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Abstract

I provide a two-step parametric estimator correcting for misclassification and endogeneity biases in

binary treatment effects. Approximate consistency is achieved via modified MLE estimation (MMLE)

of the reduced form binary discrete choice model and, modified least squares (MLS) estimation of

the structural form which is augmented by a misclassification-corrected control function. The model

incorporates unequal/equal misclassification probabilities for false negatives/positives, and estimates

misclassification rates without reliance on extraneous information or surrogate measurements. The

two-step MLS (2SMLS) estimator outperforms naive instrumental variables estimation (IV) that ignores

misclassification, and OLS in terms of bias reduction. If the treatment parameter has the same sign as

the error correlation, approximate OLS bias cancellation occurs rendering OLS comparable to 2MSLS

if the estimable (error correlation/misclassification) ratio is equal to 1 but this may extend to ratios in

[0.5 − 1] as per simulations. The 2SMLS method provides estimates of the degree of endogeneity and

misclassification such that practitioners can assess overall potential bias. Structural identification of the

2SMLS estimator requires a relevant exclusion restriction. The estimator is applied to study the impact

of labour market inactivity on social benefit income.
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1 Introduction

This paper offers a tractable parametric estimator correcting for misclassification and endogeneity bi-

ases in binary treatment effects without reliance on external information regarding the rate of misclas-

sification or additional measurements of the error-ridden endogenous binary treatment variable. En-

dogenous binary treatment is common in economic analysis (see e.g. Vella and Verbeek, 1999), while

misclassification error in binary treatment variables is an additional econometric challenge- see Celhay

et al. (2024) for a recent comprehensive investigation on the determinants of binary reporting error.

The related literature can be divided into three categories: Category 1. Exogenous binary treatment

and misclassification (e.g. Aigner, 1973; Lewbel, 2007). Category 2. Endogenous binary treatment and

exogenous (non-differential) misclassification (e.g. Battistin et al., 2014; Calvi et al., 2022; Tommasi and

Zhang, 2024b). Category 3. Endogenous binary treatment and endogenous (differential) misclassifica-

tion (e.g. Ura, 2018; Nguimkeu et al., 2019; Tommasi and Zhang, 2024a).

The current study falls in Category 3 of endogenous binary treatment and endogenous differen-

tial misclassification since it extends the MLS estimator of Aigner (1973) by incorporating endogeneity,

and estimates misclassification using MMLE of Hausman et al. (1998). Since the two sources of bias

can cancel each other out (see Solon, 1985; Wooldridge, 2010, p.312; Hsiao, 2014, p.304) the range of

bias cancellation is identified using simulations, and can be identified using estimable parameters such

that the empirical analyst can choose between 2SMLS, naive IV accounting only for endogeneity, or

uncorrected OLS. The empirical application illustrates that the proposed 2SMLS estimator provides a

very similar estimate to the treatment effect point estimate using the estimator of Tommasi and Zhang

(2024a) supplemented by the MMLE estimated mislcassification probabilities to tighten the treatment

effects bounds.

Responses in survey datasets (e.g. UK Household Longitudinal Study, German Socio-Economic

Panel, US Panel Study of Income Dynamics) are collected by means of one-time retrospective questions

rendering such data susceptible to measurement error. Data collectors enquire individuals/household

members at a specific time point in a given calendar year (survey wave) regarding a plethora of so-

cioeconomic characteristics and outcomes noting that individuals are interviewed at distinct calendar

dates, weeks, months or even calendar years (e.g. UKHLS waves are issued as 24 monthly samples and

data collection and interviews span two years). Empirical analysts would then use these answers to



construct binary indicators intended to accurately reflect individual responses/behaviour throughout

the entire calendar year (or other cross-sectional unit) which may result in substantial misclassification

in such binary variables. To see this, consider an individual respondent interviewed in March as part of

a cross-sectional survey that interviews respondents from January onwards and spans 12 months. Any

information collected on binary outcomes such as labour market activity, social benefit receipts or edu-

cational outcomes (for younger adults) is likely to vary across the specific cross sectional survey wave

at least for a given fraction of survey participants such that, using such binary indicator variables in re-

gression analysis requires particular attention if one wishes to obtain unbiased and consistent parameter

estimates.

Celhay et al. (2024) study the determinants of reporting error using New York State administrative

microdata on government transfers linked to the American Community Survey (ACS), the Population

Survey (CPS), and the Survey of Income and Program Participation (SIPP). Celhay et al. (2024) conclude

that recall error leads to overreporting, topic importance (salience) in terms of benefit receipt duration

and amount improves response quality, stigma reduces social benefit receipt reporting and interviewee

cooperativeness affects response accuracy (frequent nonresponse linked to higher misreporting proba-

bilities).

In dealing with an endogenous binary regressor within a two-stage parametric endogenous treat-

ment framework, we are effectively facing measurement error problems in both estimation steps. The

structural equation includes a binary explanatory variable that is both misclassified and endogenous.

The reduced form that would generate the appropriate endogeneity correction term (generalised resid-

ual) is a misclassified binary choice model and consistency is achieved using the MMLE estimator of

Hausman et al. (1998). 1

Measurement error in an exogenous binary regressor (Category 1) produces biased and inconsistent

parameter estimates (see Cochran 1968; Aigner, 1973). A parametric MLS estimator purging the corre-

lation between the misclassified binary explanatory variable and the measurement error is offered by

Aigner (1973), and Bollinger (1996) studies parametric and non-parametric identification of parameter

bounds. Lewbel (2007) considers the identification and estimation of the effect of a misclassified binary

explanatory variable in the context of nonparametric/semiparametric regression. Lewbel (2007) obtains

1Meyer and Mittag (2017) extend the Hausman et al. (1998) MMLE estimator by permitting misclassification of the binary
dependent variable to be correlated with observables.



the same attenuation-bias result as Aigner (1973) and introduces assumptions (an instrument for the bi-

nary regressor conditionally independent of the treatment) to identify the conditional average treatment

effect of the misclassified binary regressor.

The present study falls in Category 3 since we do not assume an exogenous treatment as in stud-

ies of Category 2 (e.g. Battistin et al., 2014; Calvi et al., 2022; Tommasi and Zhang, 2024b). Nguimkeu

et al. (2019) achieve point identification in the presence of endogenous participation and endogenous

one-sided misclassification (only false positives or false negatives) using a two-step parametric model.

Nguimkeu et al. (2019) consider an incomplete data scenario of endogenous binary regressor misreport-

ing and endogenous participation where the true participation indicator is unobserved and, instead a

misclassified surrogate is observed. Ura (2018) studies the identifying power of an instrumental vari-

able in the nonparametric heterogeneous treatment effect framework with a mismeasured endogenous

binary treatment cocnluding that the Wald estimand is an upper bound on the local average treatment

effect (LATE), but generally does not correspond to a sharp bound. Tommasi and Zhang (2024a) study

LATE and the weighted average of LATEs when the binary treatment is mismeasured and using instru-

mental variables that are binary, discrete (or multiple-discrete).

