH)+λxρL
= a, a contradiction. The argument so far establishes

that V ′(p) = a, ∀p ∈ [π1, 1]. An analogous argument can be used to show that V (p) is linear
on [p̂, π1] as well.

According to Lemma 3-(iv), V can be linear on [π1, 1] only if K = K, in which case
Lemma 3-(ii) applies. To show p̂ = c

λx
, observe that the linearity of V over [p̂, 1] implies

V (1)− V (p)− V ′(p)(1− p) = 0 for all p ≥ p̂, which, by (17), means

∆(p) = pλ− c

x
. (SA.11)

Hence, by Lemma 4, the smooth pasting requires ∆(p̂) = 0, implying p̂ = c
λx

= p̂M .
To prove the only if direction of the first statement, let us substitute p̂ = p̂M = c

λx
,

∆(p̂) = 0, and V ′(p−) = V ′(p+) =
λx

r+ρL+ρH
into (SA.5) to obtain

∆′(p̂) ≥ 0 (SA.12)

⇔ [λx(ρL − c) + c(c− ρL − ρH)]

λxρL − c (ρL + ρH)
≥ 0

⇔λx(ρL − c) + c(c− ρL − ρH) ≥ 0, (SA.13)

where the second equivalence holds since p̂ = c
λx

< π0 =
ρL

ρL+ρH
implies λxρL−c (ρL + ρH) > 0.

Then, p̂ = c
λx

≥ π1 follows from combining (SA.13) with Lemma 7-(ii) and Claim 2.
The only if direction of the second statement follows directly from the first statement,
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provided that p̂ = p̂M ≤ π1 implies λx ≥ λ according to Lemma 7-(ii).
To prove the if direction, it suffices to show that (SA.8) implies p̂ ≤ π1. Suppose for a

contradiction that p̂ > π1 and hence p̂ > max{p̂M , p} due to Lemma 7-(ii). We consider two
cases depending on p̂ ∈ (π1, π0) or p̂ ≥ π0.

Consider first the case p̂ ∈ (π1, π0). Recall from Lemma 3-(ii) that for any ε > 0, V (p;K) =
λx

r+ρL+ρH
= σ(p),∀p ∈ [π1 + ε, 1]. Using this, we argue that V (1) ≥ K. Else if V (1) < K, then

we would have for all p ≥ p̂

V ′(p̂) = V ′(p̂;V (1)) > V ′(p̂;K) = σ(p) > σ(p̂),

where the first inequality follows from Lemma 3-(iii) while the second inequality holds since
σ is decreasing. This inequality contradicts the condition in (18) that requires V ′(p̂) ≤ σ(p̂)

since h(p̂) > 0.
That V (1) ≥ K implies V is (weakly) convex over [p̂, 1] due to Lemma 3-(iv). Then, we

have a contradiction since, by (17),

∆(p̂) = p̂λ− c

x
+ p̂λ [V (1)− V (p̂)− (1− p̂)V ′(p̂)] ≥ p̂λ− c

x
> 0,

where the first inequality follows from the convexity of V while the second from p̂ > p̂M .
Consider next the case p̂ ≥ π0. By Lemma 8 (together with the value-matching and

smooth pasting), we have V (p̂) = V ′(p̂) = 0. Then, by (17),

∆(p̂) = p̂λ− c

x
+ p̂λV (1) ≥ p̂λ− c

x
> 0,

a contradiction.

Proof of Lemma 10. Let us first consider the case p ≤ p̂ < π0. Note that V is obtained from
solving (14) in this case. Note also that V ′(p̂) > 0: if p̂ ∈ (π1, π0), then this follows from (20);
if p̂ ≤ π1, then we have V ′(p̂) = λx

r+ρL+ρH
> 0 by Lemma 9. Given h(p̂) > 0, we have V (p̂) > 0

by (14). Also, (14) has a unique solution by the standard result in differential equations.
Indeed,

V (p) =

(
h(p)

h(p̂)

)− r
ρL+ρH

V (p̂) (SA.14)

solves (14), as one can easily check. It is then straightforward to check that this solution
satisfies V ′′(p) > 0.

Let us next consider the case p ≥ p̂ > π1. In this case, V is obtained from solving (15).
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By Lemma 3-(iv), V ′′(p;K) ⪌ 0 everywhere over the interval [p̂, 1] depending on K ⪌ K. The
case K = K (i.e., V ′′(p) = 0,∀p ∈ [p̂, 1]) can be easily ruled out since then Lemma 9 would
imply p̂ ≤ π1. It thus suffices to show that V ′′(p) < 0,∀p ∈ [p̂, 1] cannot hold.

To do so, we first observe that since λx ≥ λ would imply p̂ ≤ π1 by Lemma 9, we must
have λx < λ, which implies p < p̂M due to Lemma 7-(ii). Let us consider two subcases
depending on whether p̂ ≥ π0 or p̂ ∈ (π1, π0). In the former case, Lemma 8 together with the
value matching and smooth pasting implies V (p̂) = V ′(p̂) = 0. Thus, if V ′′(p) < 0,∀p ∈ [p̂, 1],
then V (p) < 0 for p > p̂, which cannot be true.