Contrary to the present study, Ura(2018) and Tommasi and Zhang (2024a) offer interval bound esti-

mates and do not estimate the misclassification probabilities, but rely on extraneous information regard-

ing misclassification in order to tighten the interval bounds of the estimated treatment effect. This study

contributes to the endogenous binary misclassified treatment literature by offering a tractable two-step

parametric treatment effect point estimate. The proposed method has a bias-reduction property as it

presents lower bias than naive IV and OLS, and accommodates for symmetric and asymmetric (bidi-

rectional) misreporting (unlike Nguimkeu et al., 2019 focusing on one-sided misreporting). Structural

identification requires an exclusion restriction, but does not require additional alternative measurements

or extraneous information on the misclassified binary variable.

The paper is organised as follows. Section 2 analyses the issue of misclassification in a binary en-

dogenous explanatory variable within an endogenous treatment framework consisting of two equations.

Section 3 provides the misclassification-amended endogeneity correction terms. Section 4 presents the

simulations, and Section 5 presents an empirical application. Conclusions are given in Section 6. The Ap-

pendix presents the proofs regarding the consistency of the second stage modified least squares (MLS)

estimators and additional simulations assuming identification failure of the 2SMLS procedure.



2 Misclassification Error in a Binary Endogenous Explanatory Vari-

able

The model of interest is a binary endogenous variable model i.e. an endogenous treatment model which

does not essentially correspond to a sample selection framework per se as for example in Nguimkeu et

al. (2019) and Vella (1998). We partition the structural equation population regression function as

yj,i = ziβ + δxTi + εj,i (1)

j = {0, 1} if xTi = {0, 1}, yi = yj,i if xTi = j, (i = 1, ..., N)

where, β is a [(k − 1) x1] vector of unknown parameters assumed to be invariant with respect to j,

zi is an [1x (k − 1)] vector of explanatory variables other than the true value of the binary treatment

variable xTi ∈ {0, 1}, and yj,i is the potential outcome of individual i if (j = 0, 1).

Assumption 1. The (k − 1)× (k − 1) matrix, E (z′izi) , is nonsingular (and hence finite).

Assumption 2. The random component satisfies εj,i ∼ iid N(0, σ2
ε) and E(z′iεj,i)=0.

The key parameter of interest is the treatment effect denoted by scalar δ multiplying the true value

of the endogenous binary explanatory variable (xTi ). The reduced form for xTi is

xTi = 1 {wiγ + ηi > 0} , (i = 1, ..., N) (2)

where, 1 {c} takes the value of one if condition c is satisfied and zero otherwise, γ is a [kx1] vector of

unknown parameters, wi is a [1xk] vector of explanatory variables.

Assumption 3. The reduced form random component satisfies ηi ∼ iid N(0, 1).

Assumption 4. The k ×k matrix, E (w′iwi) , is nonsingular (and hence finite).

Assumption 5. Structural identification of the parameters in the two-part model in Equations (1,2) is achieved

if wi 6= zi i.e. at least one element in wi is not included in zi.

Equation (1) can be written as



yi = ziβ + δxTi + ei, ei = xTi ε1,i + (1− xTi )ε0,i (3)

Assumption 6. The error terms (ei,ηi) in Equations (1,2) follow a bivariate normal distribution:

(ei, ηi), i = 1, ..., N are iid normally distributed such that

 ei

ηi

 ∼ N
 0

0
,
σ2
e σeη

σeη 1

 . (4)

Let (xTi , xi) be the true and observed binary treatment indicators for the outcome of individual i, re-

spectively where the binary observed indicator xi ∈ {0, 1} is subject to misclassification error. Assuming

that
(
xTi , xi

)
are related via xi = xTi + τi where τi is a measurement error, Eq. (4) becomes

yi = ziβ + δxi + ui , ui = (ei − δτi) , (i = 1, ..., N) (5)

ei = (xi − τi) ε1,i + (1− xi + τi)ε0,i.

Equations (3) and (5) indicate that misslassification is endogenous (differential) since

xj 6⊥
(
yj , x

T
j ), j = 0, 1.

Denote the probability of a false negative/positive by (λ1,λ2) conditional on the true binary indi-

cator xTi . It is assumed that the misclassification probabilities are constant across individuals and that

misclassification is asymmetric i.e. λ1 6= λ2. The results in the remaining paper are easily extended to

the case of symmetric misclassification by simply setting λ1 = λ2. The misclassification probabilities

(λ1, λ2) are

λ1 = Pr(xi = 0|xTi = 1), λ2 = Pr(xi = 1|xTi = 0) (6)

noting that (λ1,λ2) depend on xi and are assumed to be independent of wi and ηi. Using the joint

distribution of (xi, τi),



E(τi) = λ1π̃ − λ2(1− π̃) (7)

V ar(τi) = [λ1π̃ + λ2(1− π̃)]− [λ1π̃ − λ2(1− π̃)]
2 (8)

E(xi) = π̃, V ar (xi) = π̃(1− π̃) (9)

E(xiτi) = λ1π̃, Cov(xi, τi) = (λ1 + λ2) π̃(1− π̃) (10)

where, π̃ = (N)
−1∑N

i=1 xi denotes the expected value of the observed responses. There is a negative

correlation between true response and the measurement error since when xTi = 1, τi is either -1/0

while when xTi = 0, τi is either 0/1. Contrary to classical errors in variables assumptions, τi does

not have a zero mean, it is negatively correlated with xTi and it is also correlated with xi. The non-zero

Cov(xi, τi) can bias all least squares estimates of regression coefficients other than xi unless all covariates

are orthogonal to xi. Using the MLE estimates of (λ1, λ2) we can compute Cov(xi, τi) and consistently

estimate (β, δ) employing the modified least squares (MLS) procedure of Aigner (1973), and extending

it by the inclusion of a control function to account for the endogeneity of xi. Using Eq. (5), the MLS

estimators for (β, δ) in the partitioned linear model correspond to

 β̂

δ̂

 =

 MZZ MZx

M ′Zx (mxx − ξ)


−1  MZy

mxy

 (11)

MZZ = (N)
−1

(Z ′Z),MZx = (N)
−1

(Z ′x),MZy = (N)
−1

(Z ′y)

mxx = (N)
−1

(x′x),mxy = (N)
−1

(x′y), ξ = Cov(xi, τi).

where Z is a Nx(K − 1) matrix of observations of all explanatory variables other than x.

Theorem 2.1. The MLS estimator (proofs in Appendix, A1-A3) gives plim
N−→∞

β̂ = β,

and

plim
N−→∞

δ̂ = δ + plim
N−→∞

[
m−1xx

(
1

N
x′e

)[
1− ξm−1xx

]−1]
(12)

corresponding to

plim
N−→∞

δ̂ = δ + plim
N−→∞

[
(x′x)

−1
(x′e)ψ

]
, ψ =

[
1− ξm−1xx

]−1
. (13)



Theorem 2.1 is crucial in the ensuing analysis since unlike Aigner (1973), the endogeneity of xmeans

that plim
N−→∞

(
1
N x
′e
)
6= 0 and solely modifying the LS estimator to purge for the bias stemming from

measurement error does not provide a consistent estimate of δ.

It is clear that the inconsistency in Eq. (13) can be resolved by adding an appropriately constructed

control function, obtained from the reduced form estimates as an additional regressor in the structural

form, interacted by ψ (see Heckman, 1979; Vella, 1998).

Consistency relies on knowing ξ and, in theory one could substitute a consistent estimate for ξ and

proceed with the estimation. An estimate for ξ can be obtained from an extraneous source, i.e. a distinct

population than the population from which the N observations have been selected but, in this case it

would not make much sense to use plim
N−→∞

(
1
N x
′τ
)

= ξ which is central to the consistency Proofs (see Eq.

(A.11), Eq. (A.14) in the Appendix). When using an extraneous sample to compute ξ as stated by Aigner

(1973) "the strict classical statistician must be satisfied with a sort of approximate consistency when ξ̂ is

used in place of ξ" (p.55).

In the absence of extraneous information regarding ξ, consistent parameter estimation requires us-

ing the single available sample to compute the extent of misclassification. Consistency is achieved by

modification of the likelihood function to estimate misclassification in the binary endogenous treatment,

the subsequent modification of the relevant moment matrix of covariates in the structural equation, and

the addition of a the modified endogeneity correction (generalised residual) term. We treat this in the

following Section.

3 Deriving the Endogeneity Correction Term in the Presence of Mis-

classification

Taking expectations, conditional on (wi, xi), Eq. (5) becomes

E [yi|wi, xi] =ziβ + δxi + E [ei|wi, xi]− δE [τi|wi, xi] , E [τi|wi, xi] = ξ

∴ E [yi|wi, xi] = ziβ + δ (xi − ξ) + E [ei|wi, xi] . (14)

Given the result in Theorem 2.1, under the Assumption 6 of jointly normally distributed error terms,



E [ei|wi, xi] corresponds to

E [ei|wi, xi] =
σeη
σ2
η

ψ [µi (wiγ)] (15)

where

ψ =
[
1− ξm−1xx

]−1
,mxx = (N)

−1
(x′x) (16)

ξ = (λ1 + λ2) π̃(1− π̃), π̃ = (N)
−1

N∑
i=1

xi (17)

ψ =

[
mxx

mxx − ξ

]
= (1− λ1 − λ2)

−1 (18)

and µi (wiγ) denotes the modified generalised probit residual defined subsequently in Eq. (20).

Misclassification must be explicitly modelled since ei in Eq. (5) is a function of τi. Following Haus-

man et al. (1998), under Assumption 3 and an additional monotonicity condition regarding the sum of

the misclassification probabilities specified in Assumption 7, consistent estimation of the reduced form

parameters requires maximising

ln(Lm) =

N∑
i=1

{xi ln [λ2 + (1− λ1 − λ2)Φ (wiγ)]

+ (1− xi) ln [1− λ2 − (1− λ1 − λ2)Φ (wiγ)]} . (19)

where, Φ(.) is the cdf of the Normal distribution.

Setting ∂ ln(Lm)
∂γ =0 we obtain the modified generalised residual, µi (wiγ), when (λ1 6= 0, λ2 6= 0)

µi (wiγ) =
φ (wiγ) (1− λ1 − λ2) [xi − λ2 − (1− λ1 − λ2)Φ (wiγ)]

[λ2 + (1− λ1 − λ2)Φ (wiγ)] [1− λ2 − (1− λ1 − λ2)Φ (wiγ)]
(20)

where, φ(.) is the pdf and Φ(.) the cdf of the Normal distribution and µi (wiγ) corresponds to the

conventional inverse Mills ratio i.e, the generalised probit residual of Gourieroux et al., (1987) in the

absence of misclassification such that λ1 = 0, λ2 = 0.

Assumption 7. λ1 = Pr(xi = 0|xTi = 1), λ2 = Pr(xi = 1|xTi = 0) satisfy the monotonicity condition:

λ1 + λ2 < 1.



Theorem 3.1. If Assumption 3, Assumption 4 and Assumption 7 hold, then the reduced form parameters

(λ1, λ2,γ) are identified by maximising the MMLE in Equation (19).

The Proof of Theorem 3.1 follows from Newey and McFadden (1994, pp. 2125-26). The Fisher

information matrix associated with the maximisation of the MMLE in Equation (19) is given in Hausman

et al., 1998, pp. 244).

If λ1 + λ2 = 1, given the symmetry of the Normal cdf, writing λ̃1 = 1 − λ2, λ̃2 = 1 − λ1, γ̃ = −γ

makes it clear that we are unable to distinguish between
(
λ̃1, λ̃2, γ̃

)
and (λ1, λ2,γ) since the symmetry

of the cdf implies F (wiγ̃)(1 − λ̃1 − λ̃2) + λ̃2 = F (wiγ)(1 − λ1 − λ2) + λ2 . Assumption 7, implies that

λ2 + (1 − λ1 − λ2)Φ(v) is strictly increasing in v if Φ is strictly increasing (i.e., η has positive density

everywhere). If λ1 + λ2 > 1 imposing Assumption 7 will produce opposite sign estimates of γ (see

Hausman et al., 1998, pp. 242-43). Since all remaining components in Eqs. (16-18) can be computed from

the underlying sample, we can construct the appropriate control function, ψ [µi (wiγ)], to be added in

the structural form as an endogeneity correction term.

Structural identification requires that at least one element in wi is not included in zi (see Vella, 1998:

Puhani, 2000). While the inverse Mills ratio is nonlinear in the single index (wiγ) the function mapping

this index into the inverse Mills ratio is linear for certain ranges of the index, see Vella, (1998). Leung

and Yu (1996) suggest using the correlation between µi (wiγ) and (wiγ). Accordingly the inclusion of

additional variables in wi in the reduced form can be important for structural identification of the second

step estimates. Leung and Yu (1996) conclude that the Inverse Mills ratio is linear over the value range of

the single index, but becomes nonlinear at the extreme values of the index (wiγ), such that collinearities

arise within the nonlinear range. This implicates that, if (wiγ) spans a relatively large value range, even

in the absence of exclusion restrictions structural identification can be achieved, though the practitioner

is advised to plot µi (wiγ) against (wiγ) in order to determine non-reliance on exclusion restrictions.

Theorem 3.2. Under Assumptions 1-7, Ordinary Least Squares (OLS) estimation of

yi = ziβ + δ (xi − ξ) +

[
µi (wiγ)

(1− λ1 − λ2)

]
κ + ωi (21)

can provide consistent estimates of the structural form parameters (β, δ,κ).