To deal with the case p̂ ∈ (π1, π0), we first prove the following claim:

Claim 3. If p̂ ∈ (π1, π0) and V ′′(p) < 0,∀p ∈ [p̂, 1], then we must have p̂ < p.

Proof. By Lemma 3-(iv), V ′′(p) < 0,∀p ∈ [p̂, 1] implies V (1) < K, which in turn implies
V ′(p) = V ′(p;V (1)) > V ′(p;K),∀p ≥ p̂ due to Lemma 3-(iii). Suppose p ≤ p̂ for contradiction.
Then, for any p ≥ p̂,

V ′(p) > V ′(p;K) = σ(p) ≥ σ(p̂),

which contradicts Lemma 6.

Suppose now for contradiction that V ′′(p) < 0, ∀p ≥ p̂. Then, by p < p̂M and Claim 3, we
have p̂ < p̂M = c

λx
. Thus, the strict concavity of V yields

∆(p̂) = p̂λ− c

x
+ p̂λ [V (1)− V (p̂)− (1− p̂)V ′(p̂)] < p̂λ− c

x
< 0,

a contradiction. Hence, we conclude that V ′′(p) > 0,∀p ≥ p̂.

Proof of Lemma 11. The first statement can be established by using the same argument as
in the proof of Lemma 9.

To prove the second statement, note that by Lemma 7-(ii), λx < λ is equivalent to
π1 < p < p̂M . Thus, p ∈ (π1,min{p̂M , π0}). The monotonicity of p with respect to λ follows
from the fact that σ is decreasing in p and λx and increasing in c while λx

r+ρL+ρH
is increasing

in λx.

Proof of Lemma 12. Observe first that p
2
< p

1
since p is decreasing in λx and increasing in c

as shown in Lemma 11.
To simplify notations, let Vi(·) denote Vi(·;K). Let us first establish V ′

1(p) < V ′
2(p),∀p ≥

p
1
. To do so, observe first that V ′

1(1) < V ′
2(1) due to (24), λ1x1 ≤ λ2x2, and c1 ≥ c2 (with

at least one inequality being strict). Suppose for contradiction that there is some p ∈ [p
1
, 1]
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such that V ′
1(p) ≥ V ′

2(p). Then, there must exist p̌ ∈ [p, 1] such that V ′
1(p̌) = V ′

2(p̌) and
V ′
1(p) < V ′

2(p),∀p > p̌. Given this and V1(1) = V2(1) = K,

V1(p̌) = V1(1)−
∫ 1

p̌

V ′
1(p)dp > V2(1)−

∫ 1

p̌

V ′
2(p)dp = V2(p̌). (SA.15)

Using (16) and the fact that V ′
1(p̌) = V ′

2(p̌), we can write

r(V1(p̌)− V2(p̌))

= p̌(λ1x1 − λ2x2)− (c1 − c2) + p̌λ1x1 [K − V1(p̌)]− p̌λ2x2 [K − V2(p̌)]− (λ1x1 − λ2x2)p̌(1− p̌)V ′
1(p̌)

≤ p̌(λ1x1 − λ2x2) [V1(1)− V1(p̌)]− (λ1x1 − λ2x2)p̌(1− p̌)V ′
1(p̌)

= p̌(λ1x1 − λ2x2) [V1(1)− V1(p̌)− (1− p̌)V ′
1(p̌)] ≤ 0,

where the first inequality follows from the fact that K = V1(1) and V1(p̌) > V2(p̌) while the
second inequality from the convexity of V1 for K ≥ K1 as established in Lemma 3-(iv). This
inequality contradicts the inequality in (SA.15).

Then, V1(p) > V2(p),∀p ∈ [p
1
, 1) follows from the same argument as in (SA.15), using the

fact that V ′
1(p) < V ′

2(p), ∀p ∈ [p
1
, 1].

C.2 Ommitted Parts of the Proof for Proposition 9

Proof of Step 8. Let (p−, K−) denote the limit of (p̂, K̂) satisfying (23) as λx decreases to
λ. By the continuity of V and V ′ with respect to p, K, and (λ, x, c), the pair (p−, K−) is a
unique solution at λx = λ.29

To show that p− = π0, suppose for a contradiction that p− < π0.30 Then, we must
have K− < K0 since p− = p(K−) and π0 = p(K0) while p(·) is increasing. This implies
∆(p(K0);K0) > 0 = ∆(p(K−);K−) since ∆(p(·); ·) is increasing. Now let us choose some
(λ1, x1, c) such that λ1x1 = λ − ε with small ε > 0. Let V1(·; ·), ∆1(·; ·), σ1(·), and p1(·)
denote the corresponding functions. By the continuity of these functions with respect to
(λ, x, c), we can make ε > 0 sufficiently small that ∆1(p1(K0);K0) > 0. Let K ′ be such
that σ1(p

−) = V ′
1(p

−;K ′), i.e., p1(K
′) = p−. Then, we have K ′ < K− since σ1(p

−) >

σ(p−) = V ′(p−;K−) > V ′
1(p

−;K−) (where the second inequality holds due to Lemma 12)
and since V ′

1(p
−; ·) is decreasing. Also, using λ1x1 < λ and derivations analogous to those in

Step 5, we can show that ∆1(p
−;K ′) < ∆(p−;K−) = 0. Given that ∆1(p1(K0);K0) > 0 >

∆1(p1(K
′);K ′), we can find some K1 ∈ (K ′, K0) such that p1(K1) < π0 and ∆1(p1(K1);K1) =

29The uniqueness follows from Step 1 and 4.
30Note that we cannot have p− > π0 since p− is the limit of p̂ < π0.
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0 while σ1(p1(K1)) = V ′
1(p1(K1);K1), which contradicts the definition of λ (since λ1x1 <

λ).

Proof of Step 9. The monotonicity of p̂ is immediate from Step 5. To prove the convergence,
let (p+, K+) denote the limit of (p̂, K̂) satisfying (23) as λx increases to λ. Clearly, p+ ≥ π1.
Suppose p+ > π1 for a contradiction. Since, at λx = λ, we have π1 = p = c

λx
by Lemma 2,

we can choose λx sufficiently close to λ (or sufficiently large if λ = ∞) that π1 is close
to c

λx
. Letting (p̂, K̂) denote a pair satisfying (23) for such λx, we have p̂ > π1, which

implies that p̂ > c
λx

and p̂ > p since p̂ is close to p+ > π1. Then, ∆(p̂; K̂) = 0 requires
V (1; K̂)− V (p̂; K̂)− (1− p̂)V ′(p̂; K̂) < 0, which implies K̂ < K by Lemma 3-(iv). Then, by
Lemma 3-(iii) and Claim 1, V ′(p̂; K̂) > V ′(p̂;K) = λx

r+ρL+ρH
= σ(p) > σ(p̂), a contradiction.

C.3 Proof of Proposition 10

The proof proceeds in a few steps and will employ the notations and results from the proof
of Proposition 9. For instance, we continue to use the notations K0 and K.

Step 1: No pair (p̂, K̂) with K̂ < K0 or K̂ ≥ K can satisfy (29).

Recall first that V ′(π0;K0) = 0 by the definition of K0. We can then observe that if
K̂ < K0, then, for all p ≥ π0,

V ′(p; K̂) ≥ V ′(π0; K̂) > V ′(π0;K0) = 0

since V ′ is decreasing in K and increasing in p. Observe also that if K̂ ≥ K, then V ′(p; K̂) <

V ′(1; K̂) ≤ V ′(1;K) = 0,∀p < 1.

Step 2: For any K ∈ [K0, K), there is a unique p(K) ∈ [π0, 1) that satisfies V ′(p(K);K) = 0

and is continuously increasing in K.

For any K ∈ [K0, K),

V ′(π0;K) ≤ V ′(π0;K0) = 0 < V ′(1;K),

where the second inequality holds since V ′(1;K) = λx−c−rK
ρH

> 0 for K < K = λx−c
r

. Thus,
there exists a unique p(K) ∈ (π0, 1) that satisfies the desired property, since V ′(·;K) is strictly
increasing.

The monotonicity of p(K) follows easily from the fact that V ′ is increasing in p and
decreasing in K.
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Step 3: For each λx ∈ (c, λ], there exists a unique pair (p̂, K̂) satisfying (29) with p̂ ∈ [π0, 1)

and K̂ ∈ [K0, K).

Consider any λ1x1 ∈ (c, λ] and λ2x2 = λ. Let Vi(p;K), σi(p), ∆i(p;K), and pi(K) denote
the functions associated with (λi, xi, c). Let Ki and Ki denote K0 and K corresponding to
(λi, xi, c). Let us first observe that K2 > K1. By Lemma 12, V ′

2(π0;K1) > V ′
1(π0;K1) = 0 =

V ′
2(π0;K2), which implies K1 < K2 since V ′

2 is decreasing in K by Lemma 3-(iii).
By Step 8 in the proof of Proposition 9, we have p2(K2) = π0 and ∆2(p2(K2);K2) = 0.

Thus, using (27), we obtain

0 = ∆2(p2(K2);K2) =
rV2(π0;K2)

x

≥ rV1(π0;K2)

x
>

rV1(π0;K1)

x
= ∆1(p1(K1);K1), (SA.16)

where the first inequality follows from Lemma 12 while the second inequality from Lemma 3-
(iv) and K2 > K1.

Observe next that p1(K1) = 1 since V ′
1(1;K1) = 0. Thus, using (17), we obtain

∆1(p1(K1);K1) = ∆1(1;K1) = λ1 −
c

x
> 0.

Combining this with (SA.16) and using the strict monotonicity of ∆1(p1(·); ·), we can conclude
that there is a unique K̂ ∈ [K1, K1) such that ∆1(p1(K̂); K̂) = 0 and p1(K̂) ∈ [π0, 1).

Step 4: For the pair (p̂, K̂) satisfying (29), p̂ is decreasing in λx and increasing in c.

The proof of this step is analogous to that of Step 5 in the proof of Proposition 9, and
hence omitted.

C.4 Proof of Proposition 11

Part (i) follows from Proposition 8 in the case p̂ ≤ π1, where p̂ = c
λx

. To deal with the case
p̂ > π1, rewrite ∆(p̂) = 0 as

p̂λ− c
x
= −λp̂ [V (1)− V (p̂)− (1− p̂)V ′(p̂)] . (SA.17)

From the proofs of Proposition 9 and Proposition 10, we know that for p ≥ p̂, V (p) = V (p;K)

for some K > K. Thus, by Lemma 3-(iv), V is strictly convex, which implies that the
expression inside the square bracket in (SA.17) is strictly positive, so p̂ < c

λx
.