Summarising, the two-stage estimation procedure begins with the modified maximum likelihood

estimation (MMLE) of the reduced form to obtain the misclassification probabilities (see Meyer and

Mittag, 2017; Hausman et al., 1998). Consistent estimation of the structural form parameters is obtained

by adjusting for misclassification the structural form moment matrix of covariates and the control func-

tion in the second stage. Obtaining the analytical expression for the appropriate standard errors using

the asymptotic covariance matrix given in Aigner (1973) and additionally accounting for the generated

regressors along the lines of Newey (1984) is difficult. Bootstrapping standard errors over both estima-

tion stages is an attractive alternative. Joint estimation of the two parts of the model via full-information

MLE estimation (FIML) will be even more computationally intensive and, convergence problems due to

collinearity are quite likely (see Puhani, 2000).

4 Simulations

This section presents the results of Monte Carlo simulations comparing the proposed two-step Modified

Least Squares (2SMLS) estimator to naive Instrumental Variables Estimation (IV), and OLS. The aim is

consistent estimation of the binary treatment parameter δ. The 2SMLS parameters are only identified

if the linear index in the reduced form first-step MMLE contains at least one covariate that is excluded

from the second-step MLS structural form.

4.1 Simulation Design and Results

The first-step MMLE Monte Carlo design follows the data generation process of Hausman et al. (1998)

and has three covariates: the first variable, w1, is drawn from a lognormal distribution; the second, w2,

is a dummy variable equal to one with probability 1/3; the third, w3, is distributed uniformly. The error

disturbance, ε, is drawn from a standard normal distribution. The latent dependent variable is given by

x∗i = −1 + 0.2wi1 + 1.5wi2 − (0.6)wi3 + ηi. (22)

The observed dependent variable is generated using asymmetric misclassification (i.e., λ1 6= λ2) not-

ing that they are approximately equal such that the simulations are generalisable directly to symmetric

misclassification (i.e., λ1 = λ2). We consider asymmetric misclassification rates of (2%, 5%, 10%, 20%,



30%, 40%, 50%, 60%). The MMLE model parameters and misclassification rates were consistently esti-

mated for misclassification rates up to 60%. Note that, 70% misclassification rates were considered but

the respective simulations are not reported since the estimated MMLE parameters were often inconsis-

tent.2

The structural equation design is given below, where the key binary treatment parameter δ is set to

0.5 noting that we study both positive and negative treatment and, we have explicitly usedw as opposed

to z to indicate structural equation covariates to emphasise that the set of covariates in Eq. (22) and is

the same except for w2 which is excluded from Eq. (23) for identification purposes:

yi = 1.5± (0.5)xi + 2wi1 − (0.9)wi3 + ei (23)

Naive IV corresponds to standard instrumental variables estimation ignoring misclassification and

is implemented using the two-stage least-squares (2SLS) IV estimator using the ivregress in Stata com-

mand (2SLS, GMM, LIML give identical results). Naive IV estimates Eq. (23) by 2SLS using the binary

dummy variable w2 as an instrument for the binary misclassified treatment variable x. 2SMLS outper-

forms naive IV estimation since the latter accounts for endogeneity bias, but ignores misclassification

bias. Naive IV estimation only gives a comparable relative bias to the 2SMLS estimator at the lowest

level of misclassification considered which is 2% if the treatment and error correlation signs are equal.

Of note, naive IV always displays positive bias independently of the treatment and endogeneity corre-

lation signs, while its relative-bias performance is unaffected by the degree of endogeneity (correlation

among the structural and reduced form errors), since it purges the endogeneity bias, and deteriorates

substantially as the degree of misclassification increases.

The endogeneity and misclassification bias correction relies on the endogeneity correction term mul-

tiplied by parameter κ, in Eq. (21). Since the impact of the modified generalised residual, µi (wi), is

captured by ρ = corr (ei, ηi) the bias correction term can be loosely viewed as equivalent to a function of

∣∣∣∣ ρ

λ1 + λ2

∣∣∣∣.
2SMLS significantly outperforms OLS and can be approximately asymptotically consistent if δ sign

2Hausman et al. (1998) only consider 2%, 5%, 20% symmetric misclassification.



is opposite to ρ = corr (ei, ηi) sign. If δ and ρ = corr (ei, ηi) have the same sign, the endogeneity bias and

the misclassification attrition biases cancel out when

∣∣∣∣corr(ei, ηi)λ1 + λ2

∣∣∣∣ ' 1.

The "bias cancellation region" identified by the simulations, depends on the degree of misclassification

and the error correlation and lies within the ratio range:

0.5 ≤
∣∣∣∣corr(ei, ηi)λ1 + λ2

∣∣∣∣ ≤ 1

such that OLS bias can be comparable or lower than 2SMLS. Within the [0.5-1] bias cancellation re-

gion, the 2SMLS bias can be reduced by adjusting the endogeneity correction term (denoted as µi (wiγ)
I )

via usage of the inverted misclassification rates such that

µi (wiγ)
I

=
φ (wiγ) (1− λ1 − λ2)−1

[
xi − (λ2)−1 − (1− λ1 − λ2)−1Φ (wiγ)

][
λ−12 + (1− λ1 − λ2)−1Φ (wiγ)

]
[1− (λ2)−1 − (1− λ1 − λ2)−1Φ (wiγ)]

. (24)

Using the inverted misclassification rates to adjust the endogeneity correction term within the bias can-

cellation region of [0.5-1] renders the 2SMLS bias lower or approximately equal to the OLS bias- see

Tables (1,2) where the first bold entry corresponds to cases where 2SMLS performs worse than OLS

within the bias cancellation region and the second repeated bold entry (for a given combination of mis-

classification and error correlation) provides the inverted misclassification 2SMLS relative bias.

The correlation between structural and reduced form errors, corr (ei, ηi) = ρ, can be computed using

the structural form estimates. Following Heckman (1979), a consistent estimator is given by

ρ̂ =
κ̂
σ̂

where κ̂ is the estimated coefficient on the adjusted endogeneity correction term and

σ̂ =

√
ê′ê

N

denotes the standard error of the residuals in the structural form equation.



Table 1: Relative Bias [ δ̂−δδ ]
δ = ±0.5, ρ = corr (ei, ηi) = {±0.1,±0.2,±0.3}

M = λ1 + λ2, λ1 6= λ2, ρ = corr (ei, ηi), (N = 15000, R = 3000)