For Part (ii), the monotonicity of λ is immediate from its definition while the monotonicity
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of λ follows from Step 5 in the proof of Proposition 9.
For Part (iii), let us focus on establishing the comparative statics with λx since doing so

with c is analogous. To do so, consider any λ2x2 > λ1x1. Let π0i, π1i and p̂i denote the values
of π0, π1 and p̂, respectively, under λixi, i = 1, 2. Note that π01 = π02 and π11 > π12.

The desired result p̂1 > p̂2 follows immediately from Proposition 8 to Proposition 10 if
λ2x2 > λ1x1 ≥ λ or if λ > λ2x2 > λ1x1 > λ or if λ1 < λ2 ≤ λ. In the case λ1x1 < λ ≤ λ2x2,
we have p̂1 > π11 > π12 ≥ p̂2 as desired. In the case λ1x1 ≤ λ < λ2x2 < λ, we have
p̂1 ≥ π01 = π02 > p̂2.

C.5 Proof of Proposition 12

Establishing the optimality of the policy function y(p) = 1{p≥p̂} amounts to showing ∆(p) ≥
(≤)0 for p ≥ (≤)p̂. The proof of this result proceeds in a few steps. To begin, we reproduce
(SA.5) and (SA.7):

∆′(p) =


∆(p)

p
+

p(1− p)λ(r + ρL + ρH)

h(p)
[σ(p)− V ′(p)] for p ≤ p̂ (SA.18)

h(p)

g(p)

(
∆(p)

p

)
+

p(1− p)λ(r + ρL + ρH)

g(p)
[σ(p)− V ′(p)] for p ≥ p̂. (SA.19)

Step 1: If ∆(p) ≥ 0 at p = max{π0, p̂}, then ∆(p) ≥ 0,∀p ≥ max{p̂, π0}.

Note that g(p) < 0 and h(p) ≤ 0 for p ≥ max{p̂, π0}. Hence, since V ′(p) ≥ 0, (SA.19)
implies that ∆′(p) > 0 whenever ∆(p) ≥ 0.31 If ∆(p) ≥ 0 at p = max{π0, p̂}, this should
imply that ∆(p) ≥ 0 for all p > max{π0, p̂}.

Step 2: With p̂ > π0, ∆(p) ≤ (≥)0 for p < (>)p̂.

In this case, we have max{p̂, π0} = p̂, so ∆(p) = 0 at p = max{p̂, π0}, which implies by
Step 1 that ∆(p) ≥ 0,∀p ≥ p̂.

To show that ∆(p) ≤ 0 for p ≤ p̂, note that V ′(p) = 0 for all p ≤ p̂, and that h(p̂) < 0 and
g(p̂) < 0. Consequently, by (SA.18), (SA.19), and ∆(p̂) = 0,

∆′(p̂−) =
p̂(1− p̂)λ(r + ρL + ρH)

h(p̂)
σ(p̂) > 0,

and
∆′(p̂+) =

p̂(1− p̂)λ(r + ρL + ρH)

g(p̂)
σ(p̂) > 0.

31That V ′(p) ≥ 0 can be easily verified using the results from Proposition 8 to Proposition 10.
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This means that there exists ε > 0 such that for p ∈ (p̂−ε, p̂), ∆(p) < 0, and for p ∈ (p̂, p̂+ε),
∆(p) > 0.

If ∆(p) > 0 for any p < p̂, we must have p̌ ∈ [p, p̂] such that ∆′(p̌) < 0 and ∆(p̌) = 0. But
we have

∆′(p̌) =
p̌(1− p̌)λ(r + ρL + ρH)

h(p̌)
σ(p̌) > 0,

a contradiction.

Step 3: With p̂ ∈ (π1, π0), ∆(p) ≥ 0 for p ≥ p̂.

The result will follow from Step 1 once we prove ∆(p) ≥ 0 for p ∈ [p̂, π0]. Let us thus fix
any p ∈ [p̂, π0]. Rewrite (SA.19) for the part of p ≥ p̂ as

∆′(p) =
h(p)

g(p)

(
∆(p)

p

)
− δ(p)

g(p)p
, (SA.20)

where
δ(p) := p2(1− p)λ(r + α)V ′(p)− c

x
h(p)

with α := ρL + ρH . Differentiating this, we get

δ′(p) = (2p− 3p2)λ(r + α)V ′(p) +
cα

x
+ p2(1− p)λ(r + α)V ′′(p). (SA.21)

By (SA.6), we have V ′′(p) =
(r+α)V ′(p)− c

p
−∆(p)x

p

g(p)
and substitute this into (SA.21) to obtain

δ′(p) =(2p− 3p2)λ(r + α)V ′(p) +
cα

x
+ p2(1− p)λ(r + α)

(r + α)V ′(p)− c
p
− ∆(p)x

p

g(p)

=(2p− 3p2)λ(r + α)V ′(p) +
cα

x
− p(1− p)λ(r + α)

∆(p)x

g(p)
− p(1− p)λ(r + α)

c

g(p)

+
p2(1− p)λ(r + α)2V ′(p)

g(p)