δ > 0 ρ > 0 ρ < 0
δ < 0 ρ < 0 ρ > 0

|ρ/M | |ratio| 2SMLS OLS IV 2SMLS OLS IV
10/2 5.00 0.0771 0.1344 0.0858 0.0708 -0.3407 0.0881
10/5 2.00 0.0920 0.1035 0.1138 0.0829 -0.3592 0.1085
10/10 1.00 0.1067 0.0523 0.1543 0.1035 -0.3885 0.1535
10/10 1.00 0.0478 0.0523 0.1543
10/20 0.50 0.1371 -0.0458 0.2485 0.1240 -0.4454 0.2512
10/20 0.50 -0.0492 -0.0458 0.2485
10/30 0.33 0.1390 -0.1849 0.4320 0.1258 -0.5257 0.4253
10/40 0.25 0.1129 -0.3152 0.6650 0.0992 -0.6013 0.6685
10/50 0.20 0.0504 -0.4379 0.9993 0.0315 -0.6738 1.0034
10/60 0.17 -0.0543 -0.6026 1.7816 -0.0743 -0.7693 1.7857
20/2 10.00 0.0809 0.3676 0.0858 0.0661 -0.5738 0.0881
20/5 4.00 0.0966 0.3302 0.1136 0.0782 -0.5859 0.1087
20/10 2.00 0.1113 0.2671 0.1543 0.0989 -0.6035 0.1535
20/20 1.00 0.1414 0.1502 0.2485 0.1191 -0.6414 0.2512
20/30 0.67 0.1487 -0.0168 0.4317 0.1239 -0.6936 0.4255
20/30 0.67 -0.0107 -0.0168 0.4317
20/40 0.50 0.1094 -0.1741 0.6680 0.0850 -0.7423 0.6680
20/50 0.40 0.0586 -0.3225 0.9992 0.0233 -0.7893 1.0034
20/60 0.33 -0.0442 -0.5209 1.7790 -0.0796 -0.8509 1.7853
30/2 15.00 0.0852 0.6207 0.0862 0.0601 -0.8270 0.0882
30/5 6.00 0.0999 0.5761 0.1121 0.0748 -0.8317 0.1103
30/10 3.00 0.1164 0.5023 0.1543 0.0938 -0.8385 0.1535
30/20 1.50 0.1476 0.3630 0.2485 0.1129 -0.8542 0.2512
30/30 1.00 0.1529 0.1658 0.4314 0.1119 -0.8762 0.4302
30/40 0.75 0.1256 -0.0213 0.6671 0.0814 -0.8951 0.6690
30/40 0.75 -0.0069 -0.0213 0.6671
30/50 0.60 0.0676 -0.1971 0.9992 0.0143 -0.9146 1.0035
30/60 0.50 -0.0329 -0.4323 1.7790 -0.0908 -0.9395 1.7854



Table 2: Relative Bias [ δ̂−δδ ]
δ = ±0.5, ρ = corr (ei, ηi) = {±0.4,±0.5,±0.6}

M = λ1 + λ2, λ1 6= λ2, ρ = corr (ei, ηi), (N = 15000, R = 3000)

δ > 0 ρ > 0 ρ < 0
δ < 0 ρ < 0 ρ > 0

|ρ/M | |ratio| 2SMLS OLS IV 2SMLS OLS IV
40/2 20.00 0.0900 0.8924 0.0858 0.0570 -1.0986 0.0882
40/5 8.00 0.1049 0.8400 0.1131 0.0698 -1.0956 0.1092
40/10 4.00 0.1218 0.7559 0.1542 0.0884 -1.0921 0.1535
40/20 2.00 0.1542 0.5912 0.2484 0.1063 -1.0824 0.2513
40/30 1.33 0.1639 0.3611 0.4311 0.1001 -1.0715 0.4262
40/40 1.00 0.1340 0.1425 0.6650 0.0730 -1.0590 0.6686
40/50 0.80 0.0772 -0.0628 0.9992 0.0047 -1.0490 1.0035
40/50 0.80 -0.0476 -0.0628 0.9992
40/60 0.67 -0.0208 -0.3373 1.7789 -0.1029 -1.0345 1.7854
50/2 25.00 0.0955 1.2092 0.0883 0.0515 -1.4154 0.0855
50/5 10.00 0.1134 1.1475 0.1119 0.0641 -1.4035 0.1109
50/10 5.00 0.1282 1.0478 0.1542 0.0820 -1.3840 0.1537
50/20 2.50 0.1620 0.8574 0.2484 0.0985 -1.3486 0.2513
50/30 1.67 0.1696 0.5886 0.4269 0.0952 -1.2990 0.4310
50/40 1.25 0.1465 0.3333 0.6670 0.0656 -1.2499 0.6661
50/50 1.00 0.0884 0.0940 0.9986 -0.0065 -1.2058 1.0029
50/60 0.83 -0.0067 -0.2265 1.7724 -0.1170 -1.1454 1.7877
60/2 30.00 0.1070 1.6167 0.0857 0.0395 -1.8230 0.0882
60/5 12.00 0.1182 1.5437 0.1124 0.0543 -1.7994 0.1099
60/10 6.00 0.1438 1.4256 0.1542 0.0656 -1.7619 0.1536
60/20 3.00 0.1771 1.1996 0.2484 0.0799 -1.6908 0.2513
60/30 2.00 0.1824 0.8811 0.4264 0.0808 -1.5917 0.4316
60/40 1.50 0.1628 0.5803 0.6669 0.0460 -1.4968 0.6692
60/50 1.20 0.1029 0.2956 0.9991 -0.0209 -1.4074 1.0036
60/60 1.00 0.0114 -0.0839 1.7788 -0.1351 -1.2879 1.7856

5 Empirical Application

The 2SMLS estimator is applied to estimate the impact of labour market inactivity/unemployment ("un-

employed/economically inactive") on "total household social benefit income" using two distinct cross-

sections (wave 1, 2009-10) from the Understanding Society (UK Household Longitudinal Study, UKHLS)

dataset.

The binary inactivity/unemployment treatment variable is constructed using the "Current economic

activity" variable responses and takes the value of 0 if the individual is employed (paid ft/pt employ-



ment, self-employed) and the value of 1 otherwise (unemployed, retired, on maternity leave, family care,

ft student, LT sick/disabled, governmental training scheme, unpaid family business, on apprenticeship,

on furlough, temporarily laid off/short term working, doing something else).

UKHLS data collection stretches across 24 months noting that, while the survey fieldwork period

is 24 months, every individual is interviewed at approximately 12 month intervals and individual re-

sponses are only collected once per UKHLS wave such that individual responses for a given survey

wave correspond to single cross-sectional observations. The interview dates are roughly equally split

between 2009 and 2010 regarding the cross-sectional data from wave 1 (only 3.35% of the interviews

were conducted in 2011). The binary treatment variable is likely to be misclassified in that, the stated

current economic activity on the date of interview may not be an accurate reflection of individual eco-

nomic activity throughout the duration of the corresponding wave i.e. when modelling the reduced

form for inactivity/unemployment, individual observations with large linear index (wiγ) values will

predict 1 with probability Φ (wiγ) close to 1 (and 0 for small linear index values) independently of the

observed stated individual current economic activity responses.

The dependent variable has been subjected to the inverse hyperbolic sine transformation arsinh(y) =

ln
(
y +

√
y2 + 1

)
such that we are able to include in the analysis observations with zeros. "Total house-

hold social benefit income" corresponds to the total income aid received by the UK government as part

of the "universal credit" and contains up to 39 components including pension income, incapacity benefit,

income support, job seeker’s allowance, child benefit, maternity allowance, housing benefit, and council

tax benefit.

The binary inactivity/unemployment treatment indicator is likely to be both misclassified and en-

dogenous as the unobserved individual determinants of economic activity may be correlated with the

unobserved factors determining household benefit income.