=(2p− 3p2)λ(r + α)V ′(p) +
cα

x
− p(1− p)λ(r + α)

∆(p)x

g(p)
− p(1− p)λ(r + α)

c

g(p)

+ (r + α)
p2(1− p)λ(r + α)V ′(p)− c

x
h(p)

g(p)
+ (r + α)

ch(p)

xg(p)

=(2p− 3p2)λ(r + α)V ′(p) +
cα

x
− p(1− p)λ(r + α)

∆(p)x

g(p)
+ (r + α)

δ(p)

g(p)
+

c(r + α)

x

=2p(1− p)λ(r + α)V ′(p)− p2λ(r + α)V ′(p)
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+
cα

x
− p(1− p)λ(r + α)

∆(p)x

g(p)
+ (r + α)

δ(p)

g(p)
+

c(r + α)

x

=2p(1− p)λ(r + α)V ′(p)−
p2(1− p)λ(r + α)V ′(p)− h(p) c

x

1− p
− h(p)c

(1− p)x

+
cα

x
− p(1− p)λ(r + α)

∆(p)x

g(p)
+ (r + α)

δ(p)

g(p)
+

c(r + α)

x

=2p(1− p)λ(r + α)V ′(p)− δ(p)

1− p
− h(p)c

(1− p)x

+
cα

x
− p(1− p)λ(r + α)

∆(p)x

g(p)
+ (r + α)

δ(p)

g(p)
+

c(r + α)

x

=2p(1− p)λ(r + α)V ′(p)− δ(p)

1− p
− cα

x
+

ρHc

(1− p)x

+
cα

x
− p(1− p)λ(r + α)

∆(p)x

g(p)
+ (r + α)

δ(p)

g(p)
+

c(r + α)

x

=2p(1− p)λ(r + α)V ′(p)− δ(p)

(
1

1− p
− r + α

g(p)

)
+

ρHc

(1− p)x

− p(1− p)λ(r + α)
∆(p)x

g(p)
+

c(r + α)

x
. (SA.22)

By Proposition 9, we have ∆(p̂) = 0 and V ′(p̂) = σ(p̂) ≥ 0 or equivalently δ(p̂) = 0. It
thus follows that δ′(p̂+) > 0.

Thus, using (SA.20) with ∆(p̂+) = ∆′(p̂+) = δ(p̂+) = 0, we obtain

∆′′(p̂+) = −δ′(p̂+)

g(p̂)p̂
> 0,

from which it follows that ∆(p′) > 0 for all p′ ∈ (p̂, p̂+ ε], for some ε > 0. We now prove the
following claim:

Claim 4. If ∆(p′′) < 0 for some p′′ ∈ [p̂, π0], then there exists p̌ ∈ (p̂, p′′) such that ∆(p̌) ≥ 0,
δ(p̌) = 0 and δ′(p̌) ≤ 0

Proof. Let p0 = sup{p′ ∈ (p̂ + ε, p′′) : ∆(p) > 0, ∀p < p′}. Then, we must have ∆(p0) ≤ 0.
Given this, it cannot be the case that δ(p) > 0,∀p ∈ [p̂, p0], since it would imply that whenever
∆(p) = 0, we have ∆′(p) > 0 by (SA.20) and g(p) < 0, which in turn implies ∆(p0) > 0.
Thus, we must have some p1 ∈ (p̂, p0] with δ(p1) ≤ 0. Since δ(p̂+) > 0, this implies that there
must be some p̌ ∈ (p̂, p1] such that δ(p̌) = 0 and δ′(p̌) ≤ 0.

Suppose for contradiction that ∆(p′′) < 0 for some p′′ ∈ [p̂, π0]. By the above claim, one
can find p̌ ∈ (p̂, p′′) that ∆(p̌) ≥ 0, δ(p̌) = 0 and δ′(p̌) ≤ 0. Substituting this into (SA.22)
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with p = p̌, we obtain

δ′(p̌) = 2p̌(1− p̌)λ(r + α)V ′(p̌) +
ρHc

(1− p̌)x
− p̌(1− p̌)λ(r + α)

∆(p̌)x

g(p̌)
+

c(r + α)

x
> 0

since V ′(p̌) ≥ 0, ∆(p̌) ≥ 0, and g(p̌) < 0. This contradicts δ′(p̌) ≤ 0.

Step 4: With p̂ ∈ (π1, π0), ∆(p) ≤ 0 for p ≤ p̂.

Let us differentiate both sides of (14) and rearrange them to obtain

V ′′(p) = (r + α)
V ′(p)

h(p)
. (SA.23)

We plug this into (SA.21) to obtain

δ′(p) =(2p− 3p2)λ(r + α)V ′(p) +
cα

x
+ p2(1− p)λ(r + α)2

V ′(p)

h(p)

=(2p− 3p2)λ(r + α)V ′(p) +
(r + α)

h(p)

(
p2(1− p)(r + α)λV ′(p)− c

x
h(p)

)
+

c(r + 2α)

x

=2p(1− p)λ(r + α)V ′(p)−
p2(1− p)λ(r + α)V ′(p)− c

x
h(p)

1− p
− c

(1− p)x
h(p)

+
(r + α)

h(p)
δ(p) +

c(r + 2α)

x

=2p(1− p)λ(r + α)V ′(p)− δ(p)

1− p
− cα

x
+

ρHc

(1− p)x
+

(r + α)

h(p)
δ(p) +

c(r + 2α)

x

=2p(1− p)λ(r + α)V ′(p)− δ(p)

1− p
+

ρHc

(1− p)x
+

(r + α)

h(p)
δ(p) +

c(r + α)

x
. (SA.24)

Then, since V ′(p̂) ≥ 0 and δ(p̂) = 0, we obtain δ′(p̂−) > 0. Using this, one can follow an
argument analogous to that in Step 3 to show that ∆(p) ≤ 0,∀p ≤ p̂.