Descriptive statistics are given in Table 3. The estimation samples include individuals of prime work-

ing age and those approaching retirement such that the age range is 25-65. All explanatory variable

controls included in Tables 4 and 5 are binary variables taking the value of 1 for the stated category

except, age (in years) and the "Number of children in household" taking the value 0 if none, 1 if one and

2 if more. The base regional control is "North East". "Total household social benefit income" is given as

"arsinh(hh social benefit income)" and, the total number of observations is 26896.

For structural identification of the 2SMLS model, current financial state is excluded from the struc-



tural form estimation (column 1, Table 5) and is included in the reduced form in Table 4 since self-

reported individual current financial evaluations can affect labour market participation decisions, but

are not direct determinants of social benefit income received from the government. The five-point scale

ordered current subjective financial state variable has been used to create the binary indicator variable

"Doing Alright Financially" which is the highest frequency of self-reported current financial state in the

dataset. "Doing Alright Financially" takes the value of 1 if an individual indicated "Doing Alright", and 0

if they reported any of "Finding it very difficult", "Finding it quite difficult", "Just about getting by/don’t

know", "Living comfortably".

The first-stage reduced form MMLE estimates are given in Table 4. The estimated misclassification

rates provided at the bottom of Table 4, are unilaterally statistically significant and misclassification is

clearly asymmetric since the χ2 test-statistic for the equality of λ1 = λ2 is 66.03 with a zero p-value.

The sum of the estimated misclassification probabilities λ̂1 + λ̂2 is 0.2600632. The estimated probability

to observe an individual at the individual-specific interview date to be employed when their true pre-

dicted status is inactive/unemployed, λ̂1, is correspondingly 0.1964 which is substantially higher than

the estimated probability to be observed as inactive/unemployed on the date of interview when their

predicted true status is employed, λ̂2, corresponding to 0.0637. Thus, the estimated misclassification

rates indicate that exiting employment is more likely than entering employment during 2009-10. This

aligns with Celhay et al. (2024) estimating notably higher false negative probabilities, λ̂1, in binary so-

cial benefit receipt responses using the ACS, ACP, SIPP datasets between [0.18, 0.59] and lower false

positives, λ̂2, within [0.03, 0.013], respectively.

Note that, Unemployed/Economically Inactive (xi) in the case of the 2SMLS estimator (first column,

Table 5) is replaced by (xi − ξ̂) where, ξ̂ =
(
λ̂1 + λ̂2

)
π̃(1 − π̃), π̃ = (N)

−1∑N
i=1 xi, see Eq. (17). The

impact of "Unemployed/Inactive" on "Total Household Social Benefit Income" (henceforth referred to

as treatment effect) using 2SMLS, OLS and IV is respectively given in columns 1 and 2 of Table 5. The

IV estimates reported in (column 3, Table 5) correspond to naive IV estimation which is single-equation

two-stage instrumental-variables regression using "Doing Alright Financially" to instrument "Unem-

ployed/Economically Inactive" obtained using the Stata ivregress command. The estimated error correla-

tion between the unobservables in the reduced form for the probability of being "Unemployed/Inactive"

and the structural form for "Total Household Social Benefit Income", r̂ho = ̂corr (ei, ηi), is approximately

-0.2879 giving an absolute value ratio of error correlation to misclassification of around 1.1072 (see Ta-



ble 5). Being unemployed/inactive has a positive effect on social benefit income in the case of all three

(2SMLS, OLS, IV) noting that, the OLS and naive IV estimated effects (columns 2 and 3, Table 5) are

biased downwards and upwards, respectively. The bias direction of the estimated treatment effects is

in line with the simulation bias predictions in Table 1. Note that, the modified generalised residual

(defined in Eq. (20)) statistical significance in Table 5, is reduced (p-value=0.07) due to the sampling

variation induced by bootstrapping both 2SMLS estimation stages to compute the standard errors in-

creasing the respective standard error to 0.3988 from 0.1116 in the case of the unadjusted standard error

(with corresponding p-value=0.00).

To compare the estimated treatment effect to the simulations observe that, λ̂1 + λ̂2 = 0.2600631,

r̂ho = ̂corr (ei, ηi) = −0.28793126, and
∣∣∣∣ ρ̂

λ̂1 + λ̂2

∣∣∣∣ = 1.1072 such that using the closest simulated cor-

relation/misclassification ratio |ρ/M | = 30/30 with (δ > 0, ρ < 0) in Table 1, the relative OLS bias is

-0.8762 (i.e. downward bias of 87.62%). The empirical estimated 2SMLS treatment effect is 3.1210 (col-

umn one, Table 5) and the OLS estimated treatment effect (column two, Table 5) is 2.0526 such that the

estimated relative OLS bias (compared to 2SMLS) of 0.5206 (52.06%). Adjusting the 2SMLS treatment

effect estimate for the respective upward 0.1119 relative bias the true estimate should be approximately

3.4703 giving a relative downward bias of the OLS estimate (compared to the true estimate) of -0.6907

which is close to the simulated bias difference prediction of -0.7643 (i.e. 0.1119-0.8762). The upwardly

biased naive IV treatment effect is 3.8808 (column 3, Table 5) and is (0.2434, 0.1183) higher than the cor-

responding estimated 2SMLS and true treatment effects of (3.121, 3.4703) aligning with the simulations

in Table 1.

To see the policy relevance, consider the semi-elasticity of social benefit income with respect to

changes in unemployment or labour market inactivity incidence. The 2SMLS and OLS estimated semi-

elasticities are (0.9842, 0.6549). Compared to OLS, the 2SMLS estimates indicate that the demand for

social benefits is far more responsive to rises in unemployment and labour market inactivity incidence

by 0.5029 percent (half as elastic).

Employing the ivbounds Stata command (Lin et al., 2021, 2024) we implement Tommasi and Zhang’s

(2024a) IV estimator (using "Doing Alright Financially" to instrument "Unemployed/Economically In-

active"). Tommasi and Zhang’s (2024a) IV estimator gives bounds of the treatment effect and deliv-

ers a point estimate when the misclassification probabilities are known. Using the MMLE estimated

false negative and false positive probabilities (λ̂1, λ̂2), the mismeasured IV treatment estimand using



Tommasi and Zhang’s (2024a) estimator is 4.116 with corresponding 95% confidence interval bounds

[2.5313, 5.7006], using 100 bootstraps, such that the treatment effect point estimate is 4.116(1 − (λ̂1 +

λ̂2)) = 4.116(0.7399) = 3.0454 (see Tommasi and Zhang, 2024a). The 2SMLS 95% confidence bounds of

the treatment effect correspond to [2.7898, 3.4523] and the corresponding bootstrapped Normal-based

95% confidence interval bounds for the 2SMLS estimated treatment effect in Table 5 are [1.8561, 4.386]

which is similar to the Tommasi and Zhang (2024a) interval of [1.873, 4.2181] computed using 100 boot-

straps.