Step 5: With p̂ ≤ π1, ∆(p) ≤ 0 for p ≤ p̂.

In this case, p̂ = p̂M ≤ p by Proposition 8 and Lemma 7, so we have for any p < p̂,

σ(p)− V ′(p) > σ(p)− V ′(p̂) = σ(p)− λx

r + ρL + ρH
= 0,

where the inequality follows from the fact that V ′ is strictly increasing (by Lemma 10) while
σ is decreasing. Thus, by (SA.18), we conclude that for any p < p̂, ∆′(p) > 0 whenever
∆(p) = 0. Given that ∆(p̂) = 0, this observation implies that ∆(p) ≤ 0 for all p ≤ p̂.
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Step 6: With p̂ ≤ π1, ∆(p) ≥ 0 for p ≥ p̂.

The result follows immediately from (SA.11) and the fact that p̂ = p̂M = c
λx

.

D Passive Learning

In this section, we consider a situation in which the detection can occur without enforcement,
which we call passive learning : for instance, there is a community reporting by the victim
of a crime. Let w ∈ (0, 1) denote the probability of such detection (upon a crime being
committed). Assuming that the passive learning occurs independently of PM’s enforcement,
a crime is detected with the probability y+w−wy, so the rate at which PM learns ω = H is
ptλx(y + w − yw). We assume that passive learning, which occurs without any enforcement,
has no effect on reducing harm. Thus, by choosing y units of enforcement, PM with posterior
belief pt mitigates the harm by the same rate as before, that is, ptλxy. As a result, PM’s flow
loss and threshold belief for the myopically optimal policy are unchanged. Therefore, passive
learning affects the PM’s discounted total loss only through her belief updating.

The belief updating rule (2) changes to

ṗ = ρL(1− p)− ρHp− p(1− p)λx(y + w − yw) =: fw(p, y). (SA.25)

With passive learning, learning takes place even when the PM does not enforce. This means
that the posterior belief may drift below π0 even when y = 0. Indeed, one can find a unique
πw ∈ (π1, π0) such that fw(πw, 0) = 0.32

Recall that, without passive learning, the long-term belief under GP either stays at π0

or cycles over [p̂M , 1]. In either case, the PM obtains the same payoff under GP as under
NP, for information is never collected when enforcement is strictly suboptimal. This is no
longer the case when there is passive learning. Suppose πw < p̂M . Then, learning occurs with
positive probability even when the posterior falls below p̂M (where enforcement is strictly
suboptimal) until it reaches πw. In this case, GP prescribes the (myopically) correct action,
i.e., no enforcement, unlike NP, so the former performs strictly better:

Proposition 13. If p̂M > πw, GP achieves a strictly lower long-run loss for PM than NP.
Otherwise, GP and NP achieve the same long-run loss.

32This is because fw(π0, 0) = f(π0, w) < f(π0, 0) = 0 = f(π1, 1) < f(π1, w) = fw(π1, 0). Note also that the
benchmark π1 remains relevant: Since fw(p, 1) = f(p, 1), we have fw(π1, 1) = f(π1, 1) = 0.
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Proof. The expected total loss under GP with the initial belief p0 = π0 is given by

LGP (π0) =E
[∫ ∞

0

(ptλx(1− yGP(pt)) + cyGP(pt))e
−rtdt

∣∣∣∣ p0 = π0

]
=E

[∫ ∞

0

min{ptλx, c}e−rtdt

∣∣∣∣ p0 = π0

]
=

∫ ∞

0

E
[
min{ptλx, c}

∣∣∣p0 = π0

]
e−rtdt

≤
∫ ∞

0

min
{
E
[
ptλx

∣∣p0 = π0

]
, c
}
e−rtdt

=

∫ ∞

0

min
{
π0λx, c

}
e−rtdt

=min{π0λx, c}/r = LNP (π0),

where the inequality follows from Jensen’s inequality and the equality right after that inequal-
ity follows from Claim 5 below.

The weak inequality becomes an equality if p̂M ≤ πw. This is because min{ptλx, c} = c for
all pt ∈ [πw, 1]. However, if p̂M > πw, then both ptλx < c and ptλx > c occurs with positive
probability. Hence, in this case, the inequality becomes strict.

Claim 5. E[pt|p0 = π0] = π0.

Proof. The posterior belief conditional on the initial belief p0 = π0 and any history of enforce-
ment and detection through time t, denoted by ht, is equal to

Pr[ωt = H|p0 = π0, h
t] = Pr[ωt = H|ω0 = H, ht]π0 + Pr[ωt = H|ω0 = L, ht](1− π0).