Summarising, the 3.0454 point estimate of the treatment effect obtained using Tommasi and Zhang’s

(2024a) estimator with known misclassification probabilities is quite close to the 2SMLS estimated treat-

ment effect of 3.1210 indicating that the two estimators are comparable. The clear advantage of the

2SMLS estimator is that the misclassification probabilities are estimated by MMLE in the first stage of

the model such that no extraneous information regarding misclassification is necessary as in the case

of Tommasi and Zhang (2024a) that rely on external knowledge of the misclassification probabilities in

order to improve the estimated treatment effect bounds.



Table 3: Descriptive Statistics

mean standard deviation

Unemployed/Economically inactive 0.3058 (0.0363)

Doing Alright financially 0.3150 (0.0333)

Age 44.8965 (0.0017)

Female 0.5683 (0.0313)

Married/Civil Partnership 0.5734 (0.0341)

Number of children in household 0.5856 (0.0216)

LT illness/disability 0.3531 (0.0339)

University degree 0.2532 (0.0365)

House owned outright/mortgage 0.6918 (0.0370)

North West 0.1207 (0.0837)

Yorkshire and the Humber 0.0880 (0.0879)

East Midlands 0.0812 (0.0891)

West Midlands 0.0910 (0.0873)

East of England 0.0985 (0.0863)

London 0.1044 (0.0859)

South East 0.1398 (0.0821)

South West 0.0895 (0.0876)

Wales 0.0521 (0.0978)

Scotland 0.0883 (0.0878)

arsinh(household social benefit income) 4.3720 (3.2670)

Number of Observations 26896



Table 4: Probability of Unemployment/Labour Market Inactivity, MMLE

Doing Alright Financially -0.3165∗∗∗

(0.0343)

Age 0.0482∗∗∗

(0.0036)

Female 0.5381∗∗∗

(0.0396)

Married/Civil Partnership -0.1475∗∗∗

(0.0296)

Number of children in household 0.2727∗∗∗

(0.0260)

LT illness/disability 0.6261∗∗∗

(0.0418)

University degree -0.3907∗∗∗

(0.0437)

House owned outright/mortgage -1.0952∗∗∗

(0.0797)

North West 0.0389
(0.0689)

Yorkshire and the Humber 0.0576
(0.0727)

East Midlands -0.1152
(0.0738)

West Midlands 0.0556
(0.0722)

East of England -0.1861∗∗∗

(0.0719)

London 0.1130
(0.0720)

South East -0.1710∗∗

(0.0683)

South West -0.1285∗

(0.0720)

Wales 0.0353
(0.0798)

Scotland -0.1842∗∗

(0.0729)

Constant -2.3526∗∗∗

(0.1543)
λ̂1 0.1964∗∗∗

(0.0290)
λ̂2 0.0637∗∗∗

(0.0083)
Number of Observations 26896
1. Standard errors in parentheses; 2. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.



Table 5: Total Household Social Benefit Income

2SMLS OLS IV

Unemployed/Economically Inactive 3.1210∗∗∗ 2.0526∗∗∗ 3.8808∗∗∗

(0.6454) (0.0362) (0.5523)

Modified Generalised Residual -0.7222∗

(0.3988)

Age 0.0411∗∗∗ 0.0509∗∗∗ 0.0341∗∗∗

(0.0062) (0.0017) (0.0054)

Female 0.1286 0.2457∗∗∗ 0.0454
(0.0789) (0.0313) (0.0686)

Married/Civil Partnership -0.0275 -0.0685∗∗ 0.0016
(0.0420) (0.0341) (0.0414)

Number of children in household 2.1456∗∗∗ 2.1972∗∗∗ 2.1088∗∗∗

(0.0374) (0.0216) (0.0350)

LT illness/disability 0.3184∗∗∗ 0.4772∗∗∗ 0.2056∗∗

(0.0941) (0.0339) (0.0892)

University degree -0.6569∗∗∗ -0.7333∗∗∗ -0.6026∗∗∗

(0.0565) (0.0365) (0.0549)

House owned outright/mortgage -0.4399∗∗∗ -0.6934∗∗∗ -0.2597∗

(0.1499) (0.0370) (0.1363)

North West -0.1101 -0.1088 -0.1110
(0.0934) (0.0837) (0.0875)

Yorkshire and the Humber -0.0692 -0.0630 -0.0736
(0.1003) (0.0879) (0.0920)

East Midlands -0.2997∗∗∗ -0.3326∗∗∗ -0.2764∗∗∗

(0.1089) (0.0892) (0.0948)

West Midlands -0.1634 -0.1616∗ -0.1648∗

(0.1067) (0.0874) (0.0914)

East of England -0.3590∗∗∗ -0.4094∗∗∗ -0.3231∗∗∗

(0.1028) (0.0863) (0.0939)

London -0.4818∗∗∗ -0.4647∗∗∗ -0.4939∗∗∗

(0.0992) (0.0859) (0.0903)

South East -0.3897∗∗∗ -0.4341∗∗∗ -0.3581∗∗∗

(0.0937) (0.0822) (0.0889)

South West -0.2887∗∗ -0.3272∗∗∗ -0.2613∗∗∗

(0.1127) (0.0876) (0.0938)

Wales 0.0532 0.0567 0.0508
(0.1282) (0.0978) (0.1023)

Scotland -0.2675∗∗∗ -0.3111∗∗∗ -0.2365∗∗

(0.0962) (0.0878) (0.0946)

Constant 1.0352∗∗∗ 0.8309∗∗∗ 0.8856∗∗∗

(0.1367) (0.1039) (0.1099)
r̂ho = ̂corr (ei, ηi) -0.2879∣∣∣∣ ρ̂

λ̂1 + λ̂2

∣∣∣∣ 1.1072

Number of Observations 26896 26896 26896
1. Standard errors in parentheses; 2. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
2. 2SMLS standard errors are Bootstrapped (100 replications).



6 Concluding Remarks

I propose a tractable procedure to estimate binary treatment effects in the presence of a misclassified

endogenous binary treatment variable. The two-step parametric estimator does not rely on additional

measurements or exogenous information on the mismeasured binary treatment but, structural identifi-

cation requires an exclusion restriction. The proposed 2SMLS estimator outperforms OLS and naive IV

estimators in terms of bias reduction.

Summarising the problem, within a parametric two-step framework: measurement error in an en-

dogenous binary explanatory variable produces biased and inconsistent parameter estimates in both es-

timation stages. The structural equation includes a binary explanatory variable that is both misclassified

and endogenous. The respective reduced form, used to generate the appropriate endogeneity correction

term, corresponds to a binary choice model where the dependent variable is subject to misclassification

producing inconsistent parameter estimates.

Given the modified MLE (MMLE) parameter estimates of the misclassification probabilities, we ob-

tain the appropriate endogeneity correction terms which have to be divided by a factor of one minus the

sum of the misclassification probabilities i.e. (1− λ1 − λ2). If the monotonicity condition λ1 + λ2 < 1

holds, the reduced form parameters can be consistently estimated via MLE while, the structural equa-

tion augmented by the addition of the corresponding endogeneity correction terms, can be estimated

using conditional moment restrictions such as least squares.

Even if the misclassification rates are unknown an approximately consistent 2SMLS procedure can

be implemented using the estimated misclassification rates provided an exclusion restriction is imposed

in the structural from (i.e. the MMLE contains at least one covariate excluded from the second stage

structural MLS estimator). The simulations indicate that if the correlation sign between the error terms in

the structural and reduced forms is opposite to the treatment effect sign, the proposed 2SMLS procedure

always outperforms OLS in terms of relative bias. If the treatment effect and error correlation signs are

identical then, the endogeneity bias may approximately cancel out with the misclassification attrition

bias such that the OLS relative bias is lower which, can occur if the absolute value of the correlation

to misclassification ratio lies between [0.5-1]. However, using the estimable misclassification rates and

the estimated error correlation, the modified endogeneity correction term can be adjusted accordingly

within the [0.5-1] potential bias cancellation region such that, the 2SMLS bias is reduced to a lower (or



approximately equal) bias compared to uncorrected OLS.

The empirical application compares the 2SMLS treatment effect to the markedly biased OLS and

naive IV estimators. Further, the application indicates the advantage of 2SMLS compared to the IV

bounding treatment-effects estimator of Tommasi and Zhang (2024a) that gives similar estimates, but

relies on the validity and availability of extraneous misclassification information to improve, tighten the

treatment effect bounds, and effectively give the appropriate point estimate.



A Appendix: Proofs

A.1 Consistency of the Modified Least Squares (MLS) Estimators

Consider the partitioned linear model where the LS normal equations become

 MZZ MZx

M ′Zx (mxx − ξ)


 β

δ

 =

 MZy

mxy

 (A.1)

giving

MZy = MZZβ +MZxδ (A.2)

and

mxy = M ′Zxβ + (mxx − ξ) δ. (A.3)

Using Eq. (A.3) we obtain

δ =
[
m−1xxmxy −m−1xxM ′Zxβ

] [
1− ξm−1xx

]−1
(A.4)

and substituting in Eq. (A.2) we arrive at

MZy = (N)
−1
Z ′
[
I − xm−1xx (N)

−1
x′
(
1− ξm−1xx

)−1]
Zβ

+MZxm
−1
xxmxy

[
1− ξm−1xx

]−1
. (A.5)

Following Aigner (1973), setting A =
[
I − xm−1xx (N)

−1
x′
(
1− ξm−1xx

)−1] in Eq. (A.5) and rearrang-

ing we get Z ′Ay = (Z ′AZ)β which yields

β̂ = (Z ′AZ)−1Z ′Ay. (A.6)

Substitution of Eq. (A.6) in Eq. (A.4) gives

δ̂ = (N)
−1
m−1xxx

′ [I − Z(Z ′AZ)−1Z ′A
]
y
[
1− ξm−1xx

]−1
. (A.7)



A.2 Consistency of the Modified Least Squares (MLS) Estimator of β

To prove consistency of the MLS estimate of the β
1x(k−1)

vector of parameters, we introduce Eq. (3) into

Eq. (A.6) to get

β̂ = (Z ′AZ)−1Z ′A
[
Zβ + xT δ + e

]
(A.8)

giving

β̂ = β + (Z ′AZ)−1Z ′Ae+ (Z ′AZ)−1Z ′AxT δ. (A.9)

Taking probability limits,

plim
N−→∞

β̂ = β + plim
N−→∞

(
1

N
Z ′AZ)−1 plim

N−→∞
(

1

N
Z ′AxT δ) (A.10)

since under the exogeneity assumption E(z′iεj,i)=0, ensuring that plim
N−→∞

( 1
NZ
′Ae) = 0.

Noting that AxT = xT −
(
1− ξm−1xx

)−1
x+

(
1− ξm−1xx

)−1
xm−1xx

(
1
N x
′τ
)
, where τ=

(
x− xT

)
, we get

AxT = xT − x
[
1−m−1xx

(
1

N
x′τ

)] [(
1− ξm−1xx

)−1]
.

Therefore,

plim
N−→∞

(
1

N
Z ′AxT

)
= plim

N−→∞

(
1

N
Z ′xT

)
− plim
N−→∞

1

N
Z ′x

[
1−m−1xx

(
1

N
x′τ

)] [(
1− ξm−1xx

)−1]
(A.11)

and if plim
N−→∞

[
1−m−1xx

(
1
N x
′τ
)] [(

1− ξm−1xx
)−1]

= 1 since

plim
N−→∞

(
1

N
x′τ

)
= ξ

along with, plim
N−→∞

(
1
NZ
′xT
)

= plim
N−→∞

(
1
NZ
′x
)
, implicate that plim

N−→∞

(
1
NZ
′AxT

)
= 0 such that introduc-

ing this last expression in Eq. (A.10) proves

plim
N−→∞

β̂ = β.



A.3 Consistency of the Modified Least Squares (MLS) Estimator of δ

Turning to the consistency of the MLS estimate of δ, introduce Eq. (3) in Eq. (A.7) to get

δ̂ = (N)
−1
m−1xxx

′ [I − Z(Z ′AZ)−1Z ′A
] [
Zβ + xT δ + e

] [
1− ξm−1xx

]−1
(A.12)

giving

δ̂ = (N)
−1
m−1xxx

′δ
[
xT − Z(Z ′AZ)−1Z ′AxT

] [
1− ξm−1xx

]−1
+ (N)

−1
m−1xxx

′ [e− Z(Z ′AZ)−1Z ′Ae
] [

1− ξm−1xx
]−1

. (A.13)

Taking probability limits using plim
N−→∞

(
1
NZ
′AxT

)
=0 and plim

N−→∞
( 1
NZ
′Ae)=0, given the exogeneity

assumption E(z′iεj,i) = 0 we get

plim
N−→∞

δ̂ = δ plim
N−→∞

[
m−1xx

(
1

N
x′xT

)[
1− ξm−1xx

]−1]
+ plim
N−→∞

[
m−1xx

(
1

N
x′e

)[
1− ξm−1xx

]−1]

and using τ=
(
x− xT

)
we arrive at

plim
N−→∞

δ̂ = δ plim
N−→∞

[[
1−m−1xx

(
1

N
x′τ

)] [
1− ξm−1xx

]−1]
+ plim
N−→∞

[
m−1xx

(
1

N
x′e

)[
1− ξm−1xx

]−1]
(A.14)

which given that plim
N−→∞

(
1
N x
′τ
)

= ξ simplifies to

plim
N−→∞

δ̂ = δ + plim
N−→∞

[
m−1xx

(
1

N
x′e

)[
1− ξm−1xx

]−1]
(A.15)

corresponding to

plim
N−→∞

δ̂ = δ + plim
N−→∞

[
(x′x)

−1
(x′e)ψ

]
, ψ =

[
1− ξm−1xx

]−1
. (A.16)

The variances of (β̂, δ̂) are given in Aigner (1973), p.58.
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