Thus,

E[pt|p0 = π0] = E[Pr[ωt = H|p0 = π0, h
t]]

= Eht

[
Pr[ωt = H|ω0 = H, ht]π0 + Pr[ωt = H|ω0 = L, ht](1− π0)

]
= Pr[ωt = H|ω0 = H]π0 + Pr[ωt = H|ω0 = L](1− π0) = π0,

where the last equality follows from the fact that π0 is the stationary belief that the Markov
chain ωt is at state H.
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E Analysis for Section 4

Let Φ(p) denote the cumulative distribution of p. To identify Φ, we invoke an balance equation.
As explained, the system spends a significant amount of time at p̂, so there is probability mass
at p̂. Let m(p̂) := Φ(p̂) denote that mass. We expect that Φ admits density at p > p̂, denoted
by ϕ(p).

To determine m(p̂) and ϕ(p) for each p > p̂, let us consider any p ∈ [p̂, 1) and a set [p̂, p].
The balance condition for such a set is given by

m(p̂)p̂λxz(p̂)dt+

[∫ p

p̂

ϕ(s)sλxds

]
dt = [Φ(p+ dp)− Φ(p)](1− pλxdt). (SA.26)

The LHS represents the outflow of mass out of the set [p̂, p], which occurs when each belief
p̃ ∈ [p̂, p] jumps to 1. The RHS represents the inflow of mass into the set, which occurs when
the belief drifts down from right above p. Observe that since the instantaneous rate of belief
change is f(p, 1) < 0, it follows from (2) that the magnitude of the belief change dp > 0 is:

dp = −f(p, 1)dt+ o(dt).

Thus, (SA.26) simplifies to

m(p̂)p̂λxz(p̂)dt+

∫ p

p̂

ϕ(s)sλxds = −ϕ(p)f(p, 1). (SA.27)

With p = p̂, (SA.27) becomes

m(p̂)p̂λxz(p̂) = −ϕ(p̂)f(p̂, 1), (SA.28)

where ϕ(p̂) is the right limit of ϕ at p̂.
With p > p̂, we can differentiate both sides of (SA.27) with p to obtain

ϕ(p)pλx = −ϕ′(p)f(p, 1)− ϕ(p)f ′(p, 1),

where f ′(p, 1) = ∂f(p,1)
∂p

. So we have

ϕ′(p)f(p, 1) = −ϕ(p) (pλx+ f ′(p, 1)) . (SA.29)
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This ODE has the following solution:

ϕ(p) = ϕ(p̂) exp

(∫ p

p̂

r(s)ds

)
, (SA.30)

where

r(s) = −sλx+ f ′(s, 1)

f(s, 1)
. (SA.31)

Using this, we obtain

1−m(p̂) = Φ(1)− Φ(p̂) =

∫ 1

p̂

ϕ(p)dp = ϕ(p̂)

∫ 1

p̂

exp

(∫ p

p̂

r(s)ds

)
dp, (SA.32)

Lemma 14. For p̂ ∈ (π1, π0), there exist ϕ(p̂) > 0 and m(p̂) ∈ (0, 1) that satisfy (SA.28) and
(SA.32).

Proof. Substitute m(p̂) = −ϕ(p̂)f(p̂,1)
p̂λxz(p̂)

from (SA.28) to express (SA.32) as

ϕ(p̂)

[∫ 1

p̂

exp

(∫ p

p̂

r(s)ds

)
dp− f(p̂, 1)

p̂λxz(p̂)

]
= 1. (SA.33)

Since the expression in the square brackets is positive, one can find ϕ(p̂) > 0 satisfying this
equation. Then, (SA.32) implies m(p̂) < 1 while m(p̂) = −ϕ(p̂)f(p̂,1)

p̂λxz(p̂)
> 0 since f(p̂, 1) < 0.

Proof of Lemma 1. First, the long-run distribution of posterior belief conditional on ω = H

can be obtained as

Ψ(p) := Pr{p′ ≤ p|ω = H} =
Pr{p′ ≤ p and ω = H}

Pr{ω = H}
=

 0 if p < p̂
m(p̂)p̂+

∫ p
p̂ ϕ(s)sds

π0
if p ≥ p̂.

The expected enforcement conditional on ω = H is thus

Ep[yp̂(p)|ω = H, x] = Ψ(p̂)z(p̂) + 1−Ψ(p̂) =1−Ψ(p̂)(1− z(p̂))

=1− 1

π0

m(p̂)p̂(1− z(p̂)), (SA.34)

where the last equality holds since Ψ(p̂) = m(p̂)p̂
π0

. We first show that this expression is
decreasing in p̂. To do so, it suffices to prove that m(p̂) is increasing since p̂(1 − z(p̂)) is
increasing.
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To this end, let

η(p̂) :=

∫ 1

p̂

exp

(∫ p

p̂

r(s)ds

)
dp.

Using this and (SA.33), we obtain

ϕ(p̂) =
1

η(p̂)− f(p̂,1)
p̂λxz(p̂)

,

which can be plugged into (SA.32) to yield

1−m(p̂) =
η(p̂)

η(p̂)− f(p̂,1)
p̂λxz(p̂)

=
1

1 +
(

1
p̂λxz(p̂)

)(
−f(p̂,1)
η(p̂)

) ,
which is continuous in p̂ ∈ (π1, π0).

Observe first that 0 = f(p̂, z(p̂)) = h(p̂)− λxp̂(1− p̂)z(p̂) and thus

p̂λxz(p̂) =
h(p̂)

1− p̂
= ρL − p̂

1− p̂
ρH , (SA.35)

which is decreasing in p̂. So, it suffices to show that
(

−f(p̂,1)
η(p̂)

)
is increasing in p̂. For this,

observe

d

dp̂

(
−f(p̂, 1)

η(p̂)

)
=

−f ′(p̂, 1)η(p̂) + f(p̂, 1)η′(p̂)

η(p̂)2

=
−f ′(p̂, 1)η(p̂) + f(p̂, 1)(−r(p̂)η(p̂)− 1)

η(p̂)2

=
p̂λxη(p̂)− f(p̂, 1)

η(p̂)2
> 0,

where the second equality follows from the fact that η′(p̂) = −r(p̂)η(p̂)− 1 (by the definition
of η), the third equality from (SA.31), and the inequality from f(p̂, 1) < 0.

As p̂ → π1, we have z(p̂) → 1. Then, by (SA.28), we must have m(p̂) → 0 since f(p̂, 1) → 0,
which, by (SA.34), implies Ep[yp̂(p)|ω = H] → 1 as p̂ → π1.

As p̂ → π0, we have z(p̂) → 0 by definition of z(p̂). Then, by (SA.28), we have ϕ(p̂) → 0,
which implies m(p̂) → 1 by (SA.32). Thus, by (SA.34), Ep[yp̂(p)|ω = H] → 0 as p̂ → π0.

Thus, there exists p̄(x) ∈ (π1, π0) that satisfies (9). The continuity of p̄(x) in x follows
from the continuity of z(·) and m(·) in x.

Given that Ep[yp̂(p)|ω = H, x] is decreasing from 1 to 0 as p̂ increases from π1 to π0, it is
clear that p̄(x) is decreasing from π0 to π1 as ȳ increases from 0 to 1.
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Lemma 15. As p̂ becomes lower, Φ(p) falls for all p ≥ p̂. Hence, Φ exhibits a mean-preserving
spread as p̂ becomes lower.

Proof. For p ≥ p̂, we have Φ(p) = m(p̂) + ϕ(p̂)
∫ p

p̂
exp

(∫ t

p̂
r(s)ds

)
dt and thus

∂Φ(p)

∂p̂
= m′(p̂) + ϕ′(p̂)

∫ p

p̂

exp

(∫ t

p̂

r(s)ds

)
dt− ϕ(p̂)

[
1 + r(p̂)

∫ p

p̂

exp

(∫ t

p̂

r(s)ds

)
dt

]
= m′(p̂)− ϕ(p̂) + [ϕ′(p̂)− ϕ(p̂)r(p̂)]

∫ p

p̂

exp

(∫ t

p̂

r(s)ds

)
dt = m′(p̂)− ϕ(p̂) > 0,

where the second equality follows from the definition of ϕ. To prove the inequality, observe
that

m(p̂) = −ϕ(p̂)f(p̂, 1)

p̂λxz(p̂)
= −ϕ(p̂)f(p̂, 1)(1− p̂)

h(p̂)
or m(p̂)h(p̂) = −ϕ(p̂)f(p̂, 1)(1− p̂),

where the second equality follows from (SA.35). By differentiating both sides, we obtain

m′(p̂)h(p̂) +m(p̂)h′(p̂) = −ϕ′(p̂)f(p̂, 1)(1− p̂)− ϕ(p̂)(f ′(p̂, 1)(1− p̂)− f(p̂))

= ϕ(p̂)(λxp̂+ f ′(p̂, 1))(1− p̂)− ϕ(p̂)[f ′(p̂, 1)(1− p̂)− f(p̂)]

= ϕ(p̂)(λxp̂(1− p̂) + f(p̂)) = ϕ(p̂)h(p̂),

where the second equality follows from (SA.29). Rearranging the resulting equation yields

m′(p̂)− ϕ(p̂) = −m(p̂)h′(p̂)

h(p̂)
=

m(p̂)(ρL + ρH)

(1− p̂)ρL − p̂ρH
> 0,

where the inequality holds since p̂ < π0 =
ρL

ρL+ρH
.

SA.22


	Introduction
	Preliminaries
	Setup
	Alternative enforcement regimes

	Exogenous Crime
	Optimal Predictive Enforcement
	Comparison with Benchmarks

	Endogenous Crime and Deterrence
	Non-predictive enforcement
	Criminals' belief formation under predictive policies
	Stationary distribution of the PM's belief.
	Criminals' belief formation.

	Greedy predictive enforcement
	``Optimal'' predictive enforcement
	Predictive criminals

	Conclusion
	Proof of thm:main
	Preliminary Results for the Analysis of HJB Equation
	Conditions for the Solution to HJB Equation
	Analysis of HJB Equation for p 
	Case 2: x 
	Case 3: x (,)
	Case 1: x ( c,]

	Comparative Statics for  and Verification

	Proof of prop:pred-infringement
	Analysis for sec:exog
	Omitted Proofs for Lemmas
	Ommitted Parts of the Proof for prop:existence-case2
	Proof of prop:existence-case3
	Proof of prop:monotone
	Proof of thm:existence

	Passive Learning
	Analysis for sec:endog

